//===----------------------- AlignmentFromAssumptions.cpp -----------------===// // Set Load/Store Alignments From Assumptions // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a ScalarEvolution-based transformation to set // the alignments of load, stores and memory intrinsics based on the truth // expressions of assume intrinsics. The primary motivation is to handle // complex alignment assumptions that apply to vector loads and stores that // appear after vectorization and unrolling. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "alignment-from-assumptions" using namespace llvm; STATISTIC(NumLoadAlignChanged, "Number of loads changed by alignment assumptions"); STATISTIC(NumStoreAlignChanged, "Number of stores changed by alignment assumptions"); STATISTIC(NumMemIntAlignChanged, "Number of memory intrinsics changed by alignment assumptions"); // Given an expression for the (constant) alignment, AlignSCEV, and an // expression for the displacement between a pointer and the aligned address, // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced // to a constant. Using SCEV to compute alignment handles the case where // DiffSCEV is a recurrence with constant start such that the aligned offset // is constant. e.g. {16,+,32} % 32 -> 16. static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV, const SCEV *AlignSCEV, ScalarEvolution *SE) { // DiffUnits = Diff % int64_t(Alignment) const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV); LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); if (const SCEVConstant *ConstDUSCEV = dyn_cast(DiffUnitsSCEV)) { int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); // If the displacement is an exact multiple of the alignment, then the // displaced pointer has the same alignment as the aligned pointer, so // return the alignment value. if (!DiffUnits) return cast(AlignSCEV)->getValue()->getAlignValue(); // If the displacement is not an exact multiple, but the remainder is a // constant, then return this remainder (but only if it is a power of 2). uint64_t DiffUnitsAbs = std::abs(DiffUnits); if (isPowerOf2_64(DiffUnitsAbs)) return Align(DiffUnitsAbs); } return std::nullopt; } // There is an address given by an offset OffSCEV from AASCEV which has an // alignment AlignSCEV. Use that information, if possible, to compute a new // alignment for Ptr. static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, const SCEV *OffSCEV, Value *Ptr, ScalarEvolution *SE) { const SCEV *PtrSCEV = SE->getSCEV(Ptr); const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); if (isa(DiffSCEV)) return Align(1); // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always // sign-extended OffSCEV to i64, so make sure they agree again. DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); // What we really want to know is the overall offset to the aligned // address. This address is displaced by the provided offset. DiffSCEV = SE->getAddExpr(DiffSCEV, OffSCEV); LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " << *AlignSCEV << " and offset " << *OffSCEV << " using diff " << *DiffSCEV << "\n"); if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) { LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n"); return *NewAlignment; } if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast(DiffSCEV)) { // The relative offset to the alignment assumption did not yield a constant, // but we should try harder: if we assume that a is 32-byte aligned, then in // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. // As a result, the new alignment will not be a constant, but can still // be improved over the default (of 4) to 16. const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start " << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); // Now compute the new alignment using the displacement to the value in the // first iteration, and also the alignment using the per-iteration delta. // If these are the same, then use that answer. Otherwise, use the smaller // one, but only if it divides the larger one. MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); MaybeAlign NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment) << "\n"); LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment) << "\n"); if (!NewAlignment || !NewIncAlignment) return Align(1); const Align NewAlign = *NewAlignment; const Align NewIncAlign = *NewIncAlignment; if (NewAlign > NewIncAlign) { LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewIncAlign) << "\n"); return NewIncAlign; } if (NewIncAlign > NewAlign) { LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) << "\n"); return NewAlign; } assert(NewIncAlign == NewAlign); LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign) << "\n"); return NewAlign; } return Align(1); } bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I, unsigned Idx, Value *&AAPtr, const SCEV *&AlignSCEV, const SCEV *&OffSCEV) { Type *Int64Ty = Type::getInt64Ty(I->getContext()); OperandBundleUse AlignOB = I->getOperandBundleAt(Idx); if (AlignOB.getTagName() != "align") return false; assert(AlignOB.Inputs.size() >= 2); AAPtr = AlignOB.Inputs[0].get(); // TODO: Consider accumulating the offset to the base. AAPtr = AAPtr->stripPointerCastsSameRepresentation(); AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get()); AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty); if (!isa(AlignSCEV)) // Added to suppress a crash because consumer doesn't expect non-constant // alignments in the assume bundle. TODO: Consider generalizing caller. return false; if (!cast(AlignSCEV)->getAPInt().isPowerOf2()) // Only power of two alignments are supported. return false; if (AlignOB.Inputs.size() == 3) OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get()); else OffSCEV = SE->getZero(Int64Ty); OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty); return true; } bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall, unsigned Idx) { Value *AAPtr; const SCEV *AlignSCEV, *OffSCEV; if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV)) return false; // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't // affect other users. if (isa(AAPtr)) return false; const SCEV *AASCEV = SE->getSCEV(AAPtr); // Apply the assumption to all other users of the specified pointer. SmallPtrSet Visited; SmallVector WorkList; for (User *J : AAPtr->users()) { if (J == ACall) continue; if (Instruction *K = dyn_cast(J)) WorkList.push_back(K); } while (!WorkList.empty()) { Instruction *J = WorkList.pop_back_val(); if (LoadInst *LI = dyn_cast(J)) { if (!isValidAssumeForContext(ACall, J, DT)) continue; Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, LI->getPointerOperand(), SE); if (NewAlignment > LI->getAlign()) { LI->setAlignment(NewAlignment); ++NumLoadAlignChanged; } } else if (StoreInst *SI = dyn_cast(J)) { if (!isValidAssumeForContext(ACall, J, DT)) continue; Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, SI->getPointerOperand(), SE); if (NewAlignment > SI->getAlign()) { SI->setAlignment(NewAlignment); ++NumStoreAlignChanged; } } else if (MemIntrinsic *MI = dyn_cast(J)) { if (!isValidAssumeForContext(ACall, J, DT)) continue; Align NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE); LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment) << "\n";); if (NewDestAlignment > *MI->getDestAlign()) { MI->setDestAlignment(NewDestAlignment); ++NumMemIntAlignChanged; } // For memory transfers, there is also a source alignment that // can be set. if (MemTransferInst *MTI = dyn_cast(MI)) { Align NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE); LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment) << "\n";); if (NewSrcAlignment > *MTI->getSourceAlign()) { MTI->setSourceAlignment(NewSrcAlignment); ++NumMemIntAlignChanged; } } } // Now that we've updated that use of the pointer, look for other uses of // the pointer to update. Visited.insert(J); if (isa(J) || isa(J)) for (auto &U : J->uses()) { if (U->getType()->isPointerTy()) { Instruction *K = cast(U.getUser()); StoreInst *SI = dyn_cast(K); if (SI && SI->getPointerOperandIndex() != U.getOperandNo()) continue; if (!Visited.count(K)) WorkList.push_back(K); } } } return true; } bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC, ScalarEvolution *SE_, DominatorTree *DT_) { SE = SE_; DT = DT_; bool Changed = false; for (auto &AssumeVH : AC.assumptions()) if (AssumeVH) { CallInst *Call = cast(AssumeVH); for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++) Changed |= processAssumption(Call, Idx); } return Changed; } PreservedAnalyses AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) { AssumptionCache &AC = AM.getResult(F); ScalarEvolution &SE = AM.getResult(F); DominatorTree &DT = AM.getResult(F); if (!runImpl(F, AC, &SE, &DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); return PA; }