//===-- SanitizerCoverage.cpp - coverage instrumentation for sanitizers ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Coverage instrumentation done on LLVM IR level, works with Sanitizers. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/IR/Constant.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/EHPersonalities.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/SpecialCaseList.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/TargetParser/Triple.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace llvm; #define DEBUG_TYPE "sancov" const char SanCovTracePCIndirName[] = "__sanitizer_cov_trace_pc_indir"; const char SanCovTracePCName[] = "__sanitizer_cov_trace_pc"; const char SanCovTraceCmp1[] = "__sanitizer_cov_trace_cmp1"; const char SanCovTraceCmp2[] = "__sanitizer_cov_trace_cmp2"; const char SanCovTraceCmp4[] = "__sanitizer_cov_trace_cmp4"; const char SanCovTraceCmp8[] = "__sanitizer_cov_trace_cmp8"; const char SanCovTraceConstCmp1[] = "__sanitizer_cov_trace_const_cmp1"; const char SanCovTraceConstCmp2[] = "__sanitizer_cov_trace_const_cmp2"; const char SanCovTraceConstCmp4[] = "__sanitizer_cov_trace_const_cmp4"; const char SanCovTraceConstCmp8[] = "__sanitizer_cov_trace_const_cmp8"; const char SanCovLoad1[] = "__sanitizer_cov_load1"; const char SanCovLoad2[] = "__sanitizer_cov_load2"; const char SanCovLoad4[] = "__sanitizer_cov_load4"; const char SanCovLoad8[] = "__sanitizer_cov_load8"; const char SanCovLoad16[] = "__sanitizer_cov_load16"; const char SanCovStore1[] = "__sanitizer_cov_store1"; const char SanCovStore2[] = "__sanitizer_cov_store2"; const char SanCovStore4[] = "__sanitizer_cov_store4"; const char SanCovStore8[] = "__sanitizer_cov_store8"; const char SanCovStore16[] = "__sanitizer_cov_store16"; const char SanCovTraceDiv4[] = "__sanitizer_cov_trace_div4"; const char SanCovTraceDiv8[] = "__sanitizer_cov_trace_div8"; const char SanCovTraceGep[] = "__sanitizer_cov_trace_gep"; const char SanCovTraceSwitchName[] = "__sanitizer_cov_trace_switch"; const char SanCovModuleCtorTracePcGuardName[] = "sancov.module_ctor_trace_pc_guard"; const char SanCovModuleCtor8bitCountersName[] = "sancov.module_ctor_8bit_counters"; const char SanCovModuleCtorBoolFlagName[] = "sancov.module_ctor_bool_flag"; static const uint64_t SanCtorAndDtorPriority = 2; const char SanCovTracePCGuardName[] = "__sanitizer_cov_trace_pc_guard"; const char SanCovTracePCGuardInitName[] = "__sanitizer_cov_trace_pc_guard_init"; const char SanCov8bitCountersInitName[] = "__sanitizer_cov_8bit_counters_init"; const char SanCovBoolFlagInitName[] = "__sanitizer_cov_bool_flag_init"; const char SanCovPCsInitName[] = "__sanitizer_cov_pcs_init"; const char SanCovCFsInitName[] = "__sanitizer_cov_cfs_init"; const char SanCovGuardsSectionName[] = "sancov_guards"; const char SanCovCountersSectionName[] = "sancov_cntrs"; const char SanCovBoolFlagSectionName[] = "sancov_bools"; const char SanCovPCsSectionName[] = "sancov_pcs"; const char SanCovCFsSectionName[] = "sancov_cfs"; const char SanCovLowestStackName[] = "__sancov_lowest_stack"; static cl::opt ClCoverageLevel( "sanitizer-coverage-level", cl::desc("Sanitizer Coverage. 0: none, 1: entry block, 2: all blocks, " "3: all blocks and critical edges"), cl::Hidden); static cl::opt ClTracePC("sanitizer-coverage-trace-pc", cl::desc("Experimental pc tracing"), cl::Hidden); static cl::opt ClTracePCGuard("sanitizer-coverage-trace-pc-guard", cl::desc("pc tracing with a guard"), cl::Hidden); // If true, we create a global variable that contains PCs of all instrumented // BBs, put this global into a named section, and pass this section's bounds // to __sanitizer_cov_pcs_init. // This way the coverage instrumentation does not need to acquire the PCs // at run-time. Works with trace-pc-guard, inline-8bit-counters, and // inline-bool-flag. static cl::opt ClCreatePCTable("sanitizer-coverage-pc-table", cl::desc("create a static PC table"), cl::Hidden); static cl::opt ClInline8bitCounters("sanitizer-coverage-inline-8bit-counters", cl::desc("increments 8-bit counter for every edge"), cl::Hidden); static cl::opt ClInlineBoolFlag("sanitizer-coverage-inline-bool-flag", cl::desc("sets a boolean flag for every edge"), cl::Hidden); static cl::opt ClCMPTracing("sanitizer-coverage-trace-compares", cl::desc("Tracing of CMP and similar instructions"), cl::Hidden); static cl::opt ClDIVTracing("sanitizer-coverage-trace-divs", cl::desc("Tracing of DIV instructions"), cl::Hidden); static cl::opt ClLoadTracing("sanitizer-coverage-trace-loads", cl::desc("Tracing of load instructions"), cl::Hidden); static cl::opt ClStoreTracing("sanitizer-coverage-trace-stores", cl::desc("Tracing of store instructions"), cl::Hidden); static cl::opt ClGEPTracing("sanitizer-coverage-trace-geps", cl::desc("Tracing of GEP instructions"), cl::Hidden); static cl::opt ClPruneBlocks("sanitizer-coverage-prune-blocks", cl::desc("Reduce the number of instrumented blocks"), cl::Hidden, cl::init(true)); static cl::opt ClStackDepth("sanitizer-coverage-stack-depth", cl::desc("max stack depth tracing"), cl::Hidden); static cl::opt ClCollectCF("sanitizer-coverage-control-flow", cl::desc("collect control flow for each function"), cl::Hidden); namespace { SanitizerCoverageOptions getOptions(int LegacyCoverageLevel) { SanitizerCoverageOptions Res; switch (LegacyCoverageLevel) { case 0: Res.CoverageType = SanitizerCoverageOptions::SCK_None; break; case 1: Res.CoverageType = SanitizerCoverageOptions::SCK_Function; break; case 2: Res.CoverageType = SanitizerCoverageOptions::SCK_BB; break; case 3: Res.CoverageType = SanitizerCoverageOptions::SCK_Edge; break; case 4: Res.CoverageType = SanitizerCoverageOptions::SCK_Edge; Res.IndirectCalls = true; break; } return Res; } SanitizerCoverageOptions OverrideFromCL(SanitizerCoverageOptions Options) { // Sets CoverageType and IndirectCalls. SanitizerCoverageOptions CLOpts = getOptions(ClCoverageLevel); Options.CoverageType = std::max(Options.CoverageType, CLOpts.CoverageType); Options.IndirectCalls |= CLOpts.IndirectCalls; Options.TraceCmp |= ClCMPTracing; Options.TraceDiv |= ClDIVTracing; Options.TraceGep |= ClGEPTracing; Options.TracePC |= ClTracePC; Options.TracePCGuard |= ClTracePCGuard; Options.Inline8bitCounters |= ClInline8bitCounters; Options.InlineBoolFlag |= ClInlineBoolFlag; Options.PCTable |= ClCreatePCTable; Options.NoPrune |= !ClPruneBlocks; Options.StackDepth |= ClStackDepth; Options.TraceLoads |= ClLoadTracing; Options.TraceStores |= ClStoreTracing; if (!Options.TracePCGuard && !Options.TracePC && !Options.Inline8bitCounters && !Options.StackDepth && !Options.InlineBoolFlag && !Options.TraceLoads && !Options.TraceStores) Options.TracePCGuard = true; // TracePCGuard is default. Options.CollectControlFlow |= ClCollectCF; return Options; } class ModuleSanitizerCoverage { public: using DomTreeCallback = function_ref; using PostDomTreeCallback = function_ref; ModuleSanitizerCoverage(Module &M, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback, const SanitizerCoverageOptions &Options, const SpecialCaseList *Allowlist, const SpecialCaseList *Blocklist) : M(M), DTCallback(DTCallback), PDTCallback(PDTCallback), Options(Options), Allowlist(Allowlist), Blocklist(Blocklist) {} bool instrumentModule(); private: void createFunctionControlFlow(Function &F); void instrumentFunction(Function &F); void InjectCoverageForIndirectCalls(Function &F, ArrayRef IndirCalls); void InjectTraceForCmp(Function &F, ArrayRef CmpTraceTargets); void InjectTraceForDiv(Function &F, ArrayRef DivTraceTargets); void InjectTraceForGep(Function &F, ArrayRef GepTraceTargets); void InjectTraceForLoadsAndStores(Function &F, ArrayRef Loads, ArrayRef Stores); void InjectTraceForSwitch(Function &F, ArrayRef SwitchTraceTargets); bool InjectCoverage(Function &F, ArrayRef AllBlocks, bool IsLeafFunc = true); GlobalVariable *CreateFunctionLocalArrayInSection(size_t NumElements, Function &F, Type *Ty, const char *Section); GlobalVariable *CreatePCArray(Function &F, ArrayRef AllBlocks); void CreateFunctionLocalArrays(Function &F, ArrayRef AllBlocks); void InjectCoverageAtBlock(Function &F, BasicBlock &BB, size_t Idx, bool IsLeafFunc = true); Function *CreateInitCallsForSections(Module &M, const char *CtorName, const char *InitFunctionName, Type *Ty, const char *Section); std::pair CreateSecStartEnd(Module &M, const char *Section, Type *Ty); std::string getSectionName(const std::string &Section) const; std::string getSectionStart(const std::string &Section) const; std::string getSectionEnd(const std::string &Section) const; Module &M; DomTreeCallback DTCallback; PostDomTreeCallback PDTCallback; FunctionCallee SanCovTracePCIndir; FunctionCallee SanCovTracePC, SanCovTracePCGuard; std::array SanCovTraceCmpFunction; std::array SanCovTraceConstCmpFunction; std::array SanCovLoadFunction; std::array SanCovStoreFunction; std::array SanCovTraceDivFunction; FunctionCallee SanCovTraceGepFunction; FunctionCallee SanCovTraceSwitchFunction; GlobalVariable *SanCovLowestStack; Type *PtrTy, *IntptrTy, *Int64Ty, *Int32Ty, *Int16Ty, *Int8Ty, *Int1Ty; Module *CurModule; std::string CurModuleUniqueId; Triple TargetTriple; LLVMContext *C; const DataLayout *DL; GlobalVariable *FunctionGuardArray; // for trace-pc-guard. GlobalVariable *Function8bitCounterArray; // for inline-8bit-counters. GlobalVariable *FunctionBoolArray; // for inline-bool-flag. GlobalVariable *FunctionPCsArray; // for pc-table. GlobalVariable *FunctionCFsArray; // for control flow table SmallVector GlobalsToAppendToUsed; SmallVector GlobalsToAppendToCompilerUsed; SanitizerCoverageOptions Options; const SpecialCaseList *Allowlist; const SpecialCaseList *Blocklist; }; } // namespace PreservedAnalyses SanitizerCoveragePass::run(Module &M, ModuleAnalysisManager &MAM) { auto &FAM = MAM.getResult(M).getManager(); auto DTCallback = [&FAM](Function &F) -> const DominatorTree & { return FAM.getResult(F); }; auto PDTCallback = [&FAM](Function &F) -> const PostDominatorTree & { return FAM.getResult(F); }; ModuleSanitizerCoverage ModuleSancov(M, DTCallback, PDTCallback, OverrideFromCL(Options), Allowlist.get(), Blocklist.get()); if (!ModuleSancov.instrumentModule()) return PreservedAnalyses::all(); PreservedAnalyses PA = PreservedAnalyses::none(); // GlobalsAA is considered stateless and does not get invalidated unless // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers // make changes that require GlobalsAA to be invalidated. PA.abandon(); return PA; } std::pair ModuleSanitizerCoverage::CreateSecStartEnd(Module &M, const char *Section, Type *Ty) { // Use ExternalWeak so that if all sections are discarded due to section // garbage collection, the linker will not report undefined symbol errors. // Windows defines the start/stop symbols in compiler-rt so no need for // ExternalWeak. GlobalValue::LinkageTypes Linkage = TargetTriple.isOSBinFormatCOFF() ? GlobalVariable::ExternalLinkage : GlobalVariable::ExternalWeakLinkage; GlobalVariable *SecStart = new GlobalVariable(M, Ty, false, Linkage, nullptr, getSectionStart(Section)); SecStart->setVisibility(GlobalValue::HiddenVisibility); GlobalVariable *SecEnd = new GlobalVariable(M, Ty, false, Linkage, nullptr, getSectionEnd(Section)); SecEnd->setVisibility(GlobalValue::HiddenVisibility); IRBuilder<> IRB(M.getContext()); if (!TargetTriple.isOSBinFormatCOFF()) return std::make_pair(SecStart, SecEnd); // Account for the fact that on windows-msvc __start_* symbols actually // point to a uint64_t before the start of the array. auto GEP = IRB.CreatePtrAdd(SecStart, ConstantInt::get(IntptrTy, sizeof(uint64_t))); return std::make_pair(GEP, SecEnd); } Function *ModuleSanitizerCoverage::CreateInitCallsForSections( Module &M, const char *CtorName, const char *InitFunctionName, Type *Ty, const char *Section) { auto SecStartEnd = CreateSecStartEnd(M, Section, Ty); auto SecStart = SecStartEnd.first; auto SecEnd = SecStartEnd.second; Function *CtorFunc; std::tie(CtorFunc, std::ignore) = createSanitizerCtorAndInitFunctions( M, CtorName, InitFunctionName, {PtrTy, PtrTy}, {SecStart, SecEnd}); assert(CtorFunc->getName() == CtorName); if (TargetTriple.supportsCOMDAT()) { // Use comdat to dedup CtorFunc. CtorFunc->setComdat(M.getOrInsertComdat(CtorName)); appendToGlobalCtors(M, CtorFunc, SanCtorAndDtorPriority, CtorFunc); } else { appendToGlobalCtors(M, CtorFunc, SanCtorAndDtorPriority); } if (TargetTriple.isOSBinFormatCOFF()) { // In COFF files, if the contructors are set as COMDAT (they are because // COFF supports COMDAT) and the linker flag /OPT:REF (strip unreferenced // functions and data) is used, the constructors get stripped. To prevent // this, give the constructors weak ODR linkage and ensure the linker knows // to include the sancov constructor. This way the linker can deduplicate // the constructors but always leave one copy. CtorFunc->setLinkage(GlobalValue::WeakODRLinkage); } return CtorFunc; } bool ModuleSanitizerCoverage::instrumentModule() { if (Options.CoverageType == SanitizerCoverageOptions::SCK_None) return false; if (Allowlist && !Allowlist->inSection("coverage", "src", M.getSourceFileName())) return false; if (Blocklist && Blocklist->inSection("coverage", "src", M.getSourceFileName())) return false; C = &(M.getContext()); DL = &M.getDataLayout(); CurModule = &M; CurModuleUniqueId = getUniqueModuleId(CurModule); TargetTriple = Triple(M.getTargetTriple()); FunctionGuardArray = nullptr; Function8bitCounterArray = nullptr; FunctionBoolArray = nullptr; FunctionPCsArray = nullptr; FunctionCFsArray = nullptr; IntptrTy = Type::getIntNTy(*C, DL->getPointerSizeInBits()); PtrTy = PointerType::getUnqual(*C); Type *VoidTy = Type::getVoidTy(*C); IRBuilder<> IRB(*C); Int64Ty = IRB.getInt64Ty(); Int32Ty = IRB.getInt32Ty(); Int16Ty = IRB.getInt16Ty(); Int8Ty = IRB.getInt8Ty(); Int1Ty = IRB.getInt1Ty(); SanCovTracePCIndir = M.getOrInsertFunction(SanCovTracePCIndirName, VoidTy, IntptrTy); // Make sure smaller parameters are zero-extended to i64 if required by the // target ABI. AttributeList SanCovTraceCmpZeroExtAL; SanCovTraceCmpZeroExtAL = SanCovTraceCmpZeroExtAL.addParamAttribute(*C, 0, Attribute::ZExt); SanCovTraceCmpZeroExtAL = SanCovTraceCmpZeroExtAL.addParamAttribute(*C, 1, Attribute::ZExt); SanCovTraceCmpFunction[0] = M.getOrInsertFunction(SanCovTraceCmp1, SanCovTraceCmpZeroExtAL, VoidTy, IRB.getInt8Ty(), IRB.getInt8Ty()); SanCovTraceCmpFunction[1] = M.getOrInsertFunction(SanCovTraceCmp2, SanCovTraceCmpZeroExtAL, VoidTy, IRB.getInt16Ty(), IRB.getInt16Ty()); SanCovTraceCmpFunction[2] = M.getOrInsertFunction(SanCovTraceCmp4, SanCovTraceCmpZeroExtAL, VoidTy, IRB.getInt32Ty(), IRB.getInt32Ty()); SanCovTraceCmpFunction[3] = M.getOrInsertFunction(SanCovTraceCmp8, VoidTy, Int64Ty, Int64Ty); SanCovTraceConstCmpFunction[0] = M.getOrInsertFunction( SanCovTraceConstCmp1, SanCovTraceCmpZeroExtAL, VoidTy, Int8Ty, Int8Ty); SanCovTraceConstCmpFunction[1] = M.getOrInsertFunction( SanCovTraceConstCmp2, SanCovTraceCmpZeroExtAL, VoidTy, Int16Ty, Int16Ty); SanCovTraceConstCmpFunction[2] = M.getOrInsertFunction( SanCovTraceConstCmp4, SanCovTraceCmpZeroExtAL, VoidTy, Int32Ty, Int32Ty); SanCovTraceConstCmpFunction[3] = M.getOrInsertFunction(SanCovTraceConstCmp8, VoidTy, Int64Ty, Int64Ty); // Loads. SanCovLoadFunction[0] = M.getOrInsertFunction(SanCovLoad1, VoidTy, PtrTy); SanCovLoadFunction[1] = M.getOrInsertFunction(SanCovLoad2, VoidTy, PtrTy); SanCovLoadFunction[2] = M.getOrInsertFunction(SanCovLoad4, VoidTy, PtrTy); SanCovLoadFunction[3] = M.getOrInsertFunction(SanCovLoad8, VoidTy, PtrTy); SanCovLoadFunction[4] = M.getOrInsertFunction(SanCovLoad16, VoidTy, PtrTy); // Stores. SanCovStoreFunction[0] = M.getOrInsertFunction(SanCovStore1, VoidTy, PtrTy); SanCovStoreFunction[1] = M.getOrInsertFunction(SanCovStore2, VoidTy, PtrTy); SanCovStoreFunction[2] = M.getOrInsertFunction(SanCovStore4, VoidTy, PtrTy); SanCovStoreFunction[3] = M.getOrInsertFunction(SanCovStore8, VoidTy, PtrTy); SanCovStoreFunction[4] = M.getOrInsertFunction(SanCovStore16, VoidTy, PtrTy); { AttributeList AL; AL = AL.addParamAttribute(*C, 0, Attribute::ZExt); SanCovTraceDivFunction[0] = M.getOrInsertFunction(SanCovTraceDiv4, AL, VoidTy, IRB.getInt32Ty()); } SanCovTraceDivFunction[1] = M.getOrInsertFunction(SanCovTraceDiv8, VoidTy, Int64Ty); SanCovTraceGepFunction = M.getOrInsertFunction(SanCovTraceGep, VoidTy, IntptrTy); SanCovTraceSwitchFunction = M.getOrInsertFunction(SanCovTraceSwitchName, VoidTy, Int64Ty, PtrTy); Constant *SanCovLowestStackConstant = M.getOrInsertGlobal(SanCovLowestStackName, IntptrTy); SanCovLowestStack = dyn_cast(SanCovLowestStackConstant); if (!SanCovLowestStack || SanCovLowestStack->getValueType() != IntptrTy) { C->emitError(StringRef("'") + SanCovLowestStackName + "' should not be declared by the user"); return true; } SanCovLowestStack->setThreadLocalMode( GlobalValue::ThreadLocalMode::InitialExecTLSModel); if (Options.StackDepth && !SanCovLowestStack->isDeclaration()) SanCovLowestStack->setInitializer(Constant::getAllOnesValue(IntptrTy)); SanCovTracePC = M.getOrInsertFunction(SanCovTracePCName, VoidTy); SanCovTracePCGuard = M.getOrInsertFunction(SanCovTracePCGuardName, VoidTy, PtrTy); for (auto &F : M) instrumentFunction(F); Function *Ctor = nullptr; if (FunctionGuardArray) Ctor = CreateInitCallsForSections(M, SanCovModuleCtorTracePcGuardName, SanCovTracePCGuardInitName, Int32Ty, SanCovGuardsSectionName); if (Function8bitCounterArray) Ctor = CreateInitCallsForSections(M, SanCovModuleCtor8bitCountersName, SanCov8bitCountersInitName, Int8Ty, SanCovCountersSectionName); if (FunctionBoolArray) { Ctor = CreateInitCallsForSections(M, SanCovModuleCtorBoolFlagName, SanCovBoolFlagInitName, Int1Ty, SanCovBoolFlagSectionName); } if (Ctor && Options.PCTable) { auto SecStartEnd = CreateSecStartEnd(M, SanCovPCsSectionName, IntptrTy); FunctionCallee InitFunction = declareSanitizerInitFunction( M, SanCovPCsInitName, {PtrTy, PtrTy}); IRBuilder<> IRBCtor(Ctor->getEntryBlock().getTerminator()); IRBCtor.CreateCall(InitFunction, {SecStartEnd.first, SecStartEnd.second}); } if (Ctor && Options.CollectControlFlow) { auto SecStartEnd = CreateSecStartEnd(M, SanCovCFsSectionName, IntptrTy); FunctionCallee InitFunction = declareSanitizerInitFunction( M, SanCovCFsInitName, {PtrTy, PtrTy}); IRBuilder<> IRBCtor(Ctor->getEntryBlock().getTerminator()); IRBCtor.CreateCall(InitFunction, {SecStartEnd.first, SecStartEnd.second}); } appendToUsed(M, GlobalsToAppendToUsed); appendToCompilerUsed(M, GlobalsToAppendToCompilerUsed); return true; } // True if block has successors and it dominates all of them. static bool isFullDominator(const BasicBlock *BB, const DominatorTree &DT) { if (succ_empty(BB)) return false; return llvm::all_of(successors(BB), [&](const BasicBlock *SUCC) { return DT.dominates(BB, SUCC); }); } // True if block has predecessors and it postdominates all of them. static bool isFullPostDominator(const BasicBlock *BB, const PostDominatorTree &PDT) { if (pred_empty(BB)) return false; return llvm::all_of(predecessors(BB), [&](const BasicBlock *PRED) { return PDT.dominates(BB, PRED); }); } static bool shouldInstrumentBlock(const Function &F, const BasicBlock *BB, const DominatorTree &DT, const PostDominatorTree &PDT, const SanitizerCoverageOptions &Options) { // Don't insert coverage for blocks containing nothing but unreachable: we // will never call __sanitizer_cov() for them, so counting them in // NumberOfInstrumentedBlocks() might complicate calculation of code coverage // percentage. Also, unreachable instructions frequently have no debug // locations. if (isa(BB->getFirstNonPHIOrDbgOrLifetime())) return false; // Don't insert coverage into blocks without a valid insertion point // (catchswitch blocks). if (BB->getFirstInsertionPt() == BB->end()) return false; if (Options.NoPrune || &F.getEntryBlock() == BB) return true; if (Options.CoverageType == SanitizerCoverageOptions::SCK_Function && &F.getEntryBlock() != BB) return false; // Do not instrument full dominators, or full post-dominators with multiple // predecessors. return !isFullDominator(BB, DT) && !(isFullPostDominator(BB, PDT) && !BB->getSinglePredecessor()); } // Returns true iff From->To is a backedge. // A twist here is that we treat From->To as a backedge if // * To dominates From or // * To->UniqueSuccessor dominates From static bool IsBackEdge(BasicBlock *From, BasicBlock *To, const DominatorTree &DT) { if (DT.dominates(To, From)) return true; if (auto Next = To->getUniqueSuccessor()) if (DT.dominates(Next, From)) return true; return false; } // Prunes uninteresting Cmp instrumentation: // * CMP instructions that feed into loop backedge branch. // // Note that Cmp pruning is controlled by the same flag as the // BB pruning. static bool IsInterestingCmp(ICmpInst *CMP, const DominatorTree &DT, const SanitizerCoverageOptions &Options) { if (!Options.NoPrune) if (CMP->hasOneUse()) if (auto BR = dyn_cast(CMP->user_back())) for (BasicBlock *B : BR->successors()) if (IsBackEdge(BR->getParent(), B, DT)) return false; return true; } void ModuleSanitizerCoverage::instrumentFunction(Function &F) { if (F.empty()) return; if (F.getName().contains(".module_ctor")) return; // Should not instrument sanitizer init functions. if (F.getName().starts_with("__sanitizer_")) return; // Don't instrument __sanitizer_* callbacks. // Don't touch available_externally functions, their actual body is elewhere. if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return; // Don't instrument MSVC CRT configuration helpers. They may run before normal // initialization. if (F.getName() == "__local_stdio_printf_options" || F.getName() == "__local_stdio_scanf_options") return; if (isa(F.getEntryBlock().getTerminator())) return; // Don't instrument functions using SEH for now. Splitting basic blocks like // we do for coverage breaks WinEHPrepare. // FIXME: Remove this when SEH no longer uses landingpad pattern matching. if (F.hasPersonalityFn() && isAsynchronousEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) return; if (Allowlist && !Allowlist->inSection("coverage", "fun", F.getName())) return; if (Blocklist && Blocklist->inSection("coverage", "fun", F.getName())) return; if (F.hasFnAttribute(Attribute::NoSanitizeCoverage)) return; if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) return; if (Options.CoverageType >= SanitizerCoverageOptions::SCK_Edge) { SplitAllCriticalEdges( F, CriticalEdgeSplittingOptions().setIgnoreUnreachableDests()); } SmallVector IndirCalls; SmallVector BlocksToInstrument; SmallVector CmpTraceTargets; SmallVector SwitchTraceTargets; SmallVector DivTraceTargets; SmallVector GepTraceTargets; SmallVector Loads; SmallVector Stores; const DominatorTree &DT = DTCallback(F); const PostDominatorTree &PDT = PDTCallback(F); bool IsLeafFunc = true; for (auto &BB : F) { if (shouldInstrumentBlock(F, &BB, DT, PDT, Options)) BlocksToInstrument.push_back(&BB); for (auto &Inst : BB) { if (Options.IndirectCalls) { CallBase *CB = dyn_cast(&Inst); if (CB && CB->isIndirectCall()) IndirCalls.push_back(&Inst); } if (Options.TraceCmp) { if (ICmpInst *CMP = dyn_cast(&Inst)) if (IsInterestingCmp(CMP, DT, Options)) CmpTraceTargets.push_back(&Inst); if (isa(&Inst)) SwitchTraceTargets.push_back(&Inst); } if (Options.TraceDiv) if (BinaryOperator *BO = dyn_cast(&Inst)) if (BO->getOpcode() == Instruction::SDiv || BO->getOpcode() == Instruction::UDiv) DivTraceTargets.push_back(BO); if (Options.TraceGep) if (GetElementPtrInst *GEP = dyn_cast(&Inst)) GepTraceTargets.push_back(GEP); if (Options.TraceLoads) if (LoadInst *LI = dyn_cast(&Inst)) Loads.push_back(LI); if (Options.TraceStores) if (StoreInst *SI = dyn_cast(&Inst)) Stores.push_back(SI); if (Options.StackDepth) if (isa(Inst) || (isa(Inst) && !isa(Inst))) IsLeafFunc = false; } } if (Options.CollectControlFlow) createFunctionControlFlow(F); InjectCoverage(F, BlocksToInstrument, IsLeafFunc); InjectCoverageForIndirectCalls(F, IndirCalls); InjectTraceForCmp(F, CmpTraceTargets); InjectTraceForSwitch(F, SwitchTraceTargets); InjectTraceForDiv(F, DivTraceTargets); InjectTraceForGep(F, GepTraceTargets); InjectTraceForLoadsAndStores(F, Loads, Stores); } GlobalVariable *ModuleSanitizerCoverage::CreateFunctionLocalArrayInSection( size_t NumElements, Function &F, Type *Ty, const char *Section) { ArrayType *ArrayTy = ArrayType::get(Ty, NumElements); auto Array = new GlobalVariable( *CurModule, ArrayTy, false, GlobalVariable::PrivateLinkage, Constant::getNullValue(ArrayTy), "__sancov_gen_"); if (TargetTriple.supportsCOMDAT() && (TargetTriple.isOSBinFormatELF() || !F.isInterposable())) if (auto Comdat = getOrCreateFunctionComdat(F, TargetTriple)) Array->setComdat(Comdat); Array->setSection(getSectionName(Section)); Array->setAlignment(Align(DL->getTypeStoreSize(Ty).getFixedValue())); // sancov_pcs parallels the other metadata section(s). Optimizers (e.g. // GlobalOpt/ConstantMerge) may not discard sancov_pcs and the other // section(s) as a unit, so we conservatively retain all unconditionally in // the compiler. // // With comdat (COFF/ELF), the linker can guarantee the associated sections // will be retained or discarded as a unit, so llvm.compiler.used is // sufficient. Otherwise, conservatively make all of them retained by the // linker. if (Array->hasComdat()) GlobalsToAppendToCompilerUsed.push_back(Array); else GlobalsToAppendToUsed.push_back(Array); return Array; } GlobalVariable * ModuleSanitizerCoverage::CreatePCArray(Function &F, ArrayRef AllBlocks) { size_t N = AllBlocks.size(); assert(N); SmallVector PCs; IRBuilder<> IRB(&*F.getEntryBlock().getFirstInsertionPt()); for (size_t i = 0; i < N; i++) { if (&F.getEntryBlock() == AllBlocks[i]) { PCs.push_back((Constant *)IRB.CreatePointerCast(&F, PtrTy)); PCs.push_back((Constant *)IRB.CreateIntToPtr( ConstantInt::get(IntptrTy, 1), PtrTy)); } else { PCs.push_back((Constant *)IRB.CreatePointerCast( BlockAddress::get(AllBlocks[i]), PtrTy)); PCs.push_back(Constant::getNullValue(PtrTy)); } } auto *PCArray = CreateFunctionLocalArrayInSection(N * 2, F, PtrTy, SanCovPCsSectionName); PCArray->setInitializer( ConstantArray::get(ArrayType::get(PtrTy, N * 2), PCs)); PCArray->setConstant(true); return PCArray; } void ModuleSanitizerCoverage::CreateFunctionLocalArrays( Function &F, ArrayRef AllBlocks) { if (Options.TracePCGuard) FunctionGuardArray = CreateFunctionLocalArrayInSection( AllBlocks.size(), F, Int32Ty, SanCovGuardsSectionName); if (Options.Inline8bitCounters) Function8bitCounterArray = CreateFunctionLocalArrayInSection( AllBlocks.size(), F, Int8Ty, SanCovCountersSectionName); if (Options.InlineBoolFlag) FunctionBoolArray = CreateFunctionLocalArrayInSection( AllBlocks.size(), F, Int1Ty, SanCovBoolFlagSectionName); if (Options.PCTable) FunctionPCsArray = CreatePCArray(F, AllBlocks); } bool ModuleSanitizerCoverage::InjectCoverage(Function &F, ArrayRef AllBlocks, bool IsLeafFunc) { if (AllBlocks.empty()) return false; CreateFunctionLocalArrays(F, AllBlocks); for (size_t i = 0, N = AllBlocks.size(); i < N; i++) InjectCoverageAtBlock(F, *AllBlocks[i], i, IsLeafFunc); return true; } // On every indirect call we call a run-time function // __sanitizer_cov_indir_call* with two parameters: // - callee address, // - global cache array that contains CacheSize pointers (zero-initialized). // The cache is used to speed up recording the caller-callee pairs. // The address of the caller is passed implicitly via caller PC. // CacheSize is encoded in the name of the run-time function. void ModuleSanitizerCoverage::InjectCoverageForIndirectCalls( Function &F, ArrayRef IndirCalls) { if (IndirCalls.empty()) return; assert(Options.TracePC || Options.TracePCGuard || Options.Inline8bitCounters || Options.InlineBoolFlag); for (auto *I : IndirCalls) { InstrumentationIRBuilder IRB(I); CallBase &CB = cast(*I); Value *Callee = CB.getCalledOperand(); if (isa(Callee)) continue; IRB.CreateCall(SanCovTracePCIndir, IRB.CreatePointerCast(Callee, IntptrTy)); } } // For every switch statement we insert a call: // __sanitizer_cov_trace_switch(CondValue, // {NumCases, ValueSizeInBits, Case0Value, Case1Value, Case2Value, ... }) void ModuleSanitizerCoverage::InjectTraceForSwitch( Function &, ArrayRef SwitchTraceTargets) { for (auto *I : SwitchTraceTargets) { if (SwitchInst *SI = dyn_cast(I)) { InstrumentationIRBuilder IRB(I); SmallVector Initializers; Value *Cond = SI->getCondition(); if (Cond->getType()->getScalarSizeInBits() > Int64Ty->getScalarSizeInBits()) continue; Initializers.push_back(ConstantInt::get(Int64Ty, SI->getNumCases())); Initializers.push_back( ConstantInt::get(Int64Ty, Cond->getType()->getScalarSizeInBits())); if (Cond->getType()->getScalarSizeInBits() < Int64Ty->getScalarSizeInBits()) Cond = IRB.CreateIntCast(Cond, Int64Ty, false); for (auto It : SI->cases()) { ConstantInt *C = It.getCaseValue(); if (C->getType()->getScalarSizeInBits() < 64) C = ConstantInt::get(C->getContext(), C->getValue().zext(64)); Initializers.push_back(C); } llvm::sort(drop_begin(Initializers, 2), [](const Constant *A, const Constant *B) { return cast(A)->getLimitedValue() < cast(B)->getLimitedValue(); }); ArrayType *ArrayOfInt64Ty = ArrayType::get(Int64Ty, Initializers.size()); GlobalVariable *GV = new GlobalVariable( *CurModule, ArrayOfInt64Ty, false, GlobalVariable::InternalLinkage, ConstantArray::get(ArrayOfInt64Ty, Initializers), "__sancov_gen_cov_switch_values"); IRB.CreateCall(SanCovTraceSwitchFunction, {Cond, GV}); } } } void ModuleSanitizerCoverage::InjectTraceForDiv( Function &, ArrayRef DivTraceTargets) { for (auto *BO : DivTraceTargets) { InstrumentationIRBuilder IRB(BO); Value *A1 = BO->getOperand(1); if (isa(A1)) continue; if (!A1->getType()->isIntegerTy()) continue; uint64_t TypeSize = DL->getTypeStoreSizeInBits(A1->getType()); int CallbackIdx = TypeSize == 32 ? 0 : TypeSize == 64 ? 1 : -1; if (CallbackIdx < 0) continue; auto Ty = Type::getIntNTy(*C, TypeSize); IRB.CreateCall(SanCovTraceDivFunction[CallbackIdx], {IRB.CreateIntCast(A1, Ty, true)}); } } void ModuleSanitizerCoverage::InjectTraceForGep( Function &, ArrayRef GepTraceTargets) { for (auto *GEP : GepTraceTargets) { InstrumentationIRBuilder IRB(GEP); for (Use &Idx : GEP->indices()) if (!isa(Idx) && Idx->getType()->isIntegerTy()) IRB.CreateCall(SanCovTraceGepFunction, {IRB.CreateIntCast(Idx, IntptrTy, true)}); } } void ModuleSanitizerCoverage::InjectTraceForLoadsAndStores( Function &, ArrayRef Loads, ArrayRef Stores) { auto CallbackIdx = [&](Type *ElementTy) -> int { uint64_t TypeSize = DL->getTypeStoreSizeInBits(ElementTy); return TypeSize == 8 ? 0 : TypeSize == 16 ? 1 : TypeSize == 32 ? 2 : TypeSize == 64 ? 3 : TypeSize == 128 ? 4 : -1; }; for (auto *LI : Loads) { InstrumentationIRBuilder IRB(LI); auto Ptr = LI->getPointerOperand(); int Idx = CallbackIdx(LI->getType()); if (Idx < 0) continue; IRB.CreateCall(SanCovLoadFunction[Idx], Ptr); } for (auto *SI : Stores) { InstrumentationIRBuilder IRB(SI); auto Ptr = SI->getPointerOperand(); int Idx = CallbackIdx(SI->getValueOperand()->getType()); if (Idx < 0) continue; IRB.CreateCall(SanCovStoreFunction[Idx], Ptr); } } void ModuleSanitizerCoverage::InjectTraceForCmp( Function &, ArrayRef CmpTraceTargets) { for (auto *I : CmpTraceTargets) { if (ICmpInst *ICMP = dyn_cast(I)) { InstrumentationIRBuilder IRB(ICMP); Value *A0 = ICMP->getOperand(0); Value *A1 = ICMP->getOperand(1); if (!A0->getType()->isIntegerTy()) continue; uint64_t TypeSize = DL->getTypeStoreSizeInBits(A0->getType()); int CallbackIdx = TypeSize == 8 ? 0 : TypeSize == 16 ? 1 : TypeSize == 32 ? 2 : TypeSize == 64 ? 3 : -1; if (CallbackIdx < 0) continue; // __sanitizer_cov_trace_cmp((type_size << 32) | predicate, A0, A1); auto CallbackFunc = SanCovTraceCmpFunction[CallbackIdx]; bool FirstIsConst = isa(A0); bool SecondIsConst = isa(A1); // If both are const, then we don't need such a comparison. if (FirstIsConst && SecondIsConst) continue; // If only one is const, then make it the first callback argument. if (FirstIsConst || SecondIsConst) { CallbackFunc = SanCovTraceConstCmpFunction[CallbackIdx]; if (SecondIsConst) std::swap(A0, A1); } auto Ty = Type::getIntNTy(*C, TypeSize); IRB.CreateCall(CallbackFunc, {IRB.CreateIntCast(A0, Ty, true), IRB.CreateIntCast(A1, Ty, true)}); } } } void ModuleSanitizerCoverage::InjectCoverageAtBlock(Function &F, BasicBlock &BB, size_t Idx, bool IsLeafFunc) { BasicBlock::iterator IP = BB.getFirstInsertionPt(); bool IsEntryBB = &BB == &F.getEntryBlock(); DebugLoc EntryLoc; if (IsEntryBB) { if (auto SP = F.getSubprogram()) EntryLoc = DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); // Keep static allocas and llvm.localescape calls in the entry block. Even // if we aren't splitting the block, it's nice for allocas to be before // calls. IP = PrepareToSplitEntryBlock(BB, IP); } InstrumentationIRBuilder IRB(&*IP); if (EntryLoc) IRB.SetCurrentDebugLocation(EntryLoc); if (Options.TracePC) { IRB.CreateCall(SanCovTracePC) ->setCannotMerge(); // gets the PC using GET_CALLER_PC. } if (Options.TracePCGuard) { auto GuardPtr = IRB.CreateIntToPtr( IRB.CreateAdd(IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), ConstantInt::get(IntptrTy, Idx * 4)), PtrTy); IRB.CreateCall(SanCovTracePCGuard, GuardPtr)->setCannotMerge(); } if (Options.Inline8bitCounters) { auto CounterPtr = IRB.CreateGEP( Function8bitCounterArray->getValueType(), Function8bitCounterArray, {ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)}); auto Load = IRB.CreateLoad(Int8Ty, CounterPtr); auto Inc = IRB.CreateAdd(Load, ConstantInt::get(Int8Ty, 1)); auto Store = IRB.CreateStore(Inc, CounterPtr); Load->setNoSanitizeMetadata(); Store->setNoSanitizeMetadata(); } if (Options.InlineBoolFlag) { auto FlagPtr = IRB.CreateGEP( FunctionBoolArray->getValueType(), FunctionBoolArray, {ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)}); auto Load = IRB.CreateLoad(Int1Ty, FlagPtr); auto ThenTerm = SplitBlockAndInsertIfThen( IRB.CreateIsNull(Load), &*IP, false, MDBuilder(IRB.getContext()).createUnlikelyBranchWeights()); IRBuilder<> ThenIRB(ThenTerm); auto Store = ThenIRB.CreateStore(ConstantInt::getTrue(Int1Ty), FlagPtr); Load->setNoSanitizeMetadata(); Store->setNoSanitizeMetadata(); } if (Options.StackDepth && IsEntryBB && !IsLeafFunc) { // Check stack depth. If it's the deepest so far, record it. Module *M = F.getParent(); Function *GetFrameAddr = Intrinsic::getDeclaration( M, Intrinsic::frameaddress, IRB.getPtrTy(M->getDataLayout().getAllocaAddrSpace())); auto FrameAddrPtr = IRB.CreateCall(GetFrameAddr, {Constant::getNullValue(Int32Ty)}); auto FrameAddrInt = IRB.CreatePtrToInt(FrameAddrPtr, IntptrTy); auto LowestStack = IRB.CreateLoad(IntptrTy, SanCovLowestStack); auto IsStackLower = IRB.CreateICmpULT(FrameAddrInt, LowestStack); auto ThenTerm = SplitBlockAndInsertIfThen( IsStackLower, &*IP, false, MDBuilder(IRB.getContext()).createUnlikelyBranchWeights()); IRBuilder<> ThenIRB(ThenTerm); auto Store = ThenIRB.CreateStore(FrameAddrInt, SanCovLowestStack); LowestStack->setNoSanitizeMetadata(); Store->setNoSanitizeMetadata(); } } std::string ModuleSanitizerCoverage::getSectionName(const std::string &Section) const { if (TargetTriple.isOSBinFormatCOFF()) { if (Section == SanCovCountersSectionName) return ".SCOV$CM"; if (Section == SanCovBoolFlagSectionName) return ".SCOV$BM"; if (Section == SanCovPCsSectionName) return ".SCOVP$M"; return ".SCOV$GM"; // For SanCovGuardsSectionName. } if (TargetTriple.isOSBinFormatMachO()) return "__DATA,__" + Section; return "__" + Section; } std::string ModuleSanitizerCoverage::getSectionStart(const std::string &Section) const { if (TargetTriple.isOSBinFormatMachO()) return "\1section$start$__DATA$__" + Section; return "__start___" + Section; } std::string ModuleSanitizerCoverage::getSectionEnd(const std::string &Section) const { if (TargetTriple.isOSBinFormatMachO()) return "\1section$end$__DATA$__" + Section; return "__stop___" + Section; } void ModuleSanitizerCoverage::createFunctionControlFlow(Function &F) { SmallVector CFs; IRBuilder<> IRB(&*F.getEntryBlock().getFirstInsertionPt()); for (auto &BB : F) { // blockaddress can not be used on function's entry block. if (&BB == &F.getEntryBlock()) CFs.push_back((Constant *)IRB.CreatePointerCast(&F, PtrTy)); else CFs.push_back((Constant *)IRB.CreatePointerCast(BlockAddress::get(&BB), PtrTy)); for (auto SuccBB : successors(&BB)) { assert(SuccBB != &F.getEntryBlock()); CFs.push_back((Constant *)IRB.CreatePointerCast(BlockAddress::get(SuccBB), PtrTy)); } CFs.push_back((Constant *)Constant::getNullValue(PtrTy)); for (auto &Inst : BB) { if (CallBase *CB = dyn_cast(&Inst)) { if (CB->isIndirectCall()) { // TODO(navidem): handle indirect calls, for now mark its existence. CFs.push_back((Constant *)IRB.CreateIntToPtr( ConstantInt::get(IntptrTy, -1), PtrTy)); } else { auto CalledF = CB->getCalledFunction(); if (CalledF && !CalledF->isIntrinsic()) CFs.push_back( (Constant *)IRB.CreatePointerCast(CalledF, PtrTy)); } } } CFs.push_back((Constant *)Constant::getNullValue(PtrTy)); } FunctionCFsArray = CreateFunctionLocalArrayInSection( CFs.size(), F, PtrTy, SanCovCFsSectionName); FunctionCFsArray->setInitializer( ConstantArray::get(ArrayType::get(PtrTy, CFs.size()), CFs)); FunctionCFsArray->setConstant(true); }