//===- InstructionCombining.cpp - Combine multiple instructions -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // InstructionCombining - Combine instructions to form fewer, simple // instructions. This pass does not modify the CFG. This pass is where // algebraic simplification happens. // // This pass combines things like: // %Y = add i32 %X, 1 // %Z = add i32 %Y, 1 // into: // %Z = add i32 %X, 2 // // This is a simple worklist driven algorithm. // // This pass guarantees that the following canonicalizations are performed on // the program: // 1. If a binary operator has a constant operand, it is moved to the RHS // 2. Bitwise operators with constant operands are always grouped so that // shifts are performed first, then or's, then and's, then xor's. // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible // 4. All cmp instructions on boolean values are replaced with logical ops // 5. add X, X is represented as (X*2) => (X << 1) // 6. Multiplies with a power-of-two constant argument are transformed into // shifts. // ... etc. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LazyBlockFrequencyInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/Utils/Local.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/EHPersonalities.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/InstCombine/InstCombine.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include #include #include #include #define DEBUG_TYPE "instcombine" #include "llvm/Transforms/Utils/InstructionWorklist.h" #include using namespace llvm; using namespace llvm::PatternMatch; STATISTIC(NumWorklistIterations, "Number of instruction combining iterations performed"); STATISTIC(NumOneIteration, "Number of functions with one iteration"); STATISTIC(NumTwoIterations, "Number of functions with two iterations"); STATISTIC(NumThreeIterations, "Number of functions with three iterations"); STATISTIC(NumFourOrMoreIterations, "Number of functions with four or more iterations"); STATISTIC(NumCombined , "Number of insts combined"); STATISTIC(NumConstProp, "Number of constant folds"); STATISTIC(NumDeadInst , "Number of dead inst eliminated"); STATISTIC(NumSunkInst , "Number of instructions sunk"); STATISTIC(NumExpand, "Number of expansions"); STATISTIC(NumFactor , "Number of factorizations"); STATISTIC(NumReassoc , "Number of reassociations"); DEBUG_COUNTER(VisitCounter, "instcombine-visit", "Controls which instructions are visited"); static cl::opt EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true)); static cl::opt MaxSinkNumUsers( "instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking")); static cl::opt MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine")); // FIXME: Remove this flag when it is no longer necessary to convert // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false // increases variable availability at the cost of accuracy. Variables that // cannot be promoted by mem2reg or SROA will be described as living in memory // for their entire lifetime. However, passes like DSE and instcombine can // delete stores to the alloca, leading to misleading and inaccurate debug // information. This flag can be removed when those passes are fixed. static cl::opt ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true)); std::optional InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { // Handle target specific intrinsics if (II.getCalledFunction()->isTargetIntrinsic()) { return TTI.instCombineIntrinsic(*this, II); } return std::nullopt; } std::optional InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) { // Handle target specific intrinsics if (II.getCalledFunction()->isTargetIntrinsic()) { return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, KnownBitsComputed); } return std::nullopt; } std::optional InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts, APInt &PoisonElts2, APInt &PoisonElts3, std::function SimplifyAndSetOp) { // Handle target specific intrinsics if (II.getCalledFunction()->isTargetIntrinsic()) { return TTI.simplifyDemandedVectorEltsIntrinsic( *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3, SimplifyAndSetOp); } return std::nullopt; } bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const { return TTI.isValidAddrSpaceCast(FromAS, ToAS); } Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { return llvm::emitGEPOffset(&Builder, DL, GEP); } /// Legal integers and common types are considered desirable. This is used to /// avoid creating instructions with types that may not be supported well by the /// the backend. /// NOTE: This treats i8, i16 and i32 specially because they are common /// types in frontend languages. bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { switch (BitWidth) { case 8: case 16: case 32: return true; default: return DL.isLegalInteger(BitWidth); } } /// Return true if it is desirable to convert an integer computation from a /// given bit width to a new bit width. /// We don't want to convert from a legal or desirable type (like i8) to an /// illegal type or from a smaller to a larger illegal type. A width of '1' /// is always treated as a desirable type because i1 is a fundamental type in /// IR, and there are many specialized optimizations for i1 types. /// Common/desirable widths are equally treated as legal to convert to, in /// order to open up more combining opportunities. bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, unsigned ToWidth) const { bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); // Convert to desirable widths even if they are not legal types. // Only shrink types, to prevent infinite loops. if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) return true; // If this is a legal or desiable integer from type, and the result would be // an illegal type, don't do the transformation. if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal) return false; // Otherwise, if both are illegal, do not increase the size of the result. We // do allow things like i160 -> i64, but not i64 -> i160. if (!FromLegal && !ToLegal && ToWidth > FromWidth) return false; return true; } /// Return true if it is desirable to convert a computation from 'From' to 'To'. /// We don't want to convert from a legal to an illegal type or from a smaller /// to a larger illegal type. i1 is always treated as a legal type because it is /// a fundamental type in IR, and there are many specialized optimizations for /// i1 types. bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { // TODO: This could be extended to allow vectors. Datalayout changes might be // needed to properly support that. if (!From->isIntegerTy() || !To->isIntegerTy()) return false; unsigned FromWidth = From->getPrimitiveSizeInBits(); unsigned ToWidth = To->getPrimitiveSizeInBits(); return shouldChangeType(FromWidth, ToWidth); } // Return true, if No Signed Wrap should be maintained for I. // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", // where both B and C should be ConstantInts, results in a constant that does // not overflow. This function only handles the Add and Sub opcodes. For // all other opcodes, the function conservatively returns false. static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { auto *OBO = dyn_cast(&I); if (!OBO || !OBO->hasNoSignedWrap()) return false; // We reason about Add and Sub Only. Instruction::BinaryOps Opcode = I.getOpcode(); if (Opcode != Instruction::Add && Opcode != Instruction::Sub) return false; const APInt *BVal, *CVal; if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) return false; bool Overflow = false; if (Opcode == Instruction::Add) (void)BVal->sadd_ov(*CVal, Overflow); else (void)BVal->ssub_ov(*CVal, Overflow); return !Overflow; } static bool hasNoUnsignedWrap(BinaryOperator &I) { auto *OBO = dyn_cast(&I); return OBO && OBO->hasNoUnsignedWrap(); } static bool hasNoSignedWrap(BinaryOperator &I) { auto *OBO = dyn_cast(&I); return OBO && OBO->hasNoSignedWrap(); } /// Conservatively clears subclassOptionalData after a reassociation or /// commutation. We preserve fast-math flags when applicable as they can be /// preserved. static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { FPMathOperator *FPMO = dyn_cast(&I); if (!FPMO) { I.clearSubclassOptionalData(); return; } FastMathFlags FMF = I.getFastMathFlags(); I.clearSubclassOptionalData(); I.setFastMathFlags(FMF); } /// Combine constant operands of associative operations either before or after a /// cast to eliminate one of the associative operations: /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC) { auto *Cast = dyn_cast(BinOp1->getOperand(0)); if (!Cast || !Cast->hasOneUse()) return false; // TODO: Enhance logic for other casts and remove this check. auto CastOpcode = Cast->getOpcode(); if (CastOpcode != Instruction::ZExt) return false; // TODO: Enhance logic for other BinOps and remove this check. if (!BinOp1->isBitwiseLogicOp()) return false; auto AssocOpcode = BinOp1->getOpcode(); auto *BinOp2 = dyn_cast(Cast->getOperand(0)); if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) return false; Constant *C1, *C2; if (!match(BinOp1->getOperand(1), m_Constant(C1)) || !match(BinOp2->getOperand(1), m_Constant(C2))) return false; // TODO: This assumes a zext cast. // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 // to the destination type might lose bits. // Fold the constants together in the destination type: // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) const DataLayout &DL = IC.getDataLayout(); Type *DestTy = C1->getType(); Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL); if (!CastC2) return false; Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL); if (!FoldedC) return false; IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); IC.replaceOperand(*BinOp1, 1, FoldedC); BinOp1->dropPoisonGeneratingFlags(); Cast->dropPoisonGeneratingFlags(); return true; } // Simplifies IntToPtr/PtrToInt RoundTrip Cast. // inttoptr ( ptrtoint (x) ) --> x Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { auto *IntToPtr = dyn_cast(Val); if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) == DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { auto *PtrToInt = dyn_cast(IntToPtr->getOperand(0)); Type *CastTy = IntToPtr->getDestTy(); if (PtrToInt && CastTy->getPointerAddressSpace() == PtrToInt->getSrcTy()->getPointerAddressSpace() && DL.getTypeSizeInBits(PtrToInt->getSrcTy()) == DL.getTypeSizeInBits(PtrToInt->getDestTy())) return PtrToInt->getOperand(0); } return nullptr; } /// This performs a few simplifications for operators that are associative or /// commutative: /// /// Commutative operators: /// /// 1. Order operands such that they are listed from right (least complex) to /// left (most complex). This puts constants before unary operators before /// binary operators. /// /// Associative operators: /// /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. /// /// Associative and commutative operators: /// /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" /// if C1 and C2 are constants. bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { Instruction::BinaryOps Opcode = I.getOpcode(); bool Changed = false; do { // Order operands such that they are listed from right (least complex) to // left (most complex). This puts constants before unary operators before // binary operators. if (I.isCommutative() && getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) Changed = !I.swapOperands(); if (I.isCommutative()) { if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) { replaceOperand(I, 0, Pair->first); replaceOperand(I, 1, Pair->second); Changed = true; } } BinaryOperator *Op0 = dyn_cast(I.getOperand(0)); BinaryOperator *Op1 = dyn_cast(I.getOperand(1)); if (I.isAssociative()) { // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. if (Op0 && Op0->getOpcode() == Opcode) { Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1); Value *C = I.getOperand(1); // Does "B op C" simplify? if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { // It simplifies to V. Form "A op V". replaceOperand(I, 0, A); replaceOperand(I, 1, V); bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); // Conservatively clear all optional flags since they may not be // preserved by the reassociation. Reset nsw/nuw based on the above // analysis. ClearSubclassDataAfterReassociation(I); // Note: this is only valid because SimplifyBinOp doesn't look at // the operands to Op0. if (IsNUW) I.setHasNoUnsignedWrap(true); if (IsNSW) I.setHasNoSignedWrap(true); Changed = true; ++NumReassoc; continue; } } // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. if (Op1 && Op1->getOpcode() == Opcode) { Value *A = I.getOperand(0); Value *B = Op1->getOperand(0); Value *C = Op1->getOperand(1); // Does "A op B" simplify? if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { // It simplifies to V. Form "V op C". replaceOperand(I, 0, V); replaceOperand(I, 1, C); // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. ClearSubclassDataAfterReassociation(I); Changed = true; ++NumReassoc; continue; } } } if (I.isAssociative() && I.isCommutative()) { if (simplifyAssocCastAssoc(&I, *this)) { Changed = true; ++NumReassoc; continue; } // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. if (Op0 && Op0->getOpcode() == Opcode) { Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1); Value *C = I.getOperand(1); // Does "C op A" simplify? if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { // It simplifies to V. Form "V op B". replaceOperand(I, 0, V); replaceOperand(I, 1, B); // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. ClearSubclassDataAfterReassociation(I); Changed = true; ++NumReassoc; continue; } } // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. if (Op1 && Op1->getOpcode() == Opcode) { Value *A = I.getOperand(0); Value *B = Op1->getOperand(0); Value *C = Op1->getOperand(1); // Does "C op A" simplify? if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { // It simplifies to V. Form "B op V". replaceOperand(I, 0, B); replaceOperand(I, 1, V); // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. ClearSubclassDataAfterReassociation(I); Changed = true; ++NumReassoc; continue; } } // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" // if C1 and C2 are constants. Value *A, *B; Constant *C1, *C2, *CRes; if (Op0 && Op1 && Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0) && hasNoUnsignedWrap(*Op1); BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? BinaryOperator::CreateNUW(Opcode, A, B) : BinaryOperator::Create(Opcode, A, B); if (isa(NewBO)) { FastMathFlags Flags = I.getFastMathFlags() & Op0->getFastMathFlags() & Op1->getFastMathFlags(); NewBO->setFastMathFlags(Flags); } InsertNewInstWith(NewBO, I.getIterator()); NewBO->takeName(Op1); replaceOperand(I, 0, NewBO); replaceOperand(I, 1, CRes); // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. ClearSubclassDataAfterReassociation(I); if (IsNUW) I.setHasNoUnsignedWrap(true); Changed = true; continue; } } // No further simplifications. return Changed; } while (true); } /// Return whether "X LOp (Y ROp Z)" is always equal to /// "(X LOp Y) ROp (X LOp Z)". static bool leftDistributesOverRight(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp) { // X & (Y | Z) <--> (X & Y) | (X & Z) // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) if (LOp == Instruction::And) return ROp == Instruction::Or || ROp == Instruction::Xor; // X | (Y & Z) <--> (X | Y) & (X | Z) if (LOp == Instruction::Or) return ROp == Instruction::And; // X * (Y + Z) <--> (X * Y) + (X * Z) // X * (Y - Z) <--> (X * Y) - (X * Z) if (LOp == Instruction::Mul) return ROp == Instruction::Add || ROp == Instruction::Sub; return false; } /// Return whether "(X LOp Y) ROp Z" is always equal to /// "(X ROp Z) LOp (Y ROp Z)". static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp) { if (Instruction::isCommutative(ROp)) return leftDistributesOverRight(ROp, LOp); // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", // but this requires knowing that the addition does not overflow and other // such subtleties. } /// This function returns identity value for given opcode, which can be used to /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { if (isa(V)) return nullptr; return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); } /// This function predicates factorization using distributive laws. By default, /// it just returns the 'Op' inputs. But for special-cases like /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to /// allow more factorization opportunities. static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) { assert(Op && "Expected a binary operator"); LHS = Op->getOperand(0); RHS = Op->getOperand(1); if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { Constant *C; if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { // X << C --> X * (1 << C) RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); return Instruction::Mul; } // TODO: We can add other conversions e.g. shr => div etc. } if (Instruction::isBitwiseLogicOp(TopOpcode)) { if (OtherOp && OtherOp->getOpcode() == Instruction::AShr && match(Op, m_LShr(m_NonNegative(), m_Value()))) { // lshr nneg C, X --> ashr nneg C, X return Instruction::AShr; } } return Op->getOpcode(); } /// This tries to simplify binary operations by factorizing out common terms /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D) { assert(A && B && C && D && "All values must be provided"); Value *V = nullptr; Value *RetVal = nullptr; Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // Does "X op' Y" always equal "Y op' X"? bool InnerCommutative = Instruction::isCommutative(InnerOpcode); // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) { // Does the instruction have the form "(A op' B) op (A op' D)" or, in the // commutative case, "(A op' B) op (C op' A)"? if (A == C || (InnerCommutative && A == D)) { if (A != C) std::swap(C, D); // Consider forming "A op' (B op D)". // If "B op D" simplifies then it can be formed with no cost. V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); // If "B op D" doesn't simplify then only go on if one of the existing // operations "A op' B" and "C op' D" will be zapped as no longer used. if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); if (V) RetVal = Builder.CreateBinOp(InnerOpcode, A, V); } } // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) { // Does the instruction have the form "(A op' B) op (C op' B)" or, in the // commutative case, "(A op' B) op (B op' D)"? if (B == D || (InnerCommutative && B == C)) { if (B != D) std::swap(C, D); // Consider forming "(A op C) op' B". // If "A op C" simplifies then it can be formed with no cost. V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); // If "A op C" doesn't simplify then only go on if one of the existing // operations "A op' B" and "C op' D" will be zapped as no longer used. if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); if (V) RetVal = Builder.CreateBinOp(InnerOpcode, V, B); } } if (!RetVal) return nullptr; ++NumFactor; RetVal->takeName(&I); // Try to add no-overflow flags to the final value. if (isa(RetVal)) { bool HasNSW = false; bool HasNUW = false; if (isa(&I)) { HasNSW = I.hasNoSignedWrap(); HasNUW = I.hasNoUnsignedWrap(); } if (auto *LOBO = dyn_cast(LHS)) { HasNSW &= LOBO->hasNoSignedWrap(); HasNUW &= LOBO->hasNoUnsignedWrap(); } if (auto *ROBO = dyn_cast(RHS)) { HasNSW &= ROBO->hasNoSignedWrap(); HasNUW &= ROBO->hasNoUnsignedWrap(); } if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) { // We can propagate 'nsw' if we know that // %Y = mul nsw i16 %X, C // %Z = add nsw i16 %Y, %X // => // %Z = mul nsw i16 %X, C+1 // // iff C+1 isn't INT_MIN const APInt *CInt; if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) cast(RetVal)->setHasNoSignedWrap(HasNSW); // nuw can be propagated with any constant or nuw value. cast(RetVal)->setHasNoUnsignedWrap(HasNUW); } } return RetVal; } // If `I` has one Const operand and the other matches `(ctpop (not x))`, // replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`. // This is only useful is the new subtract can fold so we only handle the // following cases: // 1) (add/sub/disjoint_or C, (ctpop (not x)) // -> (add/sub/disjoint_or C', (ctpop x)) // 1) (cmp pred C, (ctpop (not x)) // -> (cmp pred C', (ctpop x)) Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) { unsigned Opc = I->getOpcode(); unsigned ConstIdx = 1; switch (Opc) { default: return nullptr; // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x)) // We can fold the BitWidth(x) with add/sub/icmp as long the other operand // is constant. case Instruction::Sub: ConstIdx = 0; break; case Instruction::ICmp: // Signed predicates aren't correct in some edge cases like for i2 types, as // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed // comparisons against it are simplfied to unsigned. if (cast(I)->isSigned()) return nullptr; break; case Instruction::Or: if (!match(I, m_DisjointOr(m_Value(), m_Value()))) return nullptr; [[fallthrough]]; case Instruction::Add: break; } Value *Op; // Find ctpop. if (!match(I->getOperand(1 - ConstIdx), m_OneUse(m_Intrinsic(m_Value(Op))))) return nullptr; Constant *C; // Check other operand is ImmConstant. if (!match(I->getOperand(ConstIdx), m_ImmConstant(C))) return nullptr; Type *Ty = Op->getType(); Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits()); // Need extra check for icmp. Note if this check is true, it generally means // the icmp will simplify to true/false. if (Opc == Instruction::ICmp && !cast(I)->isEquality() && !ConstantExpr::getICmp(ICmpInst::ICMP_UGT, C, BitWidthC)->isZeroValue()) return nullptr; // Check we can invert `(not x)` for free. bool Consumes = false; if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes) return nullptr; Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder); assert(NotOp != nullptr && "Desync between isFreeToInvert and getFreelyInverted"); Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp); Value *R = nullptr; // Do the transformation here to avoid potentially introducing an infinite // loop. switch (Opc) { case Instruction::Sub: R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC)); break; case Instruction::Or: case Instruction::Add: R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp); break; case Instruction::ICmp: R = Builder.CreateICmp(cast(I)->getSwappedPredicate(), CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C)); break; default: llvm_unreachable("Unhandled Opcode"); } assert(R != nullptr); return replaceInstUsesWith(*I, R); } // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C)) // IFF // 1) the logic_shifts match // 2) either both binops are binops and one is `and` or // BinOp1 is `and` // (logic_shift (inv_logic_shift C1, C), C) == C1 or // // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C) // // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt)) // IFF // 1) the logic_shifts match // 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`). // // -> (BinOp (logic_shift (BinOp X, Y)), Mask) // // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt)) // IFF // 1) Binop1 is bitwise logical operator `and`, `or` or `xor` // 2) Binop2 is `not` // // -> (arithmetic_shift Binop1((not X), Y), Amt) Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) { const DataLayout &DL = I.getModule()->getDataLayout(); auto IsValidBinOpc = [](unsigned Opc) { switch (Opc) { default: return false; case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Add: // Skip Sub as we only match constant masks which will canonicalize to use // add. return true; } }; // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra // constraints. auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2, unsigned ShOpc) { assert(ShOpc != Instruction::AShr); return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) || ShOpc == Instruction::Shl; }; auto GetInvShift = [](unsigned ShOpc) { assert(ShOpc != Instruction::AShr); return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr; }; auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2, unsigned ShOpc, Constant *CMask, Constant *CShift) { // If the BinOp1 is `and` we don't need to check the mask. if (BinOpc1 == Instruction::And) return true; // For all other possible transfers we need complete distributable // binop/shift (anything but `add` + `lshr`). if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc)) return false; // If BinOp2 is `and`, any mask works (this only really helps for non-splat // vecs, otherwise the mask will be simplified and the following check will // handle it). if (BinOpc2 == Instruction::And) return true; // Otherwise, need mask that meets the below requirement. // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask Constant *MaskInvShift = ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) == CMask; }; auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * { Constant *CMask, *CShift; Value *X, *Y, *ShiftedX, *Mask, *Shift; if (!match(I.getOperand(ShOpnum), m_OneUse(m_Shift(m_Value(Y), m_Value(Shift))))) return nullptr; if (!match(I.getOperand(1 - ShOpnum), m_BinOp(m_Value(ShiftedX), m_Value(Mask)))) return nullptr; if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))))) return nullptr; // Make sure we are matching instruction shifts and not ConstantExpr auto *IY = dyn_cast(I.getOperand(ShOpnum)); auto *IX = dyn_cast(ShiftedX); if (!IY || !IX) return nullptr; // LHS and RHS need same shift opcode unsigned ShOpc = IY->getOpcode(); if (ShOpc != IX->getOpcode()) return nullptr; // Make sure binop is real instruction and not ConstantExpr auto *BO2 = dyn_cast(I.getOperand(1 - ShOpnum)); if (!BO2) return nullptr; unsigned BinOpc = BO2->getOpcode(); // Make sure we have valid binops. if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc)) return nullptr; if (ShOpc == Instruction::AShr) { if (Instruction::isBitwiseLogicOp(I.getOpcode()) && BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) { Value *NotX = Builder.CreateNot(X); Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX); return BinaryOperator::Create( static_cast(ShOpc), NewBinOp, Shift); } return nullptr; } // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just // distribute to drop the shift irrelevant of constants. if (BinOpc == I.getOpcode() && IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) { Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y); Value *NewBinOp1 = Builder.CreateBinOp( static_cast(ShOpc), NewBinOp2, Shift); return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask); } // Otherwise we can only distribute by constant shifting the mask, so // ensure we have constants. if (!match(Shift, m_ImmConstant(CShift))) return nullptr; if (!match(Mask, m_ImmConstant(CMask))) return nullptr; // Check if we can distribute the binops. if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift)) return nullptr; Constant *NewCMask = ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); Value *NewBinOp2 = Builder.CreateBinOp( static_cast(BinOpc), X, NewCMask); Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2); return BinaryOperator::Create(static_cast(ShOpc), NewBinOp1, CShift); }; if (Instruction *R = MatchBinOp(0)) return R; return MatchBinOp(1); } // (Binop (zext C), (select C, T, F)) // -> (select C, (binop 1, T), (binop 0, F)) // // (Binop (sext C), (select C, T, F)) // -> (select C, (binop -1, T), (binop 0, F)) // // Attempt to simplify binary operations into a select with folded args, when // one operand of the binop is a select instruction and the other operand is a // zext/sext extension, whose value is the select condition. Instruction * InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) { // TODO: this simplification may be extended to any speculatable instruction, // not just binops, and would possibly be handled better in FoldOpIntoSelect. Instruction::BinaryOps Opc = I.getOpcode(); Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); Value *A, *CondVal, *TrueVal, *FalseVal; Value *CastOp; auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) { return match(CastOp, m_ZExtOrSExt(m_Value(A))) && A->getType()->getScalarSizeInBits() == 1 && match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal), m_Value(FalseVal))); }; // Make sure one side of the binop is a select instruction, and the other is a // zero/sign extension operating on a i1. if (MatchSelectAndCast(LHS, RHS)) CastOp = LHS; else if (MatchSelectAndCast(RHS, LHS)) CastOp = RHS; else return nullptr; auto NewFoldedConst = [&](bool IsTrueArm, Value *V) { bool IsCastOpRHS = (CastOp == RHS); bool IsZExt = isa(CastOp); Constant *C; if (IsTrueArm) { C = Constant::getNullValue(V->getType()); } else if (IsZExt) { unsigned BitWidth = V->getType()->getScalarSizeInBits(); C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1)); } else { C = Constant::getAllOnesValue(V->getType()); } return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C) : Builder.CreateBinOp(Opc, C, V); }; // If the value used in the zext/sext is the select condition, or the negated // of the select condition, the binop can be simplified. if (CondVal == A) { Value *NewTrueVal = NewFoldedConst(false, TrueVal); return SelectInst::Create(CondVal, NewTrueVal, NewFoldedConst(true, FalseVal)); } if (match(A, m_Not(m_Specific(CondVal)))) { Value *NewTrueVal = NewFoldedConst(true, TrueVal); return SelectInst::Create(CondVal, NewTrueVal, NewFoldedConst(false, FalseVal)); } return nullptr; } Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); BinaryOperator *Op0 = dyn_cast(LHS); BinaryOperator *Op1 = dyn_cast(RHS); Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); Value *A, *B, *C, *D; Instruction::BinaryOps LHSOpcode, RHSOpcode; if (Op0) LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1); if (Op1) RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0); // The instruction has the form "(A op' B) op (C op' D)". Try to factorize // a common term. if (Op0 && Op1 && LHSOpcode == RHSOpcode) if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D)) return V; // The instruction has the form "(A op' B) op (C)". Try to factorize common // term. if (Op0) if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident)) return V; // The instruction has the form "(B) op (C op' D)". Try to factorize common // term. if (Op1) if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) if (Value *V = tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D)) return V; return nullptr; } /// This tries to simplify binary operations which some other binary operation /// distributes over either by factorizing out common terms /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). /// Returns the simplified value, or null if it didn't simplify. Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); BinaryOperator *Op0 = dyn_cast(LHS); BinaryOperator *Op1 = dyn_cast(RHS); Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // Factorization. if (Value *R = tryFactorizationFolds(I)) return R; // Expansion. if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { // The instruction has the form "(A op' B) op C". See if expanding it out // to "(A op C) op' (B op C)" results in simplifications. Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' // Disable the use of undef because it's not safe to distribute undef. auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); // Do "A op C" and "B op C" both simplify? if (L && R) { // They do! Return "L op' R". ++NumExpand; C = Builder.CreateBinOp(InnerOpcode, L, R); C->takeName(&I); return C; } // Does "A op C" simplify to the identity value for the inner opcode? if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { // They do! Return "B op C". ++NumExpand; C = Builder.CreateBinOp(TopLevelOpcode, B, C); C->takeName(&I); return C; } // Does "B op C" simplify to the identity value for the inner opcode? if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { // They do! Return "A op C". ++NumExpand; C = Builder.CreateBinOp(TopLevelOpcode, A, C); C->takeName(&I); return C; } } if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { // The instruction has the form "A op (B op' C)". See if expanding it out // to "(A op B) op' (A op C)" results in simplifications. Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' // Disable the use of undef because it's not safe to distribute undef. auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); // Do "A op B" and "A op C" both simplify? if (L && R) { // They do! Return "L op' R". ++NumExpand; A = Builder.CreateBinOp(InnerOpcode, L, R); A->takeName(&I); return A; } // Does "A op B" simplify to the identity value for the inner opcode? if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { // They do! Return "A op C". ++NumExpand; A = Builder.CreateBinOp(TopLevelOpcode, A, C); A->takeName(&I); return A; } // Does "A op C" simplify to the identity value for the inner opcode? if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { // They do! Return "A op B". ++NumExpand; A = Builder.CreateBinOp(TopLevelOpcode, A, B); A->takeName(&I); return A; } } return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); } static std::optional> matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) { if (LHS->getParent() != RHS->getParent()) return std::nullopt; if (LHS->getNumIncomingValues() < 2) return std::nullopt; if (!equal(LHS->blocks(), RHS->blocks())) return std::nullopt; Value *L0 = LHS->getIncomingValue(0); Value *R0 = RHS->getIncomingValue(0); for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) { Value *L1 = LHS->getIncomingValue(I); Value *R1 = RHS->getIncomingValue(I); if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1)) continue; return std::nullopt; } return std::optional(std::pair(L0, R0)); } std::optional> InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) { Instruction *LHSInst = dyn_cast(LHS); Instruction *RHSInst = dyn_cast(RHS); if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode()) return std::nullopt; switch (LHSInst->getOpcode()) { case Instruction::PHI: return matchSymmetricPhiNodesPair(cast(LHS), cast(RHS)); case Instruction::Select: { Value *Cond = LHSInst->getOperand(0); Value *TrueVal = LHSInst->getOperand(1); Value *FalseVal = LHSInst->getOperand(2); if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) && FalseVal == RHSInst->getOperand(1)) return std::pair(TrueVal, FalseVal); return std::nullopt; } case Instruction::Call: { // Match min(a, b) and max(a, b) MinMaxIntrinsic *LHSMinMax = dyn_cast(LHSInst); MinMaxIntrinsic *RHSMinMax = dyn_cast(RHSInst); if (LHSMinMax && RHSMinMax && LHSMinMax->getPredicate() == ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) && ((LHSMinMax->getLHS() == RHSMinMax->getLHS() && LHSMinMax->getRHS() == RHSMinMax->getRHS()) || (LHSMinMax->getLHS() == RHSMinMax->getRHS() && LHSMinMax->getRHS() == RHSMinMax->getLHS()))) return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS()); return std::nullopt; } default: return std::nullopt; } } Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS) { Value *A, *B, *C, *D, *E, *F; bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); if (!LHSIsSelect && !RHSIsSelect) return nullptr; FastMathFlags FMF; BuilderTy::FastMathFlagGuard Guard(Builder); if (isa(&I)) { FMF = I.getFastMathFlags(); Builder.setFastMathFlags(FMF); } Instruction::BinaryOps Opcode = I.getOpcode(); SimplifyQuery Q = SQ.getWithInstruction(&I); Value *Cond, *True = nullptr, *False = nullptr; // Special-case for add/negate combination. Replace the zero in the negation // with the trailing add operand: // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N) // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * { // We need an 'add' and exactly 1 arm of the select to have been simplified. if (Opcode != Instruction::Add || (!True && !False) || (True && False)) return nullptr; Value *N; if (True && match(FVal, m_Neg(m_Value(N)))) { Value *Sub = Builder.CreateSub(Z, N); return Builder.CreateSelect(Cond, True, Sub, I.getName()); } if (False && match(TVal, m_Neg(m_Value(N)))) { Value *Sub = Builder.CreateSub(Z, N); return Builder.CreateSelect(Cond, Sub, False, I.getName()); } return nullptr; }; if (LHSIsSelect && RHSIsSelect && A == D) { // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) Cond = A; True = simplifyBinOp(Opcode, B, E, FMF, Q); False = simplifyBinOp(Opcode, C, F, FMF, Q); if (LHS->hasOneUse() && RHS->hasOneUse()) { if (False && !True) True = Builder.CreateBinOp(Opcode, B, E); else if (True && !False) False = Builder.CreateBinOp(Opcode, C, F); } } else if (LHSIsSelect && LHS->hasOneUse()) { // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) Cond = A; True = simplifyBinOp(Opcode, B, RHS, FMF, Q); False = simplifyBinOp(Opcode, C, RHS, FMF, Q); if (Value *NewSel = foldAddNegate(B, C, RHS)) return NewSel; } else if (RHSIsSelect && RHS->hasOneUse()) { // X op (D ? E : F) -> D ? (X op E) : (X op F) Cond = D; True = simplifyBinOp(Opcode, LHS, E, FMF, Q); False = simplifyBinOp(Opcode, LHS, F, FMF, Q); if (Value *NewSel = foldAddNegate(E, F, LHS)) return NewSel; } if (!True || !False) return nullptr; Value *SI = Builder.CreateSelect(Cond, True, False); SI->takeName(&I); return SI; } /// Freely adapt every user of V as-if V was changed to !V. /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) { assert(!isa(I) && "Shouldn't invert users of constant"); for (User *U : make_early_inc_range(I->users())) { if (U == IgnoredUser) continue; // Don't consider this user. switch (cast(U)->getOpcode()) { case Instruction::Select: { auto *SI = cast(U); SI->swapValues(); SI->swapProfMetadata(); break; } case Instruction::Br: cast(U)->swapSuccessors(); // swaps prof metadata too break; case Instruction::Xor: replaceInstUsesWith(cast(*U), I); // Add to worklist for DCE. addToWorklist(cast(U)); break; default: llvm_unreachable("Got unexpected user - out of sync with " "canFreelyInvertAllUsersOf() ?"); } } } /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a /// constant zero (which is the 'negate' form). Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { Value *NegV; if (match(V, m_Neg(m_Value(NegV)))) return NegV; // Constants can be considered to be negated values if they can be folded. if (ConstantInt *C = dyn_cast(V)) return ConstantExpr::getNeg(C); if (ConstantDataVector *C = dyn_cast(V)) if (C->getType()->getElementType()->isIntegerTy()) return ConstantExpr::getNeg(C); if (ConstantVector *CV = dyn_cast(V)) { for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { Constant *Elt = CV->getAggregateElement(i); if (!Elt) return nullptr; if (isa(Elt)) continue; if (!isa(Elt)) return nullptr; } return ConstantExpr::getNeg(CV); } // Negate integer vector splats. if (auto *CV = dyn_cast(V)) if (CV->getType()->isVectorTy() && CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) return ConstantExpr::getNeg(CV); return nullptr; } /// A binop with a constant operand and a sign-extended boolean operand may be /// converted into a select of constants by applying the binary operation to /// the constant with the two possible values of the extended boolean (0 or -1). Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { // TODO: Handle non-commutative binop (constant is operand 0). // TODO: Handle zext. // TODO: Peek through 'not' of cast. Value *BO0 = BO.getOperand(0); Value *BO1 = BO.getOperand(1); Value *X; Constant *C; if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || !X->getType()->isIntOrIntVectorTy(1)) return nullptr; // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); Constant *Zero = ConstantInt::getNullValue(BO.getType()); Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); return SelectInst::Create(X, TVal, FVal); } static Constant *constantFoldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm) { SmallVector ConstOps; for (Value *Op : I.operands()) { CmpInst::Predicate Pred; Constant *C = nullptr; if (Op == SI) { C = dyn_cast(IsTrueArm ? SI->getTrueValue() : SI->getFalseValue()); } else if (match(SI->getCondition(), m_ICmp(Pred, m_Specific(Op), m_Constant(C))) && Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && isGuaranteedNotToBeUndefOrPoison(C)) { // Pass } else { C = dyn_cast(Op); } if (C == nullptr) return nullptr; ConstOps.push_back(C); } return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout()); } static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC) { Instruction *Clone = I.clone(); Clone->replaceUsesOfWith(SI, NewOp); IC.InsertNewInstBefore(Clone, SI->getIterator()); return Clone; } Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse) { // Don't modify shared select instructions unless set FoldWithMultiUse if (!SI->hasOneUse() && !FoldWithMultiUse) return nullptr; Value *TV = SI->getTrueValue(); Value *FV = SI->getFalseValue(); if (!(isa(TV) || isa(FV))) return nullptr; // Bool selects with constant operands can be folded to logical ops. if (SI->getType()->isIntOrIntVectorTy(1)) return nullptr; // If it's a bitcast involving vectors, make sure it has the same number of // elements on both sides. if (auto *BC = dyn_cast(&Op)) { VectorType *DestTy = dyn_cast(BC->getDestTy()); VectorType *SrcTy = dyn_cast(BC->getSrcTy()); // Verify that either both or neither are vectors. if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr; // If vectors, verify that they have the same number of elements. if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) return nullptr; } // Test if a FCmpInst instruction is used exclusively by a select as // part of a minimum or maximum operation. If so, refrain from doing // any other folding. This helps out other analyses which understand // non-obfuscated minimum and maximum idioms. And in this case, at // least one of the comparison operands has at least one user besides // the compare (the select), which would often largely negate the // benefit of folding anyway. if (auto *CI = dyn_cast(SI->getCondition())) { if (CI->hasOneUse()) { Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) return nullptr; } } // Make sure that one of the select arms constant folds successfully. Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true); Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false); if (!NewTV && !NewFV) return nullptr; // Create an instruction for the arm that did not fold. if (!NewTV) NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this); if (!NewFV) NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this); return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); } static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ) { // NB: It is a precondition of this transform that the operands be // phi translatable! This is usually trivially satisfied by limiting it // to constant ops, and for selects we do a more sophisticated check. SmallVector Ops; for (Value *Op : I.operands()) { if (Op == PN) Ops.push_back(InValue); else Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB)); } // Don't consider the simplification successful if we get back a constant // expression. That's just an instruction in hiding. // Also reject the case where we simplify back to the phi node. We wouldn't // be able to remove it in that case. Value *NewVal = simplifyInstructionWithOperands( &I, Ops, SQ.getWithInstruction(InBB->getTerminator())); if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr())) return NewVal; // Check if incoming PHI value can be replaced with constant // based on implied condition. BranchInst *TerminatorBI = dyn_cast(InBB->getTerminator()); const ICmpInst *ICmp = dyn_cast(&I); if (TerminatorBI && TerminatorBI->isConditional() && TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) { bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent(); std::optional ImpliedCond = isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(), Ops[0], Ops[1], DL, LHSIsTrue); if (ImpliedCond) return ConstantInt::getBool(I.getType(), ImpliedCond.value()); } return nullptr; } Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { unsigned NumPHIValues = PN->getNumIncomingValues(); if (NumPHIValues == 0) return nullptr; // We normally only transform phis with a single use. However, if a PHI has // multiple uses and they are all the same operation, we can fold *all* of the // uses into the PHI. if (!PN->hasOneUse()) { // Walk the use list for the instruction, comparing them to I. for (User *U : PN->users()) { Instruction *UI = cast(U); if (UI != &I && !I.isIdenticalTo(UI)) return nullptr; } // Otherwise, we can replace *all* users with the new PHI we form. } // Check to see whether the instruction can be folded into each phi operand. // If there is one operand that does not fold, remember the BB it is in. // If there is more than one or if *it* is a PHI, bail out. SmallVector NewPhiValues; BasicBlock *NonSimplifiedBB = nullptr; Value *NonSimplifiedInVal = nullptr; for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InVal = PN->getIncomingValue(i); BasicBlock *InBB = PN->getIncomingBlock(i); if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) { NewPhiValues.push_back(NewVal); continue; } if (NonSimplifiedBB) return nullptr; // More than one non-simplified value. NonSimplifiedBB = InBB; NonSimplifiedInVal = InVal; NewPhiValues.push_back(nullptr); // If the InVal is an invoke at the end of the pred block, then we can't // insert a computation after it without breaking the edge. if (isa(InVal)) if (cast(InVal)->getParent() == NonSimplifiedBB) return nullptr; // If the incoming non-constant value is reachable from the phis block, // we'll push the operation across a loop backedge. This could result in // an infinite combine loop, and is generally non-profitable (especially // if the operation was originally outside the loop). if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT, LI)) return nullptr; } // If there is exactly one non-simplified value, we can insert a copy of the // operation in that block. However, if this is a critical edge, we would be // inserting the computation on some other paths (e.g. inside a loop). Only // do this if the pred block is unconditionally branching into the phi block. // Also, make sure that the pred block is not dead code. if (NonSimplifiedBB != nullptr) { BranchInst *BI = dyn_cast(NonSimplifiedBB->getTerminator()); if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonSimplifiedBB)) return nullptr; } // Okay, we can do the transformation: create the new PHI node. PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); InsertNewInstBefore(NewPN, PN->getIterator()); NewPN->takeName(PN); NewPN->setDebugLoc(PN->getDebugLoc()); // If we are going to have to insert a new computation, do so right before the // predecessor's terminator. Instruction *Clone = nullptr; if (NonSimplifiedBB) { Clone = I.clone(); for (Use &U : Clone->operands()) { if (U == PN) U = NonSimplifiedInVal; else U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB); } InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator()); } for (unsigned i = 0; i != NumPHIValues; ++i) { if (NewPhiValues[i]) NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i)); else NewPN->addIncoming(Clone, PN->getIncomingBlock(i)); } for (User *U : make_early_inc_range(PN->users())) { Instruction *User = cast(U); if (User == &I) continue; replaceInstUsesWith(*User, NewPN); eraseInstFromFunction(*User); } replaceAllDbgUsesWith(const_cast(*PN), const_cast(*NewPN), const_cast(*PN), DT); return replaceInstUsesWith(I, NewPN); } Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { // TODO: This should be similar to the incoming values check in foldOpIntoPhi: // we are guarding against replicating the binop in >1 predecessor. // This could miss matching a phi with 2 constant incoming values. auto *Phi0 = dyn_cast(BO.getOperand(0)); auto *Phi1 = dyn_cast(BO.getOperand(1)); if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || Phi0->getNumOperands() != Phi1->getNumOperands()) return nullptr; // TODO: Remove the restriction for binop being in the same block as the phis. if (BO.getParent() != Phi0->getParent() || BO.getParent() != Phi1->getParent()) return nullptr; // Fold if there is at least one specific constant value in phi0 or phi1's // incoming values that comes from the same block and this specific constant // value can be used to do optimization for specific binary operator. // For example: // %phi0 = phi i32 [0, %bb0], [%i, %bb1] // %phi1 = phi i32 [%j, %bb0], [0, %bb1] // %add = add i32 %phi0, %phi1 // ==> // %add = phi i32 [%j, %bb0], [%i, %bb1] Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(), /*AllowRHSConstant*/ false); if (C) { SmallVector NewIncomingValues; auto CanFoldIncomingValuePair = [&](std::tuple T) { auto &Phi0Use = std::get<0>(T); auto &Phi1Use = std::get<1>(T); if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use)) return false; Value *Phi0UseV = Phi0Use.get(); Value *Phi1UseV = Phi1Use.get(); if (Phi0UseV == C) NewIncomingValues.push_back(Phi1UseV); else if (Phi1UseV == C) NewIncomingValues.push_back(Phi0UseV); else return false; return true; }; if (all_of(zip(Phi0->operands(), Phi1->operands()), CanFoldIncomingValuePair)) { PHINode *NewPhi = PHINode::Create(Phi0->getType(), Phi0->getNumOperands()); assert(NewIncomingValues.size() == Phi0->getNumOperands() && "The number of collected incoming values should equal the number " "of the original PHINode operands!"); for (unsigned I = 0; I < Phi0->getNumOperands(); I++) NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I)); return NewPhi; } } if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) return nullptr; // Match a pair of incoming constants for one of the predecessor blocks. BasicBlock *ConstBB, *OtherBB; Constant *C0, *C1; if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { ConstBB = Phi0->getIncomingBlock(0); OtherBB = Phi0->getIncomingBlock(1); } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { ConstBB = Phi0->getIncomingBlock(1); OtherBB = Phi0->getIncomingBlock(0); } else { return nullptr; } if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) return nullptr; // The block that we are hoisting to must reach here unconditionally. // Otherwise, we could be speculatively executing an expensive or // non-speculative op. auto *PredBlockBranch = dyn_cast(OtherBB->getTerminator()); if (!PredBlockBranch || PredBlockBranch->isConditional() || !DT.isReachableFromEntry(OtherBB)) return nullptr; // TODO: This check could be tightened to only apply to binops (div/rem) that // are not safe to speculatively execute. But that could allow hoisting // potentially expensive instructions (fdiv for example). for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) return nullptr; // Fold constants for the predecessor block with constant incoming values. Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); if (!NewC) return nullptr; // Make a new binop in the predecessor block with the non-constant incoming // values. Builder.SetInsertPoint(PredBlockBranch); Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), Phi0->getIncomingValueForBlock(OtherBB), Phi1->getIncomingValueForBlock(OtherBB)); if (auto *NotFoldedNewBO = dyn_cast(NewBO)) NotFoldedNewBO->copyIRFlags(&BO); // Replace the binop with a phi of the new values. The old phis are dead. PHINode *NewPhi = PHINode::Create(BO.getType(), 2); NewPhi->addIncoming(NewBO, OtherBB); NewPhi->addIncoming(NewC, ConstBB); return NewPhi; } Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { if (!isa(I.getOperand(1))) return nullptr; if (auto *Sel = dyn_cast(I.getOperand(0))) { if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) return NewSel; } else if (auto *PN = dyn_cast(I.getOperand(0))) { if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) return NewPhi; } return nullptr; } static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { // If this GEP has only 0 indices, it is the same pointer as // Src. If Src is not a trivial GEP too, don't combine // the indices. if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && !Src.hasOneUse()) return false; return true; } Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { if (!isa(Inst.getType())) return nullptr; BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); assert(cast(LHS->getType())->getElementCount() == cast(Inst.getType())->getElementCount()); assert(cast(RHS->getType())->getElementCount() == cast(Inst.getType())->getElementCount()); // If both operands of the binop are vector concatenations, then perform the // narrow binop on each pair of the source operands followed by concatenation // of the results. Value *L0, *L1, *R0, *R1; ArrayRef Mask; if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && LHS->hasOneUse() && RHS->hasOneUse() && cast(LHS)->isConcat() && cast(RHS)->isConcat()) { // This transform does not have the speculative execution constraint as // below because the shuffle is a concatenation. The new binops are // operating on exactly the same elements as the existing binop. // TODO: We could ease the mask requirement to allow different undef lanes, // but that requires an analysis of the binop-with-undef output value. Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); if (auto *BO = dyn_cast(NewBO0)) BO->copyIRFlags(&Inst); Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); if (auto *BO = dyn_cast(NewBO1)) BO->copyIRFlags(&Inst); return new ShuffleVectorInst(NewBO0, NewBO1, Mask); } auto createBinOpReverse = [&](Value *X, Value *Y) { Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName()); if (auto *BO = dyn_cast(V)) BO->copyIRFlags(&Inst); Module *M = Inst.getModule(); Function *F = Intrinsic::getDeclaration( M, Intrinsic::experimental_vector_reverse, V->getType()); return CallInst::Create(F, V); }; // NOTE: Reverse shuffles don't require the speculative execution protection // below because they don't affect which lanes take part in the computation. Value *V1, *V2; if (match(LHS, m_VecReverse(m_Value(V1)))) { // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2)) if (match(RHS, m_VecReverse(m_Value(V2))) && (LHS->hasOneUse() || RHS->hasOneUse() || (LHS == RHS && LHS->hasNUses(2)))) return createBinOpReverse(V1, V2); // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat)) if (LHS->hasOneUse() && isSplatValue(RHS)) return createBinOpReverse(V1, RHS); } // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2)) else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) return createBinOpReverse(LHS, V2); // It may not be safe to reorder shuffles and things like div, urem, etc. // because we may trap when executing those ops on unknown vector elements. // See PR20059. if (!isSafeToSpeculativelyExecute(&Inst)) return nullptr; auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef M) { Value *XY = Builder.CreateBinOp(Opcode, X, Y); if (auto *BO = dyn_cast(XY)) BO->copyIRFlags(&Inst); return new ShuffleVectorInst(XY, M); }; // If both arguments of the binary operation are shuffles that use the same // mask and shuffle within a single vector, move the shuffle after the binop. if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) && match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) && V1->getType() == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) return createBinOpShuffle(V1, V2, Mask); } // If both arguments of a commutative binop are select-shuffles that use the // same mask with commuted operands, the shuffles are unnecessary. if (Inst.isCommutative() && match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && match(RHS, m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { auto *LShuf = cast(LHS); auto *RShuf = cast(RHS); // TODO: Allow shuffles that contain undefs in the mask? // That is legal, but it reduces undef knowledge. // TODO: Allow arbitrary shuffles by shuffling after binop? // That might be legal, but we have to deal with poison. if (LShuf->isSelect() && !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) && RShuf->isSelect() && !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) { // Example: // LHS = shuffle V1, V2, <0, 5, 6, 3> // RHS = shuffle V2, V1, <0, 5, 6, 3> // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); NewBO->copyIRFlags(&Inst); return NewBO; } } // If one argument is a shuffle within one vector and the other is a constant, // try moving the shuffle after the binary operation. This canonicalization // intends to move shuffles closer to other shuffles and binops closer to // other binops, so they can be folded. It may also enable demanded elements // transforms. Constant *C; auto *InstVTy = dyn_cast(Inst.getType()); if (InstVTy && match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))), m_ImmConstant(C))) && cast(V1->getType())->getNumElements() <= InstVTy->getNumElements()) { assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && "Shuffle should not change scalar type"); // Find constant NewC that has property: // shuffle(NewC, ShMask) = C // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) // reorder is not possible. A 1-to-1 mapping is not required. Example: // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = bool ConstOp1 = isa(RHS); ArrayRef ShMask = Mask; unsigned SrcVecNumElts = cast(V1->getType())->getNumElements(); PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType()); SmallVector NewVecC(SrcVecNumElts, PoisonScalar); bool MayChange = true; unsigned NumElts = InstVTy->getNumElements(); for (unsigned I = 0; I < NumElts; ++I) { Constant *CElt = C->getAggregateElement(I); if (ShMask[I] >= 0) { assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); Constant *NewCElt = NewVecC[ShMask[I]]; // Bail out if: // 1. The constant vector contains a constant expression. // 2. The shuffle needs an element of the constant vector that can't // be mapped to a new constant vector. // 3. This is a widening shuffle that copies elements of V1 into the // extended elements (extending with poison is allowed). if (!CElt || (!isa(NewCElt) && NewCElt != CElt) || I >= SrcVecNumElts) { MayChange = false; break; } NewVecC[ShMask[I]] = CElt; } // If this is a widening shuffle, we must be able to extend with poison // elements. If the original binop does not produce a poison in the high // lanes, then this transform is not safe. // Similarly for poison lanes due to the shuffle mask, we can only // transform binops that preserve poison. // TODO: We could shuffle those non-poison constant values into the // result by using a constant vector (rather than an poison vector) // as operand 1 of the new binop, but that might be too aggressive // for target-independent shuffle creation. if (I >= SrcVecNumElts || ShMask[I] < 0) { Constant *MaybePoison = ConstOp1 ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL) : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL); if (!MaybePoison || !isa(MaybePoison)) { MayChange = false; break; } } } if (MayChange) { Constant *NewC = ConstantVector::get(NewVecC); // It may not be safe to execute a binop on a vector with poison elements // because the entire instruction can be folded to undef or create poison // that did not exist in the original code. // TODO: The shift case should not be necessary. if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) Value *NewLHS = ConstOp1 ? V1 : NewC; Value *NewRHS = ConstOp1 ? NewC : V1; return createBinOpShuffle(NewLHS, NewRHS, Mask); } } // Try to reassociate to sink a splat shuffle after a binary operation. if (Inst.isAssociative() && Inst.isCommutative()) { // Canonicalize shuffle operand as LHS. if (isa(RHS)) std::swap(LHS, RHS); Value *X; ArrayRef MaskC; int SplatIndex; Value *Y, *OtherOp; if (!match(LHS, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) return nullptr; // FIXME: This may not be safe if the analysis allows undef elements. By // moving 'Y' before the splat shuffle, we are implicitly assuming // that it is not undef/poison at the splat index. if (isSplatValue(OtherOp, SplatIndex)) { std::swap(Y, OtherOp); } else if (!isSplatValue(Y, SplatIndex)) { return nullptr; } // X and Y are splatted values, so perform the binary operation on those // values followed by a splat followed by the 2nd binary operation: // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); SmallVector NewMask(MaskC.size(), SplatIndex); Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); // Intersect FMF on both new binops. Other (poison-generating) flags are // dropped to be safe. if (isa(R)) { R->copyFastMathFlags(&Inst); R->andIRFlags(RHS); } if (auto *NewInstBO = dyn_cast(NewBO)) NewInstBO->copyIRFlags(R); return R; } return nullptr; } /// Try to narrow the width of a binop if at least 1 operand is an extend of /// of a value. This requires a potentially expensive known bits check to make /// sure the narrow op does not overflow. Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { // We need at least one extended operand. Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); // If this is a sub, we swap the operands since we always want an extension // on the RHS. The LHS can be an extension or a constant. if (BO.getOpcode() == Instruction::Sub) std::swap(Op0, Op1); Value *X; bool IsSext = match(Op0, m_SExt(m_Value(X))); if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) return nullptr; // If both operands are the same extension from the same source type and we // can eliminate at least one (hasOneUse), this might work. CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; Value *Y; if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && cast(Op1)->getOpcode() == CastOpc && (Op0->hasOneUse() || Op1->hasOneUse()))) { // If that did not match, see if we have a suitable constant operand. // Truncating and extending must produce the same constant. Constant *WideC; if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) return nullptr; Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc); if (!NarrowC) return nullptr; Y = NarrowC; } // Swap back now that we found our operands. if (BO.getOpcode() == Instruction::Sub) std::swap(X, Y); // Both operands have narrow versions. Last step: the math must not overflow // in the narrow width. if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) return nullptr; // bo (ext X), (ext Y) --> ext (bo X, Y) // bo (ext X), C --> ext (bo X, C') Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); if (auto *NewBinOp = dyn_cast(NarrowBO)) { if (IsSext) NewBinOp->setHasNoSignedWrap(); else NewBinOp->setHasNoUnsignedWrap(); } return CastInst::Create(CastOpc, NarrowBO, BO.getType()); } static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { // At least one GEP must be inbounds. if (!GEP1.isInBounds() && !GEP2.isInBounds()) return false; return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); } /// Thread a GEP operation with constant indices through the constant true/false /// arms of a select. static Instruction *foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder) { if (!GEP.hasAllConstantIndices()) return nullptr; Instruction *Sel; Value *Cond; Constant *TrueC, *FalseC; if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || !match(Sel, m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) return nullptr; // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' // Propagate 'inbounds' and metadata from existing instructions. // Note: using IRBuilder to create the constants for efficiency. SmallVector IndexC(GEP.indices()); bool IsInBounds = GEP.isInBounds(); Type *Ty = GEP.getSourceElementType(); Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); } Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src) { // Combine Indices - If the source pointer to this getelementptr instruction // is a getelementptr instruction with matching element type, combine the // indices of the two getelementptr instructions into a single instruction. if (!shouldMergeGEPs(*cast(&GEP), *Src)) return nullptr; // For constant GEPs, use a more general offset-based folding approach. Type *PtrTy = Src->getType()->getScalarType(); if (GEP.hasAllConstantIndices() && (Src->hasOneUse() || Src->hasAllConstantIndices())) { // Split Src into a variable part and a constant suffix. gep_type_iterator GTI = gep_type_begin(*Src); Type *BaseType = GTI.getIndexedType(); bool IsFirstType = true; unsigned NumVarIndices = 0; for (auto Pair : enumerate(Src->indices())) { if (!isa(Pair.value())) { BaseType = GTI.getIndexedType(); IsFirstType = false; NumVarIndices = Pair.index() + 1; } ++GTI; } // Determine the offset for the constant suffix of Src. APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); if (NumVarIndices != Src->getNumIndices()) { // FIXME: getIndexedOffsetInType() does not handled scalable vectors. if (BaseType->isScalableTy()) return nullptr; SmallVector ConstantIndices; if (!IsFirstType) ConstantIndices.push_back( Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); } // Add the offset for GEP (which is fully constant). if (!GEP.accumulateConstantOffset(DL, Offset)) return nullptr; APInt OffsetOld = Offset; // Convert the total offset back into indices. SmallVector ConstIndices = DL.getGEPIndicesForOffset(BaseType, Offset); if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { // If both GEP are constant-indexed, and cannot be merged in either way, // convert them to a GEP of i8. if (Src->hasAllConstantIndices()) return replaceInstUsesWith( GEP, Builder.CreateGEP( Builder.getInt8Ty(), Src->getOperand(0), Builder.getInt(OffsetOld), "", isMergedGEPInBounds(*Src, *cast(&GEP)))); return nullptr; } bool IsInBounds = isMergedGEPInBounds(*Src, *cast(&GEP)); SmallVector Indices; append_range(Indices, drop_end(Src->indices(), Src->getNumIndices() - NumVarIndices)); for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); // Even if the total offset is inbounds, we may end up representing it // by first performing a larger negative offset, and then a smaller // positive one. The large negative offset might go out of bounds. Only // preserve inbounds if all signs are the same. IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); } return replaceInstUsesWith( GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0), Indices, "", IsInBounds)); } if (Src->getResultElementType() != GEP.getSourceElementType()) return nullptr; SmallVector Indices; // Find out whether the last index in the source GEP is a sequential idx. bool EndsWithSequential = false; for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); I != E; ++I) EndsWithSequential = I.isSequential(); // Can we combine the two pointer arithmetics offsets? if (EndsWithSequential) { // Replace: gep (gep %P, long B), long A, ... // With: T = long A+B; gep %P, T, ... Value *SO1 = Src->getOperand(Src->getNumOperands()-1); Value *GO1 = GEP.getOperand(1); // If they aren't the same type, then the input hasn't been processed // by the loop above yet (which canonicalizes sequential index types to // intptr_t). Just avoid transforming this until the input has been // normalized. if (SO1->getType() != GO1->getType()) return nullptr; Value *Sum = simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); // Only do the combine when we are sure the cost after the // merge is never more than that before the merge. if (Sum == nullptr) return nullptr; // Update the GEP in place if possible. if (Src->getNumOperands() == 2) { GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast(&GEP))); replaceOperand(GEP, 0, Src->getOperand(0)); replaceOperand(GEP, 1, Sum); return &GEP; } Indices.append(Src->op_begin()+1, Src->op_end()-1); Indices.push_back(Sum); Indices.append(GEP.op_begin()+2, GEP.op_end()); } else if (isa(*GEP.idx_begin()) && cast(*GEP.idx_begin())->isNullValue() && Src->getNumOperands() != 1) { // Otherwise we can do the fold if the first index of the GEP is a zero Indices.append(Src->op_begin()+1, Src->op_end()); Indices.append(GEP.idx_begin()+1, GEP.idx_end()); } if (!Indices.empty()) return replaceInstUsesWith( GEP, Builder.CreateGEP( Src->getSourceElementType(), Src->getOperand(0), Indices, "", isMergedGEPInBounds(*Src, *cast(&GEP)))); return nullptr; } Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth) { static Value *const NonNull = reinterpret_cast(uintptr_t(1)); // ~(~(X)) -> X. Value *A, *B; if (match(V, m_Not(m_Value(A)))) { DoesConsume = true; return A; } Constant *C; // Constants can be considered to be not'ed values. if (match(V, m_ImmConstant(C))) return ConstantExpr::getNot(C); if (Depth++ >= MaxAnalysisRecursionDepth) return nullptr; // The rest of the cases require that we invert all uses so don't bother // doing the analysis if we know we can't use the result. if (!WillInvertAllUses) return nullptr; // Compares can be inverted if all of their uses are being modified to use // the ~V. if (auto *I = dyn_cast(V)) { if (Builder != nullptr) return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0), I->getOperand(1)); return NonNull; } // If `V` is of the form `A + B` then `-1 - V` can be folded into // `(-1 - B) - A` if we are willing to invert all of the uses. if (match(V, m_Add(m_Value(A), m_Value(B)))) { if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, DoesConsume, Depth)) return Builder ? Builder->CreateSub(BV, A) : NonNull; if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, DoesConsume, Depth)) return Builder ? Builder->CreateSub(AV, B) : NonNull; return nullptr; } // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded // into `A ^ B` if we are willing to invert all of the uses. if (match(V, m_Xor(m_Value(A), m_Value(B)))) { if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, DoesConsume, Depth)) return Builder ? Builder->CreateXor(A, BV) : NonNull; if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, DoesConsume, Depth)) return Builder ? Builder->CreateXor(AV, B) : NonNull; return nullptr; } // If `V` is of the form `B - A` then `-1 - V` can be folded into // `A + (-1 - B)` if we are willing to invert all of the uses. if (match(V, m_Sub(m_Value(A), m_Value(B)))) { if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, DoesConsume, Depth)) return Builder ? Builder->CreateAdd(AV, B) : NonNull; return nullptr; } // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded // into `A s>> B` if we are willing to invert all of the uses. if (match(V, m_AShr(m_Value(A), m_Value(B)))) { if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, DoesConsume, Depth)) return Builder ? Builder->CreateAShr(AV, B) : NonNull; return nullptr; } Value *Cond; // LogicOps are special in that we canonicalize them at the cost of an // instruction. bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && !shouldAvoidAbsorbingNotIntoSelect(*cast(V)); // Selects/min/max with invertible operands are freely invertible if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) { if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr, DoesConsume, Depth)) return nullptr; if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, DoesConsume, Depth)) { if (Builder != nullptr) { Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, DoesConsume, Depth); assert(NotB != nullptr && "Unable to build inverted value for known freely invertable op"); if (auto *II = dyn_cast(V)) return Builder->CreateBinaryIntrinsic( getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB); return Builder->CreateSelect(Cond, NotA, NotB); } return NonNull; } } return nullptr; } Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { Value *PtrOp = GEP.getOperand(0); SmallVector Indices(GEP.indices()); Type *GEPType = GEP.getType(); Type *GEPEltType = GEP.getSourceElementType(); bool IsGEPSrcEleScalable = GEPEltType->isScalableTy(); if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), SQ.getWithInstruction(&GEP))) return replaceInstUsesWith(GEP, V); // For vector geps, use the generic demanded vector support. // Skip if GEP return type is scalable. The number of elements is unknown at // compile-time. if (auto *GEPFVTy = dyn_cast(GEPType)) { auto VWidth = GEPFVTy->getNumElements(); APInt PoisonElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, PoisonElts)) { if (V != &GEP) return replaceInstUsesWith(GEP, V); return &GEP; } // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if // possible (decide on canonical form for pointer broadcast), 3) exploit // undef elements to decrease demanded bits } // Eliminate unneeded casts for indices, and replace indices which displace // by multiples of a zero size type with zero. bool MadeChange = false; // Index width may not be the same width as pointer width. // Data layout chooses the right type based on supported integer types. Type *NewScalarIndexTy = DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); gep_type_iterator GTI = gep_type_begin(GEP); for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; ++I, ++GTI) { // Skip indices into struct types. if (GTI.isStruct()) continue; Type *IndexTy = (*I)->getType(); Type *NewIndexType = IndexTy->isVectorTy() ? VectorType::get(NewScalarIndexTy, cast(IndexTy)->getElementCount()) : NewScalarIndexTy; // If the element type has zero size then any index over it is equivalent // to an index of zero, so replace it with zero if it is not zero already. Type *EltTy = GTI.getIndexedType(); if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) if (!isa(*I) || !match(I->get(), m_Zero())) { *I = Constant::getNullValue(NewIndexType); MadeChange = true; } if (IndexTy != NewIndexType) { // If we are using a wider index than needed for this platform, shrink // it to what we need. If narrower, sign-extend it to what we need. // This explicit cast can make subsequent optimizations more obvious. *I = Builder.CreateIntCast(*I, NewIndexType, true); MadeChange = true; } } if (MadeChange) return &GEP; // Check to see if the inputs to the PHI node are getelementptr instructions. if (auto *PN = dyn_cast(PtrOp)) { auto *Op1 = dyn_cast(PN->getOperand(0)); if (!Op1) return nullptr; // Don't fold a GEP into itself through a PHI node. This can only happen // through the back-edge of a loop. Folding a GEP into itself means that // the value of the previous iteration needs to be stored in the meantime, // thus requiring an additional register variable to be live, but not // actually achieving anything (the GEP still needs to be executed once per // loop iteration). if (Op1 == &GEP) return nullptr; int DI = -1; for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { auto *Op2 = dyn_cast(*I); if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || Op1->getSourceElementType() != Op2->getSourceElementType()) return nullptr; // As for Op1 above, don't try to fold a GEP into itself. if (Op2 == &GEP) return nullptr; // Keep track of the type as we walk the GEP. Type *CurTy = nullptr; for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) return nullptr; if (Op1->getOperand(J) != Op2->getOperand(J)) { if (DI == -1) { // We have not seen any differences yet in the GEPs feeding the // PHI yet, so we record this one if it is allowed to be a // variable. // The first two arguments can vary for any GEP, the rest have to be // static for struct slots if (J > 1) { assert(CurTy && "No current type?"); if (CurTy->isStructTy()) return nullptr; } DI = J; } else { // The GEP is different by more than one input. While this could be // extended to support GEPs that vary by more than one variable it // doesn't make sense since it greatly increases the complexity and // would result in an R+R+R addressing mode which no backend // directly supports and would need to be broken into several // simpler instructions anyway. return nullptr; } } // Sink down a layer of the type for the next iteration. if (J > 0) { if (J == 1) { CurTy = Op1->getSourceElementType(); } else { CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); } } } } // If not all GEPs are identical we'll have to create a new PHI node. // Check that the old PHI node has only one use so that it will get // removed. if (DI != -1 && !PN->hasOneUse()) return nullptr; auto *NewGEP = cast(Op1->clone()); if (DI == -1) { // All the GEPs feeding the PHI are identical. Clone one down into our // BB so that it can be merged with the current GEP. } else { // All the GEPs feeding the PHI differ at a single offset. Clone a GEP // into the current block so it can be merged, and create a new PHI to // set that index. PHINode *NewPN; { IRBuilderBase::InsertPointGuard Guard(Builder); Builder.SetInsertPoint(PN); NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), PN->getNumOperands()); } for (auto &I : PN->operands()) NewPN->addIncoming(cast(I)->getOperand(DI), PN->getIncomingBlock(I)); NewGEP->setOperand(DI, NewPN); } NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt()); return replaceOperand(GEP, 0, NewGEP); } if (auto *Src = dyn_cast(PtrOp)) if (Instruction *I = visitGEPOfGEP(GEP, Src)) return I; // Skip if GEP source element type is scalable. The type alloc size is unknown // at compile-time. if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { unsigned AS = GEP.getPointerAddressSpace(); if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == DL.getIndexSizeInBits(AS)) { uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); if (TyAllocSize == 1) { // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), // but only if the result pointer is only used as if it were an integer, // or both point to the same underlying object (otherwise provenance is // not necessarily retained). Value *X = GEP.getPointerOperand(); Value *Y; if (match(GEP.getOperand(1), m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && GEPType == Y->getType()) { bool HasSameUnderlyingObject = getUnderlyingObject(X) == getUnderlyingObject(Y); bool Changed = false; GEP.replaceUsesWithIf(Y, [&](Use &U) { bool ShouldReplace = HasSameUnderlyingObject || isa(U.getUser()) || isa(U.getUser()); Changed |= ShouldReplace; return ShouldReplace; }); return Changed ? &GEP : nullptr; } } else { // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V) Value *V; if ((has_single_bit(TyAllocSize) && match(GEP.getOperand(1), m_Exact(m_Shr(m_Value(V), m_SpecificInt(countr_zero(TyAllocSize)))))) || match(GEP.getOperand(1), m_Exact(m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize))))) { GetElementPtrInst *NewGEP = GetElementPtrInst::Create( Builder.getInt8Ty(), GEP.getPointerOperand(), V); NewGEP->setIsInBounds(GEP.isInBounds()); return NewGEP; } } } } // We do not handle pointer-vector geps here. if (GEPType->isVectorTy()) return nullptr; if (GEP.getNumIndices() == 1) { // Try to replace ADD + GEP with GEP + GEP. Value *Idx1, *Idx2; if (match(GEP.getOperand(1), m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) { // %idx = add i64 %idx1, %idx2 // %gep = getelementptr i32, ptr %ptr, i64 %idx // as: // %newptr = getelementptr i32, ptr %ptr, i64 %idx1 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2 auto *NewPtr = Builder.CreateGEP(GEP.getResultElementType(), GEP.getPointerOperand(), Idx1); return GetElementPtrInst::Create(GEP.getResultElementType(), NewPtr, Idx2); } ConstantInt *C; if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd( m_Value(Idx1), m_ConstantInt(C))))))) { // %add = add nsw i32 %idx1, idx2 // %sidx = sext i32 %add to i64 // %gep = getelementptr i32, ptr %ptr, i64 %sidx // as: // %newptr = getelementptr i32, ptr %ptr, i32 %idx1 // %newgep = getelementptr i32, ptr %newptr, i32 idx2 auto *NewPtr = Builder.CreateGEP( GEP.getResultElementType(), GEP.getPointerOperand(), Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType())); return GetElementPtrInst::Create( GEP.getResultElementType(), NewPtr, Builder.CreateSExt(C, GEP.getOperand(1)->getType())); } } if (!GEP.isInBounds()) { unsigned IdxWidth = DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); APInt BasePtrOffset(IdxWidth, 0); Value *UnderlyingPtrOp = PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, BasePtrOffset); bool CanBeNull, CanBeFreed; uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes( DL, CanBeNull, CanBeFreed); if (!CanBeNull && !CanBeFreed && DerefBytes != 0) { if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && BasePtrOffset.isNonNegative()) { APInt AllocSize(IdxWidth, DerefBytes); if (BasePtrOffset.ule(AllocSize)) { return GetElementPtrInst::CreateInBounds( GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); } } } } if (Instruction *R = foldSelectGEP(GEP, Builder)) return R; return nullptr; } static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI) { if (isa(V)) return true; if (auto *LI = dyn_cast(V)) return isa(LI->getPointerOperand()); // Two distinct allocations will never be equal. return isAllocLikeFn(V, &TLI) && V != AI; } /// Given a call CB which uses an address UsedV, return true if we can prove the /// call's only possible effect is storing to V. static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI) { if (!CB.use_empty()) // TODO: add recursion if returned attribute is present return false; if (CB.isTerminator()) // TODO: remove implementation restriction return false; if (!CB.willReturn() || !CB.doesNotThrow()) return false; // If the only possible side effect of the call is writing to the alloca, // and the result isn't used, we can safely remove any reads implied by the // call including those which might read the alloca itself. std::optional Dest = MemoryLocation::getForDest(&CB, TLI); return Dest && Dest->Ptr == UsedV; } static bool isAllocSiteRemovable(Instruction *AI, SmallVectorImpl &Users, const TargetLibraryInfo &TLI) { SmallVector Worklist; const std::optional Family = getAllocationFamily(AI, &TLI); Worklist.push_back(AI); do { Instruction *PI = Worklist.pop_back_val(); for (User *U : PI->users()) { Instruction *I = cast(U); switch (I->getOpcode()) { default: // Give up the moment we see something we can't handle. return false; case Instruction::AddrSpaceCast: case Instruction::BitCast: case Instruction::GetElementPtr: Users.emplace_back(I); Worklist.push_back(I); continue; case Instruction::ICmp: { ICmpInst *ICI = cast(I); // We can fold eq/ne comparisons with null to false/true, respectively. // We also fold comparisons in some conditions provided the alloc has // not escaped (see isNeverEqualToUnescapedAlloc). if (!ICI->isEquality()) return false; unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) return false; // Do not fold compares to aligned_alloc calls, as they may have to // return null in case the required alignment cannot be satisfied, // unless we can prove that both alignment and size are valid. auto AlignmentAndSizeKnownValid = [](CallBase *CB) { // Check if alignment and size of a call to aligned_alloc is valid, // that is alignment is a power-of-2 and the size is a multiple of the // alignment. const APInt *Alignment; const APInt *Size; return match(CB->getArgOperand(0), m_APInt(Alignment)) && match(CB->getArgOperand(1), m_APInt(Size)) && Alignment->isPowerOf2() && Size->urem(*Alignment).isZero(); }; auto *CB = dyn_cast(AI); LibFunc TheLibFunc; if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) && TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc && !AlignmentAndSizeKnownValid(CB)) return false; Users.emplace_back(I); continue; } case Instruction::Call: // Ignore no-op and store intrinsics. if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { default: return false; case Intrinsic::memmove: case Intrinsic::memcpy: case Intrinsic::memset: { MemIntrinsic *MI = cast(II); if (MI->isVolatile() || MI->getRawDest() != PI) return false; [[fallthrough]]; } case Intrinsic::assume: case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::objectsize: Users.emplace_back(I); continue; case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: Users.emplace_back(I); Worklist.push_back(I); continue; } } if (isRemovableWrite(*cast(I), PI, TLI)) { Users.emplace_back(I); continue; } if (getFreedOperand(cast(I), &TLI) == PI && getAllocationFamily(I, &TLI) == Family) { assert(Family); Users.emplace_back(I); continue; } if (getReallocatedOperand(cast(I)) == PI && getAllocationFamily(I, &TLI) == Family) { assert(Family); Users.emplace_back(I); Worklist.push_back(I); continue; } return false; case Instruction::Store: { StoreInst *SI = cast(I); if (SI->isVolatile() || SI->getPointerOperand() != PI) return false; Users.emplace_back(I); continue; } } llvm_unreachable("missing a return?"); } } while (!Worklist.empty()); return true; } Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { assert(isa(MI) || isRemovableAlloc(&cast(MI), &TLI)); // If we have a malloc call which is only used in any amount of comparisons to // null and free calls, delete the calls and replace the comparisons with true // or false as appropriate. // This is based on the principle that we can substitute our own allocation // function (which will never return null) rather than knowledge of the // specific function being called. In some sense this can change the permitted // outputs of a program (when we convert a malloc to an alloca, the fact that // the allocation is now on the stack is potentially visible, for example), // but we believe in a permissible manner. SmallVector Users; // If we are removing an alloca with a dbg.declare, insert dbg.value calls // before each store. SmallVector DVIs; SmallVector DPVs; std::unique_ptr DIB; if (isa(MI)) { findDbgUsers(DVIs, &MI, &DPVs); DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); } if (isAllocSiteRemovable(&MI, Users, TLI)) { for (unsigned i = 0, e = Users.size(); i != e; ++i) { // Lowering all @llvm.objectsize calls first because they may // use a bitcast/GEP of the alloca we are removing. if (!Users[i]) continue; Instruction *I = cast(&*Users[i]); if (IntrinsicInst *II = dyn_cast(I)) { if (II->getIntrinsicID() == Intrinsic::objectsize) { SmallVector InsertedInstructions; Value *Result = lowerObjectSizeCall( II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions); for (Instruction *Inserted : InsertedInstructions) Worklist.add(Inserted); replaceInstUsesWith(*I, Result); eraseInstFromFunction(*I); Users[i] = nullptr; // Skip examining in the next loop. } } } for (unsigned i = 0, e = Users.size(); i != e; ++i) { if (!Users[i]) continue; Instruction *I = cast(&*Users[i]); if (ICmpInst *C = dyn_cast(I)) { replaceInstUsesWith(*C, ConstantInt::get(Type::getInt1Ty(C->getContext()), C->isFalseWhenEqual())); } else if (auto *SI = dyn_cast(I)) { for (auto *DVI : DVIs) if (DVI->isAddressOfVariable()) ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); for (auto *DPV : DPVs) if (DPV->isAddressOfVariable()) ConvertDebugDeclareToDebugValue(DPV, SI, *DIB); } else { // Casts, GEP, or anything else: we're about to delete this instruction, // so it can not have any valid uses. replaceInstUsesWith(*I, PoisonValue::get(I->getType())); } eraseInstFromFunction(*I); } if (InvokeInst *II = dyn_cast(&MI)) { // Replace invoke with a NOP intrinsic to maintain the original CFG Module *M = II->getModule(); Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), std::nullopt, "", II->getParent()); } // Remove debug intrinsics which describe the value contained within the // alloca. In addition to removing dbg.{declare,addr} which simply point to // the alloca, remove dbg.value(, ..., DW_OP_deref)'s as well, e.g.: // // ``` // define void @foo(i32 %0) { // %a = alloca i32 ; Deleted. // store i32 %0, i32* %a // dbg.value(i32 %0, "arg0") ; Not deleted. // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. // call void @trivially_inlinable_no_op(i32* %a) // ret void // } // ``` // // This may not be required if we stop describing the contents of allocas // using dbg.value(, ..., DW_OP_deref), but we currently do this in // the LowerDbgDeclare utility. // // If there is a dead store to `%a` in @trivially_inlinable_no_op, the // "arg0" dbg.value may be stale after the call. However, failing to remove // the DW_OP_deref dbg.value causes large gaps in location coverage. // // FIXME: the Assignment Tracking project has now likely made this // redundant (and it's sometimes harmful). for (auto *DVI : DVIs) if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) DVI->eraseFromParent(); for (auto *DPV : DPVs) if (DPV->isAddressOfVariable() || DPV->getExpression()->startsWithDeref()) DPV->eraseFromParent(); return eraseInstFromFunction(MI); } return nullptr; } /// Move the call to free before a NULL test. /// /// Check if this free is accessed after its argument has been test /// against NULL (property 0). /// If yes, it is legal to move this call in its predecessor block. /// /// The move is performed only if the block containing the call to free /// will be removed, i.e.: /// 1. it has only one predecessor P, and P has two successors /// 2. it contains the call, noops, and an unconditional branch /// 3. its successor is the same as its predecessor's successor /// /// The profitability is out-of concern here and this function should /// be called only if the caller knows this transformation would be /// profitable (e.g., for code size). static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL) { Value *Op = FI.getArgOperand(0); BasicBlock *FreeInstrBB = FI.getParent(); BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); // Validate part of constraint #1: Only one predecessor // FIXME: We can extend the number of predecessor, but in that case, we // would duplicate the call to free in each predecessor and it may // not be profitable even for code size. if (!PredBB) return nullptr; // Validate constraint #2: Does this block contains only the call to // free, noops, and an unconditional branch? BasicBlock *SuccBB; Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) return nullptr; // If there are only 2 instructions in the block, at this point, // this is the call to free and unconditional. // If there are more than 2 instructions, check that they are noops // i.e., they won't hurt the performance of the generated code. if (FreeInstrBB->size() != 2) { for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { if (&Inst == &FI || &Inst == FreeInstrBBTerminator) continue; auto *Cast = dyn_cast(&Inst); if (!Cast || !Cast->isNoopCast(DL)) return nullptr; } } // Validate the rest of constraint #1 by matching on the pred branch. Instruction *TI = PredBB->getTerminator(); BasicBlock *TrueBB, *FalseBB; ICmpInst::Predicate Pred; if (!match(TI, m_Br(m_ICmp(Pred, m_CombineOr(m_Specific(Op), m_Specific(Op->stripPointerCasts())), m_Zero()), TrueBB, FalseBB))) return nullptr; if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) return nullptr; // Validate constraint #3: Ensure the null case just falls through. if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) return nullptr; assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && "Broken CFG: missing edge from predecessor to successor"); // At this point, we know that everything in FreeInstrBB can be moved // before TI. for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { if (&Instr == FreeInstrBBTerminator) break; Instr.moveBeforePreserving(TI); } assert(FreeInstrBB->size() == 1 && "Only the branch instruction should remain"); // Now that we've moved the call to free before the NULL check, we have to // remove any attributes on its parameter that imply it's non-null, because // those attributes might have only been valid because of the NULL check, and // we can get miscompiles if we keep them. This is conservative if non-null is // also implied by something other than the NULL check, but it's guaranteed to // be correct, and the conservativeness won't matter in practice, since the // attributes are irrelevant for the call to free itself and the pointer // shouldn't be used after the call. AttributeList Attrs = FI.getAttributes(); Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); if (Dereferenceable.isValid()) { uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::Dereferenceable); Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); } FI.setAttributes(Attrs); return &FI; } Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) { // free undef -> unreachable. if (isa(Op)) { // Leave a marker since we can't modify the CFG here. CreateNonTerminatorUnreachable(&FI); return eraseInstFromFunction(FI); } // If we have 'free null' delete the instruction. This can happen in stl code // when lots of inlining happens. if (isa(Op)) return eraseInstFromFunction(FI); // If we had free(realloc(...)) with no intervening uses, then eliminate the // realloc() entirely. CallInst *CI = dyn_cast(Op); if (CI && CI->hasOneUse()) if (Value *ReallocatedOp = getReallocatedOperand(CI)) return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp)); // If we optimize for code size, try to move the call to free before the null // test so that simplify cfg can remove the empty block and dead code // elimination the branch. I.e., helps to turn something like: // if (foo) free(foo); // into // free(foo); // // Note that we can only do this for 'free' and not for any flavor of // 'operator delete'; there is no 'operator delete' symbol for which we are // permitted to invent a call, even if we're passing in a null pointer. if (MinimizeSize) { LibFunc Func; if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) return I; } return nullptr; } Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { // Nothing for now. return nullptr; } // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) { // Try to remove the previous instruction if it must lead to unreachable. // This includes instructions like stores and "llvm.assume" that may not get // removed by simple dead code elimination. bool Changed = false; while (Instruction *Prev = I.getPrevNonDebugInstruction()) { // While we theoretically can erase EH, that would result in a block that // used to start with an EH no longer starting with EH, which is invalid. // To make it valid, we'd need to fixup predecessors to no longer refer to // this block, but that changes CFG, which is not allowed in InstCombine. if (Prev->isEHPad()) break; // Can not drop any more instructions. We're done here. if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) break; // Can not drop any more instructions. We're done here. // Otherwise, this instruction can be freely erased, // even if it is not side-effect free. // A value may still have uses before we process it here (for example, in // another unreachable block), so convert those to poison. replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); eraseInstFromFunction(*Prev); Changed = true; } return Changed; } Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { removeInstructionsBeforeUnreachable(I); return nullptr; } Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { assert(BI.isUnconditional() && "Only for unconditional branches."); // If this store is the second-to-last instruction in the basic block // (excluding debug info and bitcasts of pointers) and if the block ends with // an unconditional branch, try to move the store to the successor block. auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { return BBI->isDebugOrPseudoInst() || (isa(BBI) && BBI->getType()->isPointerTy()); }; BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); do { if (BBI != FirstInstr) --BBI; } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); return dyn_cast(BBI); }; if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) if (mergeStoreIntoSuccessor(*SI)) return &BI; return nullptr; } void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl &Worklist) { if (!DeadEdges.insert({From, To}).second) return; // Replace phi node operands in successor with poison. for (PHINode &PN : To->phis()) for (Use &U : PN.incoming_values()) if (PN.getIncomingBlock(U) == From && !isa(U)) { replaceUse(U, PoisonValue::get(PN.getType())); addToWorklist(&PN); MadeIRChange = true; } Worklist.push_back(To); } // Under the assumption that I is unreachable, remove it and following // instructions. Changes are reported directly to MadeIRChange. void InstCombinerImpl::handleUnreachableFrom( Instruction *I, SmallVectorImpl &Worklist) { BasicBlock *BB = I->getParent(); for (Instruction &Inst : make_early_inc_range( make_range(std::next(BB->getTerminator()->getReverseIterator()), std::next(I->getReverseIterator())))) { if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) { replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType())); MadeIRChange = true; } if (Inst.isEHPad() || Inst.getType()->isTokenTy()) continue; // RemoveDIs: erase debug-info on this instruction manually. Inst.dropDbgValues(); eraseInstFromFunction(Inst); MadeIRChange = true; } // RemoveDIs: to match behaviour in dbg.value mode, drop debug-info on // terminator too. BB->getTerminator()->dropDbgValues(); // Handle potentially dead successors. for (BasicBlock *Succ : successors(BB)) addDeadEdge(BB, Succ, Worklist); } void InstCombinerImpl::handlePotentiallyDeadBlocks( SmallVectorImpl &Worklist) { while (!Worklist.empty()) { BasicBlock *BB = Worklist.pop_back_val(); if (!all_of(predecessors(BB), [&](BasicBlock *Pred) { return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); })) continue; handleUnreachableFrom(&BB->front(), Worklist); } } void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc) { SmallVector Worklist; for (BasicBlock *Succ : successors(BB)) { // The live successor isn't dead. if (Succ == LiveSucc) continue; addDeadEdge(BB, Succ, Worklist); } handlePotentiallyDeadBlocks(Worklist); } Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { if (BI.isUnconditional()) return visitUnconditionalBranchInst(BI); // Change br (not X), label True, label False to: br X, label False, True Value *Cond = BI.getCondition(); Value *X; if (match(Cond, m_Not(m_Value(X))) && !isa(X)) { // Swap Destinations and condition... BI.swapSuccessors(); return replaceOperand(BI, 0, X); } // Canonicalize logical-and-with-invert as logical-or-with-invert. // This is done by inverting the condition and swapping successors: // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T Value *Y; if (isa(Cond) && match(Cond, m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) { Value *NotX = Builder.CreateNot(X, "not." + X->getName()); Value *Or = Builder.CreateLogicalOr(NotX, Y); BI.swapSuccessors(); return replaceOperand(BI, 0, Or); } // If the condition is irrelevant, remove the use so that other // transforms on the condition become more effective. if (!isa(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1)) return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType())); // Canonicalize, for example, fcmp_one -> fcmp_oeq. CmpInst::Predicate Pred; if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) && !isCanonicalPredicate(Pred)) { // Swap destinations and condition. auto *Cmp = cast(Cond); Cmp->setPredicate(CmpInst::getInversePredicate(Pred)); BI.swapSuccessors(); Worklist.push(Cmp); return &BI; } if (isa(Cond)) { handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr); return nullptr; } if (auto *CI = dyn_cast(Cond)) { handlePotentiallyDeadSuccessors(BI.getParent(), BI.getSuccessor(!CI->getZExtValue())); return nullptr; } DC.registerBranch(&BI); return nullptr; } Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { Value *Cond = SI.getCondition(); Value *Op0; ConstantInt *AddRHS; if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. for (auto Case : SI.cases()) { Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); assert(isa(NewCase) && "Result of expression should be constant"); Case.setValue(cast(NewCase)); } return replaceOperand(SI, 0, Op0); } ConstantInt *SubLHS; if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) { // Change 'switch (1-X) case 1:' into 'switch (X) case 0'. for (auto Case : SI.cases()) { Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue()); assert(isa(NewCase) && "Result of expression should be constant"); Case.setValue(cast(NewCase)); } return replaceOperand(SI, 0, Op0); } uint64_t ShiftAmt; if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) && ShiftAmt < Op0->getType()->getScalarSizeInBits() && all_of(SI.cases(), [&](const auto &Case) { return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt; })) { // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'. OverflowingBinaryOperator *Shl = cast(Cond); if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() || Shl->hasOneUse()) { Value *NewCond = Op0; if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) { // If the shift may wrap, we need to mask off the shifted bits. unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); NewCond = Builder.CreateAnd( Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt)); } for (auto Case : SI.cases()) { const APInt &CaseVal = Case.getCaseValue()->getValue(); APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt) : CaseVal.lshr(ShiftAmt); Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase)); } return replaceOperand(SI, 0, NewCond); } } // Fold switch(zext/sext(X)) into switch(X) if possible. if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) { bool IsZExt = isa(Cond); Type *SrcTy = Op0->getType(); unsigned NewWidth = SrcTy->getScalarSizeInBits(); if (all_of(SI.cases(), [&](const auto &Case) { const APInt &CaseVal = Case.getCaseValue()->getValue(); return IsZExt ? CaseVal.isIntN(NewWidth) : CaseVal.isSignedIntN(NewWidth); })) { for (auto &Case : SI.cases()) { APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); } return replaceOperand(SI, 0, Op0); } } KnownBits Known = computeKnownBits(Cond, 0, &SI); unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); // Compute the number of leading bits we can ignore. // TODO: A better way to determine this would use ComputeNumSignBits(). for (const auto &C : SI.cases()) { LeadingKnownZeros = std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero()); LeadingKnownOnes = std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one()); } unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); // Shrink the condition operand if the new type is smaller than the old type. // But do not shrink to a non-standard type, because backend can't generate // good code for that yet. // TODO: We can make it aggressive again after fixing PR39569. if (NewWidth > 0 && NewWidth < Known.getBitWidth() && shouldChangeType(Known.getBitWidth(), NewWidth)) { IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); Builder.SetInsertPoint(&SI); Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); for (auto Case : SI.cases()) { APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); } return replaceOperand(SI, 0, NewCond); } if (isa(Cond)) { handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr); return nullptr; } if (auto *CI = dyn_cast(Cond)) { handlePotentiallyDeadSuccessors(SI.getParent(), SI.findCaseValue(CI)->getCaseSuccessor()); return nullptr; } return nullptr; } Instruction * InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) { auto *WO = dyn_cast(EV.getAggregateOperand()); if (!WO) return nullptr; Intrinsic::ID OvID = WO->getIntrinsicID(); const APInt *C = nullptr; if (match(WO->getRHS(), m_APIntAllowUndef(C))) { if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow || OvID == Intrinsic::umul_with_overflow)) { // extractvalue (any_mul_with_overflow X, -1), 0 --> -X if (C->isAllOnes()) return BinaryOperator::CreateNeg(WO->getLHS()); // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n if (C->isPowerOf2()) { return BinaryOperator::CreateShl( WO->getLHS(), ConstantInt::get(WO->getLHS()->getType(), C->logBase2())); } } } // We're extracting from an overflow intrinsic. See if we're the only user. // That allows us to simplify multiple result intrinsics to simpler things // that just get one value. if (!WO->hasOneUse()) return nullptr; // Check if we're grabbing only the result of a 'with overflow' intrinsic // and replace it with a traditional binary instruction. if (*EV.idx_begin() == 0) { Instruction::BinaryOps BinOp = WO->getBinaryOp(); Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); // Replace the old instruction's uses with poison. replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); eraseInstFromFunction(*WO); return BinaryOperator::Create(BinOp, LHS, RHS); } assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst"); // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS. if (OvID == Intrinsic::usub_with_overflow) return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS()); // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but // +1 is not possible because we assume signed values. if (OvID == Intrinsic::smul_with_overflow && WO->getLHS()->getType()->isIntOrIntVectorTy(1)) return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS()); // If only the overflow result is used, and the right hand side is a // constant (or constant splat), we can remove the intrinsic by directly // checking for overflow. if (C) { // Compute the no-wrap range for LHS given RHS=C, then construct an // equivalent icmp, potentially using an offset. ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( WO->getBinaryOp(), *C, WO->getNoWrapKind()); CmpInst::Predicate Pred; APInt NewRHSC, Offset; NWR.getEquivalentICmp(Pred, NewRHSC, Offset); auto *OpTy = WO->getRHS()->getType(); auto *NewLHS = WO->getLHS(); if (Offset != 0) NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, ConstantInt::get(OpTy, NewRHSC)); } return nullptr; } Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { Value *Agg = EV.getAggregateOperand(); if (!EV.hasIndices()) return replaceInstUsesWith(EV, Agg); if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), SQ.getWithInstruction(&EV))) return replaceInstUsesWith(EV, V); if (InsertValueInst *IV = dyn_cast(Agg)) { // We're extracting from an insertvalue instruction, compare the indices const unsigned *exti, *exte, *insi, *inse; for (exti = EV.idx_begin(), insi = IV->idx_begin(), exte = EV.idx_end(), inse = IV->idx_end(); exti != exte && insi != inse; ++exti, ++insi) { if (*insi != *exti) // The insert and extract both reference distinctly different elements. // This means the extract is not influenced by the insert, and we can // replace the aggregate operand of the extract with the aggregate // operand of the insert. i.e., replace // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 // %E = extractvalue { i32, { i32 } } %I, 0 // with // %E = extractvalue { i32, { i32 } } %A, 0 return ExtractValueInst::Create(IV->getAggregateOperand(), EV.getIndices()); } if (exti == exte && insi == inse) // Both iterators are at the end: Index lists are identical. Replace // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 // %C = extractvalue { i32, { i32 } } %B, 1, 0 // with "i32 42" return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); if (exti == exte) { // The extract list is a prefix of the insert list. i.e. replace // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 // %E = extractvalue { i32, { i32 } } %I, 1 // with // %X = extractvalue { i32, { i32 } } %A, 1 // %E = insertvalue { i32 } %X, i32 42, 0 // by switching the order of the insert and extract (though the // insertvalue should be left in, since it may have other uses). Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), EV.getIndices()); return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), ArrayRef(insi, inse)); } if (insi == inse) // The insert list is a prefix of the extract list // We can simply remove the common indices from the extract and make it // operate on the inserted value instead of the insertvalue result. // i.e., replace // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 // %E = extractvalue { i32, { i32 } } %I, 1, 0 // with // %E extractvalue { i32 } { i32 42 }, 0 return ExtractValueInst::Create(IV->getInsertedValueOperand(), ArrayRef(exti, exte)); } if (Instruction *R = foldExtractOfOverflowIntrinsic(EV)) return R; if (LoadInst *L = dyn_cast(Agg)) { // Bail out if the aggregate contains scalable vector type if (auto *STy = dyn_cast(Agg->getType()); STy && STy->containsScalableVectorType()) return nullptr; // If the (non-volatile) load only has one use, we can rewrite this to a // load from a GEP. This reduces the size of the load. If a load is used // only by extractvalue instructions then this either must have been // optimized before, or it is a struct with padding, in which case we // don't want to do the transformation as it loses padding knowledge. if (L->isSimple() && L->hasOneUse()) { // extractvalue has integer indices, getelementptr has Value*s. Convert. SmallVector Indices; // Prefix an i32 0 since we need the first element. Indices.push_back(Builder.getInt32(0)); for (unsigned Idx : EV.indices()) Indices.push_back(Builder.getInt32(Idx)); // We need to insert these at the location of the old load, not at that of // the extractvalue. Builder.SetInsertPoint(L); Value *GEP = Builder.CreateInBoundsGEP(L->getType(), L->getPointerOperand(), Indices); Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); // Whatever aliasing information we had for the orignal load must also // hold for the smaller load, so propagate the annotations. NL->setAAMetadata(L->getAAMetadata()); // Returning the load directly will cause the main loop to insert it in // the wrong spot, so use replaceInstUsesWith(). return replaceInstUsesWith(EV, NL); } } if (auto *PN = dyn_cast(Agg)) if (Instruction *Res = foldOpIntoPhi(EV, PN)) return Res; // We could simplify extracts from other values. Note that nested extracts may // already be simplified implicitly by the above: extract (extract (insert) ) // will be translated into extract ( insert ( extract ) ) first and then just // the value inserted, if appropriate. Similarly for extracts from single-use // loads: extract (extract (load)) will be translated to extract (load (gep)) // and if again single-use then via load (gep (gep)) to load (gep). // However, double extracts from e.g. function arguments or return values // aren't handled yet. return nullptr; } /// Return 'true' if the given typeinfo will match anything. static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { switch (Personality) { case EHPersonality::GNU_C: case EHPersonality::GNU_C_SjLj: case EHPersonality::Rust: // The GCC C EH and Rust personality only exists to support cleanups, so // it's not clear what the semantics of catch clauses are. return false; case EHPersonality::Unknown: return false; case EHPersonality::GNU_Ada: // While __gnat_all_others_value will match any Ada exception, it doesn't // match foreign exceptions (or didn't, before gcc-4.7). return false; case EHPersonality::GNU_CXX: case EHPersonality::GNU_CXX_SjLj: case EHPersonality::GNU_ObjC: case EHPersonality::MSVC_X86SEH: case EHPersonality::MSVC_TableSEH: case EHPersonality::MSVC_CXX: case EHPersonality::CoreCLR: case EHPersonality::Wasm_CXX: case EHPersonality::XL_CXX: return TypeInfo->isNullValue(); } llvm_unreachable("invalid enum"); } static bool shorter_filter(const Value *LHS, const Value *RHS) { return cast(LHS->getType())->getNumElements() < cast(RHS->getType())->getNumElements(); } Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { // The logic here should be correct for any real-world personality function. // However if that turns out not to be true, the offending logic can always // be conditioned on the personality function, like the catch-all logic is. EHPersonality Personality = classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); // Simplify the list of clauses, eg by removing repeated catch clauses // (these are often created by inlining). bool MakeNewInstruction = false; // If true, recreate using the following: SmallVector NewClauses; // - Clauses for the new instruction; bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. SmallPtrSet AlreadyCaught; // Typeinfos known caught already. for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { bool isLastClause = i + 1 == e; if (LI.isCatch(i)) { // A catch clause. Constant *CatchClause = LI.getClause(i); Constant *TypeInfo = CatchClause->stripPointerCasts(); // If we already saw this clause, there is no point in having a second // copy of it. if (AlreadyCaught.insert(TypeInfo).second) { // This catch clause was not already seen. NewClauses.push_back(CatchClause); } else { // Repeated catch clause - drop the redundant copy. MakeNewInstruction = true; } // If this is a catch-all then there is no point in keeping any following // clauses or marking the landingpad as having a cleanup. if (isCatchAll(Personality, TypeInfo)) { if (!isLastClause) MakeNewInstruction = true; CleanupFlag = false; break; } } else { // A filter clause. If any of the filter elements were already caught // then they can be dropped from the filter. It is tempting to try to // exploit the filter further by saying that any typeinfo that does not // occur in the filter can't be caught later (and thus can be dropped). // However this would be wrong, since typeinfos can match without being // equal (for example if one represents a C++ class, and the other some // class derived from it). assert(LI.isFilter(i) && "Unsupported landingpad clause!"); Constant *FilterClause = LI.getClause(i); ArrayType *FilterType = cast(FilterClause->getType()); unsigned NumTypeInfos = FilterType->getNumElements(); // An empty filter catches everything, so there is no point in keeping any // following clauses or marking the landingpad as having a cleanup. By // dealing with this case here the following code is made a bit simpler. if (!NumTypeInfos) { NewClauses.push_back(FilterClause); if (!isLastClause) MakeNewInstruction = true; CleanupFlag = false; break; } bool MakeNewFilter = false; // If true, make a new filter. SmallVector NewFilterElts; // New elements. if (isa(FilterClause)) { // Not an empty filter - it contains at least one null typeinfo. assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); Constant *TypeInfo = Constant::getNullValue(FilterType->getElementType()); // If this typeinfo is a catch-all then the filter can never match. if (isCatchAll(Personality, TypeInfo)) { // Throw the filter away. MakeNewInstruction = true; continue; } // There is no point in having multiple copies of this typeinfo, so // discard all but the first copy if there is more than one. NewFilterElts.push_back(TypeInfo); if (NumTypeInfos > 1) MakeNewFilter = true; } else { ConstantArray *Filter = cast(FilterClause); SmallPtrSet SeenInFilter; // For uniquing the elements. NewFilterElts.reserve(NumTypeInfos); // Remove any filter elements that were already caught or that already // occurred in the filter. While there, see if any of the elements are // catch-alls. If so, the filter can be discarded. bool SawCatchAll = false; for (unsigned j = 0; j != NumTypeInfos; ++j) { Constant *Elt = Filter->getOperand(j); Constant *TypeInfo = Elt->stripPointerCasts(); if (isCatchAll(Personality, TypeInfo)) { // This element is a catch-all. Bail out, noting this fact. SawCatchAll = true; break; } // Even if we've seen a type in a catch clause, we don't want to // remove it from the filter. An unexpected type handler may be // set up for a call site which throws an exception of the same // type caught. In order for the exception thrown by the unexpected // handler to propagate correctly, the filter must be correctly // described for the call site. // // Example: // // void unexpected() { throw 1;} // void foo() throw (int) { // std::set_unexpected(unexpected); // try { // throw 2.0; // } catch (int i) {} // } // There is no point in having multiple copies of the same typeinfo in // a filter, so only add it if we didn't already. if (SeenInFilter.insert(TypeInfo).second) NewFilterElts.push_back(cast(Elt)); } // A filter containing a catch-all cannot match anything by definition. if (SawCatchAll) { // Throw the filter away. MakeNewInstruction = true; continue; } // If we dropped something from the filter, make a new one. if (NewFilterElts.size() < NumTypeInfos) MakeNewFilter = true; } if (MakeNewFilter) { FilterType = ArrayType::get(FilterType->getElementType(), NewFilterElts.size()); FilterClause = ConstantArray::get(FilterType, NewFilterElts); MakeNewInstruction = true; } NewClauses.push_back(FilterClause); // If the new filter is empty then it will catch everything so there is // no point in keeping any following clauses or marking the landingpad // as having a cleanup. The case of the original filter being empty was // already handled above. if (MakeNewFilter && !NewFilterElts.size()) { assert(MakeNewInstruction && "New filter but not a new instruction!"); CleanupFlag = false; break; } } } // If several filters occur in a row then reorder them so that the shortest // filters come first (those with the smallest number of elements). This is // advantageous because shorter filters are more likely to match, speeding up // unwinding, but mostly because it increases the effectiveness of the other // filter optimizations below. for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { unsigned j; // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. for (j = i; j != e; ++j) if (!isa(NewClauses[j]->getType())) break; // Check whether the filters are already sorted by length. We need to know // if sorting them is actually going to do anything so that we only make a // new landingpad instruction if it does. for (unsigned k = i; k + 1 < j; ++k) if (shorter_filter(NewClauses[k+1], NewClauses[k])) { // Not sorted, so sort the filters now. Doing an unstable sort would be // correct too but reordering filters pointlessly might confuse users. std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, shorter_filter); MakeNewInstruction = true; break; } // Look for the next batch of filters. i = j + 1; } // If typeinfos matched if and only if equal, then the elements of a filter L // that occurs later than a filter F could be replaced by the intersection of // the elements of F and L. In reality two typeinfos can match without being // equal (for example if one represents a C++ class, and the other some class // derived from it) so it would be wrong to perform this transform in general. // However the transform is correct and useful if F is a subset of L. In that // case L can be replaced by F, and thus removed altogether since repeating a // filter is pointless. So here we look at all pairs of filters F and L where // L follows F in the list of clauses, and remove L if every element of F is // an element of L. This can occur when inlining C++ functions with exception // specifications. for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { // Examine each filter in turn. Value *Filter = NewClauses[i]; ArrayType *FTy = dyn_cast(Filter->getType()); if (!FTy) // Not a filter - skip it. continue; unsigned FElts = FTy->getNumElements(); // Examine each filter following this one. Doing this backwards means that // we don't have to worry about filters disappearing under us when removed. for (unsigned j = NewClauses.size() - 1; j != i; --j) { Value *LFilter = NewClauses[j]; ArrayType *LTy = dyn_cast(LFilter->getType()); if (!LTy) // Not a filter - skip it. continue; // If Filter is a subset of LFilter, i.e. every element of Filter is also // an element of LFilter, then discard LFilter. SmallVectorImpl::iterator J = NewClauses.begin() + j; // If Filter is empty then it is a subset of LFilter. if (!FElts) { // Discard LFilter. NewClauses.erase(J); MakeNewInstruction = true; // Move on to the next filter. continue; } unsigned LElts = LTy->getNumElements(); // If Filter is longer than LFilter then it cannot be a subset of it. if (FElts > LElts) // Move on to the next filter. continue; // At this point we know that LFilter has at least one element. if (isa(LFilter)) { // LFilter only contains zeros. // Filter is a subset of LFilter iff Filter contains only zeros (as we // already know that Filter is not longer than LFilter). if (isa(Filter)) { assert(FElts <= LElts && "Should have handled this case earlier!"); // Discard LFilter. NewClauses.erase(J); MakeNewInstruction = true; } // Move on to the next filter. continue; } ConstantArray *LArray = cast(LFilter); if (isa(Filter)) { // Filter only contains zeros. // Since Filter is non-empty and contains only zeros, it is a subset of // LFilter iff LFilter contains a zero. assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); for (unsigned l = 0; l != LElts; ++l) if (LArray->getOperand(l)->isNullValue()) { // LFilter contains a zero - discard it. NewClauses.erase(J); MakeNewInstruction = true; break; } // Move on to the next filter. continue; } // At this point we know that both filters are ConstantArrays. Loop over // operands to see whether every element of Filter is also an element of // LFilter. Since filters tend to be short this is probably faster than // using a method that scales nicely. ConstantArray *FArray = cast(Filter); bool AllFound = true; for (unsigned f = 0; f != FElts; ++f) { Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); AllFound = false; for (unsigned l = 0; l != LElts; ++l) { Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); if (LTypeInfo == FTypeInfo) { AllFound = true; break; } } if (!AllFound) break; } if (AllFound) { // Discard LFilter. NewClauses.erase(J); MakeNewInstruction = true; } // Move on to the next filter. } } // If we changed any of the clauses, replace the old landingpad instruction // with a new one. if (MakeNewInstruction) { LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), NewClauses.size()); for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) NLI->addClause(NewClauses[i]); // A landing pad with no clauses must have the cleanup flag set. It is // theoretically possible, though highly unlikely, that we eliminated all // clauses. If so, force the cleanup flag to true. if (NewClauses.empty()) CleanupFlag = true; NLI->setCleanup(CleanupFlag); return NLI; } // Even if none of the clauses changed, we may nonetheless have understood // that the cleanup flag is pointless. Clear it if so. if (LI.isCleanup() != CleanupFlag) { assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); LI.setCleanup(CleanupFlag); return &LI; } return nullptr; } Value * InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { // Try to push freeze through instructions that propagate but don't produce // poison as far as possible. If an operand of freeze follows three // conditions 1) one-use, 2) does not produce poison, and 3) has all but one // guaranteed-non-poison operands then push the freeze through to the one // operand that is not guaranteed non-poison. The actual transform is as // follows. // Op1 = ... ; Op1 can be posion // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have // ; single guaranteed-non-poison operands // ... = Freeze(Op0) // => // Op1 = ... // Op1.fr = Freeze(Op1) // ... = Inst(Op1.fr, NonPoisonOps...) auto *OrigOp = OrigFI.getOperand(0); auto *OrigOpInst = dyn_cast(OrigOp); // While we could change the other users of OrigOp to use freeze(OrigOp), that // potentially reduces their optimization potential, so let's only do this iff // the OrigOp is only used by the freeze. if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa(OrigOp)) return nullptr; // We can't push the freeze through an instruction which can itself create // poison. If the only source of new poison is flags, we can simply // strip them (since we know the only use is the freeze and nothing can // benefit from them.) if (canCreateUndefOrPoison(cast(OrigOp), /*ConsiderFlagsAndMetadata*/ false)) return nullptr; // If operand is guaranteed not to be poison, there is no need to add freeze // to the operand. So we first find the operand that is not guaranteed to be // poison. Use *MaybePoisonOperand = nullptr; for (Use &U : OrigOpInst->operands()) { if (isa(U.get()) || isGuaranteedNotToBeUndefOrPoison(U.get())) continue; if (!MaybePoisonOperand) MaybePoisonOperand = &U; else return nullptr; } OrigOpInst->dropPoisonGeneratingFlagsAndMetadata(); // If all operands are guaranteed to be non-poison, we can drop freeze. if (!MaybePoisonOperand) return OrigOp; Builder.SetInsertPoint(OrigOpInst); auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); return OrigOp; } Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, PHINode *PN) { // Detect whether this is a recurrence with a start value and some number of // backedge values. We'll check whether we can push the freeze through the // backedge values (possibly dropping poison flags along the way) until we // reach the phi again. In that case, we can move the freeze to the start // value. Use *StartU = nullptr; SmallVector Worklist; for (Use &U : PN->incoming_values()) { if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { // Add backedge value to worklist. Worklist.push_back(U.get()); continue; } // Don't bother handling multiple start values. if (StartU) return nullptr; StartU = &U; } if (!StartU || Worklist.empty()) return nullptr; // Not a recurrence. Value *StartV = StartU->get(); BasicBlock *StartBB = PN->getIncomingBlock(*StartU); bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); // We can't insert freeze if the start value is the result of the // terminator (e.g. an invoke). if (StartNeedsFreeze && StartBB->getTerminator() == StartV) return nullptr; SmallPtrSet Visited; SmallVector DropFlags; while (!Worklist.empty()) { Value *V = Worklist.pop_back_val(); if (!Visited.insert(V).second) continue; if (Visited.size() > 32) return nullptr; // Limit the total number of values we inspect. // Assume that PN is non-poison, because it will be after the transform. if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) continue; Instruction *I = dyn_cast(V); if (!I || canCreateUndefOrPoison(cast(I), /*ConsiderFlagsAndMetadata*/ false)) return nullptr; DropFlags.push_back(I); append_range(Worklist, I->operands()); } for (Instruction *I : DropFlags) I->dropPoisonGeneratingFlagsAndMetadata(); if (StartNeedsFreeze) { Builder.SetInsertPoint(StartBB->getTerminator()); Value *FrozenStartV = Builder.CreateFreeze(StartV, StartV->getName() + ".fr"); replaceUse(*StartU, FrozenStartV); } return replaceInstUsesWith(FI, PN); } bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { Value *Op = FI.getOperand(0); if (isa(Op) || Op->hasOneUse()) return false; // Move the freeze directly after the definition of its operand, so that // it dominates the maximum number of uses. Note that it may not dominate // *all* uses if the operand is an invoke/callbr and the use is in a phi on // the normal/default destination. This is why the domination check in the // replacement below is still necessary. BasicBlock::iterator MoveBefore; if (isa(Op)) { MoveBefore = FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); } else { auto MoveBeforeOpt = cast(Op)->getInsertionPointAfterDef(); if (!MoveBeforeOpt) return false; MoveBefore = *MoveBeforeOpt; } // Don't move to the position of a debug intrinsic. if (isa(MoveBefore)) MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator(); // Re-point iterator to come after any debug-info records, if we're // running in "RemoveDIs" mode MoveBefore.setHeadBit(false); bool Changed = false; if (&FI != &*MoveBefore) { FI.moveBefore(*MoveBefore->getParent(), MoveBefore); Changed = true; } Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { bool Dominates = DT.dominates(&FI, U); Changed |= Dominates; return Dominates; }); return Changed; } // Check if any direct or bitcast user of this value is a shuffle instruction. static bool isUsedWithinShuffleVector(Value *V) { for (auto *U : V->users()) { if (isa(U)) return true; else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U)) return true; } return false; } Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { Value *Op0 = I.getOperand(0); if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) return replaceInstUsesWith(I, V); // freeze (phi const, x) --> phi const, (freeze x) if (auto *PN = dyn_cast(Op0)) { if (Instruction *NV = foldOpIntoPhi(I, PN)) return NV; if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) return NV; } if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) return replaceInstUsesWith(I, NI); // If I is freeze(undef), check its uses and fold it to a fixed constant. // - or: pick -1 // - select's condition: if the true value is constant, choose it by making // the condition true. // - default: pick 0 // // Note that this transform is intentionally done here rather than // via an analysis in InstSimplify or at individual user sites. That is // because we must produce the same value for all uses of the freeze - // it's the reason "freeze" exists! // // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid // duplicating logic for binops at least. auto getUndefReplacement = [&I](Type *Ty) { Constant *BestValue = nullptr; Constant *NullValue = Constant::getNullValue(Ty); for (const auto *U : I.users()) { Constant *C = NullValue; if (match(U, m_Or(m_Value(), m_Value()))) C = ConstantInt::getAllOnesValue(Ty); else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) C = ConstantInt::getTrue(Ty); if (!BestValue) BestValue = C; else if (BestValue != C) BestValue = NullValue; } assert(BestValue && "Must have at least one use"); return BestValue; }; if (match(Op0, m_Undef())) { // Don't fold freeze(undef/poison) if it's used as a vector operand in // a shuffle. This may improve codegen for shuffles that allow // unspecified inputs. if (isUsedWithinShuffleVector(&I)) return nullptr; return replaceInstUsesWith(I, getUndefReplacement(I.getType())); } Constant *C; if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); } // Replace uses of Op with freeze(Op). if (freezeOtherUses(I)) return &I; return nullptr; } /// Check for case where the call writes to an otherwise dead alloca. This /// shows up for unused out-params in idiomatic C/C++ code. Note that this /// helper *only* analyzes the write; doesn't check any other legality aspect. static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { auto *CB = dyn_cast(I); if (!CB) // TODO: handle e.g. store to alloca here - only worth doing if we extend // to allow reload along used path as described below. Otherwise, this // is simply a store to a dead allocation which will be removed. return false; std::optional Dest = MemoryLocation::getForDest(CB, TLI); if (!Dest) return false; auto *AI = dyn_cast(getUnderlyingObject(Dest->Ptr)); if (!AI) // TODO: allow malloc? return false; // TODO: allow memory access dominated by move point? Note that since AI // could have a reference to itself captured by the call, we would need to // account for cycles in doing so. SmallVector AllocaUsers; SmallPtrSet Visited; auto pushUsers = [&](const Instruction &I) { for (const User *U : I.users()) { if (Visited.insert(U).second) AllocaUsers.push_back(U); } }; pushUsers(*AI); while (!AllocaUsers.empty()) { auto *UserI = cast(AllocaUsers.pop_back_val()); if (isa(UserI) || isa(UserI) || isa(UserI)) { pushUsers(*UserI); continue; } if (UserI == CB) continue; // TODO: support lifetime.start/end here return false; } return true; } /// Try to move the specified instruction from its current block into the /// beginning of DestBlock, which can only happen if it's safe to move the /// instruction past all of the instructions between it and the end of its /// block. bool InstCombinerImpl::tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { BasicBlock *SrcBlock = I->getParent(); // Cannot move control-flow-involving, volatile loads, vaarg, etc. if (isa(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || I->isTerminator()) return false; // Do not sink static or dynamic alloca instructions. Static allocas must // remain in the entry block, and dynamic allocas must not be sunk in between // a stacksave / stackrestore pair, which would incorrectly shorten its // lifetime. if (isa(I)) return false; // Do not sink into catchswitch blocks. if (isa(DestBlock->getTerminator())) return false; // Do not sink convergent call instructions. if (auto *CI = dyn_cast(I)) { if (CI->isConvergent()) return false; } // Unless we can prove that the memory write isn't visibile except on the // path we're sinking to, we must bail. if (I->mayWriteToMemory()) { if (!SoleWriteToDeadLocal(I, TLI)) return false; } // We can only sink load instructions if there is nothing between the load and // the end of block that could change the value. if (I->mayReadFromMemory()) { // We don't want to do any sophisticated alias analysis, so we only check // the instructions after I in I's parent block if we try to sink to its // successor block. if (DestBlock->getUniquePredecessor() != I->getParent()) return false; for (BasicBlock::iterator Scan = std::next(I->getIterator()), E = I->getParent()->end(); Scan != E; ++Scan) if (Scan->mayWriteToMemory()) return false; } I->dropDroppableUses([&](const Use *U) { auto *I = dyn_cast(U->getUser()); if (I && I->getParent() != DestBlock) { Worklist.add(I); return true; } return false; }); /// FIXME: We could remove droppable uses that are not dominated by /// the new position. BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); I->moveBefore(*DestBlock, InsertPos); ++NumSunkInst; // Also sink all related debug uses from the source basic block. Otherwise we // get debug use before the def. Attempt to salvage debug uses first, to // maximise the range variables have location for. If we cannot salvage, then // mark the location undef: we know it was supposed to receive a new location // here, but that computation has been sunk. SmallVector DbgUsers; findDbgUsers(DbgUsers, I); // For all debug values in the destination block, the sunk instruction // will still be available, so they do not need to be dropped. SmallVector DbgUsersToSalvage; SmallVector DPValuesToSalvage; for (auto &DbgUser : DbgUsers) if (DbgUser->getParent() != DestBlock) DbgUsersToSalvage.push_back(DbgUser); // Process the sinking DbgUsersToSalvage in reverse order, as we only want // to clone the last appearing debug intrinsic for each given variable. SmallVector DbgUsersToSink; for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage) if (DVI->getParent() == SrcBlock) DbgUsersToSink.push_back(DVI); llvm::sort(DbgUsersToSink, [](auto *A, auto *B) { return B->comesBefore(A); }); SmallVector DIIClones; SmallSet SunkVariables; for (auto *User : DbgUsersToSink) { // A dbg.declare instruction should not be cloned, since there can only be // one per variable fragment. It should be left in the original place // because the sunk instruction is not an alloca (otherwise we could not be // here). if (isa(User)) continue; DebugVariable DbgUserVariable = DebugVariable(User->getVariable(), User->getExpression(), User->getDebugLoc()->getInlinedAt()); if (!SunkVariables.insert(DbgUserVariable).second) continue; // Leave dbg.assign intrinsics in their original positions and there should // be no need to insert a clone. if (isa(User)) continue; DIIClones.emplace_back(cast(User->clone())); if (isa(User) && isa(I)) DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); } // Perform salvaging without the clones, then sink the clones. if (!DIIClones.empty()) { // RemoveDIs: pass in empty vector of DPValues until we get to instrumenting // this pass. SmallVector DummyDPValues; salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, DummyDPValues); // The clones are in reverse order of original appearance, reverse again to // maintain the original order. for (auto &DIIClone : llvm::reverse(DIIClones)) { DIIClone->insertBefore(&*InsertPos); LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); } } return true; } bool InstCombinerImpl::run() { while (!Worklist.isEmpty()) { // Walk deferred instructions in reverse order, and push them to the // worklist, which means they'll end up popped from the worklist in-order. while (Instruction *I = Worklist.popDeferred()) { // Check to see if we can DCE the instruction. We do this already here to // reduce the number of uses and thus allow other folds to trigger. // Note that eraseInstFromFunction() may push additional instructions on // the deferred worklist, so this will DCE whole instruction chains. if (isInstructionTriviallyDead(I, &TLI)) { eraseInstFromFunction(*I); ++NumDeadInst; continue; } Worklist.push(I); } Instruction *I = Worklist.removeOne(); if (I == nullptr) continue; // skip null values. // Check to see if we can DCE the instruction. if (isInstructionTriviallyDead(I, &TLI)) { eraseInstFromFunction(*I); ++NumDeadInst; continue; } if (!DebugCounter::shouldExecute(VisitCounter)) continue; // See if we can trivially sink this instruction to its user if we can // prove that the successor is not executed more frequently than our block. // Return the UserBlock if successful. auto getOptionalSinkBlockForInst = [this](Instruction *I) -> std::optional { if (!EnableCodeSinking) return std::nullopt; BasicBlock *BB = I->getParent(); BasicBlock *UserParent = nullptr; unsigned NumUsers = 0; for (auto *U : I->users()) { if (U->isDroppable()) continue; if (NumUsers > MaxSinkNumUsers) return std::nullopt; Instruction *UserInst = cast(U); // Special handling for Phi nodes - get the block the use occurs in. if (PHINode *PN = dyn_cast(UserInst)) { for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { if (PN->getIncomingValue(i) == I) { // Bail out if we have uses in different blocks. We don't do any // sophisticated analysis (i.e finding NearestCommonDominator of // these use blocks). if (UserParent && UserParent != PN->getIncomingBlock(i)) return std::nullopt; UserParent = PN->getIncomingBlock(i); } } assert(UserParent && "expected to find user block!"); } else { if (UserParent && UserParent != UserInst->getParent()) return std::nullopt; UserParent = UserInst->getParent(); } // Make sure these checks are done only once, naturally we do the checks // the first time we get the userparent, this will save compile time. if (NumUsers == 0) { // Try sinking to another block. If that block is unreachable, then do // not bother. SimplifyCFG should handle it. if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) return std::nullopt; auto *Term = UserParent->getTerminator(); // See if the user is one of our successors that has only one // predecessor, so that we don't have to split the critical edge. // Another option where we can sink is a block that ends with a // terminator that does not pass control to other block (such as // return or unreachable or resume). In this case: // - I dominates the User (by SSA form); // - the User will be executed at most once. // So sinking I down to User is always profitable or neutral. if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) return std::nullopt; assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); } NumUsers++; } // No user or only has droppable users. if (!UserParent) return std::nullopt; return UserParent; }; auto OptBB = getOptionalSinkBlockForInst(I); if (OptBB) { auto *UserParent = *OptBB; // Okay, the CFG is simple enough, try to sink this instruction. if (tryToSinkInstruction(I, UserParent)) { LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); MadeIRChange = true; // We'll add uses of the sunk instruction below, but since // sinking can expose opportunities for it's *operands* add // them to the worklist for (Use &U : I->operands()) if (Instruction *OpI = dyn_cast(U.get())) Worklist.push(OpI); } } // Now that we have an instruction, try combining it to simplify it. Builder.SetInsertPoint(I); Builder.CollectMetadataToCopy( I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); #ifndef NDEBUG std::string OrigI; #endif LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); if (Instruction *Result = visit(*I)) { ++NumCombined; // Should we replace the old instruction with a new one? if (Result != I) { LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' << " New = " << *Result << '\n'); Result->copyMetadata(*I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); // Everything uses the new instruction now. I->replaceAllUsesWith(Result); // Move the name to the new instruction first. Result->takeName(I); // Insert the new instruction into the basic block... BasicBlock *InstParent = I->getParent(); BasicBlock::iterator InsertPos = I->getIterator(); // Are we replace a PHI with something that isn't a PHI, or vice versa? if (isa(Result) != isa(I)) { // We need to fix up the insertion point. if (isa(I)) // PHI -> Non-PHI InsertPos = InstParent->getFirstInsertionPt(); else // Non-PHI -> PHI InsertPos = InstParent->getFirstNonPHIIt(); } Result->insertInto(InstParent, InsertPos); // Push the new instruction and any users onto the worklist. Worklist.pushUsersToWorkList(*Result); Worklist.push(Result); eraseInstFromFunction(*I); } else { LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' << " New = " << *I << '\n'); // If the instruction was modified, it's possible that it is now dead. // if so, remove it. if (isInstructionTriviallyDead(I, &TLI)) { eraseInstFromFunction(*I); } else { Worklist.pushUsersToWorkList(*I); Worklist.push(I); } } MadeIRChange = true; } } Worklist.zap(); return MadeIRChange; } // Track the scopes used by !alias.scope and !noalias. In a function, a // @llvm.experimental.noalias.scope.decl is only useful if that scope is used // by both sets. If not, the declaration of the scope can be safely omitted. // The MDNode of the scope can be omitted as well for the instructions that are // part of this function. We do not do that at this point, as this might become // too time consuming to do. class AliasScopeTracker { SmallPtrSet UsedAliasScopesAndLists; SmallPtrSet UsedNoAliasScopesAndLists; public: void analyse(Instruction *I) { // This seems to be faster than checking 'mayReadOrWriteMemory()'. if (!I->hasMetadataOtherThanDebugLoc()) return; auto Track = [](Metadata *ScopeList, auto &Container) { const auto *MDScopeList = dyn_cast_or_null(ScopeList); if (!MDScopeList || !Container.insert(MDScopeList).second) return; for (const auto &MDOperand : MDScopeList->operands()) if (auto *MDScope = dyn_cast(MDOperand)) Container.insert(MDScope); }; Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); } bool isNoAliasScopeDeclDead(Instruction *Inst) { NoAliasScopeDeclInst *Decl = dyn_cast(Inst); if (!Decl) return false; assert(Decl->use_empty() && "llvm.experimental.noalias.scope.decl in use ?"); const MDNode *MDSL = Decl->getScopeList(); assert(MDSL->getNumOperands() == 1 && "llvm.experimental.noalias.scope should refer to a single scope"); auto &MDOperand = MDSL->getOperand(0); if (auto *MD = dyn_cast(MDOperand)) return !UsedAliasScopesAndLists.contains(MD) || !UsedNoAliasScopesAndLists.contains(MD); // Not an MDNode ? throw away. return true; } }; /// Populate the IC worklist from a function, by walking it in reverse /// post-order and adding all reachable code to the worklist. /// /// This has a couple of tricks to make the code faster and more powerful. In /// particular, we constant fold and DCE instructions as we go, to avoid adding /// them to the worklist (this significantly speeds up instcombine on code where /// many instructions are dead or constant). Additionally, if we find a branch /// whose condition is a known constant, we only visit the reachable successors. bool InstCombinerImpl::prepareWorklist( Function &F, ReversePostOrderTraversal &RPOT) { bool MadeIRChange = false; SmallPtrSet LiveBlocks; SmallVector InstrsForInstructionWorklist; DenseMap FoldedConstants; AliasScopeTracker SeenAliasScopes; auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) { for (BasicBlock *Succ : successors(BB)) if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second) for (PHINode &PN : Succ->phis()) for (Use &U : PN.incoming_values()) if (PN.getIncomingBlock(U) == BB && !isa(U)) { U.set(PoisonValue::get(PN.getType())); MadeIRChange = true; } }; for (BasicBlock *BB : RPOT) { if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) { return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); })) { HandleOnlyLiveSuccessor(BB, nullptr); continue; } LiveBlocks.insert(BB); for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { // ConstantProp instruction if trivially constant. if (!Inst.use_empty() && (Inst.getNumOperands() == 0 || isa(Inst.getOperand(0)))) if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) { LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst << '\n'); Inst.replaceAllUsesWith(C); ++NumConstProp; if (isInstructionTriviallyDead(&Inst, &TLI)) Inst.eraseFromParent(); MadeIRChange = true; continue; } // See if we can constant fold its operands. for (Use &U : Inst.operands()) { if (!isa(U) && !isa(U)) continue; auto *C = cast(U); Constant *&FoldRes = FoldedConstants[C]; if (!FoldRes) FoldRes = ConstantFoldConstant(C, DL, &TLI); if (FoldRes != C) { LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst << "\n Old = " << *C << "\n New = " << *FoldRes << '\n'); U = FoldRes; MadeIRChange = true; } } // Skip processing debug and pseudo intrinsics in InstCombine. Processing // these call instructions consumes non-trivial amount of time and // provides no value for the optimization. if (!Inst.isDebugOrPseudoInst()) { InstrsForInstructionWorklist.push_back(&Inst); SeenAliasScopes.analyse(&Inst); } } // If this is a branch or switch on a constant, mark only the single // live successor. Otherwise assume all successors are live. Instruction *TI = BB->getTerminator(); if (BranchInst *BI = dyn_cast(TI); BI && BI->isConditional()) { if (isa(BI->getCondition())) { // Branch on undef is UB. HandleOnlyLiveSuccessor(BB, nullptr); continue; } if (auto *Cond = dyn_cast(BI->getCondition())) { bool CondVal = Cond->getZExtValue(); HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal)); continue; } } else if (SwitchInst *SI = dyn_cast(TI)) { if (isa(SI->getCondition())) { // Switch on undef is UB. HandleOnlyLiveSuccessor(BB, nullptr); continue; } if (auto *Cond = dyn_cast(SI->getCondition())) { HandleOnlyLiveSuccessor(BB, SI->findCaseValue(Cond)->getCaseSuccessor()); continue; } } } // Remove instructions inside unreachable blocks. This prevents the // instcombine code from having to deal with some bad special cases, and // reduces use counts of instructions. for (BasicBlock &BB : F) { if (LiveBlocks.count(&BB)) continue; unsigned NumDeadInstInBB; unsigned NumDeadDbgInstInBB; std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = removeAllNonTerminatorAndEHPadInstructions(&BB); MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; NumDeadInst += NumDeadInstInBB; } // Once we've found all of the instructions to add to instcombine's worklist, // add them in reverse order. This way instcombine will visit from the top // of the function down. This jives well with the way that it adds all uses // of instructions to the worklist after doing a transformation, thus avoiding // some N^2 behavior in pathological cases. Worklist.reserve(InstrsForInstructionWorklist.size()); for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { // DCE instruction if trivially dead. As we iterate in reverse program // order here, we will clean up whole chains of dead instructions. if (isInstructionTriviallyDead(Inst, &TLI) || SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { ++NumDeadInst; LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); salvageDebugInfo(*Inst); Inst->eraseFromParent(); MadeIRChange = true; continue; } Worklist.push(Inst); } return MadeIRChange; } static bool combineInstructionsOverFunction( Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopInfo *LI, const InstCombineOptions &Opts) { auto &DL = F.getParent()->getDataLayout(); /// Builder - This is an IRBuilder that automatically inserts new /// instructions into the worklist when they are created. IRBuilder Builder( F.getContext(), TargetFolder(DL), IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { Worklist.add(I); if (auto *Assume = dyn_cast(I)) AC.registerAssumption(Assume); })); ReversePostOrderTraversal RPOT(&F.front()); // Lower dbg.declare intrinsics otherwise their value may be clobbered // by instcombiner. bool MadeIRChange = false; if (ShouldLowerDbgDeclare) MadeIRChange = LowerDbgDeclare(F); // Iterate while there is work to do. unsigned Iteration = 0; while (true) { ++Iteration; if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) { LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations << " on " << F.getName() << " reached; stopping without verifying fixpoint\n"); break; } ++NumWorklistIterations; LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " << F.getName() << "\n"); InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, ORE, BFI, PSI, DL, LI); IC.MaxArraySizeForCombine = MaxArraySize; bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT); MadeChangeInThisIteration |= IC.run(); if (!MadeChangeInThisIteration) break; MadeIRChange = true; if (Iteration > Opts.MaxIterations) { report_fatal_error( "Instruction Combining did not reach a fixpoint after " + Twine(Opts.MaxIterations) + " iterations"); } } if (Iteration == 1) ++NumOneIteration; else if (Iteration == 2) ++NumTwoIterations; else if (Iteration == 3) ++NumThreeIterations; else ++NumFourOrMoreIterations; return MadeIRChange; } InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {} void InstCombinePass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { static_cast *>(this)->printPipeline( OS, MapClassName2PassName); OS << '<'; OS << "max-iterations=" << Options.MaxIterations << ";"; OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;"; OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint"; OS << '>'; } PreservedAnalyses InstCombinePass::run(Function &F, FunctionAnalysisManager &AM) { auto &AC = AM.getResult(F); auto &DT = AM.getResult(F); auto &TLI = AM.getResult(F); auto &ORE = AM.getResult(F); auto &TTI = AM.getResult(F); // TODO: Only use LoopInfo when the option is set. This requires that the // callers in the pass pipeline explicitly set the option. auto *LI = AM.getCachedResult(F); if (!LI && Options.UseLoopInfo) LI = &AM.getResult(F); auto *AA = &AM.getResult(F); auto &MAMProxy = AM.getResult(F); ProfileSummaryInfo *PSI = MAMProxy.getCachedResult(*F.getParent()); auto *BFI = (PSI && PSI->hasProfileSummary()) ? &AM.getResult(F) : nullptr; if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, BFI, PSI, LI, Options)) // No changes, all analyses are preserved. return PreservedAnalyses::all(); // Mark all the analyses that instcombine updates as preserved. PreservedAnalyses PA; PA.preserveSet(); return PA; } void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); } bool InstructionCombiningPass::runOnFunction(Function &F) { if (skipFunction(F)) return false; // Required analyses. auto AA = &getAnalysis().getAAResults(); auto &AC = getAnalysis().getAssumptionCache(F); auto &TLI = getAnalysis().getTLI(F); auto &TTI = getAnalysis().getTTI(F); auto &DT = getAnalysis().getDomTree(); auto &ORE = getAnalysis().getORE(); // Optional analyses. auto *LIWP = getAnalysisIfAvailable(); auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; ProfileSummaryInfo *PSI = &getAnalysis().getPSI(); BlockFrequencyInfo *BFI = (PSI && PSI->hasProfileSummary()) ? &getAnalysis().getBFI() : nullptr; return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, BFI, PSI, LI, InstCombineOptions()); } char InstructionCombiningPass::ID = 0; InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) { initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); } INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", "Combine redundant instructions", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", "Combine redundant instructions", false, false) // Initialization Routines void llvm::initializeInstCombine(PassRegistry &Registry) { initializeInstructionCombiningPassPass(Registry); } FunctionPass *llvm::createInstructionCombiningPass() { return new InstructionCombiningPass(); }