//===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Bit-Tracking Dead Code Elimination pass. Some // instructions (shifts, some ands, ors, etc.) kill some of their input bits. // We track these dead bits and remove instructions that compute only these // dead bits. We also simplify sext that generates unused extension bits, // converting it to a zext. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/BDCE.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; #define DEBUG_TYPE "bdce" STATISTIC(NumRemoved, "Number of instructions removed (unused)"); STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)"); STATISTIC(NumSExt2ZExt, "Number of sign extension instructions converted to zero extension"); /// If an instruction is trivialized (dead), then the chain of users of that /// instruction may need to be cleared of assumptions that can no longer be /// guaranteed correct. static void clearAssumptionsOfUsers(Instruction *I, DemandedBits &DB) { assert(I->getType()->isIntOrIntVectorTy() && "Trivializing a non-integer value?"); // Initialize the worklist with eligible direct users. SmallPtrSet Visited; SmallVector WorkList; for (User *JU : I->users()) { // If all bits of a user are demanded, then we know that nothing below that // in the def-use chain needs to be changed. auto *J = dyn_cast(JU); if (J && J->getType()->isIntOrIntVectorTy() && !DB.getDemandedBits(J).isAllOnes()) { Visited.insert(J); WorkList.push_back(J); } // Note that we need to check for non-int types above before asking for // demanded bits. Normally, the only way to reach an instruction with an // non-int type is via an instruction that has side effects (or otherwise // will demand its input bits). However, if we have a readnone function // that returns an unsized type (e.g., void), we must avoid asking for the // demanded bits of the function call's return value. A void-returning // readnone function is always dead (and so we can stop walking the use/def // chain here), but the check is necessary to avoid asserting. } // DFS through subsequent users while tracking visits to avoid cycles. while (!WorkList.empty()) { Instruction *J = WorkList.pop_back_val(); // NSW, NUW, and exact are based on operands that might have changed. J->dropPoisonGeneratingFlags(); // We do not have to worry about llvm.assume or range metadata: // 1. llvm.assume demands its operand, so trivializing can't change it. // 2. range metadata only applies to memory accesses which demand all bits. for (User *KU : J->users()) { // If all bits of a user are demanded, then we know that nothing below // that in the def-use chain needs to be changed. auto *K = dyn_cast(KU); if (K && Visited.insert(K).second && K->getType()->isIntOrIntVectorTy() && !DB.getDemandedBits(K).isAllOnes()) WorkList.push_back(K); } } } static bool bitTrackingDCE(Function &F, DemandedBits &DB) { SmallVector Worklist; bool Changed = false; for (Instruction &I : instructions(F)) { // If the instruction has side effects and no non-dbg uses, // skip it. This way we avoid computing known bits on an instruction // that will not help us. if (I.mayHaveSideEffects() && I.use_empty()) continue; // Remove instructions that are dead, either because they were not reached // during analysis or have no demanded bits. if (DB.isInstructionDead(&I) || (I.getType()->isIntOrIntVectorTy() && DB.getDemandedBits(&I).isZero() && wouldInstructionBeTriviallyDead(&I))) { Worklist.push_back(&I); Changed = true; continue; } // Convert SExt into ZExt if none of the extension bits is required if (SExtInst *SE = dyn_cast(&I)) { APInt Demanded = DB.getDemandedBits(SE); const uint32_t SrcBitSize = SE->getSrcTy()->getScalarSizeInBits(); auto *const DstTy = SE->getDestTy(); const uint32_t DestBitSize = DstTy->getScalarSizeInBits(); if (Demanded.countl_zero() >= (DestBitSize - SrcBitSize)) { clearAssumptionsOfUsers(SE, DB); IRBuilder<> Builder(SE); I.replaceAllUsesWith( Builder.CreateZExt(SE->getOperand(0), DstTy, SE->getName())); Worklist.push_back(SE); Changed = true; NumSExt2ZExt++; continue; } } for (Use &U : I.operands()) { // DemandedBits only detects dead integer uses. if (!U->getType()->isIntOrIntVectorTy()) continue; if (!isa(U) && !isa(U)) continue; if (!DB.isUseDead(&U)) continue; LLVM_DEBUG(dbgs() << "BDCE: Trivializing: " << U << " (all bits dead)\n"); clearAssumptionsOfUsers(&I, DB); // Substitute all uses with zero. In theory we could use `freeze poison` // instead, but that seems unlikely to be profitable. U.set(ConstantInt::get(U->getType(), 0)); ++NumSimplified; Changed = true; } } for (Instruction *&I : llvm::reverse(Worklist)) { salvageDebugInfo(*I); I->dropAllReferences(); } for (Instruction *&I : Worklist) { ++NumRemoved; I->eraseFromParent(); } return Changed; } PreservedAnalyses BDCEPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DB = AM.getResult(F); if (!bitTrackingDCE(F, DB)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); return PA; }