//===- InstCombineVectorOps.cpp -------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements instcombine for ExtractElement, InsertElement and // ShuffleVector. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Transforms/InstCombine/InstCombiner.h" #include #include #include #include #define DEBUG_TYPE "instcombine" using namespace llvm; using namespace PatternMatch; STATISTIC(NumAggregateReconstructionsSimplified, "Number of aggregate reconstructions turned into reuse of the " "original aggregate"); /// Return true if the value is cheaper to scalarize than it is to leave as a /// vector operation. If the extract index \p EI is a constant integer then /// some operations may be cheap to scalarize. /// /// FIXME: It's possible to create more instructions than previously existed. static bool cheapToScalarize(Value *V, Value *EI) { ConstantInt *CEI = dyn_cast(EI); // If we can pick a scalar constant value out of a vector, that is free. if (auto *C = dyn_cast(V)) return CEI || C->getSplatValue(); if (CEI && match(V, m_Intrinsic())) { ElementCount EC = cast(V->getType())->getElementCount(); // Index needs to be lower than the minimum size of the vector, because // for scalable vector, the vector size is known at run time. return CEI->getValue().ult(EC.getKnownMinValue()); } // An insertelement to the same constant index as our extract will simplify // to the scalar inserted element. An insertelement to a different constant // index is irrelevant to our extract. if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) return CEI; if (match(V, m_OneUse(m_Load(m_Value())))) return true; if (match(V, m_OneUse(m_UnOp()))) return true; Value *V0, *V1; if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) return true; CmpInst::Predicate UnusedPred; if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) return true; return false; } // If we have a PHI node with a vector type that is only used to feed // itself and be an operand of extractelement at a constant location, // try to replace the PHI of the vector type with a PHI of a scalar type. Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { SmallVector Extracts; // The users we want the PHI to have are: // 1) The EI ExtractElement (we already know this) // 2) Possibly more ExtractElements with the same index. // 3) Another operand, which will feed back into the PHI. Instruction *PHIUser = nullptr; for (auto *U : PN->users()) { if (ExtractElementInst *EU = dyn_cast(U)) { if (EI.getIndexOperand() == EU->getIndexOperand()) Extracts.push_back(EU); else return nullptr; } else if (!PHIUser) { PHIUser = cast(U); } else { return nullptr; } } if (!PHIUser) return nullptr; // Verify that this PHI user has one use, which is the PHI itself, // and that it is a binary operation which is cheap to scalarize. // otherwise return nullptr. if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || !(isa(PHIUser)) || !cheapToScalarize(PHIUser, EI.getIndexOperand())) return nullptr; // Create a scalar PHI node that will replace the vector PHI node // just before the current PHI node. PHINode *scalarPHI = cast(InsertNewInstWith( PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), PN->getIterator())); // Scalarize each PHI operand. for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { Value *PHIInVal = PN->getIncomingValue(i); BasicBlock *inBB = PN->getIncomingBlock(i); Value *Elt = EI.getIndexOperand(); // If the operand is the PHI induction variable: if (PHIInVal == PHIUser) { // Scalarize the binary operation. Its first operand is the // scalar PHI, and the second operand is extracted from the other // vector operand. BinaryOperator *B0 = cast(PHIUser); unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; Value *Op = InsertNewInstWith( ExtractElementInst::Create(B0->getOperand(opId), Elt, B0->getOperand(opId)->getName() + ".Elt"), B0->getIterator()); Value *newPHIUser = InsertNewInstWith( BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), scalarPHI, Op, B0), B0->getIterator()); scalarPHI->addIncoming(newPHIUser, inBB); } else { // Scalarize PHI input: Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); // Insert the new instruction into the predecessor basic block. Instruction *pos = dyn_cast(PHIInVal); BasicBlock::iterator InsertPos; if (pos && !isa(pos)) { InsertPos = ++pos->getIterator(); } else { InsertPos = inBB->getFirstInsertionPt(); } InsertNewInstWith(newEI, InsertPos); scalarPHI->addIncoming(newEI, inBB); } } for (auto *E : Extracts) { replaceInstUsesWith(*E, scalarPHI); // Add old extract to worklist for DCE. addToWorklist(E); } return &EI; } Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { Value *X; uint64_t ExtIndexC; if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) return nullptr; ElementCount NumElts = cast(Ext.getVectorOperandType())->getElementCount(); Type *DestTy = Ext.getType(); unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); bool IsBigEndian = DL.isBigEndian(); // If we are casting an integer to vector and extracting a portion, that is // a shift-right and truncate. if (X->getType()->isIntegerTy()) { assert(isa(Ext.getVectorOperand()->getType()) && "Expected fixed vector type for bitcast from scalar integer"); // Big endian requires adjusting the extract index since MSB is at index 0. // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 if (IsBigEndian) ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; unsigned ShiftAmountC = ExtIndexC * DestWidth; if (!ShiftAmountC || (isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) && Ext.getVectorOperand()->hasOneUse())) { if (ShiftAmountC) X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); if (DestTy->isFloatingPointTy()) { Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth); Value *Trunc = Builder.CreateTrunc(X, DstIntTy); return new BitCastInst(Trunc, DestTy); } return new TruncInst(X, DestTy); } } if (!X->getType()->isVectorTy()) return nullptr; // If this extractelement is using a bitcast from a vector of the same number // of elements, see if we can find the source element from the source vector: // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] auto *SrcTy = cast(X->getType()); ElementCount NumSrcElts = SrcTy->getElementCount(); if (NumSrcElts == NumElts) if (Value *Elt = findScalarElement(X, ExtIndexC)) return new BitCastInst(Elt, DestTy); assert(NumSrcElts.isScalable() == NumElts.isScalable() && "Src and Dst must be the same sort of vector type"); // If the source elements are wider than the destination, try to shift and // truncate a subset of scalar bits of an insert op. if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { Value *Scalar; Value *Vec; uint64_t InsIndexC; if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar), m_ConstantInt(InsIndexC)))) return nullptr; // The extract must be from the subset of vector elements that we inserted // into. Example: if we inserted element 1 of a <2 x i64> and we are // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 // of elements 4-7 of the bitcasted vector. unsigned NarrowingRatio = NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); if (ExtIndexC / NarrowingRatio != InsIndexC) { // Remove insertelement, if we don't use the inserted element. // extractelement (bitcast (insertelement (Vec, b)), a) -> // extractelement (bitcast (Vec), a) // FIXME: this should be removed to SimplifyDemandedVectorElts, // once scale vectors are supported. if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) { Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType()); return ExtractElementInst::Create(NewBC, Ext.getIndexOperand()); } return nullptr; } // We are extracting part of the original scalar. How that scalar is // inserted into the vector depends on the endian-ness. Example: // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 // +--+--+--+--+--+--+--+--+ // inselt <2 x i32> V, S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| // extelt <4 x i16> V', 3: | |S2|S3| // +--+--+--+--+--+--+--+--+ // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. // In this example, we must right-shift little-endian. Big-endian is just a // truncate. unsigned Chunk = ExtIndexC % NarrowingRatio; if (IsBigEndian) Chunk = NarrowingRatio - 1 - Chunk; // Bail out if this is an FP vector to FP vector sequence. That would take // more instructions than we started with unless there is no shift, and it // may not be handled as well in the backend. bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); bool NeedDestBitcast = DestTy->isFloatingPointTy(); if (NeedSrcBitcast && NeedDestBitcast) return nullptr; unsigned SrcWidth = SrcTy->getScalarSizeInBits(); unsigned ShAmt = Chunk * DestWidth; // TODO: This limitation is more strict than necessary. We could sum the // number of new instructions and subtract the number eliminated to know if // we can proceed. if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) if (NeedSrcBitcast || NeedDestBitcast) return nullptr; if (NeedSrcBitcast) { Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); } if (ShAmt) { // Bail out if we could end with more instructions than we started with. if (!Ext.getVectorOperand()->hasOneUse()) return nullptr; Scalar = Builder.CreateLShr(Scalar, ShAmt); } if (NeedDestBitcast) { Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); } return new TruncInst(Scalar, DestTy); } return nullptr; } /// Find elements of V demanded by UserInstr. static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { unsigned VWidth = cast(V->getType())->getNumElements(); // Conservatively assume that all elements are needed. APInt UsedElts(APInt::getAllOnes(VWidth)); switch (UserInstr->getOpcode()) { case Instruction::ExtractElement: { ExtractElementInst *EEI = cast(UserInstr); assert(EEI->getVectorOperand() == V); ConstantInt *EEIIndexC = dyn_cast(EEI->getIndexOperand()); if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); } break; } case Instruction::ShuffleVector: { ShuffleVectorInst *Shuffle = cast(UserInstr); unsigned MaskNumElts = cast(UserInstr->getType())->getNumElements(); UsedElts = APInt(VWidth, 0); for (unsigned i = 0; i < MaskNumElts; i++) { unsigned MaskVal = Shuffle->getMaskValue(i); if (MaskVal == -1u || MaskVal >= 2 * VWidth) continue; if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) UsedElts.setBit(MaskVal); if (Shuffle->getOperand(1) == V && ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) UsedElts.setBit(MaskVal - VWidth); } break; } default: break; } return UsedElts; } /// Find union of elements of V demanded by all its users. /// If it is known by querying findDemandedEltsBySingleUser that /// no user demands an element of V, then the corresponding bit /// remains unset in the returned value. static APInt findDemandedEltsByAllUsers(Value *V) { unsigned VWidth = cast(V->getType())->getNumElements(); APInt UnionUsedElts(VWidth, 0); for (const Use &U : V->uses()) { if (Instruction *I = dyn_cast(U.getUser())) { UnionUsedElts |= findDemandedEltsBySingleUser(V, I); } else { UnionUsedElts = APInt::getAllOnes(VWidth); break; } if (UnionUsedElts.isAllOnes()) break; } return UnionUsedElts; } /// Given a constant index for a extractelement or insertelement instruction, /// return it with the canonical type if it isn't already canonical. We /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't /// matter, we just want a consistent type to simplify CSE. static ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) { const unsigned IndexBW = IndexC->getBitWidth(); if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64) return nullptr; return ConstantInt::get(IndexC->getContext(), IndexC->getValue().zextOrTrunc(64)); } Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { Value *SrcVec = EI.getVectorOperand(); Value *Index = EI.getIndexOperand(); if (Value *V = simplifyExtractElementInst(SrcVec, Index, SQ.getWithInstruction(&EI))) return replaceInstUsesWith(EI, V); // extractelt (select %x, %vec1, %vec2), %const -> // select %x, %vec1[%const], %vec2[%const] // TODO: Support constant folding of multiple select operands: // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2) // If the extractelement will for instance try to do out of bounds accesses // because of the values of %c1 and/or %c2, the sequence could be optimized // early. This is currently not possible because constant folding will reach // an unreachable assertion if it doesn't find a constant operand. if (SelectInst *SI = dyn_cast(EI.getVectorOperand())) if (SI->getCondition()->getType()->isIntegerTy() && isa(EI.getIndexOperand())) if (Instruction *R = FoldOpIntoSelect(EI, SI)) return R; // If extracting a specified index from the vector, see if we can recursively // find a previously computed scalar that was inserted into the vector. auto *IndexC = dyn_cast(Index); if (IndexC) { // Canonicalize type of constant indices to i64 to simplify CSE if (auto *NewIdx = getPreferredVectorIndex(IndexC)) return replaceOperand(EI, 1, NewIdx); ElementCount EC = EI.getVectorOperandType()->getElementCount(); unsigned NumElts = EC.getKnownMinValue(); if (IntrinsicInst *II = dyn_cast(SrcVec)) { Intrinsic::ID IID = II->getIntrinsicID(); // Index needs to be lower than the minimum size of the vector, because // for scalable vector, the vector size is known at run time. if (IID == Intrinsic::experimental_stepvector && IndexC->getValue().ult(NumElts)) { Type *Ty = EI.getType(); unsigned BitWidth = Ty->getIntegerBitWidth(); Value *Idx; // Return index when its value does not exceed the allowed limit // for the element type of the vector, otherwise return undefined. if (IndexC->getValue().getActiveBits() <= BitWidth) Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); else Idx = PoisonValue::get(Ty); return replaceInstUsesWith(EI, Idx); } } // InstSimplify should handle cases where the index is invalid. // For fixed-length vector, it's invalid to extract out-of-range element. if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) return nullptr; if (Instruction *I = foldBitcastExtElt(EI)) return I; // If there's a vector PHI feeding a scalar use through this extractelement // instruction, try to scalarize the PHI. if (auto *Phi = dyn_cast(SrcVec)) if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) return ScalarPHI; } // TODO come up with a n-ary matcher that subsumes both unary and // binary matchers. UnaryOperator *UO; if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { // extelt (unop X), Index --> unop (extelt X, Index) Value *X = UO->getOperand(0); Value *E = Builder.CreateExtractElement(X, Index); return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); } BinaryOperator *BO; if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) Value *X = BO->getOperand(0), *Y = BO->getOperand(1); Value *E0 = Builder.CreateExtractElement(X, Index); Value *E1 = Builder.CreateExtractElement(Y, Index); return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); } Value *X, *Y; CmpInst::Predicate Pred; if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && cheapToScalarize(SrcVec, Index)) { // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) Value *E0 = Builder.CreateExtractElement(X, Index); Value *E1 = Builder.CreateExtractElement(Y, Index); return CmpInst::Create(cast(SrcVec)->getOpcode(), Pred, E0, E1); } if (auto *I = dyn_cast(SrcVec)) { if (auto *IE = dyn_cast(I)) { // instsimplify already handled the case where the indices are constants // and equal by value, if both are constants, they must not be the same // value, extract from the pre-inserted value instead. if (isa(IE->getOperand(2)) && IndexC) return replaceOperand(EI, 0, IE->getOperand(0)); } else if (auto *GEP = dyn_cast(I)) { auto *VecType = cast(GEP->getType()); ElementCount EC = VecType->getElementCount(); uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { // Find out why we have a vector result - these are a few examples: // 1. We have a scalar pointer and a vector of indices, or // 2. We have a vector of pointers and a scalar index, or // 3. We have a vector of pointers and a vector of indices, etc. // Here we only consider combining when there is exactly one vector // operand, since the optimization is less obviously a win due to // needing more than one extractelements. unsigned VectorOps = llvm::count_if(GEP->operands(), [](const Value *V) { return isa(V->getType()); }); if (VectorOps == 1) { Value *NewPtr = GEP->getPointerOperand(); if (isa(NewPtr->getType())) NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); SmallVector NewOps; for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { Value *Op = GEP->getOperand(I); if (isa(Op->getType())) NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); else NewOps.push_back(Op); } GetElementPtrInst *NewGEP = GetElementPtrInst::Create( GEP->getSourceElementType(), NewPtr, NewOps); NewGEP->setIsInBounds(GEP->isInBounds()); return NewGEP; } } } else if (auto *SVI = dyn_cast(I)) { // If this is extracting an element from a shufflevector, figure out where // it came from and extract from the appropriate input element instead. // Restrict the following transformation to fixed-length vector. if (isa(SVI->getType()) && isa(Index)) { int SrcIdx = SVI->getMaskValue(cast(Index)->getZExtValue()); Value *Src; unsigned LHSWidth = cast(SVI->getOperand(0)->getType()) ->getNumElements(); if (SrcIdx < 0) return replaceInstUsesWith(EI, PoisonValue::get(EI.getType())); if (SrcIdx < (int)LHSWidth) Src = SVI->getOperand(0); else { SrcIdx -= LHSWidth; Src = SVI->getOperand(1); } Type *Int64Ty = Type::getInt64Ty(EI.getContext()); return ExtractElementInst::Create( Src, ConstantInt::get(Int64Ty, SrcIdx, false)); } } else if (auto *CI = dyn_cast(I)) { // Canonicalize extractelement(cast) -> cast(extractelement). // Bitcasts can change the number of vector elements, and they cost // nothing. if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); return CastInst::Create(CI->getOpcode(), EE, EI.getType()); } } } // Run demanded elements after other transforms as this can drop flags on // binops. If there's two paths to the same final result, we prefer the // one which doesn't force us to drop flags. if (IndexC) { ElementCount EC = EI.getVectorOperandType()->getElementCount(); unsigned NumElts = EC.getKnownMinValue(); // This instruction only demands the single element from the input vector. // Skip for scalable type, the number of elements is unknown at // compile-time. if (!EC.isScalable() && NumElts != 1) { // If the input vector has a single use, simplify it based on this use // property. if (SrcVec->hasOneUse()) { APInt PoisonElts(NumElts, 0); APInt DemandedElts(NumElts, 0); DemandedElts.setBit(IndexC->getZExtValue()); if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts, PoisonElts)) return replaceOperand(EI, 0, V); } else { // If the input vector has multiple uses, simplify it based on a union // of all elements used. APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); if (!DemandedElts.isAllOnes()) { APInt PoisonElts(NumElts, 0); if (Value *V = SimplifyDemandedVectorElts( SrcVec, DemandedElts, PoisonElts, 0 /* Depth */, true /* AllowMultipleUsers */)) { if (V != SrcVec) { Worklist.addValue(SrcVec); SrcVec->replaceAllUsesWith(V); return &EI; } } } } } } return nullptr; } /// If V is a shuffle of values that ONLY returns elements from either LHS or /// RHS, return the shuffle mask and true. Otherwise, return false. static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, SmallVectorImpl &Mask) { assert(LHS->getType() == RHS->getType() && "Invalid CollectSingleShuffleElements"); unsigned NumElts = cast(V->getType())->getNumElements(); if (match(V, m_Undef())) { Mask.assign(NumElts, -1); return true; } if (V == LHS) { for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(i); return true; } if (V == RHS) { for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(i + NumElts); return true; } if (InsertElementInst *IEI = dyn_cast(V)) { // If this is an insert of an extract from some other vector, include it. Value *VecOp = IEI->getOperand(0); Value *ScalarOp = IEI->getOperand(1); Value *IdxOp = IEI->getOperand(2); if (!isa(IdxOp)) return false; unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); if (isa(ScalarOp)) { // inserting poison into vector. // We can handle this if the vector we are inserting into is // transitively ok. if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted poison. Mask[InsertedIdx] = -1; return true; } } else if (ExtractElementInst *EI = dyn_cast(ScalarOp)){ if (isa(EI->getOperand(1))) { unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); unsigned NumLHSElts = cast(LHS->getType())->getNumElements(); // This must be extracting from either LHS or RHS. if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { // We can handle this if the vector we are inserting into is // transitively ok. if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted value. if (EI->getOperand(0) == LHS) { Mask[InsertedIdx % NumElts] = ExtractedIdx; } else { assert(EI->getOperand(0) == RHS); Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; } return true; } } } } } return false; } /// If we have insertion into a vector that is wider than the vector that we /// are extracting from, try to widen the source vector to allow a single /// shufflevector to replace one or more insert/extract pairs. static bool replaceExtractElements(InsertElementInst *InsElt, ExtractElementInst *ExtElt, InstCombinerImpl &IC) { auto *InsVecType = cast(InsElt->getType()); auto *ExtVecType = cast(ExtElt->getVectorOperandType()); unsigned NumInsElts = InsVecType->getNumElements(); unsigned NumExtElts = ExtVecType->getNumElements(); // The inserted-to vector must be wider than the extracted-from vector. if (InsVecType->getElementType() != ExtVecType->getElementType() || NumExtElts >= NumInsElts) return false; // Create a shuffle mask to widen the extended-from vector using poison // values. The mask selects all of the values of the original vector followed // by as many poison values as needed to create a vector of the same length // as the inserted-to vector. SmallVector ExtendMask; for (unsigned i = 0; i < NumExtElts; ++i) ExtendMask.push_back(i); for (unsigned i = NumExtElts; i < NumInsElts; ++i) ExtendMask.push_back(-1); Value *ExtVecOp = ExtElt->getVectorOperand(); auto *ExtVecOpInst = dyn_cast(ExtVecOp); BasicBlock *InsertionBlock = (ExtVecOpInst && !isa(ExtVecOpInst)) ? ExtVecOpInst->getParent() : ExtElt->getParent(); // TODO: This restriction matches the basic block check below when creating // new extractelement instructions. If that limitation is removed, this one // could also be removed. But for now, we just bail out to ensure that we // will replace the extractelement instruction that is feeding our // insertelement instruction. This allows the insertelement to then be // replaced by a shufflevector. If the insertelement is not replaced, we can // induce infinite looping because there's an optimization for extractelement // that will delete our widening shuffle. This would trigger another attempt // here to create that shuffle, and we spin forever. if (InsertionBlock != InsElt->getParent()) return false; // TODO: This restriction matches the check in visitInsertElementInst() and // prevents an infinite loop caused by not turning the extract/insert pair // into a shuffle. We really should not need either check, but we're lacking // folds for shufflevectors because we're afraid to generate shuffle masks // that the backend can't handle. if (InsElt->hasOneUse() && isa(InsElt->user_back())) return false; auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); // Insert the new shuffle after the vector operand of the extract is defined // (as long as it's not a PHI) or at the start of the basic block of the // extract, so any subsequent extracts in the same basic block can use it. // TODO: Insert before the earliest ExtractElementInst that is replaced. if (ExtVecOpInst && !isa(ExtVecOpInst)) WideVec->insertAfter(ExtVecOpInst); else IC.InsertNewInstWith(WideVec, ExtElt->getParent()->getFirstInsertionPt()); // Replace extracts from the original narrow vector with extracts from the new // wide vector. for (User *U : ExtVecOp->users()) { ExtractElementInst *OldExt = dyn_cast(U); if (!OldExt || OldExt->getParent() != WideVec->getParent()) continue; auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); IC.InsertNewInstWith(NewExt, OldExt->getIterator()); IC.replaceInstUsesWith(*OldExt, NewExt); // Add the old extracts to the worklist for DCE. We can't remove the // extracts directly, because they may still be used by the calling code. IC.addToWorklist(OldExt); } return true; } /// We are building a shuffle to create V, which is a sequence of insertelement, /// extractelement pairs. If PermittedRHS is set, then we must either use it or /// not rely on the second vector source. Return a std::pair containing the /// left and right vectors of the proposed shuffle (or 0), and set the Mask /// parameter as required. /// /// Note: we intentionally don't try to fold earlier shuffles since they have /// often been chosen carefully to be efficiently implementable on the target. using ShuffleOps = std::pair; static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl &Mask, Value *PermittedRHS, InstCombinerImpl &IC, bool &Rerun) { assert(V->getType()->isVectorTy() && "Invalid shuffle!"); unsigned NumElts = cast(V->getType())->getNumElements(); if (match(V, m_Poison())) { Mask.assign(NumElts, -1); return std::make_pair( PermittedRHS ? PoisonValue::get(PermittedRHS->getType()) : V, nullptr); } if (isa(V)) { Mask.assign(NumElts, 0); return std::make_pair(V, nullptr); } if (InsertElementInst *IEI = dyn_cast(V)) { // If this is an insert of an extract from some other vector, include it. Value *VecOp = IEI->getOperand(0); Value *ScalarOp = IEI->getOperand(1); Value *IdxOp = IEI->getOperand(2); if (ExtractElementInst *EI = dyn_cast(ScalarOp)) { if (isa(EI->getOperand(1)) && isa(IdxOp)) { unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); // Either the extracted from or inserted into vector must be RHSVec, // otherwise we'd end up with a shuffle of three inputs. if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { Value *RHS = EI->getOperand(0); ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC, Rerun); assert(LR.second == nullptr || LR.second == RHS); if (LR.first->getType() != RHS->getType()) { // Although we are giving up for now, see if we can create extracts // that match the inserts for another round of combining. if (replaceExtractElements(IEI, EI, IC)) Rerun = true; // We tried our best, but we can't find anything compatible with RHS // further up the chain. Return a trivial shuffle. for (unsigned i = 0; i < NumElts; ++i) Mask[i] = i; return std::make_pair(V, nullptr); } unsigned NumLHSElts = cast(RHS->getType())->getNumElements(); Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; return std::make_pair(LR.first, RHS); } if (VecOp == PermittedRHS) { // We've gone as far as we can: anything on the other side of the // extractelement will already have been converted into a shuffle. unsigned NumLHSElts = cast(EI->getOperand(0)->getType()) ->getNumElements(); for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); return std::make_pair(EI->getOperand(0), PermittedRHS); } // If this insertelement is a chain that comes from exactly these two // vectors, return the vector and the effective shuffle. if (EI->getOperand(0)->getType() == PermittedRHS->getType() && collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, Mask)) return std::make_pair(EI->getOperand(0), PermittedRHS); } } } // Otherwise, we can't do anything fancy. Return an identity vector. for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(i); return std::make_pair(V, nullptr); } /// Look for chain of insertvalue's that fully define an aggregate, and trace /// back the values inserted, see if they are all were extractvalue'd from /// the same source aggregate from the exact same element indexes. /// If they were, just reuse the source aggregate. /// This potentially deals with PHI indirections. Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( InsertValueInst &OrigIVI) { Type *AggTy = OrigIVI.getType(); unsigned NumAggElts; switch (AggTy->getTypeID()) { case Type::StructTyID: NumAggElts = AggTy->getStructNumElements(); break; case Type::ArrayTyID: NumAggElts = AggTy->getArrayNumElements(); break; default: llvm_unreachable("Unhandled aggregate type?"); } // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), // FIXME: any interesting patterns to be caught with larger limit? assert(NumAggElts > 0 && "Aggregate should have elements."); if (NumAggElts > 2) return nullptr; static constexpr auto NotFound = std::nullopt; static constexpr auto FoundMismatch = nullptr; // Try to find a value of each element of an aggregate. // FIXME: deal with more complex, not one-dimensional, aggregate types SmallVector, 2> AggElts(NumAggElts, NotFound); // Do we know values for each element of the aggregate? auto KnowAllElts = [&AggElts]() { return !llvm::is_contained(AggElts, NotFound); }; int Depth = 0; // Arbitrary `insertvalue` visitation depth limit. Let's be okay with // every element being overwritten twice, which should never happen. static const int DepthLimit = 2 * NumAggElts; // Recurse up the chain of `insertvalue` aggregate operands until either we've // reconstructed full initializer or can't visit any more `insertvalue`'s. for (InsertValueInst *CurrIVI = &OrigIVI; Depth < DepthLimit && CurrIVI && !KnowAllElts(); CurrIVI = dyn_cast(CurrIVI->getAggregateOperand()), ++Depth) { auto *InsertedValue = dyn_cast(CurrIVI->getInsertedValueOperand()); if (!InsertedValue) return nullptr; // Inserted value must be produced by an instruction. ArrayRef Indices = CurrIVI->getIndices(); // Don't bother with more than single-level aggregates. if (Indices.size() != 1) return nullptr; // FIXME: deal with more complex aggregates? // Now, we may have already previously recorded the value for this element // of an aggregate. If we did, that means the CurrIVI will later be // overwritten with the already-recorded value. But if not, let's record it! std::optional &Elt = AggElts[Indices.front()]; Elt = Elt.value_or(InsertedValue); // FIXME: should we handle chain-terminating undef base operand? } // Was that sufficient to deduce the full initializer for the aggregate? if (!KnowAllElts()) return nullptr; // Give up then. // We now want to find the source[s] of the aggregate elements we've found. // And with "source" we mean the original aggregate[s] from which // the inserted elements were extracted. This may require PHI translation. enum class AggregateDescription { /// When analyzing the value that was inserted into an aggregate, we did /// not manage to find defining `extractvalue` instruction to analyze. NotFound, /// When analyzing the value that was inserted into an aggregate, we did /// manage to find defining `extractvalue` instruction[s], and everything /// matched perfectly - aggregate type, element insertion/extraction index. Found, /// When analyzing the value that was inserted into an aggregate, we did /// manage to find defining `extractvalue` instruction, but there was /// a mismatch: either the source type from which the extraction was didn't /// match the aggregate type into which the insertion was, /// or the extraction/insertion channels mismatched, /// or different elements had different source aggregates. FoundMismatch }; auto Describe = [](std::optional SourceAggregate) { if (SourceAggregate == NotFound) return AggregateDescription::NotFound; if (*SourceAggregate == FoundMismatch) return AggregateDescription::FoundMismatch; return AggregateDescription::Found; }; // Given the value \p Elt that was being inserted into element \p EltIdx of an // aggregate AggTy, see if \p Elt was originally defined by an // appropriate extractvalue (same element index, same aggregate type). // If found, return the source aggregate from which the extraction was. // If \p PredBB is provided, does PHI translation of an \p Elt first. auto FindSourceAggregate = [&](Instruction *Elt, unsigned EltIdx, std::optional UseBB, std::optional PredBB) -> std::optional { // For now(?), only deal with, at most, a single level of PHI indirection. if (UseBB && PredBB) Elt = dyn_cast(Elt->DoPHITranslation(*UseBB, *PredBB)); // FIXME: deal with multiple levels of PHI indirection? // Did we find an extraction? auto *EVI = dyn_cast_or_null(Elt); if (!EVI) return NotFound; Value *SourceAggregate = EVI->getAggregateOperand(); // Is the extraction from the same type into which the insertion was? if (SourceAggregate->getType() != AggTy) return FoundMismatch; // And the element index doesn't change between extraction and insertion? if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) return FoundMismatch; return SourceAggregate; // AggregateDescription::Found }; // Given elements AggElts that were constructing an aggregate OrigIVI, // see if we can find appropriate source aggregate for each of the elements, // and see it's the same aggregate for each element. If so, return it. auto FindCommonSourceAggregate = [&](std::optional UseBB, std::optional PredBB) -> std::optional { std::optional SourceAggregate; for (auto I : enumerate(AggElts)) { assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && "We don't store nullptr in SourceAggregate!"); assert((Describe(SourceAggregate) == AggregateDescription::Found) == (I.index() != 0) && "SourceAggregate should be valid after the first element,"); // For this element, is there a plausible source aggregate? // FIXME: we could special-case undef element, IFF we know that in the // source aggregate said element isn't poison. std::optional SourceAggregateForElement = FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); // Okay, what have we found? Does that correlate with previous findings? // Regardless of whether or not we have previously found source // aggregate for previous elements (if any), if we didn't find one for // this element, passthrough whatever we have just found. if (Describe(SourceAggregateForElement) != AggregateDescription::Found) return SourceAggregateForElement; // Okay, we have found source aggregate for this element. // Let's see what we already know from previous elements, if any. switch (Describe(SourceAggregate)) { case AggregateDescription::NotFound: // This is apparently the first element that we have examined. SourceAggregate = SourceAggregateForElement; // Record the aggregate! continue; // Great, now look at next element. case AggregateDescription::Found: // We have previously already successfully examined other elements. // Is this the same source aggregate we've found for other elements? if (*SourceAggregateForElement != *SourceAggregate) return FoundMismatch; continue; // Still the same aggregate, look at next element. case AggregateDescription::FoundMismatch: llvm_unreachable("Can't happen. We would have early-exited then."); }; } assert(Describe(SourceAggregate) == AggregateDescription::Found && "Must be a valid Value"); return *SourceAggregate; }; std::optional SourceAggregate; // Can we find the source aggregate without looking at predecessors? SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt, /*PredBB=*/std::nullopt); if (Describe(SourceAggregate) != AggregateDescription::NotFound) { if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) return nullptr; // Conflicting source aggregates! ++NumAggregateReconstructionsSimplified; return replaceInstUsesWith(OrigIVI, *SourceAggregate); } // Okay, apparently we need to look at predecessors. // We should be smart about picking the "use" basic block, which will be the // merge point for aggregate, where we'll insert the final PHI that will be // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. // We should look in which blocks each of the AggElts is being defined, // they all should be defined in the same basic block. BasicBlock *UseBB = nullptr; for (const std::optional &I : AggElts) { BasicBlock *BB = (*I)->getParent(); // If it's the first instruction we've encountered, record the basic block. if (!UseBB) { UseBB = BB; continue; } // Otherwise, this must be the same basic block we've seen previously. if (UseBB != BB) return nullptr; } // If *all* of the elements are basic-block-independent, meaning they are // either function arguments, or constant expressions, then if we didn't // handle them without predecessor-aware handling, we won't handle them now. if (!UseBB) return nullptr; // If we didn't manage to find source aggregate without looking at // predecessors, and there are no predecessors to look at, then we're done. if (pred_empty(UseBB)) return nullptr; // Arbitrary predecessor count limit. static const int PredCountLimit = 64; // Cache the (non-uniqified!) list of predecessors in a vector, // checking the limit at the same time for efficiency. SmallVector Preds; // May have duplicates! for (BasicBlock *Pred : predecessors(UseBB)) { // Don't bother if there are too many predecessors. if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? return nullptr; Preds.emplace_back(Pred); } // For each predecessor, what is the source aggregate, // from which all the elements were originally extracted from? // Note that we want for the map to have stable iteration order! SmallDenseMap SourceAggregates; for (BasicBlock *Pred : Preds) { std::pair IV = SourceAggregates.insert({Pred, nullptr}); // Did we already evaluate this predecessor? if (!IV.second) continue; // Let's hope that when coming from predecessor Pred, all elements of the // aggregate produced by OrigIVI must have been originally extracted from // the same aggregate. Is that so? Can we find said original aggregate? SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); if (Describe(SourceAggregate) != AggregateDescription::Found) return nullptr; // Give up. IV.first->second = *SourceAggregate; } // All good! Now we just need to thread the source aggregates here. // Note that we have to insert the new PHI here, ourselves, because we can't // rely on InstCombinerImpl::run() inserting it into the right basic block. // Note that the same block can be a predecessor more than once, // and we need to preserve that invariant for the PHI node. BuilderTy::InsertPointGuard Guard(Builder); Builder.SetInsertPoint(UseBB, UseBB->getFirstNonPHIIt()); auto *PHI = Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); for (BasicBlock *Pred : Preds) PHI->addIncoming(SourceAggregates[Pred], Pred); ++NumAggregateReconstructionsSimplified; return replaceInstUsesWith(OrigIVI, PHI); } /// Try to find redundant insertvalue instructions, like the following ones: /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 /// Here the second instruction inserts values at the same indices, as the /// first one, making the first one redundant. /// It should be transformed to: /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { if (Value *V = simplifyInsertValueInst( I.getAggregateOperand(), I.getInsertedValueOperand(), I.getIndices(), SQ.getWithInstruction(&I))) return replaceInstUsesWith(I, V); bool IsRedundant = false; ArrayRef FirstIndices = I.getIndices(); // If there is a chain of insertvalue instructions (each of them except the // last one has only one use and it's another insertvalue insn from this // chain), check if any of the 'children' uses the same indices as the first // instruction. In this case, the first one is redundant. Value *V = &I; unsigned Depth = 0; while (V->hasOneUse() && Depth < 10) { User *U = V->user_back(); auto UserInsInst = dyn_cast(U); if (!UserInsInst || U->getOperand(0) != V) break; if (UserInsInst->getIndices() == FirstIndices) { IsRedundant = true; break; } V = UserInsInst; Depth++; } if (IsRedundant) return replaceInstUsesWith(I, I.getOperand(0)); if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) return NewI; return nullptr; } static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { // Can not analyze scalable type, the number of elements is not a compile-time // constant. if (isa(Shuf.getOperand(0)->getType())) return false; int MaskSize = Shuf.getShuffleMask().size(); int VecSize = cast(Shuf.getOperand(0)->getType())->getNumElements(); // A vector select does not change the size of the operands. if (MaskSize != VecSize) return false; // Each mask element must be undefined or choose a vector element from one of // the source operands without crossing vector lanes. for (int i = 0; i != MaskSize; ++i) { int Elt = Shuf.getMaskValue(i); if (Elt != -1 && Elt != i && Elt != i + VecSize) return false; } return true; } /// Turn a chain of inserts that splats a value into an insert + shuffle: /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> /// shufflevector(insertelt(X, %k, 0), poison, zero) static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { // We are interested in the last insert in a chain. So if this insert has a // single user and that user is an insert, bail. if (InsElt.hasOneUse() && isa(InsElt.user_back())) return nullptr; VectorType *VecTy = InsElt.getType(); // Can not handle scalable type, the number of elements is not a compile-time // constant. if (isa(VecTy)) return nullptr; unsigned NumElements = cast(VecTy)->getNumElements(); // Do not try to do this for a one-element vector, since that's a nop, // and will cause an inf-loop. if (NumElements == 1) return nullptr; Value *SplatVal = InsElt.getOperand(1); InsertElementInst *CurrIE = &InsElt; SmallBitVector ElementPresent(NumElements, false); InsertElementInst *FirstIE = nullptr; // Walk the chain backwards, keeping track of which indices we inserted into, // until we hit something that isn't an insert of the splatted value. while (CurrIE) { auto *Idx = dyn_cast(CurrIE->getOperand(2)); if (!Idx || CurrIE->getOperand(1) != SplatVal) return nullptr; auto *NextIE = dyn_cast(CurrIE->getOperand(0)); // Check none of the intermediate steps have any additional uses, except // for the root insertelement instruction, which can be re-used, if it // inserts at position 0. if (CurrIE != &InsElt && (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) return nullptr; ElementPresent[Idx->getZExtValue()] = true; FirstIE = CurrIE; CurrIE = NextIE; } // If this is just a single insertelement (not a sequence), we are done. if (FirstIE == &InsElt) return nullptr; // If we are not inserting into a poison vector, make sure we've seen an // insert into every element. // TODO: If the base vector is not undef, it might be better to create a splat // and then a select-shuffle (blend) with the base vector. if (!match(FirstIE->getOperand(0), m_Poison())) if (!ElementPresent.all()) return nullptr; // Create the insert + shuffle. Type *Int64Ty = Type::getInt64Ty(InsElt.getContext()); PoisonValue *PoisonVec = PoisonValue::get(VecTy); Constant *Zero = ConstantInt::get(Int64Ty, 0); if (!cast(FirstIE->getOperand(2))->isZero()) FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); // Splat from element 0, but replace absent elements with poison in the mask. SmallVector Mask(NumElements, 0); for (unsigned i = 0; i != NumElements; ++i) if (!ElementPresent[i]) Mask[i] = -1; return new ShuffleVectorInst(FirstIE, Mask); } /// Try to fold an insert element into an existing splat shuffle by changing /// the shuffle's mask to include the index of this insert element. static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { // Check if the vector operand of this insert is a canonical splat shuffle. auto *Shuf = dyn_cast(InsElt.getOperand(0)); if (!Shuf || !Shuf->isZeroEltSplat()) return nullptr; // Bail out early if shuffle is scalable type. The number of elements in // shuffle mask is unknown at compile-time. if (isa(Shuf->getType())) return nullptr; // Check for a constant insertion index. uint64_t IdxC; if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) return nullptr; // Check if the splat shuffle's input is the same as this insert's scalar op. Value *X = InsElt.getOperand(1); Value *Op0 = Shuf->getOperand(0); if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) return nullptr; // Replace the shuffle mask element at the index of this insert with a zero. // For example: // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> unsigned NumMaskElts = cast(Shuf->getType())->getNumElements(); SmallVector NewMask(NumMaskElts); for (unsigned i = 0; i != NumMaskElts; ++i) NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); return new ShuffleVectorInst(Op0, NewMask); } /// Try to fold an extract+insert element into an existing identity shuffle by /// changing the shuffle's mask to include the index of this insert element. static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { // Check if the vector operand of this insert is an identity shuffle. auto *Shuf = dyn_cast(InsElt.getOperand(0)); if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) return nullptr; // Bail out early if shuffle is scalable type. The number of elements in // shuffle mask is unknown at compile-time. if (isa(Shuf->getType())) return nullptr; // Check for a constant insertion index. uint64_t IdxC; if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) return nullptr; // Check if this insert's scalar op is extracted from the identity shuffle's // input vector. Value *Scalar = InsElt.getOperand(1); Value *X = Shuf->getOperand(0); if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) return nullptr; // Replace the shuffle mask element at the index of this extract+insert with // that same index value. // For example: // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' unsigned NumMaskElts = cast(Shuf->getType())->getNumElements(); SmallVector NewMask(NumMaskElts); ArrayRef OldMask = Shuf->getShuffleMask(); for (unsigned i = 0; i != NumMaskElts; ++i) { if (i != IdxC) { // All mask elements besides the inserted element remain the same. NewMask[i] = OldMask[i]; } else if (OldMask[i] == (int)IdxC) { // If the mask element was already set, there's nothing to do // (demanded elements analysis may unset it later). return nullptr; } else { assert(OldMask[i] == PoisonMaskElem && "Unexpected shuffle mask element for identity shuffle"); NewMask[i] = IdxC; } } return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); } /// If we have an insertelement instruction feeding into another insertelement /// and the 2nd is inserting a constant into the vector, canonicalize that /// constant insertion before the insertion of a variable: /// /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 /// /// This has the potential of eliminating the 2nd insertelement instruction /// via constant folding of the scalar constant into a vector constant. static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, InstCombiner::BuilderTy &Builder) { auto *InsElt1 = dyn_cast(InsElt2.getOperand(0)); if (!InsElt1 || !InsElt1->hasOneUse()) return nullptr; Value *X, *Y; Constant *ScalarC; ConstantInt *IdxC1, *IdxC2; if (match(InsElt1->getOperand(0), m_Value(X)) && match(InsElt1->getOperand(1), m_Value(Y)) && !isa(Y) && match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && match(InsElt2.getOperand(1), m_Constant(ScalarC)) && match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); return InsertElementInst::Create(NewInsElt1, Y, IdxC1); } return nullptr; } /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex /// --> shufflevector X, CVec', Mask' static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { auto *Inst = dyn_cast(InsElt.getOperand(0)); // Bail out if the parent has more than one use. In that case, we'd be // replacing the insertelt with a shuffle, and that's not a clear win. if (!Inst || !Inst->hasOneUse()) return nullptr; if (auto *Shuf = dyn_cast(InsElt.getOperand(0))) { // The shuffle must have a constant vector operand. The insertelt must have // a constant scalar being inserted at a constant position in the vector. Constant *ShufConstVec, *InsEltScalar; uint64_t InsEltIndex; if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) return nullptr; // Adding an element to an arbitrary shuffle could be expensive, but a // shuffle that selects elements from vectors without crossing lanes is // assumed cheap. // If we're just adding a constant into that shuffle, it will still be // cheap. if (!isShuffleEquivalentToSelect(*Shuf)) return nullptr; // From the above 'select' check, we know that the mask has the same number // of elements as the vector input operands. We also know that each constant // input element is used in its lane and can not be used more than once by // the shuffle. Therefore, replace the constant in the shuffle's constant // vector with the insertelt constant. Replace the constant in the shuffle's // mask vector with the insertelt index plus the length of the vector // (because the constant vector operand of a shuffle is always the 2nd // operand). ArrayRef Mask = Shuf->getShuffleMask(); unsigned NumElts = Mask.size(); SmallVector NewShufElts(NumElts); SmallVector NewMaskElts(NumElts); for (unsigned I = 0; I != NumElts; ++I) { if (I == InsEltIndex) { NewShufElts[I] = InsEltScalar; NewMaskElts[I] = InsEltIndex + NumElts; } else { // Copy over the existing values. NewShufElts[I] = ShufConstVec->getAggregateElement(I); NewMaskElts[I] = Mask[I]; } // Bail if we failed to find an element. if (!NewShufElts[I]) return nullptr; } // Create new operands for a shuffle that includes the constant of the // original insertelt. The old shuffle will be dead now. return new ShuffleVectorInst(Shuf->getOperand(0), ConstantVector::get(NewShufElts), NewMaskElts); } else if (auto *IEI = dyn_cast(Inst)) { // Transform sequences of insertelements ops with constant data/indexes into // a single shuffle op. // Can not handle scalable type, the number of elements needed to create // shuffle mask is not a compile-time constant. if (isa(InsElt.getType())) return nullptr; unsigned NumElts = cast(InsElt.getType())->getNumElements(); uint64_t InsertIdx[2]; Constant *Val[2]; if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || !match(InsElt.getOperand(1), m_Constant(Val[0])) || !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || !match(IEI->getOperand(1), m_Constant(Val[1]))) return nullptr; SmallVector Values(NumElts); SmallVector Mask(NumElts); auto ValI = std::begin(Val); // Generate new constant vector and mask. // We have 2 values/masks from the insertelements instructions. Insert them // into new value/mask vectors. for (uint64_t I : InsertIdx) { if (!Values[I]) { Values[I] = *ValI; Mask[I] = NumElts + I; } ++ValI; } // Remaining values are filled with 'poison' values. for (unsigned I = 0; I < NumElts; ++I) { if (!Values[I]) { Values[I] = PoisonValue::get(InsElt.getType()->getElementType()); Mask[I] = I; } } // Create new operands for a shuffle that includes the constant of the // original insertelt. return new ShuffleVectorInst(IEI->getOperand(0), ConstantVector::get(Values), Mask); } return nullptr; } /// If both the base vector and the inserted element are extended from the same /// type, do the insert element in the narrow source type followed by extend. /// TODO: This can be extended to include other cast opcodes, but particularly /// if we create a wider insertelement, make sure codegen is not harmed. static Instruction *narrowInsElt(InsertElementInst &InsElt, InstCombiner::BuilderTy &Builder) { // We are creating a vector extend. If the original vector extend has another // use, that would mean we end up with 2 vector extends, so avoid that. // TODO: We could ease the use-clause to "if at least one op has one use" // (assuming that the source types match - see next TODO comment). Value *Vec = InsElt.getOperand(0); if (!Vec->hasOneUse()) return nullptr; Value *Scalar = InsElt.getOperand(1); Value *X, *Y; CastInst::CastOps CastOpcode; if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) CastOpcode = Instruction::FPExt; else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) CastOpcode = Instruction::SExt; else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) CastOpcode = Instruction::ZExt; else return nullptr; // TODO: We can allow mismatched types by creating an intermediate cast. if (X->getType()->getScalarType() != Y->getType()) return nullptr; // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); } /// If we are inserting 2 halves of a value into adjacent elements of a vector, /// try to convert to a single insert with appropriate bitcasts. static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt, bool IsBigEndian, InstCombiner::BuilderTy &Builder) { Value *VecOp = InsElt.getOperand(0); Value *ScalarOp = InsElt.getOperand(1); Value *IndexOp = InsElt.getOperand(2); // Pattern depends on endian because we expect lower index is inserted first. // Big endian: // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1 // Little endian: // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1 // Note: It is not safe to do this transform with an arbitrary base vector // because the bitcast of that vector to fewer/larger elements could // allow poison to spill into an element that was not poison before. // TODO: Detect smaller fractions of the scalar. // TODO: One-use checks are conservative. auto *VTy = dyn_cast(InsElt.getType()); Value *Scalar0, *BaseVec; uint64_t Index0, Index1; if (!VTy || (VTy->getNumElements() & 1) || !match(IndexOp, m_ConstantInt(Index1)) || !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0), m_ConstantInt(Index0))) || !match(BaseVec, m_Undef())) return nullptr; // The first insert must be to the index one less than this one, and // the first insert must be to an even index. if (Index0 + 1 != Index1 || Index0 & 1) return nullptr; // For big endian, the high half of the value should be inserted first. // For little endian, the low half of the value should be inserted first. Value *X; uint64_t ShAmt; if (IsBigEndian) { if (!match(ScalarOp, m_Trunc(m_Value(X))) || !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) return nullptr; } else { if (!match(Scalar0, m_Trunc(m_Value(X))) || !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt))))) return nullptr; } Type *SrcTy = X->getType(); unsigned ScalarWidth = SrcTy->getScalarSizeInBits(); unsigned VecEltWidth = VTy->getScalarSizeInBits(); if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth) return nullptr; // Bitcast the base vector to a vector type with the source element type. Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2); Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy); // Scale the insert index for a vector with half as many elements. // bitcast (inselt (bitcast BaseVec), X, NewIndex) uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2; Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex); return new BitCastInst(NewInsert, VTy); } Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { Value *VecOp = IE.getOperand(0); Value *ScalarOp = IE.getOperand(1); Value *IdxOp = IE.getOperand(2); if (auto *V = simplifyInsertElementInst( VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) return replaceInstUsesWith(IE, V); // Canonicalize type of constant indices to i64 to simplify CSE if (auto *IndexC = dyn_cast(IdxOp)) { if (auto *NewIdx = getPreferredVectorIndex(IndexC)) return replaceOperand(IE, 2, NewIdx); Value *BaseVec, *OtherScalar; uint64_t OtherIndexVal; if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec), m_Value(OtherScalar), m_ConstantInt(OtherIndexVal)))) && !isa(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) { Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp); return InsertElementInst::Create(NewIns, OtherScalar, Builder.getInt64(OtherIndexVal)); } } // If the scalar is bitcast and inserted into undef, do the insert in the // source type followed by bitcast. // TODO: Generalize for insert into any constant, not just undef? Value *ScalarSrc; if (match(VecOp, m_Undef()) && match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && (ScalarSrc->getType()->isIntegerTy() || ScalarSrc->getType()->isFloatingPointTy())) { // inselt undef, (bitcast ScalarSrc), IdxOp --> // bitcast (inselt undef, ScalarSrc, IdxOp) Type *ScalarTy = ScalarSrc->getType(); Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); Constant *NewUndef = isa(VecOp) ? PoisonValue::get(VecTy) : UndefValue::get(VecTy); Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); return new BitCastInst(NewInsElt, IE.getType()); } // If the vector and scalar are both bitcast from the same element type, do // the insert in that source type followed by bitcast. Value *VecSrc; if (match(VecOp, m_BitCast(m_Value(VecSrc))) && match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && cast(VecSrc->getType())->getElementType() == ScalarSrc->getType()) { // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> // bitcast (inselt VecSrc, ScalarSrc, IdxOp) Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); return new BitCastInst(NewInsElt, IE.getType()); } // If the inserted element was extracted from some other fixed-length vector // and both indexes are valid constants, try to turn this into a shuffle. // Can not handle scalable vector type, the number of elements needed to // create shuffle mask is not a compile-time constant. uint64_t InsertedIdx, ExtractedIdx; Value *ExtVecOp; if (isa(IE.getType()) && match(IdxOp, m_ConstantInt(InsertedIdx)) && match(ScalarOp, m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && isa(ExtVecOp->getType()) && ExtractedIdx < cast(ExtVecOp->getType())->getNumElements()) { // TODO: Looking at the user(s) to determine if this insert is a // fold-to-shuffle opportunity does not match the usual instcombine // constraints. We should decide if the transform is worthy based only // on this instruction and its operands, but that may not work currently. // // Here, we are trying to avoid creating shuffles before reaching // the end of a chain of extract-insert pairs. This is complicated because // we do not generally form arbitrary shuffle masks in instcombine // (because those may codegen poorly), but collectShuffleElements() does // exactly that. // // The rules for determining what is an acceptable target-independent // shuffle mask are fuzzy because they evolve based on the backend's // capabilities and real-world impact. auto isShuffleRootCandidate = [](InsertElementInst &Insert) { if (!Insert.hasOneUse()) return true; auto *InsertUser = dyn_cast(Insert.user_back()); if (!InsertUser) return true; return false; }; // Try to form a shuffle from a chain of extract-insert ops. if (isShuffleRootCandidate(IE)) { bool Rerun = true; while (Rerun) { Rerun = false; SmallVector Mask; ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this, Rerun); // The proposed shuffle may be trivial, in which case we shouldn't // perform the combine. if (LR.first != &IE && LR.second != &IE) { // We now have a shuffle of LHS, RHS, Mask. if (LR.second == nullptr) LR.second = PoisonValue::get(LR.first->getType()); return new ShuffleVectorInst(LR.first, LR.second, Mask); } } } } if (auto VecTy = dyn_cast(VecOp->getType())) { unsigned VWidth = VecTy->getNumElements(); APInt PoisonElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, PoisonElts)) { if (V != &IE) return replaceInstUsesWith(IE, V); return &IE; } } if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) return Shuf; if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) return NewInsElt; if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) return Broadcast; if (Instruction *Splat = foldInsEltIntoSplat(IE)) return Splat; if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) return IdentityShuf; if (Instruction *Ext = narrowInsElt(IE, Builder)) return Ext; if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder)) return Ext; return nullptr; } /// Return true if we can evaluate the specified expression tree if the vector /// elements were shuffled in a different order. static bool canEvaluateShuffled(Value *V, ArrayRef Mask, unsigned Depth = 5) { // We can always reorder the elements of a constant. if (isa(V)) return true; // We won't reorder vector arguments. No IPO here. Instruction *I = dyn_cast(V); if (!I) return false; // Two users may expect different orders of the elements. Don't try it. if (!I->hasOneUse()) return false; if (Depth == 0) return false; switch (I->getOpcode()) { case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: // Propagating an undefined shuffle mask element to integer div/rem is not // allowed because those opcodes can create immediate undefined behavior // from an undefined element in an operand. if (llvm::is_contained(Mask, -1)) return false; [[fallthrough]]; case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::ICmp: case Instruction::FCmp: case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::GetElementPtr: { // Bail out if we would create longer vector ops. We could allow creating // longer vector ops, but that may result in more expensive codegen. Type *ITy = I->getType(); if (ITy->isVectorTy() && Mask.size() > cast(ITy)->getNumElements()) return false; for (Value *Operand : I->operands()) { if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) return false; } return true; } case Instruction::InsertElement: { ConstantInt *CI = dyn_cast(I->getOperand(2)); if (!CI) return false; int ElementNumber = CI->getLimitedValue(); // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' // can't put an element into multiple indices. bool SeenOnce = false; for (int I : Mask) { if (I == ElementNumber) { if (SeenOnce) return false; SeenOnce = true; } } return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); } } return false; } /// Rebuild a new instruction just like 'I' but with the new operands given. /// In the event of type mismatch, the type of the operands is correct. static Value *buildNew(Instruction *I, ArrayRef NewOps, IRBuilderBase &Builder) { Builder.SetInsertPoint(I); switch (I->getOpcode()) { case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { BinaryOperator *BO = cast(I); assert(NewOps.size() == 2 && "binary operator with #ops != 2"); Value *New = Builder.CreateBinOp(cast(I)->getOpcode(), NewOps[0], NewOps[1]); if (auto *NewI = dyn_cast(New)) { if (isa(BO)) { NewI->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); NewI->setHasNoSignedWrap(BO->hasNoSignedWrap()); } if (isa(BO)) { NewI->setIsExact(BO->isExact()); } if (isa(BO)) NewI->copyFastMathFlags(I); } return New; } case Instruction::ICmp: assert(NewOps.size() == 2 && "icmp with #ops != 2"); return Builder.CreateICmp(cast(I)->getPredicate(), NewOps[0], NewOps[1]); case Instruction::FCmp: assert(NewOps.size() == 2 && "fcmp with #ops != 2"); return Builder.CreateFCmp(cast(I)->getPredicate(), NewOps[0], NewOps[1]); case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPTrunc: case Instruction::FPExt: { // It's possible that the mask has a different number of elements from // the original cast. We recompute the destination type to match the mask. Type *DestTy = VectorType::get( I->getType()->getScalarType(), cast(NewOps[0]->getType())->getElementCount()); assert(NewOps.size() == 1 && "cast with #ops != 1"); return Builder.CreateCast(cast(I)->getOpcode(), NewOps[0], DestTy); } case Instruction::GetElementPtr: { Value *Ptr = NewOps[0]; ArrayRef Idx = NewOps.slice(1); return Builder.CreateGEP(cast(I)->getSourceElementType(), Ptr, Idx, "", cast(I)->isInBounds()); } } llvm_unreachable("failed to rebuild vector instructions"); } static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef Mask, IRBuilderBase &Builder) { // Mask.size() does not need to be equal to the number of vector elements. assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); Type *EltTy = V->getType()->getScalarType(); if (isa(V)) return PoisonValue::get(FixedVectorType::get(EltTy, Mask.size())); if (match(V, m_Undef())) return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); if (isa(V)) return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); if (Constant *C = dyn_cast(V)) return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), Mask); Instruction *I = cast(V); switch (I->getOpcode()) { case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::ICmp: case Instruction::FCmp: case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::Select: case Instruction::GetElementPtr: { SmallVector NewOps; bool NeedsRebuild = (Mask.size() != cast(I->getType())->getNumElements()); for (int i = 0, e = I->getNumOperands(); i != e; ++i) { Value *V; // Recursively call evaluateInDifferentElementOrder on vector arguments // as well. E.g. GetElementPtr may have scalar operands even if the // return value is a vector, so we need to examine the operand type. if (I->getOperand(i)->getType()->isVectorTy()) V = evaluateInDifferentElementOrder(I->getOperand(i), Mask, Builder); else V = I->getOperand(i); NewOps.push_back(V); NeedsRebuild |= (V != I->getOperand(i)); } if (NeedsRebuild) return buildNew(I, NewOps, Builder); return I; } case Instruction::InsertElement: { int Element = cast(I->getOperand(2))->getLimitedValue(); // The insertelement was inserting at Element. Figure out which element // that becomes after shuffling. The answer is guaranteed to be unique // by CanEvaluateShuffled. bool Found = false; int Index = 0; for (int e = Mask.size(); Index != e; ++Index) { if (Mask[Index] == Element) { Found = true; break; } } // If element is not in Mask, no need to handle the operand 1 (element to // be inserted). Just evaluate values in operand 0 according to Mask. if (!Found) return evaluateInDifferentElementOrder(I->getOperand(0), Mask, Builder); Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask, Builder); Builder.SetInsertPoint(I); return Builder.CreateInsertElement(V, I->getOperand(1), Index); } } llvm_unreachable("failed to reorder elements of vector instruction!"); } // Returns true if the shuffle is extracting a contiguous range of values from // LHS, for example: // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| // Shuffles to: |EE|FF|GG|HH| // +--+--+--+--+ static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, ArrayRef Mask) { unsigned LHSElems = cast(SVI.getOperand(0)->getType())->getNumElements(); unsigned MaskElems = Mask.size(); unsigned BegIdx = Mask.front(); unsigned EndIdx = Mask.back(); if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) return false; for (unsigned I = 0; I != MaskElems; ++I) if (static_cast(Mask[I]) != BegIdx + I) return false; return true; } /// These are the ingredients in an alternate form binary operator as described /// below. struct BinopElts { BinaryOperator::BinaryOps Opcode; Value *Op0; Value *Op1; BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, Value *V0 = nullptr, Value *V1 = nullptr) : Opcode(Opc), Op0(V0), Op1(V1) {} operator bool() const { return Opcode != 0; } }; /// Binops may be transformed into binops with different opcodes and operands. /// Reverse the usual canonicalization to enable folds with the non-canonical /// form of the binop. If a transform is possible, return the elements of the /// new binop. If not, return invalid elements. static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); Type *Ty = BO->getType(); switch (BO->getOpcode()) { case Instruction::Shl: { // shl X, C --> mul X, (1 << C) Constant *C; if (match(BO1, m_Constant(C))) { Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); return {Instruction::Mul, BO0, ShlOne}; } break; } case Instruction::Or: { // or X, C --> add X, C (when X and C have no common bits set) const APInt *C; if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) return {Instruction::Add, BO0, BO1}; break; } case Instruction::Sub: // sub 0, X --> mul X, -1 if (match(BO0, m_ZeroInt())) return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)}; break; default: break; } return {}; } /// A select shuffle of a select shuffle with a shared operand can be reduced /// to a single select shuffle. This is an obvious improvement in IR, and the /// backend is expected to lower select shuffles efficiently. static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) { assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); SmallVector Mask; Shuf.getShuffleMask(Mask); unsigned NumElts = Mask.size(); // Canonicalize a select shuffle with common operand as Op1. auto *ShufOp = dyn_cast(Op0); if (ShufOp && ShufOp->isSelect() && (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) { std::swap(Op0, Op1); ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); } ShufOp = dyn_cast(Op1); if (!ShufOp || !ShufOp->isSelect() || (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0)) return nullptr; Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1); SmallVector Mask1; ShufOp->getShuffleMask(Mask1); assert(Mask1.size() == NumElts && "Vector size changed with select shuffle"); // Canonicalize common operand (Op0) as X (first operand of first shuffle). if (Y == Op0) { std::swap(X, Y); ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts); } // If the mask chooses from X (operand 0), it stays the same. // If the mask chooses from the earlier shuffle, the other mask value is // transferred to the combined select shuffle: // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M' SmallVector NewMask(NumElts); for (unsigned i = 0; i != NumElts; ++i) NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i]; // A select mask with undef elements might look like an identity mask. assert((ShuffleVectorInst::isSelectMask(NewMask, NumElts) || ShuffleVectorInst::isIdentityMask(NewMask, NumElts)) && "Unexpected shuffle mask"); return new ShuffleVectorInst(X, Y, NewMask); } static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); // Are we shuffling together some value and that same value after it has been // modified by a binop with a constant? Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); Constant *C; bool Op0IsBinop; if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) Op0IsBinop = true; else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) Op0IsBinop = false; else return nullptr; // The identity constant for a binop leaves a variable operand unchanged. For // a vector, this is a splat of something like 0, -1, or 1. // If there's no identity constant for this binop, we're done. auto *BO = cast(Op0IsBinop ? Op0 : Op1); BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); if (!IdC) return nullptr; // Shuffle identity constants into the lanes that return the original value. // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} // The existing binop constant vector remains in the same operand position. ArrayRef Mask = Shuf.getShuffleMask(); Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : ConstantExpr::getShuffleVector(IdC, C, Mask); bool MightCreatePoisonOrUB = is_contained(Mask, PoisonMaskElem) && (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); if (MightCreatePoisonOrUB) NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); // shuf (bop X, C), X, M --> bop X, C' // shuf X, (bop X, C), M --> bop X, C' Value *X = Op0IsBinop ? Op1 : Op0; Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); NewBO->copyIRFlags(BO); // An undef shuffle mask element may propagate as an undef constant element in // the new binop. That would produce poison where the original code might not. // If we already made a safe constant, then there's no danger. if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB) NewBO->dropPoisonGeneratingFlags(); return NewBO; } /// If we have an insert of a scalar to a non-zero element of an undefined /// vector and then shuffle that value, that's the same as inserting to the zero /// element and shuffling. Splatting from the zero element is recognized as the /// canonical form of splat. static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder) { Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); ArrayRef Mask = Shuf.getShuffleMask(); Value *X; uint64_t IndexC; // Match a shuffle that is a splat to a non-zero element. if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), m_ConstantInt(IndexC)))) || !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) return nullptr; // Insert into element 0 of a poison vector. PoisonValue *PoisonVec = PoisonValue::get(Shuf.getType()); Value *NewIns = Builder.CreateInsertElement(PoisonVec, X, (uint64_t)0); // Splat from element 0. Any mask element that is undefined remains undefined. // For example: // shuf (inselt undef, X, 2), _, <2,2,undef> // --> shuf (inselt undef, X, 0), poison, <0,0,undef> unsigned NumMaskElts = cast(Shuf.getType())->getNumElements(); SmallVector NewMask(NumMaskElts, 0); for (unsigned i = 0; i != NumMaskElts; ++i) if (Mask[i] == PoisonMaskElem) NewMask[i] = Mask[i]; return new ShuffleVectorInst(NewIns, NewMask); } /// Try to fold shuffles that are the equivalent of a vector select. Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) { if (!Shuf.isSelect()) return nullptr; // Canonicalize to choose from operand 0 first unless operand 1 is undefined. // Commuting undef to operand 0 conflicts with another canonicalization. unsigned NumElts = cast(Shuf.getType())->getNumElements(); if (!match(Shuf.getOperand(1), m_Undef()) && Shuf.getMaskValue(0) >= (int)NumElts) { // TODO: Can we assert that both operands of a shuffle-select are not undef // (otherwise, it would have been folded by instsimplify? Shuf.commute(); return &Shuf; } if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf)) return I; if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) return I; BinaryOperator *B0, *B1; if (!match(Shuf.getOperand(0), m_BinOp(B0)) || !match(Shuf.getOperand(1), m_BinOp(B1))) return nullptr; // If one operand is "0 - X", allow that to be viewed as "X * -1" // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired // with a multiply, we will exit because C0/C1 will not be set. Value *X, *Y; Constant *C0 = nullptr, *C1 = nullptr; bool ConstantsAreOp1; if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) ConstantsAreOp1 = false; else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)), m_Neg(m_Value(X)))) && match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)), m_Neg(m_Value(Y))))) ConstantsAreOp1 = true; else return nullptr; // We need matching binops to fold the lanes together. BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); bool DropNSW = false; if (ConstantsAreOp1 && Opc0 != Opc1) { // TODO: We drop "nsw" if shift is converted into multiply because it may // not be correct when the shift amount is BitWidth - 1. We could examine // each vector element to determine if it is safe to keep that flag. if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) DropNSW = true; if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { assert(isa(AltB0.Op1) && "Expecting constant with alt binop"); Opc0 = AltB0.Opcode; C0 = cast(AltB0.Op1); } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { assert(isa(AltB1.Op1) && "Expecting constant with alt binop"); Opc1 = AltB1.Opcode; C1 = cast(AltB1.Op1); } } if (Opc0 != Opc1 || !C0 || !C1) return nullptr; // The opcodes must be the same. Use a new name to make that clear. BinaryOperator::BinaryOps BOpc = Opc0; // Select the constant elements needed for the single binop. ArrayRef Mask = Shuf.getShuffleMask(); Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); // We are moving a binop after a shuffle. When a shuffle has an undefined // mask element, the result is undefined, but it is not poison or undefined // behavior. That is not necessarily true for div/rem/shift. bool MightCreatePoisonOrUB = is_contained(Mask, PoisonMaskElem) && (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); if (MightCreatePoisonOrUB) NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); Value *V; if (X == Y) { // Remove a binop and the shuffle by rearranging the constant: // shuffle (op V, C0), (op V, C1), M --> op V, C' // shuffle (op C0, V), (op C1, V), M --> op C', V V = X; } else { // If there are 2 different variable operands, we must create a new shuffle // (select) first, so check uses to ensure that we don't end up with more // instructions than we started with. if (!B0->hasOneUse() && !B1->hasOneUse()) return nullptr; // If we use the original shuffle mask and op1 is *variable*, we would be // putting an undef into operand 1 of div/rem/shift. This is either UB or // poison. We do not have to guard against UB when *constants* are op1 // because safe constants guarantee that we do not overflow sdiv/srem (and // there's no danger for other opcodes). // TODO: To allow this case, create a new shuffle mask with no undefs. if (MightCreatePoisonOrUB && !ConstantsAreOp1) return nullptr; // Note: In general, we do not create new shuffles in InstCombine because we // do not know if a target can lower an arbitrary shuffle optimally. In this // case, the shuffle uses the existing mask, so there is no additional risk. // Select the variable vectors first, then perform the binop: // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) V = Builder.CreateShuffleVector(X, Y, Mask); } Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) : Builder.CreateBinOp(BOpc, NewC, V); // Flags are intersected from the 2 source binops. But there are 2 exceptions: // 1. If we changed an opcode, poison conditions might have changed. // 2. If the shuffle had undef mask elements, the new binop might have undefs // where the original code did not. But if we already made a safe constant, // then there's no danger. if (auto *NewI = dyn_cast(NewBO)) { NewI->copyIRFlags(B0); NewI->andIRFlags(B1); if (DropNSW) NewI->setHasNoSignedWrap(false); if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB) NewI->dropPoisonGeneratingFlags(); } return replaceInstUsesWith(Shuf, NewBO); } /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. /// Example (little endian): /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, bool IsBigEndian) { // This must be a bitcasted shuffle of 1 vector integer operand. Type *DestType = Shuf.getType(); Value *X; if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) return nullptr; // The source type must have the same number of elements as the shuffle, // and the source element type must be larger than the shuffle element type. Type *SrcType = X->getType(); if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || cast(SrcType)->getNumElements() != cast(DestType)->getNumElements() || SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) return nullptr; assert(Shuf.changesLength() && !Shuf.increasesLength() && "Expected a shuffle that decreases length"); // Last, check that the mask chooses the correct low bits for each narrow // element in the result. uint64_t TruncRatio = SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); ArrayRef Mask = Shuf.getShuffleMask(); for (unsigned i = 0, e = Mask.size(); i != e; ++i) { if (Mask[i] == PoisonMaskElem) continue; uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); if (Mask[i] != (int)LSBIndex) return nullptr; } return new TruncInst(X, DestType); } /// Match a shuffle-select-shuffle pattern where the shuffles are widening and /// narrowing (concatenating with undef and extracting back to the original /// length). This allows replacing the wide select with a narrow select. static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder) { // This must be a narrowing identity shuffle. It extracts the 1st N elements // of the 1st vector operand of a shuffle. if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) return nullptr; // The vector being shuffled must be a vector select that we can eliminate. // TODO: The one-use requirement could be eased if X and/or Y are constants. Value *Cond, *X, *Y; if (!match(Shuf.getOperand(0), m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) return nullptr; // We need a narrow condition value. It must be extended with undef elements // and have the same number of elements as this shuffle. unsigned NarrowNumElts = cast(Shuf.getType())->getNumElements(); Value *NarrowCond; if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || cast(NarrowCond->getType())->getNumElements() != NarrowNumElts || !cast(Cond)->isIdentityWithPadding()) return nullptr; // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); return SelectInst::Create(NarrowCond, NarrowX, NarrowY); } /// Canonicalize FP negate/abs after shuffle. static Instruction *foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder) { auto *S0 = dyn_cast(Shuf.getOperand(0)); Value *X; if (!S0 || !match(S0, m_CombineOr(m_FNeg(m_Value(X)), m_FAbs(m_Value(X))))) return nullptr; bool IsFNeg = S0->getOpcode() == Instruction::FNeg; // Match 1-input (unary) shuffle. // shuffle (fneg/fabs X), Mask --> fneg/fabs (shuffle X, Mask) if (S0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) { Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); if (IsFNeg) return UnaryOperator::CreateFNegFMF(NewShuf, S0); Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(), Intrinsic::fabs, Shuf.getType()); CallInst *NewF = CallInst::Create(FAbs, {NewShuf}); NewF->setFastMathFlags(S0->getFastMathFlags()); return NewF; } // Match 2-input (binary) shuffle. auto *S1 = dyn_cast(Shuf.getOperand(1)); Value *Y; if (!S1 || !match(S1, m_CombineOr(m_FNeg(m_Value(Y)), m_FAbs(m_Value(Y)))) || S0->getOpcode() != S1->getOpcode() || (!S0->hasOneUse() && !S1->hasOneUse())) return nullptr; // shuf (fneg/fabs X), (fneg/fabs Y), Mask --> fneg/fabs (shuf X, Y, Mask) Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); Instruction *NewF; if (IsFNeg) { NewF = UnaryOperator::CreateFNeg(NewShuf); } else { Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(), Intrinsic::fabs, Shuf.getType()); NewF = CallInst::Create(FAbs, {NewShuf}); } NewF->copyIRFlags(S0); NewF->andIRFlags(S1); return NewF; } /// Canonicalize casts after shuffle. static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder) { // Do we have 2 matching cast operands? auto *Cast0 = dyn_cast(Shuf.getOperand(0)); auto *Cast1 = dyn_cast(Shuf.getOperand(1)); if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() || Cast0->getSrcTy() != Cast1->getSrcTy()) return nullptr; // TODO: Allow other opcodes? That would require easing the type restrictions // below here. CastInst::CastOps CastOpcode = Cast0->getOpcode(); switch (CastOpcode) { case Instruction::FPToSI: case Instruction::FPToUI: case Instruction::SIToFP: case Instruction::UIToFP: break; default: return nullptr; } VectorType *ShufTy = Shuf.getType(); VectorType *ShufOpTy = cast(Shuf.getOperand(0)->getType()); VectorType *CastSrcTy = cast(Cast0->getSrcTy()); // TODO: Allow length-increasing shuffles? if (ShufTy->getElementCount().getKnownMinValue() > ShufOpTy->getElementCount().getKnownMinValue()) return nullptr; // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)? assert(isa(CastSrcTy) && isa(ShufOpTy) && "Expected fixed vector operands for casts and binary shuffle"); if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits()) return nullptr; // At least one of the operands must have only one use (the shuffle). if (!Cast0->hasOneUse() && !Cast1->hasOneUse()) return nullptr; // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask) Value *X = Cast0->getOperand(0); Value *Y = Cast1->getOperand(0); Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); return CastInst::Create(CastOpcode, NewShuf, ShufTy); } /// Try to fold an extract subvector operation. static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) return nullptr; // Check if we are extracting all bits of an inserted scalar: // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type Value *X; if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && X->getType()->getPrimitiveSizeInBits() == Shuf.getType()->getPrimitiveSizeInBits()) return new BitCastInst(X, Shuf.getType()); // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. Value *Y; ArrayRef Mask; if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) return nullptr; // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, // then combining may result in worse codegen. if (!Op0->hasOneUse()) return nullptr; // We are extracting a subvector from a shuffle. Remove excess elements from // the 1st shuffle mask to eliminate the extract. // // This transform is conservatively limited to identity extracts because we do // not allow arbitrary shuffle mask creation as a target-independent transform // (because we can't guarantee that will lower efficiently). // // If the extracting shuffle has an undef mask element, it transfers to the // new shuffle mask. Otherwise, copy the original mask element. Example: // shuf (shuf X, Y, ), undef, <0, undef, 2, 3> --> // shuf X, Y, unsigned NumElts = cast(Shuf.getType())->getNumElements(); SmallVector NewMask(NumElts); assert(NumElts < Mask.size() && "Identity with extract must have less elements than its inputs"); for (unsigned i = 0; i != NumElts; ++i) { int ExtractMaskElt = Shuf.getMaskValue(i); int MaskElt = Mask[i]; NewMask[i] = ExtractMaskElt == PoisonMaskElem ? ExtractMaskElt : MaskElt; } return new ShuffleVectorInst(X, Y, NewMask); } /// Try to replace a shuffle with an insertelement or try to replace a shuffle /// operand with the operand of an insertelement. static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, InstCombinerImpl &IC) { Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); SmallVector Mask; Shuf.getShuffleMask(Mask); int NumElts = Mask.size(); int InpNumElts = cast(V0->getType())->getNumElements(); // This is a specialization of a fold in SimplifyDemandedVectorElts. We may // not be able to handle it there if the insertelement has >1 use. // If the shuffle has an insertelement operand but does not choose the // inserted scalar element from that value, then we can replace that shuffle // operand with the source vector of the insertelement. Value *X; uint64_t IdxC; if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask if (!is_contained(Mask, (int)IdxC)) return IC.replaceOperand(Shuf, 0, X); } if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { // Offset the index constant by the vector width because we are checking for // accesses to the 2nd vector input of the shuffle. IdxC += InpNumElts; // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask if (!is_contained(Mask, (int)IdxC)) return IC.replaceOperand(Shuf, 1, X); } // For the rest of the transform, the shuffle must not change vector sizes. // TODO: This restriction could be removed if the insert has only one use // (because the transform would require a new length-changing shuffle). if (NumElts != InpNumElts) return nullptr; // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { // We need an insertelement with a constant index. if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), m_ConstantInt(IndexC)))) return false; // Test the shuffle mask to see if it splices the inserted scalar into the // operand 1 vector of the shuffle. int NewInsIndex = -1; for (int i = 0; i != NumElts; ++i) { // Ignore undef mask elements. if (Mask[i] == -1) continue; // The shuffle takes elements of operand 1 without lane changes. if (Mask[i] == NumElts + i) continue; // The shuffle must choose the inserted scalar exactly once. if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) return false; // The shuffle is placing the inserted scalar into element i. NewInsIndex = i; } assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); // Index is updated to the potentially translated insertion lane. IndexC = ConstantInt::get(IndexC->getIntegerType(), NewInsIndex); return true; }; // If the shuffle is unnecessary, insert the scalar operand directly into // operand 1 of the shuffle. Example: // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 Value *Scalar; ConstantInt *IndexC; if (isShufflingScalarIntoOp1(Scalar, IndexC)) return InsertElementInst::Create(V1, Scalar, IndexC); // Try again after commuting shuffle. Example: // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 std::swap(V0, V1); ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); if (isShufflingScalarIntoOp1(Scalar, IndexC)) return InsertElementInst::Create(V1, Scalar, IndexC); return nullptr; } static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { // Match the operands as identity with padding (also known as concatenation // with undef) shuffles of the same source type. The backend is expected to // recreate these concatenations from a shuffle of narrow operands. auto *Shuffle0 = dyn_cast(Shuf.getOperand(0)); auto *Shuffle1 = dyn_cast(Shuf.getOperand(1)); if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || !Shuffle1 || !Shuffle1->isIdentityWithPadding()) return nullptr; // We limit this transform to power-of-2 types because we expect that the // backend can convert the simplified IR patterns to identical nodes as the // original IR. // TODO: If we can verify the same behavior for arbitrary types, the // power-of-2 checks can be removed. Value *X = Shuffle0->getOperand(0); Value *Y = Shuffle1->getOperand(0); if (X->getType() != Y->getType() || !isPowerOf2_32(cast(Shuf.getType())->getNumElements()) || !isPowerOf2_32( cast(Shuffle0->getType())->getNumElements()) || !isPowerOf2_32(cast(X->getType())->getNumElements()) || match(X, m_Undef()) || match(Y, m_Undef())) return nullptr; assert(match(Shuffle0->getOperand(1), m_Undef()) && match(Shuffle1->getOperand(1), m_Undef()) && "Unexpected operand for identity shuffle"); // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source // operands directly by adjusting the shuffle mask to account for the narrower // types: // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' int NarrowElts = cast(X->getType())->getNumElements(); int WideElts = cast(Shuffle0->getType())->getNumElements(); assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); ArrayRef Mask = Shuf.getShuffleMask(); SmallVector NewMask(Mask.size(), -1); for (int i = 0, e = Mask.size(); i != e; ++i) { if (Mask[i] == -1) continue; // If this shuffle is choosing an undef element from 1 of the sources, that // element is undef. if (Mask[i] < WideElts) { if (Shuffle0->getMaskValue(Mask[i]) == -1) continue; } else { if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) continue; } // If this shuffle is choosing from the 1st narrow op, the mask element is // the same. If this shuffle is choosing from the 2nd narrow op, the mask // element is offset down to adjust for the narrow vector widths. if (Mask[i] < WideElts) { assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); NewMask[i] = Mask[i]; } else { assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); NewMask[i] = Mask[i] - (WideElts - NarrowElts); } } return new ShuffleVectorInst(X, Y, NewMask); } // Splatting the first element of the result of a BinOp, where any of the // BinOp's operands are the result of a first element splat can be simplified to // splatting the first element of the result of the BinOp Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) { if (!match(SVI.getOperand(1), m_Undef()) || !match(SVI.getShuffleMask(), m_ZeroMask()) || !SVI.getOperand(0)->hasOneUse()) return nullptr; Value *Op0 = SVI.getOperand(0); Value *X, *Y; if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Undef(), m_ZeroMask()), m_Value(Y))) && !match(Op0, m_BinOp(m_Value(X), m_Shuffle(m_Value(Y), m_Undef(), m_ZeroMask())))) return nullptr; if (X->getType() != Y->getType()) return nullptr; auto *BinOp = cast(Op0); if (!isSafeToSpeculativelyExecute(BinOp)) return nullptr; Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y); if (auto NewBOI = dyn_cast(NewBO)) NewBOI->copyIRFlags(BinOp); return new ShuffleVectorInst(NewBO, SVI.getShuffleMask()); } Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { Value *LHS = SVI.getOperand(0); Value *RHS = SVI.getOperand(1); SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), SVI.getType(), ShufQuery)) return replaceInstUsesWith(SVI, V); if (Instruction *I = simplifyBinOpSplats(SVI)) return I; // Canonicalize splat shuffle to use poison RHS. Handle this explicitly in // order to support scalable vectors. if (match(SVI.getShuffleMask(), m_ZeroMask()) && !isa(RHS)) return replaceOperand(SVI, 1, PoisonValue::get(RHS->getType())); if (isa(LHS->getType())) return nullptr; unsigned VWidth = cast(SVI.getType())->getNumElements(); unsigned LHSWidth = cast(LHS->getType())->getNumElements(); // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) // // if X and Y are of the same (vector) type, and the element size is not // changed by the bitcasts, we can distribute the bitcasts through the // shuffle, hopefully reducing the number of instructions. We make sure that // at least one bitcast only has one use, so we don't *increase* the number of // instructions here. Value *X, *Y; if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && X->getType()->isVectorTy() && X->getType() == Y->getType() && X->getType()->getScalarSizeInBits() == SVI.getType()->getScalarSizeInBits() && (LHS->hasOneUse() || RHS->hasOneUse())) { Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), SVI.getName() + ".uncasted"); return new BitCastInst(V, SVI.getType()); } ArrayRef Mask = SVI.getShuffleMask(); // Peek through a bitcasted shuffle operand by scaling the mask. If the // simulated shuffle can simplify, then this shuffle is unnecessary: // shuf (bitcast X), undef, Mask --> bitcast X' // TODO: This could be extended to allow length-changing shuffles. // The transform might also be obsoleted if we allowed canonicalization // of bitcasted shuffles. if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && X->getType()->isVectorTy() && VWidth == LHSWidth) { // Try to create a scaled mask constant. auto *XType = cast(X->getType()); unsigned XNumElts = XType->getNumElements(); SmallVector ScaledMask; if (XNumElts >= VWidth) { assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); } else { assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) ScaledMask.clear(); } if (!ScaledMask.empty()) { // If the shuffled source vector simplifies, cast that value to this // shuffle's type. if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType), ScaledMask, XType, ShufQuery)) return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); } } // shuffle x, x, mask --> shuffle x, undef, mask' if (LHS == RHS) { assert(!match(RHS, m_Undef()) && "Shuffle with 2 undef ops not simplified?"); return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); } // shuffle undef, x, mask --> shuffle x, undef, mask' if (match(LHS, m_Undef())) { SVI.commute(); return &SVI; } if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) return I; if (Instruction *I = foldSelectShuffle(SVI)) return I; if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) return I; if (Instruction *I = narrowVectorSelect(SVI, Builder)) return I; if (Instruction *I = foldShuffleOfUnaryOps(SVI, Builder)) return I; if (Instruction *I = foldCastShuffle(SVI, Builder)) return I; APInt PoisonElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, PoisonElts)) { if (V != &SVI) return replaceInstUsesWith(SVI, V); return &SVI; } if (Instruction *I = foldIdentityExtractShuffle(SVI)) return I; // These transforms have the potential to lose undef knowledge, so they are // intentionally placed after SimplifyDemandedVectorElts(). if (Instruction *I = foldShuffleWithInsert(SVI, *this)) return I; if (Instruction *I = foldIdentityPaddedShuffles(SVI)) return I; if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { Value *V = evaluateInDifferentElementOrder(LHS, Mask, Builder); return replaceInstUsesWith(SVI, V); } // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to // a non-vector type. We can instead bitcast the original vector followed by // an extract of the desired element: // // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, // <4 x i32> // %1 = bitcast <4 x i8> %sroa to i32 // Becomes: // %bc = bitcast <16 x i8> %in to <4 x i32> // %ext = extractelement <4 x i32> %bc, i32 0 // // If the shuffle is extracting a contiguous range of values from the input // vector then each use which is a bitcast of the extracted size can be // replaced. This will work if the vector types are compatible, and the begin // index is aligned to a value in the casted vector type. If the begin index // isn't aligned then we can shuffle the original vector (keeping the same // vector type) before extracting. // // This code will bail out if the target type is fundamentally incompatible // with vectors of the source type. // // Example of <16 x i8>, target type i32: // Index range [4,8): v-----------v Will work. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ // <16 x i8>: | | | | | | | | | | | | | | | | | // <4 x i32>: | | | | | // +-----------+-----------+-----------+-----------+ // Index range [6,10): ^-----------^ Needs an extra shuffle. // Target type i40: ^--------------^ Won't work, bail. bool MadeChange = false; if (isShuffleExtractingFromLHS(SVI, Mask)) { Value *V = LHS; unsigned MaskElems = Mask.size(); auto *SrcTy = cast(V->getType()); unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue(); unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); assert(SrcElemBitWidth && "vector elements must have a bitwidth"); unsigned SrcNumElems = SrcTy->getNumElements(); SmallVector BCs; DenseMap NewBCs; for (User *U : SVI.users()) if (BitCastInst *BC = dyn_cast(U)) if (!BC->use_empty()) // Only visit bitcasts that weren't previously handled. BCs.push_back(BC); for (BitCastInst *BC : BCs) { unsigned BegIdx = Mask.front(); Type *TgtTy = BC->getDestTy(); unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); if (!TgtElemBitWidth) continue; unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); if (!VecBitWidthsEqual) continue; if (!VectorType::isValidElementType(TgtTy)) continue; auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); if (!BegIsAligned) { // Shuffle the input so [0,NumElements) contains the output, and // [NumElems,SrcNumElems) is undef. SmallVector ShuffleMask(SrcNumElems, -1); for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) ShuffleMask[I] = Idx; V = Builder.CreateShuffleVector(V, ShuffleMask, SVI.getName() + ".extract"); BegIdx = 0; } unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; assert(SrcElemsPerTgtElem); BegIdx /= SrcElemsPerTgtElem; bool BCAlreadyExists = NewBCs.contains(CastSrcTy); auto *NewBC = BCAlreadyExists ? NewBCs[CastSrcTy] : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); if (!BCAlreadyExists) NewBCs[CastSrcTy] = NewBC; auto *Ext = Builder.CreateExtractElement(NewBC, BegIdx, SVI.getName() + ".extract"); // The shufflevector isn't being replaced: the bitcast that used it // is. InstCombine will visit the newly-created instructions. replaceInstUsesWith(*BC, Ext); MadeChange = true; } } // If the LHS is a shufflevector itself, see if we can combine it with this // one without producing an unusual shuffle. // Cases that might be simplified: // 1. // x1=shuffle(v1,v2,mask1) // x=shuffle(x1,undef,mask) // ==> // x=shuffle(v1,undef,newMask) // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 // 2. // x1=shuffle(v1,undef,mask1) // x=shuffle(x1,x2,mask) // where v1.size() == mask1.size() // ==> // x=shuffle(v1,x2,newMask) // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] // 3. // x2=shuffle(v2,undef,mask2) // x=shuffle(x1,x2,mask) // where v2.size() == mask2.size() // ==> // x=shuffle(x1,v2,newMask) // newMask[i] = (mask[i] < x1.size()) // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() // 4. // x1=shuffle(v1,undef,mask1) // x2=shuffle(v2,undef,mask2) // x=shuffle(x1,x2,mask) // where v1.size() == v2.size() // ==> // x=shuffle(v1,v2,newMask) // newMask[i] = (mask[i] < x1.size()) // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() // // Here we are really conservative: // we are absolutely afraid of producing a shuffle mask not in the input // program, because the code gen may not be smart enough to turn a merged // shuffle into two specific shuffles: it may produce worse code. As such, // we only merge two shuffles if the result is either a splat or one of the // input shuffle masks. In this case, merging the shuffles just removes // one instruction, which we know is safe. This is good for things like // turning: (splat(splat)) -> splat, or // merge(V[0..n], V[n+1..2n]) -> V[0..2n] ShuffleVectorInst* LHSShuffle = dyn_cast(LHS); ShuffleVectorInst* RHSShuffle = dyn_cast(RHS); if (LHSShuffle) if (!match(LHSShuffle->getOperand(1), m_Poison()) && !match(RHS, m_Poison())) LHSShuffle = nullptr; if (RHSShuffle) if (!match(RHSShuffle->getOperand(1), m_Poison())) RHSShuffle = nullptr; if (!LHSShuffle && !RHSShuffle) return MadeChange ? &SVI : nullptr; Value* LHSOp0 = nullptr; Value* LHSOp1 = nullptr; Value* RHSOp0 = nullptr; unsigned LHSOp0Width = 0; unsigned RHSOp0Width = 0; if (LHSShuffle) { LHSOp0 = LHSShuffle->getOperand(0); LHSOp1 = LHSShuffle->getOperand(1); LHSOp0Width = cast(LHSOp0->getType())->getNumElements(); } if (RHSShuffle) { RHSOp0 = RHSShuffle->getOperand(0); RHSOp0Width = cast(RHSOp0->getType())->getNumElements(); } Value* newLHS = LHS; Value* newRHS = RHS; if (LHSShuffle) { // case 1 if (match(RHS, m_Poison())) { newLHS = LHSOp0; newRHS = LHSOp1; } // case 2 or 4 else if (LHSOp0Width == LHSWidth) { newLHS = LHSOp0; } } // case 3 or 4 if (RHSShuffle && RHSOp0Width == LHSWidth) { newRHS = RHSOp0; } // case 4 if (LHSOp0 == RHSOp0) { newLHS = LHSOp0; newRHS = nullptr; } if (newLHS == LHS && newRHS == RHS) return MadeChange ? &SVI : nullptr; ArrayRef LHSMask; ArrayRef RHSMask; if (newLHS != LHS) LHSMask = LHSShuffle->getShuffleMask(); if (RHSShuffle && newRHS != RHS) RHSMask = RHSShuffle->getShuffleMask(); unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; SmallVector newMask; bool isSplat = true; int SplatElt = -1; // Create a new mask for the new ShuffleVectorInst so that the new // ShuffleVectorInst is equivalent to the original one. for (unsigned i = 0; i < VWidth; ++i) { int eltMask; if (Mask[i] < 0) { // This element is a poison value. eltMask = -1; } else if (Mask[i] < (int)LHSWidth) { // This element is from left hand side vector operand. // // If LHS is going to be replaced (case 1, 2, or 4), calculate the // new mask value for the element. if (newLHS != LHS) { eltMask = LHSMask[Mask[i]]; // If the value selected is an poison value, explicitly specify it // with a -1 mask value. if (eltMask >= (int)LHSOp0Width && isa(LHSOp1)) eltMask = -1; } else eltMask = Mask[i]; } else { // This element is from right hand side vector operand // // If the value selected is a poison value, explicitly specify it // with a -1 mask value. (case 1) if (match(RHS, m_Poison())) eltMask = -1; // If RHS is going to be replaced (case 3 or 4), calculate the // new mask value for the element. else if (newRHS != RHS) { eltMask = RHSMask[Mask[i]-LHSWidth]; // If the value selected is an poison value, explicitly specify it // with a -1 mask value. if (eltMask >= (int)RHSOp0Width) { assert(match(RHSShuffle->getOperand(1), m_Poison()) && "should have been check above"); eltMask = -1; } } else eltMask = Mask[i]-LHSWidth; // If LHS's width is changed, shift the mask value accordingly. // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. // If newRHS == newLHS, we want to remap any references from newRHS to // newLHS so that we can properly identify splats that may occur due to // obfuscation across the two vectors. if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) eltMask += newLHSWidth; } // Check if this could still be a splat. if (eltMask >= 0) { if (SplatElt >= 0 && SplatElt != eltMask) isSplat = false; SplatElt = eltMask; } newMask.push_back(eltMask); } // If the result mask is equal to one of the original shuffle masks, // or is a splat, do the replacement. if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { if (!newRHS) newRHS = PoisonValue::get(newLHS->getType()); return new ShuffleVectorInst(newLHS, newRHS, newMask); } return MadeChange ? &SVI : nullptr; }