//===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements PGO instrumentation using a minimum spanning tree based // on the following paper: // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13, // Issue 3, pp 313-322 // The idea of the algorithm based on the fact that for each node (except for // the entry and exit), the sum of incoming edge counts equals the sum of // outgoing edge counts. The count of edge on spanning tree can be derived from // those edges not on the spanning tree. Knuth proves this method instruments // the minimum number of edges. // // The minimal spanning tree here is actually a maximum weight tree -- on-tree // edges have higher frequencies (more likely to execute). The idea is to // instrument those less frequently executed edges to reduce the runtime // overhead of instrumented binaries. // // This file contains two passes: // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge // count profile, and generates the instrumentation for indirect call // profiling. // (2) Pass PGOInstrumentationUse which reads the edge count profile and // annotates the branch weights. It also reads the indirect call value // profiling records and annotate the indirect call instructions. // // To get the precise counter information, These two passes need to invoke at // the same compilation point (so they see the same IR). For pass // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and // the profile is opened in module level and passed to each PGOUseFunc instance. // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put // in class FuncPGOInstrumentation. // // Class PGOEdge represents a CFG edge and some auxiliary information. Class // BBInfo contains auxiliary information for each BB. These two classes are used // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived // class of PGOEdge and BBInfo, respectively. They contains extra data structure // used in populating profile counters. // The MST implementation is in Class CFGMST (CFGMST.h). // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" #include "ValueProfileCollector.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/EHPersonalities.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ProfDataUtils.h" #include "llvm/IR/ProfileSummary.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CRC.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DOTGraphTraits.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Triple.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Instrumentation/BlockCoverageInference.h" #include "llvm/Transforms/Instrumentation/CFGMST.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/MisExpect.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; using ProfileCount = Function::ProfileCount; using VPCandidateInfo = ValueProfileCollector::CandidateInfo; #define DEBUG_TYPE "pgo-instrumentation" STATISTIC(NumOfPGOInstrument, "Number of edges instrumented."); STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented."); STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented."); STATISTIC(NumOfPGOEdge, "Number of edges."); STATISTIC(NumOfPGOBB, "Number of basic-blocks."); STATISTIC(NumOfPGOSplit, "Number of critical edge splits."); STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts."); STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile."); STATISTIC(NumOfPGOMissing, "Number of functions without profile."); STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations."); STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO."); STATISTIC(NumOfCSPGOSelectInsts, "Number of select instruction instrumented in CSPGO."); STATISTIC(NumOfCSPGOMemIntrinsics, "Number of mem intrinsics instrumented in CSPGO."); STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO."); STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO."); STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO."); STATISTIC(NumOfCSPGOFunc, "Number of functions having valid profile counts in CSPGO."); STATISTIC(NumOfCSPGOMismatch, "Number of functions having mismatch profile in CSPGO."); STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO."); STATISTIC(NumCoveredBlocks, "Number of basic blocks that were executed"); // Command line option to specify the file to read profile from. This is // mainly used for testing. static cl::opt PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden, cl::value_desc("filename"), cl::desc("Specify the path of profile data file. This is" "mainly for test purpose.")); static cl::opt PGOTestProfileRemappingFile( "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden, cl::value_desc("filename"), cl::desc("Specify the path of profile remapping file. This is mainly for " "test purpose.")); // Command line option to disable value profiling. The default is false: // i.e. value profiling is enabled by default. This is for debug purpose. static cl::opt DisableValueProfiling("disable-vp", cl::init(false), cl::Hidden, cl::desc("Disable Value Profiling")); // Command line option to set the maximum number of VP annotations to write to // the metadata for a single indirect call callsite. static cl::opt MaxNumAnnotations( "icp-max-annotations", cl::init(3), cl::Hidden, cl::desc("Max number of annotations for a single indirect " "call callsite")); // Command line option to set the maximum number of value annotations // to write to the metadata for a single memop intrinsic. static cl::opt MaxNumMemOPAnnotations( "memop-max-annotations", cl::init(4), cl::Hidden, cl::desc("Max number of preicise value annotations for a single memop" "intrinsic")); // Command line option to control appending FunctionHash to the name of a COMDAT // function. This is to avoid the hash mismatch caused by the preinliner. static cl::opt DoComdatRenaming( "do-comdat-renaming", cl::init(false), cl::Hidden, cl::desc("Append function hash to the name of COMDAT function to avoid " "function hash mismatch due to the preinliner")); namespace llvm { // Command line option to enable/disable the warning about missing profile // information. cl::opt PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden, cl::desc("Use this option to turn on/off " "warnings about missing profile data for " "functions.")); // Command line option to enable/disable the warning about a hash mismatch in // the profile data. cl::opt NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden, cl::desc("Use this option to turn off/on " "warnings about profile cfg mismatch.")); // Command line option to enable/disable the warning about a hash mismatch in // the profile data for Comdat functions, which often turns out to be false // positive due to the pre-instrumentation inline. cl::opt NoPGOWarnMismatchComdatWeak( "no-pgo-warn-mismatch-comdat-weak", cl::init(true), cl::Hidden, cl::desc("The option is used to turn on/off " "warnings about hash mismatch for comdat " "or weak functions.")); } // namespace llvm // Command line option to enable/disable select instruction instrumentation. static cl::opt PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden, cl::desc("Use this option to turn on/off SELECT " "instruction instrumentation. ")); // Command line option to turn on CFG dot or text dump of raw profile counts static cl::opt PGOViewRawCounts( "pgo-view-raw-counts", cl::Hidden, cl::desc("A boolean option to show CFG dag or text " "with raw profile counts from " "profile data. See also option " "-pgo-view-counts. To limit graph " "display to only one function, use " "filtering option -view-bfi-func-name."), cl::values(clEnumValN(PGOVCT_None, "none", "do not show."), clEnumValN(PGOVCT_Graph, "graph", "show a graph."), clEnumValN(PGOVCT_Text, "text", "show in text."))); // Command line option to enable/disable memop intrinsic call.size profiling. static cl::opt PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden, cl::desc("Use this option to turn on/off " "memory intrinsic size profiling.")); // Emit branch probability as optimization remarks. static cl::opt EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden, cl::desc("When this option is on, the annotated " "branch probability will be emitted as " "optimization remarks: -{Rpass|" "pass-remarks}=pgo-instrumentation")); static cl::opt PGOInstrumentEntry( "pgo-instrument-entry", cl::init(false), cl::Hidden, cl::desc("Force to instrument function entry basicblock.")); static cl::opt PGOFunctionEntryCoverage( "pgo-function-entry-coverage", cl::Hidden, cl::desc( "Use this option to enable function entry coverage instrumentation.")); static cl::opt PGOBlockCoverage( "pgo-block-coverage", cl::desc("Use this option to enable basic block coverage instrumentation")); static cl::opt PGOViewBlockCoverageGraph("pgo-view-block-coverage-graph", cl::desc("Create a dot file of CFGs with block " "coverage inference information")); static cl::opt PGOTemporalInstrumentation( "pgo-temporal-instrumentation", cl::desc("Use this option to enable temporal instrumentation")); static cl::opt PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden, cl::desc("Fix function entry count in profile use.")); static cl::opt PGOVerifyHotBFI( "pgo-verify-hot-bfi", cl::init(false), cl::Hidden, cl::desc("Print out the non-match BFI count if a hot raw profile count " "becomes non-hot, or a cold raw profile count becomes hot. " "The print is enabled under -Rpass-analysis=pgo, or " "internal option -pass-remakrs-analysis=pgo.")); static cl::opt PGOVerifyBFI( "pgo-verify-bfi", cl::init(false), cl::Hidden, cl::desc("Print out mismatched BFI counts after setting profile metadata " "The print is enabled under -Rpass-analysis=pgo, or " "internal option -pass-remakrs-analysis=pgo.")); static cl::opt PGOVerifyBFIRatio( "pgo-verify-bfi-ratio", cl::init(2), cl::Hidden, cl::desc("Set the threshold for pgo-verify-bfi: only print out " "mismatched BFI if the difference percentage is greater than " "this value (in percentage).")); static cl::opt PGOVerifyBFICutoff( "pgo-verify-bfi-cutoff", cl::init(5), cl::Hidden, cl::desc("Set the threshold for pgo-verify-bfi: skip the counts whose " "profile count value is below.")); static cl::opt PGOTraceFuncHash( "pgo-trace-func-hash", cl::init("-"), cl::Hidden, cl::value_desc("function name"), cl::desc("Trace the hash of the function with this name.")); static cl::opt PGOFunctionSizeThreshold( "pgo-function-size-threshold", cl::Hidden, cl::desc("Do not instrument functions smaller than this threshold.")); static cl::opt PGOFunctionCriticalEdgeThreshold( "pgo-critical-edge-threshold", cl::init(20000), cl::Hidden, cl::desc("Do not instrument functions with the number of critical edges " " greater than this threshold.")); namespace llvm { // Command line option to turn on CFG dot dump after profile annotation. // Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts extern cl::opt PGOViewCounts; // Command line option to specify the name of the function for CFG dump // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= extern cl::opt ViewBlockFreqFuncName; extern cl::opt DebugInfoCorrelate; } // namespace llvm static cl::opt PGOOldCFGHashing("pgo-instr-old-cfg-hashing", cl::init(false), cl::Hidden, cl::desc("Use the old CFG function hashing")); // Return a string describing the branch condition that can be // used in static branch probability heuristics: static std::string getBranchCondString(Instruction *TI) { BranchInst *BI = dyn_cast(TI); if (!BI || !BI->isConditional()) return std::string(); Value *Cond = BI->getCondition(); ICmpInst *CI = dyn_cast(Cond); if (!CI) return std::string(); std::string result; raw_string_ostream OS(result); OS << CI->getPredicate() << "_"; CI->getOperand(0)->getType()->print(OS, true); Value *RHS = CI->getOperand(1); ConstantInt *CV = dyn_cast(RHS); if (CV) { if (CV->isZero()) OS << "_Zero"; else if (CV->isOne()) OS << "_One"; else if (CV->isMinusOne()) OS << "_MinusOne"; else OS << "_Const"; } OS.flush(); return result; } static const char *ValueProfKindDescr[] = { #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr, #include "llvm/ProfileData/InstrProfData.inc" }; // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime // aware this is an ir_level profile so it can set the version flag. static GlobalVariable *createIRLevelProfileFlagVar(Module &M, bool IsCS) { const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); Type *IntTy64 = Type::getInt64Ty(M.getContext()); uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF); if (IsCS) ProfileVersion |= VARIANT_MASK_CSIR_PROF; if (PGOInstrumentEntry) ProfileVersion |= VARIANT_MASK_INSTR_ENTRY; if (DebugInfoCorrelate) ProfileVersion |= VARIANT_MASK_DBG_CORRELATE; if (PGOFunctionEntryCoverage) ProfileVersion |= VARIANT_MASK_BYTE_COVERAGE | VARIANT_MASK_FUNCTION_ENTRY_ONLY; if (PGOBlockCoverage) ProfileVersion |= VARIANT_MASK_BYTE_COVERAGE; if (PGOTemporalInstrumentation) ProfileVersion |= VARIANT_MASK_TEMPORAL_PROF; auto IRLevelVersionVariable = new GlobalVariable( M, IntTy64, true, GlobalValue::WeakAnyLinkage, Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName); IRLevelVersionVariable->setVisibility(GlobalValue::HiddenVisibility); Triple TT(M.getTargetTriple()); if (TT.supportsCOMDAT()) { IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage); IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName)); } return IRLevelVersionVariable; } namespace { /// The select instruction visitor plays three roles specified /// by the mode. In \c VM_counting mode, it simply counts the number of /// select instructions. In \c VM_instrument mode, it inserts code to count /// the number times TrueValue of select is taken. In \c VM_annotate mode, /// it reads the profile data and annotate the select instruction with metadata. enum VisitMode { VM_counting, VM_instrument, VM_annotate }; class PGOUseFunc; /// Instruction Visitor class to visit select instructions. struct SelectInstVisitor : public InstVisitor { Function &F; unsigned NSIs = 0; // Number of select instructions instrumented. VisitMode Mode = VM_counting; // Visiting mode. unsigned *CurCtrIdx = nullptr; // Pointer to current counter index. unsigned TotalNumCtrs = 0; // Total number of counters GlobalVariable *FuncNameVar = nullptr; uint64_t FuncHash = 0; PGOUseFunc *UseFunc = nullptr; bool HasSingleByteCoverage; SelectInstVisitor(Function &Func, bool HasSingleByteCoverage) : F(Func), HasSingleByteCoverage(HasSingleByteCoverage) {} void countSelects() { NSIs = 0; Mode = VM_counting; visit(F); } // Visit the IR stream and instrument all select instructions. \p // Ind is a pointer to the counter index variable; \p TotalNC // is the total number of counters; \p FNV is the pointer to the // PGO function name var; \p FHash is the function hash. void instrumentSelects(unsigned *Ind, unsigned TotalNC, GlobalVariable *FNV, uint64_t FHash) { Mode = VM_instrument; CurCtrIdx = Ind; TotalNumCtrs = TotalNC; FuncHash = FHash; FuncNameVar = FNV; visit(F); } // Visit the IR stream and annotate all select instructions. void annotateSelects(PGOUseFunc *UF, unsigned *Ind) { Mode = VM_annotate; UseFunc = UF; CurCtrIdx = Ind; visit(F); } void instrumentOneSelectInst(SelectInst &SI); void annotateOneSelectInst(SelectInst &SI); // Visit \p SI instruction and perform tasks according to visit mode. void visitSelectInst(SelectInst &SI); // Return the number of select instructions. This needs be called after // countSelects(). unsigned getNumOfSelectInsts() const { return NSIs; } }; /// This class implements the CFG edges for the Minimum Spanning Tree (MST) /// based instrumentation. /// Note that the CFG can be a multi-graph. So there might be multiple edges /// with the same SrcBB and DestBB. struct PGOEdge { BasicBlock *SrcBB; BasicBlock *DestBB; uint64_t Weight; bool InMST = false; bool Removed = false; bool IsCritical = false; PGOEdge(BasicBlock *Src, BasicBlock *Dest, uint64_t W = 1) : SrcBB(Src), DestBB(Dest), Weight(W) {} /// Return the information string of an edge. std::string infoString() const { return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") + (IsCritical ? "c" : " ") + " W=" + Twine(Weight)) .str(); } }; /// This class stores the auxiliary information for each BB in the MST. struct PGOBBInfo { PGOBBInfo *Group; uint32_t Index; uint32_t Rank = 0; PGOBBInfo(unsigned IX) : Group(this), Index(IX) {} /// Return the information string of this object. std::string infoString() const { return (Twine("Index=") + Twine(Index)).str(); } }; // This class implements the CFG edges. Note the CFG can be a multi-graph. template class FuncPGOInstrumentation { private: Function &F; // Is this is context-sensitive instrumentation. bool IsCS; // A map that stores the Comdat group in function F. std::unordered_multimap &ComdatMembers; ValueProfileCollector VPC; void computeCFGHash(); void renameComdatFunction(); public: const TargetLibraryInfo &TLI; std::vector> ValueSites; SelectInstVisitor SIVisitor; std::string FuncName; GlobalVariable *FuncNameVar; // CFG hash value for this function. uint64_t FunctionHash = 0; // The Minimum Spanning Tree of function CFG. CFGMST MST; const std::optional BCI; static std::optional constructBCI(Function &Func, bool HasSingleByteCoverage, bool InstrumentFuncEntry) { if (HasSingleByteCoverage) return BlockCoverageInference(Func, InstrumentFuncEntry); return {}; } // Collect all the BBs that will be instrumented, and store them in // InstrumentBBs. void getInstrumentBBs(std::vector &InstrumentBBs); // Give an edge, find the BB that will be instrumented. // Return nullptr if there is no BB to be instrumented. BasicBlock *getInstrBB(Edge *E); // Return the auxiliary BB information. BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); } // Return the auxiliary BB information if available. BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); } // Dump edges and BB information. void dumpInfo(StringRef Str = "") const { MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " + Twine(FunctionHash) + "\t" + Str); } FuncPGOInstrumentation( Function &Func, TargetLibraryInfo &TLI, std::unordered_multimap &ComdatMembers, bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr, BlockFrequencyInfo *BFI = nullptr, bool IsCS = false, bool InstrumentFuncEntry = true, bool HasSingleByteCoverage = false) : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI), TLI(TLI), ValueSites(IPVK_Last + 1), SIVisitor(Func, HasSingleByteCoverage), MST(F, InstrumentFuncEntry, BPI, BFI), BCI(constructBCI(Func, HasSingleByteCoverage, InstrumentFuncEntry)) { if (BCI && PGOViewBlockCoverageGraph) BCI->viewBlockCoverageGraph(); // This should be done before CFG hash computation. SIVisitor.countSelects(); ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize); if (!IsCS) { NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); NumOfPGOBB += MST.BBInfos.size(); ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget); } else { NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); NumOfCSPGOBB += MST.BBInfos.size(); } FuncName = getPGOFuncName(F); computeCFGHash(); if (!ComdatMembers.empty()) renameComdatFunction(); LLVM_DEBUG(dumpInfo("after CFGMST")); for (auto &E : MST.AllEdges) { if (E->Removed) continue; IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++; if (!E->InMST) IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++; } if (CreateGlobalVar) FuncNameVar = createPGOFuncNameVar(F, FuncName); } }; } // end anonymous namespace // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers // of selects, indirect calls, mem ops and edges. template void FuncPGOInstrumentation::computeCFGHash() { std::vector Indexes; JamCRC JC; for (auto &BB : F) { const Instruction *TI = BB.getTerminator(); for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { BasicBlock *Succ = TI->getSuccessor(I); auto BI = findBBInfo(Succ); if (BI == nullptr) continue; uint32_t Index = BI->Index; for (int J = 0; J < 4; J++) Indexes.push_back((uint8_t)(Index >> (J * 8))); } } JC.update(Indexes); JamCRC JCH; if (PGOOldCFGHashing) { // Hash format for context sensitive profile. Reserve 4 bits for other // information. FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 | (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 | //(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 | (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC(); } else { // The higher 32 bits. auto updateJCH = [&JCH](uint64_t Num) { uint8_t Data[8]; support::endian::write64le(Data, Num); JCH.update(Data); }; updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts()); updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size()); updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size()); if (BCI) { updateJCH(BCI->getInstrumentedBlocksHash()); } else { updateJCH((uint64_t)MST.AllEdges.size()); } // Hash format for context sensitive profile. Reserve 4 bits for other // information. FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC(); } // Reserve bit 60-63 for other information purpose. FunctionHash &= 0x0FFFFFFFFFFFFFFF; if (IsCS) NamedInstrProfRecord::setCSFlagInHash(FunctionHash); LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n" << " CRC = " << JC.getCRC() << ", Selects = " << SIVisitor.getNumOfSelectInsts() << ", Edges = " << MST.AllEdges.size() << ", ICSites = " << ValueSites[IPVK_IndirectCallTarget].size()); if (!PGOOldCFGHashing) { LLVM_DEBUG(dbgs() << ", Memops = " << ValueSites[IPVK_MemOPSize].size() << ", High32 CRC = " << JCH.getCRC()); } LLVM_DEBUG(dbgs() << ", Hash = " << FunctionHash << "\n";); if (PGOTraceFuncHash != "-" && F.getName().contains(PGOTraceFuncHash)) dbgs() << "Funcname=" << F.getName() << ", Hash=" << FunctionHash << " in building " << F.getParent()->getSourceFileName() << "\n"; } // Check if we can safely rename this Comdat function. static bool canRenameComdat( Function &F, std::unordered_multimap &ComdatMembers) { if (!DoComdatRenaming || !canRenameComdatFunc(F, true)) return false; // FIXME: Current only handle those Comdat groups that only containing one // function. // (1) For a Comdat group containing multiple functions, we need to have a // unique postfix based on the hashes for each function. There is a // non-trivial code refactoring to do this efficiently. // (2) Variables can not be renamed, so we can not rename Comdat function in a // group including global vars. Comdat *C = F.getComdat(); for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { assert(!isa(CM.second)); Function *FM = dyn_cast(CM.second); if (FM != &F) return false; } return true; } // Append the CFGHash to the Comdat function name. template void FuncPGOInstrumentation::renameComdatFunction() { if (!canRenameComdat(F, ComdatMembers)) return; std::string OrigName = F.getName().str(); std::string NewFuncName = Twine(F.getName() + "." + Twine(FunctionHash)).str(); F.setName(Twine(NewFuncName)); GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F); FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str(); Comdat *NewComdat; Module *M = F.getParent(); // For AvailableExternallyLinkage functions, change the linkage to // LinkOnceODR and put them into comdat. This is because after renaming, there // is no backup external copy available for the function. if (!F.hasComdat()) { assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); NewComdat = M->getOrInsertComdat(StringRef(NewFuncName)); F.setLinkage(GlobalValue::LinkOnceODRLinkage); F.setComdat(NewComdat); return; } // This function belongs to a single function Comdat group. Comdat *OrigComdat = F.getComdat(); std::string NewComdatName = Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str(); NewComdat = M->getOrInsertComdat(StringRef(NewComdatName)); NewComdat->setSelectionKind(OrigComdat->getSelectionKind()); for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) { // Must be a function. cast(CM.second)->setComdat(NewComdat); } } /// Collect all the BBs that will be instruments and add them to /// `InstrumentBBs`. template void FuncPGOInstrumentation::getInstrumentBBs( std::vector &InstrumentBBs) { if (BCI) { for (auto &BB : F) if (BCI->shouldInstrumentBlock(BB)) InstrumentBBs.push_back(&BB); return; } // Use a worklist as we will update the vector during the iteration. std::vector EdgeList; EdgeList.reserve(MST.AllEdges.size()); for (auto &E : MST.AllEdges) EdgeList.push_back(E.get()); for (auto &E : EdgeList) { BasicBlock *InstrBB = getInstrBB(E); if (InstrBB) InstrumentBBs.push_back(InstrBB); } } // Given a CFG E to be instrumented, find which BB to place the instrumented // code. The function will split the critical edge if necessary. template BasicBlock *FuncPGOInstrumentation::getInstrBB(Edge *E) { if (E->InMST || E->Removed) return nullptr; BasicBlock *SrcBB = E->SrcBB; BasicBlock *DestBB = E->DestBB; // For a fake edge, instrument the real BB. if (SrcBB == nullptr) return DestBB; if (DestBB == nullptr) return SrcBB; auto canInstrument = [](BasicBlock *BB) -> BasicBlock * { // There are basic blocks (such as catchswitch) cannot be instrumented. // If the returned first insertion point is the end of BB, skip this BB. if (BB->getFirstInsertionPt() == BB->end()) return nullptr; return BB; }; // Instrument the SrcBB if it has a single successor, // otherwise, the DestBB if this is not a critical edge. Instruction *TI = SrcBB->getTerminator(); if (TI->getNumSuccessors() <= 1) return canInstrument(SrcBB); if (!E->IsCritical) return canInstrument(DestBB); // Some IndirectBr critical edges cannot be split by the previous // SplitIndirectBrCriticalEdges call. Bail out. unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); BasicBlock *InstrBB = isa(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum); if (!InstrBB) { LLVM_DEBUG( dbgs() << "Fail to split critical edge: not instrument this edge.\n"); return nullptr; } // For a critical edge, we have to split. Instrument the newly // created BB. IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++; LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index << " --> " << getBBInfo(DestBB).Index << "\n"); // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB. MST.addEdge(SrcBB, InstrBB, 0); // Second one: Add new edge of InstrBB->DestBB. Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0); NewEdge1.InMST = true; E->Removed = true; return canInstrument(InstrBB); } // When generating value profiling calls on Windows routines that make use of // handler funclets for exception processing an operand bundle needs to attached // to the called function. This routine will set \p OpBundles to contain the // funclet information, if any is needed, that should be placed on the generated // value profiling call for the value profile candidate call. static void populateEHOperandBundle(VPCandidateInfo &Cand, DenseMap &BlockColors, SmallVectorImpl &OpBundles) { auto *OrigCall = dyn_cast(Cand.AnnotatedInst); if (!OrigCall) return; if (!isa(OrigCall)) { // The instrumentation call should belong to the same funclet as a // non-intrinsic call, so just copy the operand bundle, if any exists. std::optional ParentFunclet = OrigCall->getOperandBundle(LLVMContext::OB_funclet); if (ParentFunclet) OpBundles.emplace_back(OperandBundleDef(*ParentFunclet)); } else { // Intrinsics or other instructions do not get funclet information from the // front-end. Need to use the BlockColors that was computed by the routine // colorEHFunclets to determine whether a funclet is needed. if (!BlockColors.empty()) { const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second; assert(CV.size() == 1 && "non-unique color for block!"); Instruction *EHPad = CV.front()->getFirstNonPHI(); if (EHPad->isEHPad()) OpBundles.emplace_back("funclet", EHPad); } } } // Visit all edge and instrument the edges not in MST, and do value profiling. // Critical edges will be split. static void instrumentOneFunc( Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFI, std::unordered_multimap &ComdatMembers, bool IsCS) { if (!PGOBlockCoverage) { // Split indirectbr critical edges here before computing the MST rather than // later in getInstrBB() to avoid invalidating it. SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI); } FuncPGOInstrumentation FuncInfo( F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry, PGOBlockCoverage); Type *I8PtrTy = Type::getInt8PtrTy(M->getContext()); auto Name = ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy); auto CFGHash = ConstantInt::get(Type::getInt64Ty(M->getContext()), FuncInfo.FunctionHash); if (PGOFunctionEntryCoverage) { auto &EntryBB = F.getEntryBlock(); IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt()); // llvm.instrprof.cover(i8* , i64 , i32 , // i32 ) Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::instrprof_cover), {Name, CFGHash, Builder.getInt32(1), Builder.getInt32(0)}); return; } std::vector InstrumentBBs; FuncInfo.getInstrumentBBs(InstrumentBBs); unsigned NumCounters = InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); uint32_t I = 0; if (PGOTemporalInstrumentation) { NumCounters += PGOBlockCoverage ? 8 : 1; auto &EntryBB = F.getEntryBlock(); IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt()); // llvm.instrprof.timestamp(i8* , i64 , i32 , // i32 ) Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::instrprof_timestamp), {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I)}); I += PGOBlockCoverage ? 8 : 1; } for (auto *InstrBB : InstrumentBBs) { IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt()); assert(Builder.GetInsertPoint() != InstrBB->end() && "Cannot get the Instrumentation point"); // llvm.instrprof.increment(i8* , i64 , i32 , // i32 ) Builder.CreateCall( Intrinsic::getDeclaration(M, PGOBlockCoverage ? Intrinsic::instrprof_cover : Intrinsic::instrprof_increment), {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I++)}); } // Now instrument select instructions: FuncInfo.SIVisitor.instrumentSelects(&I, NumCounters, FuncInfo.FuncNameVar, FuncInfo.FunctionHash); assert(I == NumCounters); if (DisableValueProfiling) return; NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size(); // Intrinsic function calls do not have funclet operand bundles needed for // Windows exception handling attached to them. However, if value profiling is // inserted for one of these calls, then a funclet value will need to be set // on the instrumentation call based on the funclet coloring. DenseMap BlockColors; if (F.hasPersonalityFn() && isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) BlockColors = colorEHFunclets(F); // For each VP Kind, walk the VP candidates and instrument each one. for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { unsigned SiteIndex = 0; if (Kind == IPVK_MemOPSize && !PGOInstrMemOP) continue; for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) { LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind] << " site: CallSite Index = " << SiteIndex << "\n"); IRBuilder<> Builder(Cand.InsertPt); assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() && "Cannot get the Instrumentation point"); Value *ToProfile = nullptr; if (Cand.V->getType()->isIntegerTy()) ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty()); else if (Cand.V->getType()->isPointerTy()) ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty()); assert(ToProfile && "value profiling Value is of unexpected type"); SmallVector OpBundles; populateEHOperandBundle(Cand, BlockColors, OpBundles); Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile), {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), Builder.getInt64(FuncInfo.FunctionHash), ToProfile, Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)}, OpBundles); } } // IPVK_First <= Kind <= IPVK_Last } namespace { // This class represents a CFG edge in profile use compilation. struct PGOUseEdge : public PGOEdge { using PGOEdge::PGOEdge; bool CountValid = false; uint64_t CountValue = 0; // Set edge count value void setEdgeCount(uint64_t Value) { CountValue = Value; CountValid = true; } // Return the information string for this object. std::string infoString() const { if (!CountValid) return PGOEdge::infoString(); return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue)) .str(); } }; using DirectEdges = SmallVector; // This class stores the auxiliary information for each BB. struct PGOUseBBInfo : public PGOBBInfo { uint64_t CountValue = 0; bool CountValid; int32_t UnknownCountInEdge = 0; int32_t UnknownCountOutEdge = 0; DirectEdges InEdges; DirectEdges OutEdges; PGOUseBBInfo(unsigned IX) : PGOBBInfo(IX), CountValid(false) {} // Set the profile count value for this BB. void setBBInfoCount(uint64_t Value) { CountValue = Value; CountValid = true; } // Return the information string of this object. std::string infoString() const { if (!CountValid) return PGOBBInfo::infoString(); return (Twine(PGOBBInfo::infoString()) + " Count=" + Twine(CountValue)) .str(); } // Add an OutEdge and update the edge count. void addOutEdge(PGOUseEdge *E) { OutEdges.push_back(E); UnknownCountOutEdge++; } // Add an InEdge and update the edge count. void addInEdge(PGOUseEdge *E) { InEdges.push_back(E); UnknownCountInEdge++; } }; } // end anonymous namespace // Sum up the count values for all the edges. static uint64_t sumEdgeCount(const ArrayRef Edges) { uint64_t Total = 0; for (const auto &E : Edges) { if (E->Removed) continue; Total += E->CountValue; } return Total; } namespace { class PGOUseFunc { public: PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI, std::unordered_multimap &ComdatMembers, BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin, ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry, bool HasSingleByteCoverage) : F(Func), M(Modu), BFI(BFIin), PSI(PSI), FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS, InstrumentFuncEntry, HasSingleByteCoverage), FreqAttr(FFA_Normal), IsCS(IsCS) {} void handleInstrProfError(Error Err, uint64_t MismatchedFuncSum); // Read counts for the instrumented BB from profile. bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros, InstrProfRecord::CountPseudoKind &PseudoKind); // Populate the counts for all BBs. void populateCounters(); // Set block coverage based on profile coverage values. void populateCoverage(IndexedInstrProfReader *PGOReader); // Set the branch weights based on the count values. void setBranchWeights(); // Annotate the value profile call sites for all value kind. void annotateValueSites(); // Annotate the value profile call sites for one value kind. void annotateValueSites(uint32_t Kind); // Annotate the irreducible loop header weights. void annotateIrrLoopHeaderWeights(); // The hotness of the function from the profile count. enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot }; // Return the function hotness from the profile. FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; } // Return the function hash. uint64_t getFuncHash() const { return FuncInfo.FunctionHash; } // Return the profile record for this function; InstrProfRecord &getProfileRecord() { return ProfileRecord; } // Return the auxiliary BB information. PGOUseBBInfo &getBBInfo(const BasicBlock *BB) const { return FuncInfo.getBBInfo(BB); } // Return the auxiliary BB information if available. PGOUseBBInfo *findBBInfo(const BasicBlock *BB) const { return FuncInfo.findBBInfo(BB); } Function &getFunc() const { return F; } void dumpInfo(StringRef Str = "") const { FuncInfo.dumpInfo(Str); } uint64_t getProgramMaxCount() const { return ProgramMaxCount; } private: Function &F; Module *M; BlockFrequencyInfo *BFI; ProfileSummaryInfo *PSI; // This member stores the shared information with class PGOGenFunc. FuncPGOInstrumentation FuncInfo; // The maximum count value in the profile. This is only used in PGO use // compilation. uint64_t ProgramMaxCount; // Position of counter that remains to be read. uint32_t CountPosition = 0; // Total size of the profile count for this function. uint32_t ProfileCountSize = 0; // ProfileRecord for this function. InstrProfRecord ProfileRecord; // Function hotness info derived from profile. FuncFreqAttr FreqAttr; // Is to use the context sensitive profile. bool IsCS; // Find the Instrumented BB and set the value. Return false on error. bool setInstrumentedCounts(const std::vector &CountFromProfile); // Set the edge counter value for the unknown edge -- there should be only // one unknown edge. void setEdgeCount(DirectEdges &Edges, uint64_t Value); // Set the hot/cold inline hints based on the count values. // FIXME: This function should be removed once the functionality in // the inliner is implemented. void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) { if (PSI->isHotCount(EntryCount)) FreqAttr = FFA_Hot; else if (PSI->isColdCount(MaxCount)) FreqAttr = FFA_Cold; } }; } // end anonymous namespace /// Set up InEdges/OutEdges for all BBs in the MST. static void setupBBInfoEdges(FuncPGOInstrumentation &FuncInfo) { // This is not required when there is block coverage inference. if (FuncInfo.BCI) return; for (auto &E : FuncInfo.MST.AllEdges) { if (E->Removed) continue; const BasicBlock *SrcBB = E->SrcBB; const BasicBlock *DestBB = E->DestBB; PGOUseBBInfo &SrcInfo = FuncInfo.getBBInfo(SrcBB); PGOUseBBInfo &DestInfo = FuncInfo.getBBInfo(DestBB); SrcInfo.addOutEdge(E.get()); DestInfo.addInEdge(E.get()); } } // Visit all the edges and assign the count value for the instrumented // edges and the BB. Return false on error. bool PGOUseFunc::setInstrumentedCounts( const std::vector &CountFromProfile) { std::vector InstrumentBBs; FuncInfo.getInstrumentBBs(InstrumentBBs); setupBBInfoEdges(FuncInfo); unsigned NumCounters = InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); // The number of counters here should match the number of counters // in profile. Return if they mismatch. if (NumCounters != CountFromProfile.size()) { return false; } auto *FuncEntry = &*F.begin(); // Set the profile count to the Instrumented BBs. uint32_t I = 0; for (BasicBlock *InstrBB : InstrumentBBs) { uint64_t CountValue = CountFromProfile[I++]; PGOUseBBInfo &Info = getBBInfo(InstrBB); // If we reach here, we know that we have some nonzero count // values in this function. The entry count should not be 0. // Fix it if necessary. if (InstrBB == FuncEntry && CountValue == 0) CountValue = 1; Info.setBBInfoCount(CountValue); } ProfileCountSize = CountFromProfile.size(); CountPosition = I; // Set the edge count and update the count of unknown edges for BBs. auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void { E->setEdgeCount(Value); this->getBBInfo(E->SrcBB).UnknownCountOutEdge--; this->getBBInfo(E->DestBB).UnknownCountInEdge--; }; // Set the profile count the Instrumented edges. There are BBs that not in // MST but not instrumented. Need to set the edge count value so that we can // populate the profile counts later. for (auto &E : FuncInfo.MST.AllEdges) { if (E->Removed || E->InMST) continue; const BasicBlock *SrcBB = E->SrcBB; PGOUseBBInfo &SrcInfo = getBBInfo(SrcBB); // If only one out-edge, the edge profile count should be the same as BB // profile count. if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1) setEdgeCount(E.get(), SrcInfo.CountValue); else { const BasicBlock *DestBB = E->DestBB; PGOUseBBInfo &DestInfo = getBBInfo(DestBB); // If only one in-edge, the edge profile count should be the same as BB // profile count. if (DestInfo.CountValid && DestInfo.InEdges.size() == 1) setEdgeCount(E.get(), DestInfo.CountValue); } if (E->CountValid) continue; // E's count should have been set from profile. If not, this meenas E skips // the instrumentation. We set the count to 0. setEdgeCount(E.get(), 0); } return true; } // Set the count value for the unknown edge. There should be one and only one // unknown edge in Edges vector. void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) { for (auto &E : Edges) { if (E->CountValid) continue; E->setEdgeCount(Value); getBBInfo(E->SrcBB).UnknownCountOutEdge--; getBBInfo(E->DestBB).UnknownCountInEdge--; return; } llvm_unreachable("Cannot find the unknown count edge"); } // Emit function metadata indicating PGO profile mismatch. static void annotateFunctionWithHashMismatch(Function &F, LLVMContext &ctx) { const char MetadataName[] = "instr_prof_hash_mismatch"; SmallVector Names; // If this metadata already exists, ignore. auto *Existing = F.getMetadata(LLVMContext::MD_annotation); if (Existing) { MDTuple *Tuple = cast(Existing); for (const auto &N : Tuple->operands()) { if (N.equalsStr(MetadataName)) return; Names.push_back(N.get()); } } MDBuilder MDB(ctx); Names.push_back(MDB.createString(MetadataName)); MDNode *MD = MDTuple::get(ctx, Names); F.setMetadata(LLVMContext::MD_annotation, MD); } void PGOUseFunc::handleInstrProfError(Error Err, uint64_t MismatchedFuncSum) { handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) { auto &Ctx = M->getContext(); auto Err = IPE.get(); bool SkipWarning = false; LLVM_DEBUG(dbgs() << "Error in reading profile for Func " << FuncInfo.FuncName << ": "); if (Err == instrprof_error::unknown_function) { IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++; SkipWarning = !PGOWarnMissing; LLVM_DEBUG(dbgs() << "unknown function"); } else if (Err == instrprof_error::hash_mismatch || Err == instrprof_error::malformed) { IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++; SkipWarning = NoPGOWarnMismatch || (NoPGOWarnMismatchComdatWeak && (F.hasComdat() || F.getLinkage() == GlobalValue::WeakAnyLinkage || F.getLinkage() == GlobalValue::AvailableExternallyLinkage)); LLVM_DEBUG(dbgs() << "hash mismatch (hash= " << FuncInfo.FunctionHash << " skip=" << SkipWarning << ")"); // Emit function metadata indicating PGO profile mismatch. annotateFunctionWithHashMismatch(F, M->getContext()); } LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n"); if (SkipWarning) return; std::string Msg = IPE.message() + std::string(" ") + F.getName().str() + std::string(" Hash = ") + std::to_string(FuncInfo.FunctionHash) + std::string(" up to ") + std::to_string(MismatchedFuncSum) + std::string(" count discarded"); Ctx.diagnose( DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); }); } // Read the profile from ProfileFileName and assign the value to the // instrumented BB and the edges. This function also updates ProgramMaxCount. // Return true if the profile are successfully read, and false on errors. bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros, InstrProfRecord::CountPseudoKind &PseudoKind) { auto &Ctx = M->getContext(); uint64_t MismatchedFuncSum = 0; Expected Result = PGOReader->getInstrProfRecord( FuncInfo.FuncName, FuncInfo.FunctionHash, &MismatchedFuncSum); if (Error E = Result.takeError()) { handleInstrProfError(std::move(E), MismatchedFuncSum); return false; } ProfileRecord = std::move(Result.get()); PseudoKind = ProfileRecord.getCountPseudoKind(); if (PseudoKind != InstrProfRecord::NotPseudo) { return true; } std::vector &CountFromProfile = ProfileRecord.Counts; IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++; LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n"); uint64_t ValueSum = 0; for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) { LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n"); ValueSum += CountFromProfile[I]; } AllZeros = (ValueSum == 0); LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n"); getBBInfo(nullptr).UnknownCountOutEdge = 2; getBBInfo(nullptr).UnknownCountInEdge = 2; if (!setInstrumentedCounts(CountFromProfile)) { LLVM_DEBUG( dbgs() << "Inconsistent number of counts, skipping this function"); Ctx.diagnose(DiagnosticInfoPGOProfile( M->getName().data(), Twine("Inconsistent number of counts in ") + F.getName().str() + Twine(": the profile may be stale or there is a function name " "collision."), DS_Warning)); return false; } ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS); return true; } void PGOUseFunc::populateCoverage(IndexedInstrProfReader *PGOReader) { uint64_t MismatchedFuncSum = 0; Expected Result = PGOReader->getInstrProfRecord( FuncInfo.FuncName, FuncInfo.FunctionHash, &MismatchedFuncSum); if (auto Err = Result.takeError()) { handleInstrProfError(std::move(Err), MismatchedFuncSum); return; } std::vector &CountsFromProfile = Result.get().Counts; DenseMap Coverage; unsigned Index = 0; for (auto &BB : F) if (FuncInfo.BCI->shouldInstrumentBlock(BB)) Coverage[&BB] = (CountsFromProfile[Index++] != 0); assert(Index == CountsFromProfile.size()); // For each B in InverseDependencies[A], if A is covered then B is covered. DenseMap> InverseDependencies; for (auto &BB : F) { for (auto *Dep : FuncInfo.BCI->getDependencies(BB)) { // If Dep is covered then BB is covered. InverseDependencies[Dep].insert(&BB); } } // Infer coverage of the non-instrumented blocks using a flood-fill algorithm. std::stack CoveredBlocksToProcess; for (auto &[BB, IsCovered] : Coverage) if (IsCovered) CoveredBlocksToProcess.push(BB); while (!CoveredBlocksToProcess.empty()) { auto *CoveredBlock = CoveredBlocksToProcess.top(); assert(Coverage[CoveredBlock]); CoveredBlocksToProcess.pop(); for (auto *BB : InverseDependencies[CoveredBlock]) { // If CoveredBlock is covered then BB is covered. if (Coverage[BB]) continue; Coverage[BB] = true; CoveredBlocksToProcess.push(BB); } } // Annotate block coverage. MDBuilder MDB(F.getContext()); // We set the entry count to 10000 if the entry block is covered so that BFI // can propagate a fraction of this count to the other covered blocks. F.setEntryCount(Coverage[&F.getEntryBlock()] ? 10000 : 0); for (auto &BB : F) { // For a block A and its successor B, we set the edge weight as follows: // If A is covered and B is covered, set weight=1. // If A is covered and B is uncovered, set weight=0. // If A is uncovered, set weight=1. // This setup will allow BFI to give nonzero profile counts to only covered // blocks. SmallVector Weights; for (auto *Succ : successors(&BB)) Weights.push_back((Coverage[Succ] || !Coverage[&BB]) ? 1 : 0); if (Weights.size() >= 2) BB.getTerminator()->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); } unsigned NumCorruptCoverage = 0; DominatorTree DT(F); LoopInfo LI(DT); BranchProbabilityInfo BPI(F, LI); BlockFrequencyInfo BFI(F, BPI, LI); auto IsBlockDead = [&](const BasicBlock &BB) -> std::optional { if (auto C = BFI.getBlockProfileCount(&BB)) return C == 0; return {}; }; LLVM_DEBUG(dbgs() << "Block Coverage: (Instrumented=*, Covered=X)\n"); for (auto &BB : F) { LLVM_DEBUG(dbgs() << (FuncInfo.BCI->shouldInstrumentBlock(BB) ? "* " : " ") << (Coverage[&BB] ? "X " : " ") << " " << BB.getName() << "\n"); // In some cases it is possible to find a covered block that has no covered // successors, e.g., when a block calls a function that may call exit(). In // those cases, BFI could find its successor to be covered while BCI could // find its successor to be dead. if (Coverage[&BB] == IsBlockDead(BB).value_or(false)) { LLVM_DEBUG( dbgs() << "Found inconsistent block covearge for " << BB.getName() << ": BCI=" << (Coverage[&BB] ? "Covered" : "Dead") << " BFI=" << (IsBlockDead(BB).value() ? "Dead" : "Covered") << "\n"); ++NumCorruptCoverage; } if (Coverage[&BB]) ++NumCoveredBlocks; } if (PGOVerifyBFI && NumCorruptCoverage) { auto &Ctx = M->getContext(); Ctx.diagnose(DiagnosticInfoPGOProfile( M->getName().data(), Twine("Found inconsistent block coverage for function ") + F.getName() + " in " + Twine(NumCorruptCoverage) + " blocks.", DS_Warning)); } if (PGOViewBlockCoverageGraph) FuncInfo.BCI->viewBlockCoverageGraph(&Coverage); } // Populate the counters from instrumented BBs to all BBs. // In the end of this operation, all BBs should have a valid count value. void PGOUseFunc::populateCounters() { bool Changes = true; unsigned NumPasses = 0; while (Changes) { NumPasses++; Changes = false; // For efficient traversal, it's better to start from the end as most // of the instrumented edges are at the end. for (auto &BB : reverse(F)) { PGOUseBBInfo *Count = findBBInfo(&BB); if (Count == nullptr) continue; if (!Count->CountValid) { if (Count->UnknownCountOutEdge == 0) { Count->CountValue = sumEdgeCount(Count->OutEdges); Count->CountValid = true; Changes = true; } else if (Count->UnknownCountInEdge == 0) { Count->CountValue = sumEdgeCount(Count->InEdges); Count->CountValid = true; Changes = true; } } if (Count->CountValid) { if (Count->UnknownCountOutEdge == 1) { uint64_t Total = 0; uint64_t OutSum = sumEdgeCount(Count->OutEdges); // If the one of the successor block can early terminate (no-return), // we can end up with situation where out edge sum count is larger as // the source BB's count is collected by a post-dominated block. if (Count->CountValue > OutSum) Total = Count->CountValue - OutSum; setEdgeCount(Count->OutEdges, Total); Changes = true; } if (Count->UnknownCountInEdge == 1) { uint64_t Total = 0; uint64_t InSum = sumEdgeCount(Count->InEdges); if (Count->CountValue > InSum) Total = Count->CountValue - InSum; setEdgeCount(Count->InEdges, Total); Changes = true; } } } } LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n"); (void)NumPasses; #ifndef NDEBUG // Assert every BB has a valid counter. for (auto &BB : F) { auto BI = findBBInfo(&BB); if (BI == nullptr) continue; assert(BI->CountValid && "BB count is not valid"); } #endif uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue; uint64_t FuncMaxCount = FuncEntryCount; for (auto &BB : F) { auto BI = findBBInfo(&BB); if (BI == nullptr) continue; FuncMaxCount = std::max(FuncMaxCount, BI->CountValue); } // Fix the obviously inconsistent entry count. if (FuncMaxCount > 0 && FuncEntryCount == 0) FuncEntryCount = 1; F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real)); markFunctionAttributes(FuncEntryCount, FuncMaxCount); // Now annotate select instructions FuncInfo.SIVisitor.annotateSelects(this, &CountPosition); assert(CountPosition == ProfileCountSize); LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile.")); } // Assign the scaled count values to the BB with multiple out edges. void PGOUseFunc::setBranchWeights() { // Generate MD_prof metadata for every branch instruction. LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName() << " IsCS=" << IsCS << "\n"); for (auto &BB : F) { Instruction *TI = BB.getTerminator(); if (TI->getNumSuccessors() < 2) continue; if (!(isa(TI) || isa(TI) || isa(TI) || isa(TI) || isa(TI))) continue; if (getBBInfo(&BB).CountValue == 0) continue; // We have a non-zero Branch BB. const PGOUseBBInfo &BBCountInfo = getBBInfo(&BB); unsigned Size = BBCountInfo.OutEdges.size(); SmallVector EdgeCounts(Size, 0); uint64_t MaxCount = 0; for (unsigned s = 0; s < Size; s++) { const PGOUseEdge *E = BBCountInfo.OutEdges[s]; const BasicBlock *SrcBB = E->SrcBB; const BasicBlock *DestBB = E->DestBB; if (DestBB == nullptr) continue; unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); uint64_t EdgeCount = E->CountValue; if (EdgeCount > MaxCount) MaxCount = EdgeCount; EdgeCounts[SuccNum] = EdgeCount; } if (MaxCount) setProfMetadata(M, TI, EdgeCounts, MaxCount); else { // A zero MaxCount can come about when we have a BB with a positive // count, and whose successor blocks all have 0 count. This can happen // when there is no exit block and the code exits via a noreturn function. auto &Ctx = M->getContext(); Ctx.diagnose(DiagnosticInfoPGOProfile( M->getName().data(), Twine("Profile in ") + F.getName().str() + Twine(" partially ignored") + Twine(", possibly due to the lack of a return path."), DS_Warning)); } } } static bool isIndirectBrTarget(BasicBlock *BB) { for (BasicBlock *Pred : predecessors(BB)) { if (isa(Pred->getTerminator())) return true; } return false; } void PGOUseFunc::annotateIrrLoopHeaderWeights() { LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n"); // Find irr loop headers for (auto &BB : F) { // As a heuristic also annotate indrectbr targets as they have a high chance // to become an irreducible loop header after the indirectbr tail // duplication. if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) { Instruction *TI = BB.getTerminator(); const PGOUseBBInfo &BBCountInfo = getBBInfo(&BB); setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue); } } } void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) { Module *M = F.getParent(); IRBuilder<> Builder(&SI); Type *Int64Ty = Builder.getInt64Ty(); Type *I8PtrTy = Builder.getInt8PtrTy(); auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty); Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step), {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs), Builder.getInt32(*CurCtrIdx), Step}); ++(*CurCtrIdx); } void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) { std::vector &CountFromProfile = UseFunc->getProfileRecord().Counts; assert(*CurCtrIdx < CountFromProfile.size() && "Out of bound access of counters"); uint64_t SCounts[2]; SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count ++(*CurCtrIdx); uint64_t TotalCount = 0; auto BI = UseFunc->findBBInfo(SI.getParent()); if (BI != nullptr) TotalCount = BI->CountValue; // False Count SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0); uint64_t MaxCount = std::max(SCounts[0], SCounts[1]); if (MaxCount) setProfMetadata(F.getParent(), &SI, SCounts, MaxCount); } void SelectInstVisitor::visitSelectInst(SelectInst &SI) { if (!PGOInstrSelect || PGOFunctionEntryCoverage || HasSingleByteCoverage) return; // FIXME: do not handle this yet. if (SI.getCondition()->getType()->isVectorTy()) return; switch (Mode) { case VM_counting: NSIs++; return; case VM_instrument: instrumentOneSelectInst(SI); return; case VM_annotate: annotateOneSelectInst(SI); return; } llvm_unreachable("Unknown visiting mode"); } // Traverse all valuesites and annotate the instructions for all value kind. void PGOUseFunc::annotateValueSites() { if (DisableValueProfiling) return; // Create the PGOFuncName meta data. createPGOFuncNameMetadata(F, FuncInfo.FuncName); for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) annotateValueSites(Kind); } // Annotate the instructions for a specific value kind. void PGOUseFunc::annotateValueSites(uint32_t Kind) { assert(Kind <= IPVK_Last); unsigned ValueSiteIndex = 0; auto &ValueSites = FuncInfo.ValueSites[Kind]; unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind); if (NumValueSites != ValueSites.size()) { auto &Ctx = M->getContext(); Ctx.diagnose(DiagnosticInfoPGOProfile( M->getName().data(), Twine("Inconsistent number of value sites for ") + Twine(ValueProfKindDescr[Kind]) + Twine(" profiling in \"") + F.getName().str() + Twine("\", possibly due to the use of a stale profile."), DS_Warning)); return; } for (VPCandidateInfo &I : ValueSites) { LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind << "): Index = " << ValueSiteIndex << " out of " << NumValueSites << "\n"); annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord, static_cast(Kind), ValueSiteIndex, Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations : MaxNumAnnotations); ValueSiteIndex++; } } // Collect the set of members for each Comdat in module M and store // in ComdatMembers. static void collectComdatMembers( Module &M, std::unordered_multimap &ComdatMembers) { if (!DoComdatRenaming) return; for (Function &F : M) if (Comdat *C = F.getComdat()) ComdatMembers.insert(std::make_pair(C, &F)); for (GlobalVariable &GV : M.globals()) if (Comdat *C = GV.getComdat()) ComdatMembers.insert(std::make_pair(C, &GV)); for (GlobalAlias &GA : M.aliases()) if (Comdat *C = GA.getComdat()) ComdatMembers.insert(std::make_pair(C, &GA)); } // Don't perform PGO instrumeatnion / profile-use. static bool skipPGO(const Function &F) { if (F.isDeclaration()) return true; if (F.hasFnAttribute(llvm::Attribute::NoProfile)) return true; if (F.hasFnAttribute(llvm::Attribute::SkipProfile)) return true; if (F.getInstructionCount() < PGOFunctionSizeThreshold) return true; // If there are too many critical edges, PGO might cause // compiler time problem. Skip PGO if the number of // critical edges execeed the threshold. unsigned NumCriticalEdges = 0; for (auto &BB : F) { const Instruction *TI = BB.getTerminator(); for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { if (isCriticalEdge(TI, I)) NumCriticalEdges++; } } if (NumCriticalEdges > PGOFunctionCriticalEdgeThreshold) { LLVM_DEBUG(dbgs() << "In func " << F.getName() << ", NumCriticalEdges=" << NumCriticalEdges << " exceed the threshold. Skip PGO.\n"); return true; } return false; } static bool InstrumentAllFunctions( Module &M, function_ref LookupTLI, function_ref LookupBPI, function_ref LookupBFI, bool IsCS) { // For the context-sensitve instrumentation, we should have a separated pass // (before LTO/ThinLTO linking) to create these variables. if (!IsCS) createIRLevelProfileFlagVar(M, /*IsCS=*/false); std::unordered_multimap ComdatMembers; collectComdatMembers(M, ComdatMembers); for (auto &F : M) { if (skipPGO(F)) continue; auto &TLI = LookupTLI(F); auto *BPI = LookupBPI(F); auto *BFI = LookupBFI(F); instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS); } return true; } PreservedAnalyses PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &MAM) { createProfileFileNameVar(M, CSInstrName); // The variable in a comdat may be discarded by LTO. Ensure the declaration // will be retained. appendToCompilerUsed(M, createIRLevelProfileFlagVar(M, /*IsCS=*/true)); PreservedAnalyses PA; PA.preserve(); PA.preserveSet>(); return PA; } PreservedAnalyses PGOInstrumentationGen::run(Module &M, ModuleAnalysisManager &MAM) { auto &FAM = MAM.getResult(M).getManager(); auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { return FAM.getResult(F); }; auto LookupBPI = [&FAM](Function &F) { return &FAM.getResult(F); }; auto LookupBFI = [&FAM](Function &F) { return &FAM.getResult(F); }; if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } // Using the ratio b/w sums of profile count values and BFI count values to // adjust the func entry count. static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI, BranchProbabilityInfo &NBPI) { Function &F = Func.getFunc(); BlockFrequencyInfo NBFI(F, NBPI, LI); #ifndef NDEBUG auto BFIEntryCount = F.getEntryCount(); assert(BFIEntryCount && (BFIEntryCount->getCount() > 0) && "Invalid BFI Entrycount"); #endif auto SumCount = APFloat::getZero(APFloat::IEEEdouble()); auto SumBFICount = APFloat::getZero(APFloat::IEEEdouble()); for (auto &BBI : F) { uint64_t CountValue = 0; uint64_t BFICountValue = 0; if (!Func.findBBInfo(&BBI)) continue; auto BFICount = NBFI.getBlockProfileCount(&BBI); CountValue = Func.getBBInfo(&BBI).CountValue; BFICountValue = *BFICount; SumCount.add(APFloat(CountValue * 1.0), APFloat::rmNearestTiesToEven); SumBFICount.add(APFloat(BFICountValue * 1.0), APFloat::rmNearestTiesToEven); } if (SumCount.isZero()) return; assert(SumBFICount.compare(APFloat(0.0)) == APFloat::cmpGreaterThan && "Incorrect sum of BFI counts"); if (SumBFICount.compare(SumCount) == APFloat::cmpEqual) return; double Scale = (SumCount / SumBFICount).convertToDouble(); if (Scale < 1.001 && Scale > 0.999) return; uint64_t FuncEntryCount = Func.getBBInfo(&*F.begin()).CountValue; uint64_t NewEntryCount = 0.5 + FuncEntryCount * Scale; if (NewEntryCount == 0) NewEntryCount = 1; if (NewEntryCount != FuncEntryCount) { F.setEntryCount(ProfileCount(NewEntryCount, Function::PCT_Real)); LLVM_DEBUG(dbgs() << "FixFuncEntryCount: in " << F.getName() << ", entry_count " << FuncEntryCount << " --> " << NewEntryCount << "\n"); } } // Compare the profile count values with BFI count values, and print out // the non-matching ones. static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI, BranchProbabilityInfo &NBPI, uint64_t HotCountThreshold, uint64_t ColdCountThreshold) { Function &F = Func.getFunc(); BlockFrequencyInfo NBFI(F, NBPI, LI); // bool PrintFunc = false; bool HotBBOnly = PGOVerifyHotBFI; StringRef Msg; OptimizationRemarkEmitter ORE(&F); unsigned BBNum = 0, BBMisMatchNum = 0, NonZeroBBNum = 0; for (auto &BBI : F) { uint64_t CountValue = 0; uint64_t BFICountValue = 0; if (Func.getBBInfo(&BBI).CountValid) CountValue = Func.getBBInfo(&BBI).CountValue; BBNum++; if (CountValue) NonZeroBBNum++; auto BFICount = NBFI.getBlockProfileCount(&BBI); if (BFICount) BFICountValue = *BFICount; if (HotBBOnly) { bool rawIsHot = CountValue >= HotCountThreshold; bool BFIIsHot = BFICountValue >= HotCountThreshold; bool rawIsCold = CountValue <= ColdCountThreshold; bool ShowCount = false; if (rawIsHot && !BFIIsHot) { Msg = "raw-Hot to BFI-nonHot"; ShowCount = true; } else if (rawIsCold && BFIIsHot) { Msg = "raw-Cold to BFI-Hot"; ShowCount = true; } if (!ShowCount) continue; } else { if ((CountValue < PGOVerifyBFICutoff) && (BFICountValue < PGOVerifyBFICutoff)) continue; uint64_t Diff = (BFICountValue >= CountValue) ? BFICountValue - CountValue : CountValue - BFICountValue; if (Diff <= CountValue / 100 * PGOVerifyBFIRatio) continue; } BBMisMatchNum++; ORE.emit([&]() { OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "bfi-verify", F.getSubprogram(), &BBI); Remark << "BB " << ore::NV("Block", BBI.getName()) << " Count=" << ore::NV("Count", CountValue) << " BFI_Count=" << ore::NV("Count", BFICountValue); if (!Msg.empty()) Remark << " (" << Msg << ")"; return Remark; }); } if (BBMisMatchNum) ORE.emit([&]() { return OptimizationRemarkAnalysis(DEBUG_TYPE, "bfi-verify", F.getSubprogram(), &F.getEntryBlock()) << "In Func " << ore::NV("Function", F.getName()) << ": Num_of_BB=" << ore::NV("Count", BBNum) << ", Num_of_non_zerovalue_BB=" << ore::NV("Count", NonZeroBBNum) << ", Num_of_mis_matching_BB=" << ore::NV("Count", BBMisMatchNum); }); } static bool annotateAllFunctions( Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName, vfs::FileSystem &FS, function_ref LookupTLI, function_ref LookupBPI, function_ref LookupBFI, ProfileSummaryInfo *PSI, bool IsCS) { LLVM_DEBUG(dbgs() << "Read in profile counters: "); auto &Ctx = M.getContext(); // Read the counter array from file. auto ReaderOrErr = IndexedInstrProfReader::create(ProfileFileName, FS, ProfileRemappingFileName); if (Error E = ReaderOrErr.takeError()) { handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) { Ctx.diagnose( DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message())); }); return false; } std::unique_ptr PGOReader = std::move(ReaderOrErr.get()); if (!PGOReader) { Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(), StringRef("Cannot get PGOReader"))); return false; } if (!PGOReader->hasCSIRLevelProfile() && IsCS) return false; // TODO: might need to change the warning once the clang option is finalized. if (!PGOReader->isIRLevelProfile()) { Ctx.diagnose(DiagnosticInfoPGOProfile( ProfileFileName.data(), "Not an IR level instrumentation profile")); return false; } if (PGOReader->functionEntryOnly()) { Ctx.diagnose(DiagnosticInfoPGOProfile( ProfileFileName.data(), "Function entry profiles are not yet supported for optimization")); return false; } // Add the profile summary (read from the header of the indexed summary) here // so that we can use it below when reading counters (which checks if the // function should be marked with a cold or inlinehint attribute). M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()), IsCS ? ProfileSummary::PSK_CSInstr : ProfileSummary::PSK_Instr); PSI->refresh(); std::unordered_multimap ComdatMembers; collectComdatMembers(M, ComdatMembers); std::vector HotFunctions; std::vector ColdFunctions; // If the profile marked as always instrument the entry BB, do the // same. Note this can be overwritten by the internal option in CFGMST.h bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled(); if (PGOInstrumentEntry.getNumOccurrences() > 0) InstrumentFuncEntry = PGOInstrumentEntry; bool HasSingleByteCoverage = PGOReader->hasSingleByteCoverage(); for (auto &F : M) { if (skipPGO(F)) continue; auto &TLI = LookupTLI(F); auto *BPI = LookupBPI(F); auto *BFI = LookupBFI(F); if (!HasSingleByteCoverage) { // Split indirectbr critical edges here before computing the MST rather // than later in getInstrBB() to avoid invalidating it. SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI); } PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS, InstrumentFuncEntry, HasSingleByteCoverage); if (HasSingleByteCoverage) { Func.populateCoverage(PGOReader.get()); continue; } // When PseudoKind is set to a vaule other than InstrProfRecord::NotPseudo, // it means the profile for the function is unrepresentative and this // function is actually hot / warm. We will reset the function hot / cold // attribute and drop all the profile counters. InstrProfRecord::CountPseudoKind PseudoKind = InstrProfRecord::NotPseudo; bool AllZeros = false; if (!Func.readCounters(PGOReader.get(), AllZeros, PseudoKind)) continue; if (AllZeros) { F.setEntryCount(ProfileCount(0, Function::PCT_Real)); if (Func.getProgramMaxCount() != 0) ColdFunctions.push_back(&F); continue; } if (PseudoKind != InstrProfRecord::NotPseudo) { // Clear function attribute cold. if (F.hasFnAttribute(Attribute::Cold)) F.removeFnAttr(Attribute::Cold); // Set function attribute as hot. if (PseudoKind == InstrProfRecord::PseudoHot) F.addFnAttr(Attribute::Hot); continue; } Func.populateCounters(); Func.setBranchWeights(); Func.annotateValueSites(); Func.annotateIrrLoopHeaderWeights(); PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr(); if (FreqAttr == PGOUseFunc::FFA_Cold) ColdFunctions.push_back(&F); else if (FreqAttr == PGOUseFunc::FFA_Hot) HotFunctions.push_back(&F); if (PGOViewCounts != PGOVCT_None && (ViewBlockFreqFuncName.empty() || F.getName().equals(ViewBlockFreqFuncName))) { LoopInfo LI{DominatorTree(F)}; std::unique_ptr NewBPI = std::make_unique(F, LI); std::unique_ptr NewBFI = std::make_unique(F, *NewBPI, LI); if (PGOViewCounts == PGOVCT_Graph) NewBFI->view(); else if (PGOViewCounts == PGOVCT_Text) { dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n"; NewBFI->print(dbgs()); } } if (PGOViewRawCounts != PGOVCT_None && (ViewBlockFreqFuncName.empty() || F.getName().equals(ViewBlockFreqFuncName))) { if (PGOViewRawCounts == PGOVCT_Graph) if (ViewBlockFreqFuncName.empty()) WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); else ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); else if (PGOViewRawCounts == PGOVCT_Text) { dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n"; Func.dumpInfo(); } } if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) { LoopInfo LI{DominatorTree(F)}; BranchProbabilityInfo NBPI(F, LI); // Fix func entry count. if (PGOFixEntryCount) fixFuncEntryCount(Func, LI, NBPI); // Verify BlockFrequency information. uint64_t HotCountThreshold = 0, ColdCountThreshold = 0; if (PGOVerifyHotBFI) { HotCountThreshold = PSI->getOrCompHotCountThreshold(); ColdCountThreshold = PSI->getOrCompColdCountThreshold(); } verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold); } } // Set function hotness attribute from the profile. // We have to apply these attributes at the end because their presence // can affect the BranchProbabilityInfo of any callers, resulting in an // inconsistent MST between prof-gen and prof-use. for (auto &F : HotFunctions) { F->addFnAttr(Attribute::InlineHint); LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName() << "\n"); } for (auto &F : ColdFunctions) { // Only set when there is no Attribute::Hot set by the user. For Hot // attribute, user's annotation has the precedence over the profile. if (F->hasFnAttribute(Attribute::Hot)) { auto &Ctx = M.getContext(); std::string Msg = std::string("Function ") + F->getName().str() + std::string(" is annotated as a hot function but" " the profile is cold"); Ctx.diagnose( DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning)); continue; } F->addFnAttr(Attribute::Cold); LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName() << "\n"); } return true; } PGOInstrumentationUse::PGOInstrumentationUse( std::string Filename, std::string RemappingFilename, bool IsCS, IntrusiveRefCntPtr VFS) : ProfileFileName(std::move(Filename)), ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS), FS(std::move(VFS)) { if (!PGOTestProfileFile.empty()) ProfileFileName = PGOTestProfileFile; if (!PGOTestProfileRemappingFile.empty()) ProfileRemappingFileName = PGOTestProfileRemappingFile; if (!FS) FS = vfs::getRealFileSystem(); } PreservedAnalyses PGOInstrumentationUse::run(Module &M, ModuleAnalysisManager &MAM) { auto &FAM = MAM.getResult(M).getManager(); auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { return FAM.getResult(F); }; auto LookupBPI = [&FAM](Function &F) { return &FAM.getResult(F); }; auto LookupBFI = [&FAM](Function &F) { return &FAM.getResult(F); }; auto *PSI = &MAM.getResult(M); if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName, *FS, LookupTLI, LookupBPI, LookupBFI, PSI, IsCS)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } static std::string getSimpleNodeName(const BasicBlock *Node) { if (!Node->getName().empty()) return Node->getName().str(); std::string SimpleNodeName; raw_string_ostream OS(SimpleNodeName); Node->printAsOperand(OS, false); return OS.str(); } void llvm::setProfMetadata(Module *M, Instruction *TI, ArrayRef EdgeCounts, uint64_t MaxCount) { MDBuilder MDB(M->getContext()); assert(MaxCount > 0 && "Bad max count"); uint64_t Scale = calculateCountScale(MaxCount); SmallVector Weights; for (const auto &ECI : EdgeCounts) Weights.push_back(scaleBranchCount(ECI, Scale)); LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W : Weights) { dbgs() << W << " "; } dbgs() << "\n";); misexpect::checkExpectAnnotations(*TI, Weights, /*IsFrontend=*/false); TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); if (EmitBranchProbability) { std::string BrCondStr = getBranchCondString(TI); if (BrCondStr.empty()) return; uint64_t WSum = std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0, [](uint64_t w1, uint64_t w2) { return w1 + w2; }); uint64_t TotalCount = std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0, [](uint64_t c1, uint64_t c2) { return c1 + c2; }); Scale = calculateCountScale(WSum); BranchProbability BP(scaleBranchCount(Weights[0], Scale), scaleBranchCount(WSum, Scale)); std::string BranchProbStr; raw_string_ostream OS(BranchProbStr); OS << BP; OS << " (total count : " << TotalCount << ")"; OS.flush(); Function *F = TI->getParent()->getParent(); OptimizationRemarkEmitter ORE(F); ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI) << BrCondStr << " is true with probability : " << BranchProbStr; }); } } namespace llvm { void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) { MDBuilder MDB(M->getContext()); TI->setMetadata(llvm::LLVMContext::MD_irr_loop, MDB.createIrrLoopHeaderWeight(Count)); } template <> struct GraphTraits { using NodeRef = const BasicBlock *; using ChildIteratorType = const_succ_iterator; using nodes_iterator = pointer_iterator; static NodeRef getEntryNode(const PGOUseFunc *G) { return &G->getFunc().front(); } static ChildIteratorType child_begin(const NodeRef N) { return succ_begin(N); } static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); } static nodes_iterator nodes_begin(const PGOUseFunc *G) { return nodes_iterator(G->getFunc().begin()); } static nodes_iterator nodes_end(const PGOUseFunc *G) { return nodes_iterator(G->getFunc().end()); } }; template <> struct DOTGraphTraits : DefaultDOTGraphTraits { explicit DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} static std::string getGraphName(const PGOUseFunc *G) { return std::string(G->getFunc().getName()); } std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) { std::string Result; raw_string_ostream OS(Result); OS << getSimpleNodeName(Node) << ":\\l"; PGOUseBBInfo *BI = Graph->findBBInfo(Node); OS << "Count : "; if (BI && BI->CountValid) OS << BI->CountValue << "\\l"; else OS << "Unknown\\l"; if (!PGOInstrSelect) return Result; for (const Instruction &I : *Node) { if (!isa(&I)) continue; // Display scaled counts for SELECT instruction: OS << "SELECT : { T = "; uint64_t TC, FC; bool HasProf = extractBranchWeights(I, TC, FC); if (!HasProf) OS << "Unknown, F = Unknown }\\l"; else OS << TC << ", F = " << FC << " }\\l"; } return Result; } }; } // end namespace llvm