//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass identifies expensive constants to hoist and coalesces them to // better prepare it for SelectionDAG-based code generation. This works around // the limitations of the basic-block-at-a-time approach. // // First it scans all instructions for integer constants and calculates its // cost. If the constant can be folded into the instruction (the cost is // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't // consider it expensive and leave it alone. This is the default behavior and // the default implementation of getIntImmCostInst will always return TCC_Free. // // If the cost is more than TCC_BASIC, then the integer constant can't be folded // into the instruction and it might be beneficial to hoist the constant. // Similar constants are coalesced to reduce register pressure and // materialization code. // // When a constant is hoisted, it is also hidden behind a bitcast to force it to // be live-out of the basic block. Otherwise the constant would be just // duplicated and each basic block would have its own copy in the SelectionDAG. // The SelectionDAG recognizes such constants as opaque and doesn't perform // certain transformations on them, which would create a new expensive constant. // // This optimization is only applied to integer constants in instructions and // simple (this means not nested) constant cast expressions. For example: // %0 = load i64* inttoptr (i64 big_constant to i64*) //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/ConstantHoisting.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SizeOpts.h" #include #include #include #include #include #include using namespace llvm; using namespace consthoist; #define DEBUG_TYPE "consthoist" STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); STATISTIC(NumConstantsRebased, "Number of constants rebased"); static cl::opt ConstHoistWithBlockFrequency( "consthoist-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to reduce the " "chance to execute const materialization more frequently than " "without hoisting.")); static cl::opt ConstHoistGEP( "consthoist-gep", cl::init(false), cl::Hidden, cl::desc("Try hoisting constant gep expressions")); static cl::opt MinNumOfDependentToRebase("consthoist-min-num-to-rebase", cl::desc("Do not rebase if number of dependent constants of a Base is less " "than this number."), cl::init(0), cl::Hidden); namespace { /// The constant hoisting pass. class ConstantHoistingLegacyPass : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid ConstantHoistingLegacyPass() : FunctionPass(ID) { initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &Fn) override; StringRef getPassName() const override { return "Constant Hoisting"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); if (ConstHoistWithBlockFrequency) AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } private: ConstantHoistingPass Impl; }; } // end anonymous namespace char ConstantHoistingLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", "Constant Hoisting", false, false) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", "Constant Hoisting", false, false) FunctionPass *llvm::createConstantHoistingPass() { return new ConstantHoistingLegacyPass(); } /// Perform the constant hoisting optimization for the given function. bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { if (skipFunction(Fn)) return false; LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); bool MadeChange = Impl.runImpl(Fn, getAnalysis().getTTI(Fn), getAnalysis().getDomTree(), ConstHoistWithBlockFrequency ? &getAnalysis().getBFI() : nullptr, Fn.getEntryBlock(), &getAnalysis().getPSI()); if (MadeChange) { LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: " << Fn.getName() << '\n'); LLVM_DEBUG(dbgs() << Fn); } LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); return MadeChange; } /// Find the constant materialization insertion point. Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, unsigned Idx) const { // If the operand is a cast instruction, then we have to materialize the // constant before the cast instruction. if (Idx != ~0U) { Value *Opnd = Inst->getOperand(Idx); if (auto CastInst = dyn_cast(Opnd)) if (CastInst->isCast()) return CastInst; } // The simple and common case. This also includes constant expressions. if (!isa(Inst) && !Inst->isEHPad()) return Inst; // We can't insert directly before a phi node or an eh pad. Insert before // the terminator of the incoming or dominating block. assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); BasicBlock *InsertionBlock = nullptr; if (Idx != ~0U && isa(Inst)) { InsertionBlock = cast(Inst)->getIncomingBlock(Idx); if (!InsertionBlock->isEHPad()) { return InsertionBlock->getTerminator(); } } else { InsertionBlock = Inst->getParent(); } // This must be an EH pad. Iterate over immediate dominators until we find a // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads // and terminators. auto *IDom = DT->getNode(InsertionBlock)->getIDom(); while (IDom->getBlock()->isEHPad()) { assert(Entry != IDom->getBlock() && "eh pad in entry block"); IDom = IDom->getIDom(); } return IDom->getBlock()->getTerminator(); } /// Given \p BBs as input, find another set of BBs which collectively /// dominates \p BBs and have the minimal sum of frequencies. Return the BB /// set found in \p BBs. static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, BasicBlock *Entry, SetVector &BBs) { assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); // Nodes on the current path to the root. SmallPtrSet Path; // Candidates includes any block 'BB' in set 'BBs' that is not strictly // dominated by any other blocks in set 'BBs', and all nodes in the path // in the dominator tree from Entry to 'BB'. SmallPtrSet Candidates; for (auto BB : BBs) { // Ignore unreachable basic blocks. if (!DT.isReachableFromEntry(BB)) continue; Path.clear(); // Walk up the dominator tree until Entry or another BB in BBs // is reached. Insert the nodes on the way to the Path. BasicBlock *Node = BB; // The "Path" is a candidate path to be added into Candidates set. bool isCandidate = false; do { Path.insert(Node); if (Node == Entry || Candidates.count(Node)) { isCandidate = true; break; } assert(DT.getNode(Node)->getIDom() && "Entry doens't dominate current Node"); Node = DT.getNode(Node)->getIDom()->getBlock(); } while (!BBs.count(Node)); // If isCandidate is false, Node is another Block in BBs dominating // current 'BB'. Drop the nodes on the Path. if (!isCandidate) continue; // Add nodes on the Path into Candidates. Candidates.insert(Path.begin(), Path.end()); } // Sort the nodes in Candidates in top-down order and save the nodes // in Orders. unsigned Idx = 0; SmallVector Orders; Orders.push_back(Entry); while (Idx != Orders.size()) { BasicBlock *Node = Orders[Idx++]; for (auto ChildDomNode : DT.getNode(Node)->children()) { if (Candidates.count(ChildDomNode->getBlock())) Orders.push_back(ChildDomNode->getBlock()); } } // Visit Orders in bottom-up order. using InsertPtsCostPair = std::pair, BlockFrequency>; // InsertPtsMap is a map from a BB to the best insertion points for the // subtree of BB (subtree not including the BB itself). DenseMap InsertPtsMap; InsertPtsMap.reserve(Orders.size() + 1); for (BasicBlock *Node : llvm::reverse(Orders)) { bool NodeInBBs = BBs.count(Node); auto &InsertPts = InsertPtsMap[Node].first; BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; // Return the optimal insert points in BBs. if (Node == Entry) { BBs.clear(); if (InsertPtsFreq > BFI.getBlockFreq(Node) || (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) BBs.insert(Entry); else BBs.insert(InsertPts.begin(), InsertPts.end()); break; } BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child // will update its parent's ParentInsertPts and ParentPtsFreq. auto &ParentInsertPts = InsertPtsMap[Parent].first; BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; // Choose to insert in Node or in subtree of Node. // Don't hoist to EHPad because we may not find a proper place to insert // in EHPad. // If the total frequency of InsertPts is the same as the frequency of the // target Node, and InsertPts contains more than one nodes, choose hoisting // to reduce code size. if (NodeInBBs || (!Node->isEHPad() && (InsertPtsFreq > BFI.getBlockFreq(Node) || (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { ParentInsertPts.insert(Node); ParentPtsFreq += BFI.getBlockFreq(Node); } else { ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); ParentPtsFreq += InsertPtsFreq; } } } /// Find an insertion point that dominates all uses. SetVector ConstantHoistingPass::findConstantInsertionPoint( const ConstantInfo &ConstInfo) const { assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); // Collect all basic blocks. SetVector BBs; SetVector InsertPts; for (auto const &RCI : ConstInfo.RebasedConstants) for (auto const &U : RCI.Uses) BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent()); if (BBs.count(Entry)) { InsertPts.insert(&Entry->front()); return InsertPts; } if (BFI) { findBestInsertionSet(*DT, *BFI, Entry, BBs); for (auto BB : BBs) { BasicBlock::iterator InsertPt = BB->begin(); for (; isa(InsertPt) || InsertPt->isEHPad(); ++InsertPt) ; InsertPts.insert(&*InsertPt); } return InsertPts; } while (BBs.size() >= 2) { BasicBlock *BB, *BB1, *BB2; BB1 = BBs.pop_back_val(); BB2 = BBs.pop_back_val(); BB = DT->findNearestCommonDominator(BB1, BB2); if (BB == Entry) { InsertPts.insert(&Entry->front()); return InsertPts; } BBs.insert(BB); } assert((BBs.size() == 1) && "Expected only one element."); Instruction &FirstInst = (*BBs.begin())->front(); InsertPts.insert(findMatInsertPt(&FirstInst)); return InsertPts; } /// Record constant integer ConstInt for instruction Inst at operand /// index Idx. /// /// The operand at index Idx is not necessarily the constant integer itself. It /// could also be a cast instruction or a constant expression that uses the /// constant integer. void ConstantHoistingPass::collectConstantCandidates( ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, ConstantInt *ConstInt) { InstructionCost Cost; // Ask the target about the cost of materializing the constant for the given // instruction and operand index. if (auto IntrInst = dyn_cast(Inst)) Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx, ConstInt->getValue(), ConstInt->getType(), TargetTransformInfo::TCK_SizeAndLatency); else Cost = TTI->getIntImmCostInst( Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(), TargetTransformInfo::TCK_SizeAndLatency, Inst); // Ignore cheap integer constants. if (Cost > TargetTransformInfo::TCC_Basic) { ConstCandMapType::iterator Itr; bool Inserted; ConstPtrUnionType Cand = ConstInt; std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); if (Inserted) { ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); Itr->second = ConstIntCandVec.size() - 1; } ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); LLVM_DEBUG(if (isa(Inst->getOperand(Idx))) dbgs() << "Collect constant " << *ConstInt << " from " << *Inst << " with cost " << Cost << '\n'; else dbgs() << "Collect constant " << *ConstInt << " indirectly from " << *Inst << " via " << *Inst->getOperand(Idx) << " with cost " << Cost << '\n';); } } /// Record constant GEP expression for instruction Inst at operand index Idx. void ConstantHoistingPass::collectConstantCandidates( ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, ConstantExpr *ConstExpr) { // TODO: Handle vector GEPs if (ConstExpr->getType()->isVectorTy()) return; GlobalVariable *BaseGV = dyn_cast(ConstExpr->getOperand(0)); if (!BaseGV) return; // Get offset from the base GV. PointerType *GVPtrTy = cast(BaseGV->getType()); IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace()); APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true); auto *GEPO = cast(ConstExpr); // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to // inbounds GEP for now -- alternatively, we could drop inbounds from the // constant expression, if (!GEPO->isInBounds()) return; if (!GEPO->accumulateConstantOffset(*DL, Offset)) return; if (!Offset.isIntN(32)) return; // A constant GEP expression that has a GlobalVariable as base pointer is // usually lowered to a load from constant pool. Such operation is unlikely // to be cheaper than compute it by , which can be lowered to // an ADD instruction or folded into Load/Store instruction. InstructionCost Cost = TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy, TargetTransformInfo::TCK_SizeAndLatency, Inst); ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; ConstCandMapType::iterator Itr; bool Inserted; ConstPtrUnionType Cand = ConstExpr; std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); if (Inserted) { ExprCandVec.push_back(ConstantCandidate( ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), ConstExpr)); Itr->second = ExprCandVec.size() - 1; } ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); } /// Check the operand for instruction Inst at index Idx. void ConstantHoistingPass::collectConstantCandidates( ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { Value *Opnd = Inst->getOperand(Idx); // Visit constant integers. if (auto ConstInt = dyn_cast(Opnd)) { collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); return; } // Visit cast instructions that have constant integers. if (auto CastInst = dyn_cast(Opnd)) { // Only visit cast instructions, which have been skipped. All other // instructions should have already been visited. if (!CastInst->isCast()) return; if (auto *ConstInt = dyn_cast(CastInst->getOperand(0))) { // Pretend the constant is directly used by the instruction and ignore // the cast instruction. collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); return; } } // Visit constant expressions that have constant integers. if (auto ConstExpr = dyn_cast(Opnd)) { // Handle constant gep expressions. if (ConstHoistGEP && isa(ConstExpr)) collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); // Only visit constant cast expressions. if (!ConstExpr->isCast()) return; if (auto ConstInt = dyn_cast(ConstExpr->getOperand(0))) { // Pretend the constant is directly used by the instruction and ignore // the constant expression. collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); return; } } } /// Scan the instruction for expensive integer constants and record them /// in the constant candidate vector. void ConstantHoistingPass::collectConstantCandidates( ConstCandMapType &ConstCandMap, Instruction *Inst) { // Skip all cast instructions. They are visited indirectly later on. if (Inst->isCast()) return; // Scan all operands. for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { // The cost of materializing the constants (defined in // `TargetTransformInfo::getIntImmCostInst`) for instructions which only // take constant variables is lower than `TargetTransformInfo::TCC_Basic`. // So it's safe for us to collect constant candidates from all // IntrinsicInsts. if (canReplaceOperandWithVariable(Inst, Idx)) { collectConstantCandidates(ConstCandMap, Inst, Idx); } } // end of for all operands } /// Collect all integer constants in the function that cannot be folded /// into an instruction itself. void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { ConstCandMapType ConstCandMap; for (BasicBlock &BB : Fn) { // Ignore unreachable basic blocks. if (!DT->isReachableFromEntry(&BB)) continue; for (Instruction &Inst : BB) collectConstantCandidates(ConstCandMap, &Inst); } } // This helper function is necessary to deal with values that have different // bit widths (APInt Operator- does not like that). If the value cannot be // represented in uint64 we return an "empty" APInt. This is then interpreted // as the value is not in range. static Optional calculateOffsetDiff(const APInt &V1, const APInt &V2) { Optional Res = None; unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? V1.getBitWidth() : V2.getBitWidth(); uint64_t LimVal1 = V1.getLimitedValue(); uint64_t LimVal2 = V2.getLimitedValue(); if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) return Res; uint64_t Diff = LimVal1 - LimVal2; return APInt(BW, Diff, true); } // From a list of constants, one needs to picked as the base and the other // constants will be transformed into an offset from that base constant. The // question is which we can pick best? For example, consider these constants // and their number of uses: // // Constants| 2 | 4 | 12 | 42 | // NumUses | 3 | 2 | 8 | 7 | // // Selecting constant 12 because it has the most uses will generate negative // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative // offsets lead to less optimal code generation, then there might be better // solutions. Suppose immediates in the range of 0..35 are most optimally // supported by the architecture, then selecting constant 2 is most optimal // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in // selecting the base constant the range of the offsets is a very important // factor too that we take into account here. This algorithm calculates a total // costs for selecting a constant as the base and substract the costs if // immediates are out of range. It has quadratic complexity, so we call this // function only when we're optimising for size and there are less than 100 // constants, we fall back to the straightforward algorithm otherwise // which does not do all the offset calculations. unsigned ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, ConstCandVecType::iterator E, ConstCandVecType::iterator &MaxCostItr) { unsigned NumUses = 0; bool OptForSize = Entry->getParent()->hasOptSize() || llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI, PGSOQueryType::IRPass); if (!OptForSize || std::distance(S,E) > 100) { for (auto ConstCand = S; ConstCand != E; ++ConstCand) { NumUses += ConstCand->Uses.size(); if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) MaxCostItr = ConstCand; } return NumUses; } LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); InstructionCost MaxCost = -1; for (auto ConstCand = S; ConstCand != E; ++ConstCand) { auto Value = ConstCand->ConstInt->getValue(); Type *Ty = ConstCand->ConstInt->getType(); InstructionCost Cost = 0; NumUses += ConstCand->Uses.size(); LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() << "\n"); for (auto User : ConstCand->Uses) { unsigned Opcode = User.Inst->getOpcode(); unsigned OpndIdx = User.OpndIdx; Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty, TargetTransformInfo::TCK_SizeAndLatency); LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); for (auto C2 = S; C2 != E; ++C2) { Optional Diff = calculateOffsetDiff( C2->ConstInt->getValue(), ConstCand->ConstInt->getValue()); if (Diff) { const InstructionCost ImmCosts = TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.value(), Ty); Cost -= ImmCosts; LLVM_DEBUG(dbgs() << "Offset " << Diff.value() << " " << "has penalty: " << ImmCosts << "\n" << "Adjusted cost: " << Cost << "\n"); } } } LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); if (Cost > MaxCost) { MaxCost = Cost; MaxCostItr = ConstCand; LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() << "\n"); } } return NumUses; } /// Find the base constant within the given range and rebase all other /// constants with respect to the base constant. void ConstantHoistingPass::findAndMakeBaseConstant( ConstCandVecType::iterator S, ConstCandVecType::iterator E, SmallVectorImpl &ConstInfoVec) { auto MaxCostItr = S; unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); // Don't hoist constants that have only one use. if (NumUses <= 1) return; ConstantInt *ConstInt = MaxCostItr->ConstInt; ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; ConstantInfo ConstInfo; ConstInfo.BaseInt = ConstInt; ConstInfo.BaseExpr = ConstExpr; Type *Ty = ConstInt->getType(); // Rebase the constants with respect to the base constant. for (auto ConstCand = S; ConstCand != E; ++ConstCand) { APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); Type *ConstTy = ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; ConstInfo.RebasedConstants.push_back( RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); } ConstInfoVec.push_back(std::move(ConstInfo)); } /// Finds and combines constant candidates that can be easily /// rematerialized with an add from a common base constant. void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { // If BaseGV is nullptr, find base among candidate constant integers; // Otherwise find base among constant GEPs that share the same BaseGV. ConstCandVecType &ConstCandVec = BaseGV ? ConstGEPCandMap[BaseGV] : ConstIntCandVec; ConstInfoVecType &ConstInfoVec = BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; // Sort the constants by value and type. This invalidates the mapping! llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) { if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) return LHS.ConstInt->getType()->getBitWidth() < RHS.ConstInt->getType()->getBitWidth(); return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); }); // Simple linear scan through the sorted constant candidate vector for viable // merge candidates. auto MinValItr = ConstCandVec.begin(); for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); CC != E; ++CC) { if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { Type *MemUseValTy = nullptr; for (auto &U : CC->Uses) { auto *UI = U.Inst; if (LoadInst *LI = dyn_cast(UI)) { MemUseValTy = LI->getType(); break; } else if (StoreInst *SI = dyn_cast(UI)) { // Make sure the constant is used as pointer operand of the StoreInst. if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { MemUseValTy = SI->getValueOperand()->getType(); break; } } } // Check if the constant is in range of an add with immediate. APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); if ((Diff.getBitWidth() <= 64) && TTI->isLegalAddImmediate(Diff.getSExtValue()) && // Check if Diff can be used as offset in addressing mode of the user // memory instruction. (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), /*HasBaseReg*/true, /*Scale*/0))) continue; } // We either have now a different constant type or the constant is not in // range of an add with immediate anymore. findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); // Start a new base constant search. MinValItr = CC; } // Finalize the last base constant search. findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); } /// Updates the operand at Idx in instruction Inst with the result of /// instruction Mat. If the instruction is a PHI node then special /// handling for duplicate values form the same incoming basic block is /// required. /// \return The update will always succeed, but the return value indicated if /// Mat was used for the update or not. static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { if (auto PHI = dyn_cast(Inst)) { // Check if any previous operand of the PHI node has the same incoming basic // block. This is a very odd case that happens when the incoming basic block // has a switch statement. In this case use the same value as the previous // operand(s), otherwise we will fail verification due to different values. // The values are actually the same, but the variable names are different // and the verifier doesn't like that. BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); for (unsigned i = 0; i < Idx; ++i) { if (PHI->getIncomingBlock(i) == IncomingBB) { Value *IncomingVal = PHI->getIncomingValue(i); Inst->setOperand(Idx, IncomingVal); return false; } } } Inst->setOperand(Idx, Mat); return true; } /// Emit materialization code for all rebased constants and update their /// users. void ConstantHoistingPass::emitBaseConstants(Instruction *Base, Constant *Offset, Type *Ty, const ConstantUser &ConstUser) { Instruction *Mat = Base; // The same offset can be dereferenced to different types in nested struct. if (!Offset && Ty && Ty != Base->getType()) Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); if (Offset) { Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst, ConstUser.OpndIdx); if (Ty) { // Constant being rebased is a ConstantExpr. PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx, cast(Ty)->getAddressSpace()); Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt); Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, Offset, "mat_gep", InsertionPt); Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt); } else // Constant being rebased is a ConstantInt. Mat = BinaryOperator::Create(Instruction::Add, Base, Offset, "const_mat", InsertionPt); LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) << " + " << *Offset << ") in BB " << Mat->getParent()->getName() << '\n' << *Mat << '\n'); Mat->setDebugLoc(ConstUser.Inst->getDebugLoc()); } Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx); // Visit constant integer. if (isa(Opnd)) { LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset) Mat->eraseFromParent(); LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); return; } // Visit cast instruction. if (auto CastInst = dyn_cast(Opnd)) { assert(CastInst->isCast() && "Expected an cast instruction!"); // Check if we already have visited this cast instruction before to avoid // unnecessary cloning. Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; if (!ClonedCastInst) { ClonedCastInst = CastInst->clone(); ClonedCastInst->setOperand(0, Mat); ClonedCastInst->insertAfter(CastInst); // Use the same debug location as the original cast instruction. ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' << "To : " << *ClonedCastInst << '\n'); } LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst); LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); return; } // Visit constant expression. if (auto ConstExpr = dyn_cast(Opnd)) { if (isa(ConstExpr)) { // Operand is a ConstantGEP, replace it. updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat); return; } // Aside from constant GEPs, only constant cast expressions are collected. assert(ConstExpr->isCast() && "ConstExpr should be a cast"); Instruction *ConstExprInst = ConstExpr->getAsInstruction( findMatInsertPt(ConstUser.Inst, ConstUser.OpndIdx)); ConstExprInst->setOperand(0, Mat); // Use the same debug location as the instruction we are about to update. ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc()); LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' << "From : " << *ConstExpr << '\n'); LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) { ConstExprInst->eraseFromParent(); if (Offset) Mat->eraseFromParent(); } LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); return; } } /// Hoist and hide the base constant behind a bitcast and emit /// materialization code for derived constants. bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { bool MadeChange = false; SmallVectorImpl &ConstInfoVec = BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; for (auto const &ConstInfo : ConstInfoVec) { SetVector IPSet = findConstantInsertionPoint(ConstInfo); // We can have an empty set if the function contains unreachable blocks. if (IPSet.empty()) continue; unsigned UsesNum = 0; unsigned ReBasesNum = 0; unsigned NotRebasedNum = 0; for (Instruction *IP : IPSet) { // First, collect constants depending on this IP of the base. unsigned Uses = 0; using RebasedUse = std::tuple; SmallVector ToBeRebased; for (auto const &RCI : ConstInfo.RebasedConstants) { for (auto const &U : RCI.Uses) { Uses++; BasicBlock *OrigMatInsertBB = findMatInsertPt(U.Inst, U.OpndIdx)->getParent(); // If Base constant is to be inserted in multiple places, // generate rebase for U using the Base dominating U. if (IPSet.size() == 1 || DT->dominates(IP->getParent(), OrigMatInsertBB)) ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U)); } } UsesNum = Uses; // If only few constants depend on this IP of base, skip rebasing, // assuming the base and the rebased have the same materialization cost. if (ToBeRebased.size() < MinNumOfDependentToRebase) { NotRebasedNum += ToBeRebased.size(); continue; } // Emit an instance of the base at this IP. Instruction *Base = nullptr; // Hoist and hide the base constant behind a bitcast. if (ConstInfo.BaseExpr) { assert(BaseGV && "A base constant expression must have an base GV"); Type *Ty = ConstInfo.BaseExpr->getType(); Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); } else { IntegerType *Ty = ConstInfo.BaseInt->getType(); Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); } Base->setDebugLoc(IP->getDebugLoc()); LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt << ") to BB " << IP->getParent()->getName() << '\n' << *Base << '\n'); // Emit materialization code for rebased constants depending on this IP. for (auto const &R : ToBeRebased) { Constant *Off = std::get<0>(R); Type *Ty = std::get<1>(R); ConstantUser U = std::get<2>(R); emitBaseConstants(Base, Off, Ty, U); ReBasesNum++; // Use the same debug location as the last user of the constant. Base->setDebugLoc(DILocation::getMergedLocation( Base->getDebugLoc(), U.Inst->getDebugLoc())); } assert(!Base->use_empty() && "The use list is empty!?"); assert(isa(Base->user_back()) && "All uses should be instructions."); } (void)UsesNum; (void)ReBasesNum; (void)NotRebasedNum; // Expect all uses are rebased after rebase is done. assert(UsesNum == (ReBasesNum + NotRebasedNum) && "Not all uses are rebased"); NumConstantsHoisted++; // Base constant is also included in ConstInfo.RebasedConstants, so // deduct 1 from ConstInfo.RebasedConstants.size(). NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; MadeChange = true; } return MadeChange; } /// Check all cast instructions we made a copy of and remove them if they /// have no more users. void ConstantHoistingPass::deleteDeadCastInst() const { for (auto const &I : ClonedCastMap) if (I.first->use_empty()) I.first->eraseFromParent(); } /// Optimize expensive integer constants in the given function. bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, DominatorTree &DT, BlockFrequencyInfo *BFI, BasicBlock &Entry, ProfileSummaryInfo *PSI) { this->TTI = &TTI; this->DT = &DT; this->BFI = BFI; this->DL = &Fn.getParent()->getDataLayout(); this->Ctx = &Fn.getContext(); this->Entry = &Entry; this->PSI = PSI; // Collect all constant candidates. collectConstantCandidates(Fn); // Combine constants that can be easily materialized with an add from a common // base constant. if (!ConstIntCandVec.empty()) findBaseConstants(nullptr); for (const auto &MapEntry : ConstGEPCandMap) if (!MapEntry.second.empty()) findBaseConstants(MapEntry.first); // Finally hoist the base constant and emit materialization code for dependent // constants. bool MadeChange = false; if (!ConstIntInfoVec.empty()) MadeChange = emitBaseConstants(nullptr); for (const auto &MapEntry : ConstGEPInfoMap) if (!MapEntry.second.empty()) MadeChange |= emitBaseConstants(MapEntry.first); // Cleanup dead instructions. deleteDeadCastInst(); cleanup(); return MadeChange; } PreservedAnalyses ConstantHoistingPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); auto &TTI = AM.getResult(F); auto BFI = ConstHoistWithBlockFrequency ? &AM.getResult(F) : nullptr; auto &MAMProxy = AM.getResult(F); auto *PSI = MAMProxy.getCachedResult(*F.getParent()); if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); return PA; }