//===- InstCombineCompares.cpp --------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the visitICmp and visitFCmp functions. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/InstCombine/InstCombiner.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "instcombine" // How many times is a select replaced by one of its operands? STATISTIC(NumSel, "Number of select opts"); /// Compute Result = In1+In2, returning true if the result overflowed for this /// type. static bool addWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, bool IsSigned = false) { bool Overflow; if (IsSigned) Result = In1.sadd_ov(In2, Overflow); else Result = In1.uadd_ov(In2, Overflow); return Overflow; } /// Compute Result = In1-In2, returning true if the result overflowed for this /// type. static bool subWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, bool IsSigned = false) { bool Overflow; if (IsSigned) Result = In1.ssub_ov(In2, Overflow); else Result = In1.usub_ov(In2, Overflow); return Overflow; } /// Given an icmp instruction, return true if any use of this comparison is a /// branch on sign bit comparison. static bool hasBranchUse(ICmpInst &I) { for (auto *U : I.users()) if (isa<BranchInst>(U)) return true; return false; } /// Returns true if the exploded icmp can be expressed as a signed comparison /// to zero and updates the predicate accordingly. /// The signedness of the comparison is preserved. /// TODO: Refactor with decomposeBitTestICmp()? static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { if (!ICmpInst::isSigned(Pred)) return false; if (C.isNullValue()) return ICmpInst::isRelational(Pred); if (C.isOneValue()) { if (Pred == ICmpInst::ICMP_SLT) { Pred = ICmpInst::ICMP_SLE; return true; } } else if (C.isAllOnesValue()) { if (Pred == ICmpInst::ICMP_SGT) { Pred = ICmpInst::ICMP_SGE; return true; } } return false; } /// This is called when we see this pattern: /// cmp pred (load (gep GV, ...)), cmpcst /// where GV is a global variable with a constant initializer. Try to simplify /// this into some simple computation that does not need the load. For example /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". /// /// If AndCst is non-null, then the loaded value is masked with that constant /// before doing the comparison. This handles cases like "A[i]&4 == 0". Instruction * InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, ConstantInt *AndCst) { Constant *Init = GV->getInitializer(); if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) return nullptr; uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); // Don't blow up on huge arrays. if (ArrayElementCount > MaxArraySizeForCombine) return nullptr; // There are many forms of this optimization we can handle, for now, just do // the simple index into a single-dimensional array. // // Require: GEP GV, 0, i {{, constant indices}} if (GEP->getNumOperands() < 3 || !isa<ConstantInt>(GEP->getOperand(1)) || !cast<ConstantInt>(GEP->getOperand(1))->isZero() || isa<Constant>(GEP->getOperand(2))) return nullptr; // Check that indices after the variable are constants and in-range for the // type they index. Collect the indices. This is typically for arrays of // structs. SmallVector<unsigned, 4> LaterIndices; Type *EltTy = Init->getType()->getArrayElementType(); for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); if (!Idx) return nullptr; // Variable index. uint64_t IdxVal = Idx->getZExtValue(); if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. if (StructType *STy = dyn_cast<StructType>(EltTy)) EltTy = STy->getElementType(IdxVal); else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { if (IdxVal >= ATy->getNumElements()) return nullptr; EltTy = ATy->getElementType(); } else { return nullptr; // Unknown type. } LaterIndices.push_back(IdxVal); } enum { Overdefined = -3, Undefined = -2 }; // Variables for our state machines. // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form // "i == 47 | i == 87", where 47 is the first index the condition is true for, // and 87 is the second (and last) index. FirstTrueElement is -2 when // undefined, otherwise set to the first true element. SecondTrueElement is // -2 when undefined, -3 when overdefined and >= 0 when that index is true. int FirstTrueElement = Undefined, SecondTrueElement = Undefined; // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the // form "i != 47 & i != 87". Same state transitions as for true elements. int FirstFalseElement = Undefined, SecondFalseElement = Undefined; /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these /// define a state machine that triggers for ranges of values that the index /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. /// This is -2 when undefined, -3 when overdefined, and otherwise the last /// index in the range (inclusive). We use -2 for undefined here because we /// use relative comparisons and don't want 0-1 to match -1. int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; // MagicBitvector - This is a magic bitvector where we set a bit if the // comparison is true for element 'i'. If there are 64 elements or less in // the array, this will fully represent all the comparison results. uint64_t MagicBitvector = 0; // Scan the array and see if one of our patterns matches. Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { Constant *Elt = Init->getAggregateElement(i); if (!Elt) return nullptr; // If this is indexing an array of structures, get the structure element. if (!LaterIndices.empty()) Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); // If the element is masked, handle it. if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); // Find out if the comparison would be true or false for the i'th element. Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, CompareRHS, DL, &TLI); // If the result is undef for this element, ignore it. if (isa<UndefValue>(C)) { // Extend range state machines to cover this element in case there is an // undef in the middle of the range. if (TrueRangeEnd == (int)i-1) TrueRangeEnd = i; if (FalseRangeEnd == (int)i-1) FalseRangeEnd = i; continue; } // If we can't compute the result for any of the elements, we have to give // up evaluating the entire conditional. if (!isa<ConstantInt>(C)) return nullptr; // Otherwise, we know if the comparison is true or false for this element, // update our state machines. bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); // State machine for single/double/range index comparison. if (IsTrueForElt) { // Update the TrueElement state machine. if (FirstTrueElement == Undefined) FirstTrueElement = TrueRangeEnd = i; // First true element. else { // Update double-compare state machine. if (SecondTrueElement == Undefined) SecondTrueElement = i; else SecondTrueElement = Overdefined; // Update range state machine. if (TrueRangeEnd == (int)i-1) TrueRangeEnd = i; else TrueRangeEnd = Overdefined; } } else { // Update the FalseElement state machine. if (FirstFalseElement == Undefined) FirstFalseElement = FalseRangeEnd = i; // First false element. else { // Update double-compare state machine. if (SecondFalseElement == Undefined) SecondFalseElement = i; else SecondFalseElement = Overdefined; // Update range state machine. if (FalseRangeEnd == (int)i-1) FalseRangeEnd = i; else FalseRangeEnd = Overdefined; } } // If this element is in range, update our magic bitvector. if (i < 64 && IsTrueForElt) MagicBitvector |= 1ULL << i; // If all of our states become overdefined, bail out early. Since the // predicate is expensive, only check it every 8 elements. This is only // really useful for really huge arrays. if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && FalseRangeEnd == Overdefined) return nullptr; } // Now that we've scanned the entire array, emit our new comparison(s). We // order the state machines in complexity of the generated code. Value *Idx = GEP->getOperand(2); // If the index is larger than the pointer size of the target, truncate the // index down like the GEP would do implicitly. We don't have to do this for // an inbounds GEP because the index can't be out of range. if (!GEP->isInBounds()) { Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) Idx = Builder.CreateTrunc(Idx, IntPtrTy); } // If the comparison is only true for one or two elements, emit direct // comparisons. if (SecondTrueElement != Overdefined) { // None true -> false. if (FirstTrueElement == Undefined) return replaceInstUsesWith(ICI, Builder.getFalse()); Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); // True for one element -> 'i == 47'. if (SecondTrueElement == Undefined) return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); // True for two elements -> 'i == 47 | i == 72'. Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); return BinaryOperator::CreateOr(C1, C2); } // If the comparison is only false for one or two elements, emit direct // comparisons. if (SecondFalseElement != Overdefined) { // None false -> true. if (FirstFalseElement == Undefined) return replaceInstUsesWith(ICI, Builder.getTrue()); Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); // False for one element -> 'i != 47'. if (SecondFalseElement == Undefined) return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); // False for two elements -> 'i != 47 & i != 72'. Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); return BinaryOperator::CreateAnd(C1, C2); } // If the comparison can be replaced with a range comparison for the elements // where it is true, emit the range check. if (TrueRangeEnd != Overdefined) { assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). if (FirstTrueElement) { Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); Idx = Builder.CreateAdd(Idx, Offs); } Value *End = ConstantInt::get(Idx->getType(), TrueRangeEnd-FirstTrueElement+1); return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); } // False range check. if (FalseRangeEnd != Overdefined) { assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). if (FirstFalseElement) { Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); Idx = Builder.CreateAdd(Idx, Offs); } Value *End = ConstantInt::get(Idx->getType(), FalseRangeEnd-FirstFalseElement); return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); } // If a magic bitvector captures the entire comparison state // of this load, replace it with computation that does: // ((magic_cst >> i) & 1) != 0 { Type *Ty = nullptr; // Look for an appropriate type: // - The type of Idx if the magic fits // - The smallest fitting legal type if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) Ty = Idx->getType(); else Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); if (Ty) { Value *V = Builder.CreateIntCast(Idx, Ty, false); V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); } } return nullptr; } /// Return a value that can be used to compare the *offset* implied by a GEP to /// zero. For example, if we have &A[i], we want to return 'i' for /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales /// are involved. The above expression would also be legal to codegen as /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). /// This latter form is less amenable to optimization though, and we are allowed /// to generate the first by knowing that pointer arithmetic doesn't overflow. /// /// If we can't emit an optimized form for this expression, this returns null. /// static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, const DataLayout &DL) { gep_type_iterator GTI = gep_type_begin(GEP); // Check to see if this gep only has a single variable index. If so, and if // any constant indices are a multiple of its scale, then we can compute this // in terms of the scale of the variable index. For example, if the GEP // implies an offset of "12 + i*4", then we can codegen this as "3 + i", // because the expression will cross zero at the same point. unsigned i, e = GEP->getNumOperands(); int64_t Offset = 0; for (i = 1; i != e; ++i, ++GTI) { if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { // Compute the aggregate offset of constant indices. if (CI->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = GTI.getStructTypeOrNull()) { Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); } else { uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); Offset += Size*CI->getSExtValue(); } } else { // Found our variable index. break; } } // If there are no variable indices, we must have a constant offset, just // evaluate it the general way. if (i == e) return nullptr; Value *VariableIdx = GEP->getOperand(i); // Determine the scale factor of the variable element. For example, this is // 4 if the variable index is into an array of i32. uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); // Verify that there are no other variable indices. If so, emit the hard way. for (++i, ++GTI; i != e; ++i, ++GTI) { ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); if (!CI) return nullptr; // Compute the aggregate offset of constant indices. if (CI->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = GTI.getStructTypeOrNull()) { Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); } else { uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); Offset += Size*CI->getSExtValue(); } } // Okay, we know we have a single variable index, which must be a // pointer/array/vector index. If there is no offset, life is simple, return // the index. Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); if (Offset == 0) { // Cast to intptrty in case a truncation occurs. If an extension is needed, // we don't need to bother extending: the extension won't affect where the // computation crosses zero. if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > IntPtrWidth) { VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); } return VariableIdx; } // Otherwise, there is an index. The computation we will do will be modulo // the pointer size. Offset = SignExtend64(Offset, IntPtrWidth); VariableScale = SignExtend64(VariableScale, IntPtrWidth); // To do this transformation, any constant index must be a multiple of the // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a // multiple of the variable scale. int64_t NewOffs = Offset / (int64_t)VariableScale; if (Offset != NewOffs*(int64_t)VariableScale) return nullptr; // Okay, we can do this evaluation. Start by converting the index to intptr. if (VariableIdx->getType() != IntPtrTy) VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, true /*Signed*/); Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); } /// Returns true if we can rewrite Start as a GEP with pointer Base /// and some integer offset. The nodes that need to be re-written /// for this transformation will be added to Explored. static bool canRewriteGEPAsOffset(Value *Start, Value *Base, const DataLayout &DL, SetVector<Value *> &Explored) { SmallVector<Value *, 16> WorkList(1, Start); Explored.insert(Base); // The following traversal gives us an order which can be used // when doing the final transformation. Since in the final // transformation we create the PHI replacement instructions first, // we don't have to get them in any particular order. // // However, for other instructions we will have to traverse the // operands of an instruction first, which means that we have to // do a post-order traversal. while (!WorkList.empty()) { SetVector<PHINode *> PHIs; while (!WorkList.empty()) { if (Explored.size() >= 100) return false; Value *V = WorkList.back(); if (Explored.contains(V)) { WorkList.pop_back(); continue; } if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) // We've found some value that we can't explore which is different from // the base. Therefore we can't do this transformation. return false; if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { auto *CI = cast<CastInst>(V); if (!CI->isNoopCast(DL)) return false; if (Explored.count(CI->getOperand(0)) == 0) WorkList.push_back(CI->getOperand(0)); } if (auto *GEP = dyn_cast<GEPOperator>(V)) { // We're limiting the GEP to having one index. This will preserve // the original pointer type. We could handle more cases in the // future. if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || GEP->getType() != Start->getType()) return false; if (Explored.count(GEP->getOperand(0)) == 0) WorkList.push_back(GEP->getOperand(0)); } if (WorkList.back() == V) { WorkList.pop_back(); // We've finished visiting this node, mark it as such. Explored.insert(V); } if (auto *PN = dyn_cast<PHINode>(V)) { // We cannot transform PHIs on unsplittable basic blocks. if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) return false; Explored.insert(PN); PHIs.insert(PN); } } // Explore the PHI nodes further. for (auto *PN : PHIs) for (Value *Op : PN->incoming_values()) if (Explored.count(Op) == 0) WorkList.push_back(Op); } // Make sure that we can do this. Since we can't insert GEPs in a basic // block before a PHI node, we can't easily do this transformation if // we have PHI node users of transformed instructions. for (Value *Val : Explored) { for (Value *Use : Val->uses()) { auto *PHI = dyn_cast<PHINode>(Use); auto *Inst = dyn_cast<Instruction>(Val); if (Inst == Base || Inst == PHI || !Inst || !PHI || Explored.count(PHI) == 0) continue; if (PHI->getParent() == Inst->getParent()) return false; } } return true; } // Sets the appropriate insert point on Builder where we can add // a replacement Instruction for V (if that is possible). static void setInsertionPoint(IRBuilder<> &Builder, Value *V, bool Before = true) { if (auto *PHI = dyn_cast<PHINode>(V)) { Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); return; } if (auto *I = dyn_cast<Instruction>(V)) { if (!Before) I = &*std::next(I->getIterator()); Builder.SetInsertPoint(I); return; } if (auto *A = dyn_cast<Argument>(V)) { // Set the insertion point in the entry block. BasicBlock &Entry = A->getParent()->getEntryBlock(); Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); return; } // Otherwise, this is a constant and we don't need to set a new // insertion point. assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); } /// Returns a re-written value of Start as an indexed GEP using Base as a /// pointer. static Value *rewriteGEPAsOffset(Value *Start, Value *Base, const DataLayout &DL, SetVector<Value *> &Explored) { // Perform all the substitutions. This is a bit tricky because we can // have cycles in our use-def chains. // 1. Create the PHI nodes without any incoming values. // 2. Create all the other values. // 3. Add the edges for the PHI nodes. // 4. Emit GEPs to get the original pointers. // 5. Remove the original instructions. Type *IndexType = IntegerType::get( Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); DenseMap<Value *, Value *> NewInsts; NewInsts[Base] = ConstantInt::getNullValue(IndexType); // Create the new PHI nodes, without adding any incoming values. for (Value *Val : Explored) { if (Val == Base) continue; // Create empty phi nodes. This avoids cyclic dependencies when creating // the remaining instructions. if (auto *PHI = dyn_cast<PHINode>(Val)) NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), PHI->getName() + ".idx", PHI); } IRBuilder<> Builder(Base->getContext()); // Create all the other instructions. for (Value *Val : Explored) { if (NewInsts.find(Val) != NewInsts.end()) continue; if (auto *CI = dyn_cast<CastInst>(Val)) { // Don't get rid of the intermediate variable here; the store can grow // the map which will invalidate the reference to the input value. Value *V = NewInsts[CI->getOperand(0)]; NewInsts[CI] = V; continue; } if (auto *GEP = dyn_cast<GEPOperator>(Val)) { Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] : GEP->getOperand(1); setInsertionPoint(Builder, GEP); // Indices might need to be sign extended. GEPs will magically do // this, but we need to do it ourselves here. if (Index->getType()->getScalarSizeInBits() != NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { Index = Builder.CreateSExtOrTrunc( Index, NewInsts[GEP->getOperand(0)]->getType(), GEP->getOperand(0)->getName() + ".sext"); } auto *Op = NewInsts[GEP->getOperand(0)]; if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) NewInsts[GEP] = Index; else NewInsts[GEP] = Builder.CreateNSWAdd( Op, Index, GEP->getOperand(0)->getName() + ".add"); continue; } if (isa<PHINode>(Val)) continue; llvm_unreachable("Unexpected instruction type"); } // Add the incoming values to the PHI nodes. for (Value *Val : Explored) { if (Val == Base) continue; // All the instructions have been created, we can now add edges to the // phi nodes. if (auto *PHI = dyn_cast<PHINode>(Val)) { PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { Value *NewIncoming = PHI->getIncomingValue(I); if (NewInsts.find(NewIncoming) != NewInsts.end()) NewIncoming = NewInsts[NewIncoming]; NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); } } } for (Value *Val : Explored) { if (Val == Base) continue; // Depending on the type, for external users we have to emit // a GEP or a GEP + ptrtoint. setInsertionPoint(Builder, Val, false); // If required, create an inttoptr instruction for Base. Value *NewBase = Base; if (!Base->getType()->isPointerTy()) NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), Start->getName() + "to.ptr"); Value *GEP = Builder.CreateInBoundsGEP( Start->getType()->getPointerElementType(), NewBase, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); if (!Val->getType()->isPointerTy()) { Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), Val->getName() + ".conv"); GEP = Cast; } Val->replaceAllUsesWith(GEP); } return NewInsts[Start]; } /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express /// the input Value as a constant indexed GEP. Returns a pair containing /// the GEPs Pointer and Index. static std::pair<Value *, Value *> getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { Type *IndexType = IntegerType::get(V->getContext(), DL.getIndexTypeSizeInBits(V->getType())); Constant *Index = ConstantInt::getNullValue(IndexType); while (true) { if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { // We accept only inbouds GEPs here to exclude the possibility of // overflow. if (!GEP->isInBounds()) break; if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && GEP->getType() == V->getType()) { V = GEP->getOperand(0); Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); Index = ConstantExpr::getAdd( Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); continue; } break; } if (auto *CI = dyn_cast<IntToPtrInst>(V)) { if (!CI->isNoopCast(DL)) break; V = CI->getOperand(0); continue; } if (auto *CI = dyn_cast<PtrToIntInst>(V)) { if (!CI->isNoopCast(DL)) break; V = CI->getOperand(0); continue; } break; } return {V, Index}; } /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. /// We can look through PHIs, GEPs and casts in order to determine a common base /// between GEPLHS and RHS. static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, const DataLayout &DL) { // FIXME: Support vector of pointers. if (GEPLHS->getType()->isVectorTy()) return nullptr; if (!GEPLHS->hasAllConstantIndices()) return nullptr; // Make sure the pointers have the same type. if (GEPLHS->getType() != RHS->getType()) return nullptr; Value *PtrBase, *Index; std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); // The set of nodes that will take part in this transformation. SetVector<Value *> Nodes; if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) return nullptr; // We know we can re-write this as // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) // Since we've only looked through inbouds GEPs we know that we // can't have overflow on either side. We can therefore re-write // this as: // OFFSET1 cmp OFFSET2 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written // GEP having PtrBase as the pointer base, and has returned in NewRHS the // offset. Since Index is the offset of LHS to the base pointer, we will now // compare the offsets instead of comparing the pointers. return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); } /// Fold comparisons between a GEP instruction and something else. At this point /// we know that the GEP is on the LHS of the comparison. Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, Instruction &I) { // Don't transform signed compares of GEPs into index compares. Even if the // GEP is inbounds, the final add of the base pointer can have signed overflow // and would change the result of the icmp. // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be // the maximum signed value for the pointer type. if (ICmpInst::isSigned(Cond)) return nullptr; // Look through bitcasts and addrspacecasts. We do not however want to remove // 0 GEPs. if (!isa<GetElementPtrInst>(RHS)) RHS = RHS->stripPointerCasts(); Value *PtrBase = GEPLHS->getOperand(0); // FIXME: Support vector pointer GEPs. if (PtrBase == RHS && GEPLHS->isInBounds() && !GEPLHS->getType()->isVectorTy()) { // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). // This transformation (ignoring the base and scales) is valid because we // know pointers can't overflow since the gep is inbounds. See if we can // output an optimized form. Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); // If not, synthesize the offset the hard way. if (!Offset) Offset = EmitGEPOffset(GEPLHS); return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, Constant::getNullValue(Offset->getType())); } if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && !NullPointerIsDefined(I.getFunction(), RHS->getType()->getPointerAddressSpace())) { // For most address spaces, an allocation can't be placed at null, but null // itself is treated as a 0 size allocation in the in bounds rules. Thus, // the only valid inbounds address derived from null, is null itself. // Thus, we have four cases to consider: // 1) Base == nullptr, Offset == 0 -> inbounds, null // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) // // (Note if we're indexing a type of size 0, that simply collapses into one // of the buckets above.) // // In general, we're allowed to make values less poison (i.e. remove // sources of full UB), so in this case, we just select between the two // non-poison cases (1 and 4 above). // // For vectors, we apply the same reasoning on a per-lane basis. auto *Base = GEPLHS->getPointerOperand(); if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); Base = Builder.CreateVectorSplat(EC, Base); } return new ICmpInst(Cond, Base, ConstantExpr::getPointerBitCastOrAddrSpaceCast( cast<Constant>(RHS), Base->getType())); } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { // If the base pointers are different, but the indices are the same, just // compare the base pointer. if (PtrBase != GEPRHS->getOperand(0)) { bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); IndicesTheSame &= GEPLHS->getOperand(0)->getType() == GEPRHS->getOperand(0)->getType(); if (IndicesTheSame) for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { IndicesTheSame = false; break; } // If all indices are the same, just compare the base pointers. Type *BaseType = GEPLHS->getOperand(0)->getType(); if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); // If we're comparing GEPs with two base pointers that only differ in type // and both GEPs have only constant indices or just one use, then fold // the compare with the adjusted indices. // FIXME: Support vector of pointers. if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && PtrBase->stripPointerCasts() == GEPRHS->getOperand(0)->stripPointerCasts() && !GEPLHS->getType()->isVectorTy()) { Value *LOffset = EmitGEPOffset(GEPLHS); Value *ROffset = EmitGEPOffset(GEPRHS); // If we looked through an addrspacecast between different sized address // spaces, the LHS and RHS pointers are different sized // integers. Truncate to the smaller one. Type *LHSIndexTy = LOffset->getType(); Type *RHSIndexTy = ROffset->getType(); if (LHSIndexTy != RHSIndexTy) { if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); } else LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); } Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), LOffset, ROffset); return replaceInstUsesWith(I, Cmp); } // Otherwise, the base pointers are different and the indices are // different. Try convert this to an indexed compare by looking through // PHIs/casts. return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); } // If one of the GEPs has all zero indices, recurse. // FIXME: Handle vector of pointers. if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), ICmpInst::getSwappedPredicate(Cond), I); // If the other GEP has all zero indices, recurse. // FIXME: Handle vector of pointers. if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { // If the GEPs only differ by one index, compare it. unsigned NumDifferences = 0; // Keep track of # differences. unsigned DiffOperand = 0; // The operand that differs. for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { Type *LHSType = GEPLHS->getOperand(i)->getType(); Type *RHSType = GEPRHS->getOperand(i)->getType(); // FIXME: Better support for vector of pointers. if (LHSType->getPrimitiveSizeInBits() != RHSType->getPrimitiveSizeInBits() || (GEPLHS->getType()->isVectorTy() && (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { // Irreconcilable differences. NumDifferences = 2; break; } if (NumDifferences++) break; DiffOperand = i; } if (NumDifferences == 0) // SAME GEP? return replaceInstUsesWith(I, // No comparison is needed here. ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); else if (NumDifferences == 1 && GEPsInBounds) { Value *LHSV = GEPLHS->getOperand(DiffOperand); Value *RHSV = GEPRHS->getOperand(DiffOperand); // Make sure we do a signed comparison here. return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); } } // Only lower this if the icmp is the only user of the GEP or if we expect // the result to fold to a constant! if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) Value *L = EmitGEPOffset(GEPLHS); Value *R = EmitGEPOffset(GEPRHS); return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); } } // Try convert this to an indexed compare by looking through PHIs/casts as a // last resort. return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); } Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca, const Value *Other) { assert(ICI.isEquality() && "Cannot fold non-equality comparison."); // It would be tempting to fold away comparisons between allocas and any // pointer not based on that alloca (e.g. an argument). However, even // though such pointers cannot alias, they can still compare equal. // // But LLVM doesn't specify where allocas get their memory, so if the alloca // doesn't escape we can argue that it's impossible to guess its value, and we // can therefore act as if any such guesses are wrong. // // The code below checks that the alloca doesn't escape, and that it's only // used in a comparison once (the current instruction). The // single-comparison-use condition ensures that we're trivially folding all // comparisons against the alloca consistently, and avoids the risk of // erroneously folding a comparison of the pointer with itself. unsigned MaxIter = 32; // Break cycles and bound to constant-time. SmallVector<const Use *, 32> Worklist; for (const Use &U : Alloca->uses()) { if (Worklist.size() >= MaxIter) return nullptr; Worklist.push_back(&U); } unsigned NumCmps = 0; while (!Worklist.empty()) { assert(Worklist.size() <= MaxIter); const Use *U = Worklist.pop_back_val(); const Value *V = U->getUser(); --MaxIter; if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || isa<SelectInst>(V)) { // Track the uses. } else if (isa<LoadInst>(V)) { // Loading from the pointer doesn't escape it. continue; } else if (const auto *SI = dyn_cast<StoreInst>(V)) { // Storing *to* the pointer is fine, but storing the pointer escapes it. if (SI->getValueOperand() == U->get()) return nullptr; continue; } else if (isa<ICmpInst>(V)) { if (NumCmps++) return nullptr; // Found more than one cmp. continue; } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { switch (Intrin->getIntrinsicID()) { // These intrinsics don't escape or compare the pointer. Memset is safe // because we don't allow ptrtoint. Memcpy and memmove are safe because // we don't allow stores, so src cannot point to V. case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: continue; default: return nullptr; } } else { return nullptr; } for (const Use &U : V->uses()) { if (Worklist.size() >= MaxIter) return nullptr; Worklist.push_back(&U); } } Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); return replaceInstUsesWith( ICI, ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); } /// Fold "icmp pred (X+C), X". Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, ICmpInst::Predicate Pred) { // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, // so the values can never be equal. Similarly for all other "or equals" // operators. assert(!!C && "C should not be zero!"); // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { Constant *R = ConstantInt::get(X->getType(), APInt::getMaxValue(C.getBitWidth()) - C); return new ICmpInst(ICmpInst::ICMP_UGT, X, R); } // (X+1) >u X --> X <u (0-1) --> X != 255 // (X+2) >u X --> X <u (0-2) --> X <u 254 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(X->getType(), -C)); APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(X->getType(), SMax - C)); // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(X->getType(), SMax - (C - 1))); } /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> /// (icmp eq/ne A, Log2(AP2/AP1)) -> /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, const APInt &AP1, const APInt &AP2) { assert(I.isEquality() && "Cannot fold icmp gt/lt"); auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { if (I.getPredicate() == I.ICMP_NE) Pred = CmpInst::getInversePredicate(Pred); return new ICmpInst(Pred, LHS, RHS); }; // Don't bother doing any work for cases which InstSimplify handles. if (AP2.isNullValue()) return nullptr; bool IsAShr = isa<AShrOperator>(I.getOperand(0)); if (IsAShr) { if (AP2.isAllOnesValue()) return nullptr; if (AP2.isNegative() != AP1.isNegative()) return nullptr; if (AP2.sgt(AP1)) return nullptr; } if (!AP1) // 'A' must be large enough to shift out the highest set bit. return getICmp(I.ICMP_UGT, A, ConstantInt::get(A->getType(), AP2.logBase2())); if (AP1 == AP2) return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); int Shift; if (IsAShr && AP1.isNegative()) Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); else Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); if (Shift > 0) { if (IsAShr && AP1 == AP2.ashr(Shift)) { // There are multiple solutions if we are comparing against -1 and the LHS // of the ashr is not a power of two. if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); } else if (AP1 == AP2.lshr(Shift)) { return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); } } // Shifting const2 will never be equal to const1. // FIXME: This should always be handled by InstSimplify? auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); return replaceInstUsesWith(I, TorF); } /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, const APInt &AP1, const APInt &AP2) { assert(I.isEquality() && "Cannot fold icmp gt/lt"); auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { if (I.getPredicate() == I.ICMP_NE) Pred = CmpInst::getInversePredicate(Pred); return new ICmpInst(Pred, LHS, RHS); }; // Don't bother doing any work for cases which InstSimplify handles. if (AP2.isNullValue()) return nullptr; unsigned AP2TrailingZeros = AP2.countTrailingZeros(); if (!AP1 && AP2TrailingZeros != 0) return getICmp( I.ICMP_UGE, A, ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); if (AP1 == AP2) return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); // Get the distance between the lowest bits that are set. int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; if (Shift > 0 && AP2.shl(Shift) == AP1) return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); // Shifting const2 will never be equal to const1. // FIXME: This should always be handled by InstSimplify? auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); return replaceInstUsesWith(I, TorF); } /// The caller has matched a pattern of the form: /// I = icmp ugt (add (add A, B), CI2), CI1 /// If this is of the form: /// sum = a + b /// if (sum+128 >u 255) /// Then replace it with llvm.sadd.with.overflow.i8. /// static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, ConstantInt *CI2, ConstantInt *CI1, InstCombinerImpl &IC) { // The transformation we're trying to do here is to transform this into an // llvm.sadd.with.overflow. To do this, we have to replace the original add // with a narrower add, and discard the add-with-constant that is part of the // range check (if we can't eliminate it, this isn't profitable). // In order to eliminate the add-with-constant, the compare can be its only // use. Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); if (!AddWithCst->hasOneUse()) return nullptr; // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. if (!CI2->getValue().isPowerOf2()) return nullptr; unsigned NewWidth = CI2->getValue().countTrailingZeros(); if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr; // The width of the new add formed is 1 more than the bias. ++NewWidth; // Check to see that CI1 is an all-ones value with NewWidth bits. if (CI1->getBitWidth() == NewWidth || CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) return nullptr; // This is only really a signed overflow check if the inputs have been // sign-extended; check for that condition. For example, if CI2 is 2^31 and // the operands of the add are 64 bits wide, we need at least 33 sign bits. unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) return nullptr; // In order to replace the original add with a narrower // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant // and truncates that discard the high bits of the add. Verify that this is // the case. Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); for (User *U : OrigAdd->users()) { if (U == AddWithCst) continue; // Only accept truncates for now. We would really like a nice recursive // predicate like SimplifyDemandedBits, but which goes downwards the use-def // chain to see which bits of a value are actually demanded. If the // original add had another add which was then immediately truncated, we // could still do the transformation. TruncInst *TI = dyn_cast<TruncInst>(U); if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) return nullptr; } // If the pattern matches, truncate the inputs to the narrower type and // use the sadd_with_overflow intrinsic to efficiently compute both the // result and the overflow bit. Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); Function *F = Intrinsic::getDeclaration( I.getModule(), Intrinsic::sadd_with_overflow, NewType); InstCombiner::BuilderTy &Builder = IC.Builder; // Put the new code above the original add, in case there are any uses of the // add between the add and the compare. Builder.SetInsertPoint(OrigAdd); Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); // The inner add was the result of the narrow add, zero extended to the // wider type. Replace it with the result computed by the intrinsic. IC.replaceInstUsesWith(*OrigAdd, ZExt); IC.eraseInstFromFunction(*OrigAdd); // The original icmp gets replaced with the overflow value. return ExtractValueInst::Create(Call, 1, "sadd.overflow"); } /// If we have: /// icmp eq/ne (urem/srem %x, %y), 0 /// iff %y is a power-of-two, we can replace this with a bit test: /// icmp eq/ne (and %x, (add %y, -1)), 0 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { // This fold is only valid for equality predicates. if (!I.isEquality()) return nullptr; ICmpInst::Predicate Pred; Value *X, *Y, *Zero; if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), m_CombineAnd(m_Zero(), m_Value(Zero))))) return nullptr; if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) return nullptr; // This may increase instruction count, we don't enforce that Y is a constant. Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); Value *Masked = Builder.CreateAnd(X, Mask); return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); } /// Fold equality-comparison between zero and any (maybe truncated) right-shift /// by one-less-than-bitwidth into a sign test on the original value. Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { Instruction *Val; ICmpInst::Predicate Pred; if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) return nullptr; Value *X; Type *XTy; Constant *C; if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { XTy = X->getType(); unsigned XBitWidth = XTy->getScalarSizeInBits(); if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(XBitWidth, XBitWidth - 1)))) return nullptr; } else if (isa<BinaryOperator>(Val) && (X = reassociateShiftAmtsOfTwoSameDirectionShifts( cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), /*AnalyzeForSignBitExtraction=*/true))) { XTy = X->getType(); } else return nullptr; return ICmpInst::Create(Instruction::ICmp, Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLT, X, ConstantInt::getNullValue(XTy)); } // Handle icmp pred X, 0 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { CmpInst::Predicate Pred = Cmp.getPredicate(); if (!match(Cmp.getOperand(1), m_Zero())) return nullptr; // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) if (Pred == ICmpInst::ICMP_SGT) { Value *A, *B; SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); if (SPR.Flavor == SPF_SMIN) { if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) return new ICmpInst(Pred, B, Cmp.getOperand(1)); if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) return new ICmpInst(Pred, A, Cmp.getOperand(1)); } } if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) return New; // Given: // icmp eq/ne (urem %x, %y), 0 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': // icmp eq/ne %x, 0 Value *X, *Y; if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && ICmpInst::isEquality(Pred)) { KnownBits XKnown = computeKnownBits(X, 0, &Cmp); KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) return new ICmpInst(Pred, X, Cmp.getOperand(1)); } return nullptr; } /// Fold icmp Pred X, C. /// TODO: This code structure does not make sense. The saturating add fold /// should be moved to some other helper and extended as noted below (it is also /// possible that code has been made unnecessary - do we canonicalize IR to /// overflow/saturating intrinsics or not?). Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { // Match the following pattern, which is a common idiom when writing // overflow-safe integer arithmetic functions. The source performs an addition // in wider type and explicitly checks for overflow using comparisons against // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. // // TODO: This could probably be generalized to handle other overflow-safe // operations if we worked out the formulas to compute the appropriate magic // constants. // // sum = a + b // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 CmpInst::Predicate Pred = Cmp.getPredicate(); Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); Value *A, *B; ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) return Res; // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). Constant *C = dyn_cast<Constant>(Op1); if (!C) return nullptr; if (auto *Phi = dyn_cast<PHINode>(Op0)) if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { Type *Ty = Cmp.getType(); Builder.SetInsertPoint(Phi); PHINode *NewPhi = Builder.CreatePHI(Ty, Phi->getNumOperands()); for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { auto *Input = cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); NewPhi->addIncoming(BoolInput, Predecessor); } NewPhi->takeName(&Cmp); return replaceInstUsesWith(Cmp, NewPhi); } return nullptr; } /// Canonicalize icmp instructions based on dominating conditions. Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { // This is a cheap/incomplete check for dominance - just match a single // predecessor with a conditional branch. BasicBlock *CmpBB = Cmp.getParent(); BasicBlock *DomBB = CmpBB->getSinglePredecessor(); if (!DomBB) return nullptr; Value *DomCond; BasicBlock *TrueBB, *FalseBB; if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) return nullptr; assert((TrueBB == CmpBB || FalseBB == CmpBB) && "Predecessor block does not point to successor?"); // The branch should get simplified. Don't bother simplifying this condition. if (TrueBB == FalseBB) return nullptr; // Try to simplify this compare to T/F based on the dominating condition. Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); if (Imp) return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); CmpInst::Predicate Pred = Cmp.getPredicate(); Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); ICmpInst::Predicate DomPred; const APInt *C, *DomC; if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && match(Y, m_APInt(C))) { // We have 2 compares of a variable with constants. Calculate the constant // ranges of those compares to see if we can transform the 2nd compare: // DomBB: // DomCond = icmp DomPred X, DomC // br DomCond, CmpBB, FalseBB // CmpBB: // Cmp = icmp Pred X, C ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); ConstantRange DominatingCR = (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) : ConstantRange::makeExactICmpRegion( CmpInst::getInversePredicate(DomPred), *DomC); ConstantRange Intersection = DominatingCR.intersectWith(CR); ConstantRange Difference = DominatingCR.difference(CR); if (Intersection.isEmptySet()) return replaceInstUsesWith(Cmp, Builder.getFalse()); if (Difference.isEmptySet()) return replaceInstUsesWith(Cmp, Builder.getTrue()); // Canonicalizing a sign bit comparison that gets used in a branch, // pessimizes codegen by generating branch on zero instruction instead // of a test and branch. So we avoid canonicalizing in such situations // because test and branch instruction has better branch displacement // than compare and branch instruction. bool UnusedBit; bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) return nullptr; if (const APInt *EqC = Intersection.getSingleElement()) return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); if (const APInt *NeC = Difference.getSingleElement()) return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); } return nullptr; } /// Fold icmp (trunc X, Y), C. Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc, const APInt &C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *X = Trunc->getOperand(0); if (C.isOneValue() && C.getBitWidth() > 1) { // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 Value *V = nullptr; if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) return new ICmpInst(ICmpInst::ICMP_SLT, V, ConstantInt::get(V->getType(), 1)); } if (Cmp.isEquality() && Trunc->hasOneUse()) { // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all // of the high bits truncated out of x are known. unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), SrcBits = X->getType()->getScalarSizeInBits(); KnownBits Known = computeKnownBits(X, 0, &Cmp); // If all the high bits are known, we can do this xform. if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { // Pull in the high bits from known-ones set. APInt NewRHS = C.zext(SrcBits); NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); } } return nullptr; } /// Fold icmp (xor X, Y), C. Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor, const APInt &C) { Value *X = Xor->getOperand(0); Value *Y = Xor->getOperand(1); const APInt *XorC; if (!match(Y, m_APInt(XorC))) return nullptr; // If this is a comparison that tests the signbit (X < 0) or (x > -1), // fold the xor. ICmpInst::Predicate Pred = Cmp.getPredicate(); bool TrueIfSigned = false; if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { // If the sign bit of the XorCst is not set, there is no change to // the operation, just stop using the Xor. if (!XorC->isNegative()) return replaceOperand(Cmp, 0, X); // Emit the opposite comparison. if (TrueIfSigned) return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::getAllOnesValue(X->getType())); else return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::getNullValue(X->getType())); } if (Xor->hasOneUse()) { // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) if (!Cmp.isEquality() && XorC->isSignMask()) { Pred = Cmp.getFlippedSignednessPredicate(); return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); } // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { Pred = Cmp.getFlippedSignednessPredicate(); Pred = Cmp.getSwappedPredicate(Pred); return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); } } // Mask constant magic can eliminate an 'xor' with unsigned compares. if (Pred == ICmpInst::ICMP_UGT) { // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) if (*XorC == ~C && (C + 1).isPowerOf2()) return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) if (*XorC == C && (C + 1).isPowerOf2()) return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); } if (Pred == ICmpInst::ICMP_ULT) { // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) if (*XorC == -C && C.isPowerOf2()) return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(X->getType(), ~C)); // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) if (*XorC == C && (-C).isPowerOf2()) return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(X->getType(), ~C)); } return nullptr; } /// Fold icmp (and (sh X, Y), C2), C1. Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, const APInt &C1, const APInt &C2) { BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); if (!Shift || !Shift->isShift()) return nullptr; // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in // code produced by the clang front-end, for bitfield access. // This seemingly simple opportunity to fold away a shift turns out to be // rather complicated. See PR17827 for details. unsigned ShiftOpcode = Shift->getOpcode(); bool IsShl = ShiftOpcode == Instruction::Shl; const APInt *C3; if (match(Shift->getOperand(1), m_APInt(C3))) { APInt NewAndCst, NewCmpCst; bool AnyCmpCstBitsShiftedOut; if (ShiftOpcode == Instruction::Shl) { // For a left shift, we can fold if the comparison is not signed. We can // also fold a signed comparison if the mask value and comparison value // are not negative. These constraints may not be obvious, but we can // prove that they are correct using an SMT solver. if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) return nullptr; NewCmpCst = C1.lshr(*C3); NewAndCst = C2.lshr(*C3); AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; } else if (ShiftOpcode == Instruction::LShr) { // For a logical right shift, we can fold if the comparison is not signed. // We can also fold a signed comparison if the shifted mask value and the // shifted comparison value are not negative. These constraints may not be // obvious, but we can prove that they are correct using an SMT solver. NewCmpCst = C1.shl(*C3); NewAndCst = C2.shl(*C3); AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) return nullptr; } else { // For an arithmetic shift, check that both constants don't use (in a // signed sense) the top bits being shifted out. assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); NewCmpCst = C1.shl(*C3); NewAndCst = C2.shl(*C3); AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; if (NewAndCst.ashr(*C3) != C2) return nullptr; } if (AnyCmpCstBitsShiftedOut) { // If we shifted bits out, the fold is not going to work out. As a // special case, check to see if this means that the result is always // true or false now. if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); if (Cmp.getPredicate() == ICmpInst::ICMP_NE) return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); } else { Value *NewAnd = Builder.CreateAnd( Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); return new ICmpInst(Cmp.getPredicate(), NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); } } // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is // preferable because it allows the C2 << Y expression to be hoisted out of a // loop if Y is invariant and X is not. if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { // Compute C2 << Y. Value *NewShift = IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); // Compute X & (C2 << Y). Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); return replaceOperand(Cmp, 0, NewAnd); } return nullptr; } /// Fold icmp (and X, C2), C1. Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And, const APInt &C1) { bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 // TODO: We canonicalize to the longer form for scalars because we have // better analysis/folds for icmp, and codegen may be better with icmp. if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && match(And->getOperand(1), m_One())) return new TruncInst(And->getOperand(0), Cmp.getType()); const APInt *C2; Value *X; if (!match(And, m_And(m_Value(X), m_APInt(C2)))) return nullptr; // Don't perform the following transforms if the AND has multiple uses if (!And->hasOneUse()) return nullptr; if (Cmp.isEquality() && C1.isNullValue()) { // Restrict this fold to single-use 'and' (PR10267). // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 if (C2->isSignMask()) { Constant *Zero = Constant::getNullValue(X->getType()); auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; return new ICmpInst(NewPred, X, Zero); } // Restrict this fold only for single-use 'and' (PR10267). // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. if ((~(*C2) + 1).isPowerOf2()) { Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; return new ICmpInst(NewPred, X, NegBOC); } } // If the LHS is an 'and' of a truncate and we can widen the and/compare to // the input width without changing the value produced, eliminate the cast: // // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' // // We can do this transformation if the constants do not have their sign bits // set or if it is an equality comparison. Extending a relational comparison // when we're checking the sign bit would not work. Value *W; if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { // TODO: Is this a good transform for vectors? Wider types may reduce // throughput. Should this transform be limited (even for scalars) by using // shouldChangeType()? if (!Cmp.getType()->isVectorTy()) { Type *WideType = W->getType(); unsigned WideScalarBits = WideType->getScalarSizeInBits(); Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); } } if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) return I; // (icmp pred (and (or (lshr A, B), A), 1), 0) --> // (icmp pred (and A, (or (shl 1, B), 1), 0)) // // iff pred isn't signed if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && match(And->getOperand(1), m_One())) { Constant *One = cast<Constant>(And->getOperand(1)); Value *Or = And->getOperand(0); Value *A, *B, *LShr; if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { unsigned UsesRemoved = 0; if (And->hasOneUse()) ++UsesRemoved; if (Or->hasOneUse()) ++UsesRemoved; if (LShr->hasOneUse()) ++UsesRemoved; // Compute A & ((1 << B) | 1) Value *NewOr = nullptr; if (auto *C = dyn_cast<Constant>(B)) { if (UsesRemoved >= 1) NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); } else { if (UsesRemoved >= 3) NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), /*HasNUW=*/true), One, Or->getName()); } if (NewOr) { Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); return replaceOperand(Cmp, 0, NewAnd); } } } return nullptr; } /// Fold icmp (and X, Y), C. Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And, const APInt &C) { if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) return I; // TODO: These all require that Y is constant too, so refactor with the above. // Try to optimize things like "A[i] & 42 == 0" to index computations. Value *X = And->getOperand(0); Value *Y = And->getOperand(1); if (auto *LI = dyn_cast<LoadInst>(X)) if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) if (GV->isConstant() && GV->hasDefinitiveInitializer() && !LI->isVolatile() && isa<ConstantInt>(Y)) { ConstantInt *C2 = cast<ConstantInt>(Y); if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) return Res; } if (!Cmp.isEquality()) return nullptr; // X & -C == -C -> X > u ~C // X & -C != -C -> X <= u ~C // iff C is a power of 2 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); } // (X & C2) == 0 -> (trunc X) >= 0 // (X & C2) != 0 -> (trunc X) < 0 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. const APInt *C2; if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { int32_t ExactLogBase2 = C2->exactLogBase2(); if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) NTy = VectorType::get(NTy, AndVTy->getElementCount()); Value *Trunc = Builder.CreateTrunc(X, NTy); auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE : CmpInst::ICMP_SLT; return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); } } return nullptr; } /// Fold icmp (or X, Y), C. Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, const APInt &C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); if (C.isOneValue()) { // icmp slt signum(V) 1 --> icmp slt V, 1 Value *V = nullptr; if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) return new ICmpInst(ICmpInst::ICMP_SLT, V, ConstantInt::get(V->getType(), 1)); } Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); const APInt *MaskC; if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { if (*MaskC == C && (C + 1).isPowerOf2()) { // X | C == C --> X <=u C // X | C != C --> X >u C // iff C+1 is a power of 2 (C is a bitmask of the low bits) Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; return new ICmpInst(Pred, OrOp0, OrOp1); } // More general: canonicalize 'equality with set bits mask' to // 'equality with clear bits mask'. // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC if (Or->hasOneUse()) { Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); return new ICmpInst(Pred, And, NewC); } } if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) return nullptr; Value *P, *Q; if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 // -> and (icmp eq P, null), (icmp eq Q, null). Value *CmpP = Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); Value *CmpQ = Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; return BinaryOperator::Create(BOpc, CmpP, CmpQ); } // Are we using xors to bitwise check for a pair of (in)equalities? Convert to // a shorter form that has more potential to be folded even further. Value *X1, *X2, *X3, *X4; if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; return BinaryOperator::Create(BOpc, Cmp12, Cmp34); } return nullptr; } /// Fold icmp (mul X, Y), C. Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul, const APInt &C) { const APInt *MulC; if (!match(Mul->getOperand(1), m_APInt(MulC))) return nullptr; // If this is a test of the sign bit and the multiply is sign-preserving with // a constant operand, use the multiply LHS operand instead. ICmpInst::Predicate Pred = Cmp.getPredicate(); if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { if (MulC->isNegative()) Pred = ICmpInst::getSwappedPredicate(Pred); return new ICmpInst(Pred, Mul->getOperand(0), Constant::getNullValue(Mul->getType())); } // If the multiply does not wrap, try to divide the compare constant by the // multiplication factor. if (Cmp.isEquality() && !MulC->isNullValue()) { // (mul nsw X, MulC) == C --> X == C /s MulC if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) { Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); return new ICmpInst(Pred, Mul->getOperand(0), NewC); } // (mul nuw X, MulC) == C --> X == C /u MulC if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) { Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); return new ICmpInst(Pred, Mul->getOperand(0), NewC); } } return nullptr; } /// Fold icmp (shl 1, Y), C. static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, const APInt &C) { Value *Y; if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) return nullptr; Type *ShiftType = Shl->getType(); unsigned TypeBits = C.getBitWidth(); bool CIsPowerOf2 = C.isPowerOf2(); ICmpInst::Predicate Pred = Cmp.getPredicate(); if (Cmp.isUnsigned()) { // (1 << Y) pred C -> Y pred Log2(C) if (!CIsPowerOf2) { // (1 << Y) < 30 -> Y <= 4 // (1 << Y) <= 30 -> Y <= 4 // (1 << Y) >= 30 -> Y > 4 // (1 << Y) > 30 -> Y > 4 if (Pred == ICmpInst::ICMP_ULT) Pred = ICmpInst::ICMP_ULE; else if (Pred == ICmpInst::ICMP_UGE) Pred = ICmpInst::ICMP_UGT; } // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 unsigned CLog2 = C.logBase2(); if (CLog2 == TypeBits - 1) { if (Pred == ICmpInst::ICMP_UGE) Pred = ICmpInst::ICMP_EQ; else if (Pred == ICmpInst::ICMP_ULT) Pred = ICmpInst::ICMP_NE; } return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); } else if (Cmp.isSigned()) { Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); if (C.isAllOnesValue()) { // (1 << Y) <= -1 -> Y == 31 if (Pred == ICmpInst::ICMP_SLE) return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); // (1 << Y) > -1 -> Y != 31 if (Pred == ICmpInst::ICMP_SGT) return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); } else if (!C) { // (1 << Y) < 0 -> Y == 31 // (1 << Y) <= 0 -> Y == 31 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); // (1 << Y) >= 0 -> Y != 31 // (1 << Y) > 0 -> Y != 31 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); } } else if (Cmp.isEquality() && CIsPowerOf2) { return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); } return nullptr; } /// Fold icmp (shl X, Y), C. Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl, const APInt &C) { const APInt *ShiftVal; if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); const APInt *ShiftAmt; if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) return foldICmpShlOne(Cmp, Shl, C); // Check that the shift amount is in range. If not, don't perform undefined // shifts. When the shift is visited, it will be simplified. unsigned TypeBits = C.getBitWidth(); if (ShiftAmt->uge(TypeBits)) return nullptr; ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *X = Shl->getOperand(0); Type *ShType = Shl->getType(); // NSW guarantees that we are only shifting out sign bits from the high bits, // so we can ASHR the compare constant without needing a mask and eliminate // the shift. if (Shl->hasNoSignedWrap()) { if (Pred == ICmpInst::ICMP_SGT) { // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) APInt ShiftedC = C.ashr(*ShiftAmt); return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { APInt ShiftedC = C.ashr(*ShiftAmt); return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } if (Pred == ICmpInst::ICMP_SLT) { // SLE is the same as above, but SLE is canonicalized to SLT, so convert: // (X << S) <=s C is equiv to X <=s (C >> S) for all C // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN assert(!C.isMinSignedValue() && "Unexpected icmp slt"); APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } // If this is a signed comparison to 0 and the shift is sign preserving, // use the shift LHS operand instead; isSignTest may change 'Pred', so only // do that if we're sure to not continue on in this function. if (isSignTest(Pred, C)) return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); } // NUW guarantees that we are only shifting out zero bits from the high bits, // so we can LSHR the compare constant without needing a mask and eliminate // the shift. if (Shl->hasNoUnsignedWrap()) { if (Pred == ICmpInst::ICMP_UGT) { // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) APInt ShiftedC = C.lshr(*ShiftAmt); return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { APInt ShiftedC = C.lshr(*ShiftAmt); return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } if (Pred == ICmpInst::ICMP_ULT) { // ULE is the same as above, but ULE is canonicalized to ULT, so convert: // (X << S) <=u C is equiv to X <=u (C >> S) for all C // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 assert(C.ugt(0) && "ult 0 should have been eliminated"); APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } } if (Cmp.isEquality() && Shl->hasOneUse()) { // Strength-reduce the shift into an 'and'. Constant *Mask = ConstantInt::get( ShType, APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); return new ICmpInst(Pred, And, LShrC); } // Otherwise, if this is a comparison of the sign bit, simplify to and/test. bool TrueIfSigned = false; if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { // (X << 31) <s 0 --> (X & 1) != 0 Constant *Mask = ConstantInt::get( ShType, APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, And, Constant::getNullValue(ShType)); } // Simplify 'shl' inequality test into 'and' equality test. if (Cmp.isUnsigned() && Shl->hasOneUse()) { // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 if ((C + 1).isPowerOf2() && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, And, Constant::getNullValue(ShType)); } // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 if (C.isPowerOf2() && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { Value *And = Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, And, Constant::getNullValue(ShType)); } } // Transform (icmp pred iM (shl iM %v, N), C) // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. // This enables us to get rid of the shift in favor of a trunc that may be // free on the target. It has the additional benefit of comparing to a // smaller constant that may be more target-friendly. unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && DL.isLegalInteger(TypeBits - Amt)) { Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); if (auto *ShVTy = dyn_cast<VectorType>(ShType)) TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); Constant *NewC = ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); } return nullptr; } /// Fold icmp ({al}shr X, Y), C. Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr, const APInt &C) { // An exact shr only shifts out zero bits, so: // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 Value *X = Shr->getOperand(0); CmpInst::Predicate Pred = Cmp.getPredicate(); if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && C.isNullValue()) return new ICmpInst(Pred, X, Cmp.getOperand(1)); const APInt *ShiftVal; if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); const APInt *ShiftAmt; if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) return nullptr; // Check that the shift amount is in range. If not, don't perform undefined // shifts. When the shift is visited it will be simplified. unsigned TypeBits = C.getBitWidth(); unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); if (ShAmtVal >= TypeBits || ShAmtVal == 0) return nullptr; bool IsAShr = Shr->getOpcode() == Instruction::AShr; bool IsExact = Shr->isExact(); Type *ShrTy = Shr->getType(); // TODO: If we could guarantee that InstSimplify would handle all of the // constant-value-based preconditions in the folds below, then we could assert // those conditions rather than checking them. This is difficult because of // undef/poison (PR34838). if (IsAShr) { if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) APInt ShiftedC = C.shl(ShAmtVal); if (ShiftedC.ashr(ShAmtVal) == C) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } if (Pred == CmpInst::ICMP_SGT) { // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } // If the compare constant has significant bits above the lowest sign-bit, // then convert an unsigned cmp to a test of the sign-bit: // (ashr X, ShiftC) u> C --> X s< 0 // (ashr X, ShiftC) u< C --> X s> -1 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { if (Pred == CmpInst::ICMP_UGT) { return new ICmpInst(CmpInst::ICMP_SLT, X, ConstantInt::getNullValue(ShrTy)); } if (Pred == CmpInst::ICMP_ULT) { return new ICmpInst(CmpInst::ICMP_SGT, X, ConstantInt::getAllOnesValue(ShrTy)); } } } else { if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) APInt ShiftedC = C.shl(ShAmtVal); if (ShiftedC.lshr(ShAmtVal) == C) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } if (Pred == CmpInst::ICMP_UGT) { // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } } if (!Cmp.isEquality()) return nullptr; // Handle equality comparisons of shift-by-constant. // If the comparison constant changes with the shift, the comparison cannot // succeed (bits of the comparison constant cannot match the shifted value). // This should be known by InstSimplify and already be folded to true/false. assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && "Expected icmp+shr simplify did not occur."); // If the bits shifted out are known zero, compare the unshifted value: // (X & 4) >> 1 == 2 --> (X & 4) == 4. if (Shr->isExact()) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); if (Shr->hasOneUse()) { // Canonicalize the shift into an 'and': // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); Constant *Mask = ConstantInt::get(ShrTy, Val); Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); } return nullptr; } Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *SRem, const APInt &C) { // Match an 'is positive' or 'is negative' comparison of remainder by a // constant power-of-2 value: // (X % pow2C) sgt/slt 0 const ICmpInst::Predicate Pred = Cmp.getPredicate(); if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) return nullptr; // TODO: The one-use check is standard because we do not typically want to // create longer instruction sequences, but this might be a special-case // because srem is not good for analysis or codegen. if (!SRem->hasOneUse()) return nullptr; const APInt *DivisorC; if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) return nullptr; // Mask off the sign bit and the modulo bits (low-bits). Type *Ty = SRem->getType(); APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); // For 'is positive?' check that the sign-bit is clear and at least 1 masked // bit is set. Example: // (i8 X % 32) s> 0 --> (X & 159) s> 0 if (Pred == ICmpInst::ICMP_SGT) return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); // For 'is negative?' check that the sign-bit is set and at least 1 masked // bit is set. Example: // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); } /// Fold icmp (udiv X, Y), C. Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv, const APInt &C) { const APInt *C2; if (!match(UDiv->getOperand(0), m_APInt(C2))) return nullptr; assert(*C2 != 0 && "udiv 0, X should have been simplified already."); // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) Value *Y = UDiv->getOperand(1); if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { assert(!C.isMaxValue() && "icmp ugt X, UINT_MAX should have been simplified already."); return new ICmpInst(ICmpInst::ICMP_ULE, Y, ConstantInt::get(Y->getType(), C2->udiv(C + 1))); } // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { assert(C != 0 && "icmp ult X, 0 should have been simplified already."); return new ICmpInst(ICmpInst::ICMP_UGT, Y, ConstantInt::get(Y->getType(), C2->udiv(C))); } return nullptr; } /// Fold icmp ({su}div X, Y), C. Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div, const APInt &C) { // Fold: icmp pred ([us]div X, C2), C -> range test // Fold this div into the comparison, producing a range check. // Determine, based on the divide type, what the range is being // checked. If there is an overflow on the low or high side, remember // it, otherwise compute the range [low, hi) bounding the new value. // See: InsertRangeTest above for the kinds of replacements possible. const APInt *C2; if (!match(Div->getOperand(1), m_APInt(C2))) return nullptr; // FIXME: If the operand types don't match the type of the divide // then don't attempt this transform. The code below doesn't have the // logic to deal with a signed divide and an unsigned compare (and // vice versa). This is because (x /s C2) <s C produces different // results than (x /s C2) <u C or (x /u C2) <s C or even // (x /u C2) <u C. Simply casting the operands and result won't // work. :( The if statement below tests that condition and bails // if it finds it. bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) return nullptr; // The ProdOV computation fails on divide by 0 and divide by -1. Cases with // INT_MIN will also fail if the divisor is 1. Although folds of all these // division-by-constant cases should be present, we can not assert that they // have happened before we reach this icmp instruction. if (C2->isNullValue() || C2->isOneValue() || (DivIsSigned && C2->isAllOnesValue())) return nullptr; // Compute Prod = C * C2. We are essentially solving an equation of // form X / C2 = C. We solve for X by multiplying C2 and C. // By solving for X, we can turn this into a range check instead of computing // a divide. APInt Prod = C * *C2; // Determine if the product overflows by seeing if the product is not equal to // the divide. Make sure we do the same kind of divide as in the LHS // instruction that we're folding. bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; ICmpInst::Predicate Pred = Cmp.getPredicate(); // If the division is known to be exact, then there is no remainder from the // divide, so the covered range size is unit, otherwise it is the divisor. APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; // Figure out the interval that is being checked. For example, a comparison // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). // Compute this interval based on the constants involved and the signedness of // the compare/divide. This computes a half-open interval, keeping track of // whether either value in the interval overflows. After analysis each // overflow variable is set to 0 if it's corresponding bound variable is valid // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. int LoOverflow = 0, HiOverflow = 0; APInt LoBound, HiBound; if (!DivIsSigned) { // udiv // e.g. X/5 op 3 --> [15, 20) LoBound = Prod; HiOverflow = LoOverflow = ProdOV; if (!HiOverflow) { // If this is not an exact divide, then many values in the range collapse // to the same result value. HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); } } else if (C2->isStrictlyPositive()) { // Divisor is > 0. if (C.isNullValue()) { // (X / pos) op 0 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) LoBound = -(RangeSize - 1); HiBound = RangeSize; } else if (C.isStrictlyPositive()) { // (X / pos) op pos LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) HiOverflow = LoOverflow = ProdOV; if (!HiOverflow) HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); } else { // (X / pos) op neg // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) HiBound = Prod + 1; LoOverflow = HiOverflow = ProdOV ? -1 : 0; if (!LoOverflow) { APInt DivNeg = -RangeSize; LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; } } } else if (C2->isNegative()) { // Divisor is < 0. if (Div->isExact()) RangeSize.negate(); if (C.isNullValue()) { // (X / neg) op 0 // e.g. X/-5 op 0 --> [-4, 5) LoBound = RangeSize + 1; HiBound = -RangeSize; if (HiBound == *C2) { // -INTMIN = INTMIN HiOverflow = 1; // [INTMIN+1, overflow) HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN } } else if (C.isStrictlyPositive()) { // (X / neg) op pos // e.g. X/-5 op 3 --> [-19, -14) HiBound = Prod + 1; HiOverflow = LoOverflow = ProdOV ? -1 : 0; if (!LoOverflow) LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; } else { // (X / neg) op neg LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) LoOverflow = HiOverflow = ProdOV; if (!HiOverflow) HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); } // Dividing by a negative swaps the condition. LT <-> GT Pred = ICmpInst::getSwappedPredicate(Pred); } Value *X = Div->getOperand(0); switch (Pred) { default: llvm_unreachable("Unhandled icmp opcode!"); case ICmpInst::ICMP_EQ: if (LoOverflow && HiOverflow) return replaceInstUsesWith(Cmp, Builder.getFalse()); if (HiOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, X, ConstantInt::get(Div->getType(), LoBound)); if (LoOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, X, ConstantInt::get(Div->getType(), HiBound)); return replaceInstUsesWith( Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); case ICmpInst::ICMP_NE: if (LoOverflow && HiOverflow) return replaceInstUsesWith(Cmp, Builder.getTrue()); if (HiOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, X, ConstantInt::get(Div->getType(), LoBound)); if (LoOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, X, ConstantInt::get(Div->getType(), HiBound)); return replaceInstUsesWith(Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: if (LoOverflow == +1) // Low bound is greater than input range. return replaceInstUsesWith(Cmp, Builder.getTrue()); if (LoOverflow == -1) // Low bound is less than input range. return replaceInstUsesWith(Cmp, Builder.getFalse()); return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGT: if (HiOverflow == +1) // High bound greater than input range. return replaceInstUsesWith(Cmp, Builder.getFalse()); if (HiOverflow == -1) // High bound less than input range. return replaceInstUsesWith(Cmp, Builder.getTrue()); if (Pred == ICmpInst::ICMP_UGT) return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Div->getType(), HiBound)); return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Div->getType(), HiBound)); } return nullptr; } /// Fold icmp (sub X, Y), C. Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub, const APInt &C) { Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); ICmpInst::Predicate Pred = Cmp.getPredicate(); const APInt *C2; APInt SubResult; // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) return new ICmpInst(Cmp.getPredicate(), Y, ConstantInt::get(Y->getType(), 0)); // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) if (match(X, m_APInt(C2)) && ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || (Cmp.isSigned() && Sub->hasNoSignedWrap())) && !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) return new ICmpInst(Cmp.getSwappedPredicate(), Y, ConstantInt::get(Y->getType(), SubResult)); // The following transforms are only worth it if the only user of the subtract // is the icmp. if (!Sub->hasOneUse()) return nullptr; if (Sub->hasNoSignedWrap()) { // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); } if (!match(X, m_APInt(C2))) return nullptr; // C2 - Y <u C -> (Y | (C - 1)) == C2 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == (C - 1)) return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); // C2 - Y >u C -> (Y | C) != C2 // iff C2 & C == C and C + 1 is a power of 2 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); return nullptr; } /// Fold icmp (add X, Y), C. Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add, const APInt &C) { Value *Y = Add->getOperand(1); const APInt *C2; if (Cmp.isEquality() || !match(Y, m_APInt(C2))) return nullptr; // Fold icmp pred (add X, C2), C. Value *X = Add->getOperand(0); Type *Ty = Add->getType(); CmpInst::Predicate Pred = Cmp.getPredicate(); // If the add does not wrap, we can always adjust the compare by subtracting // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE // are canonicalized to SGT/SLT/UGT/ULT. if ((Add->hasNoSignedWrap() && (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || (Add->hasNoUnsignedWrap() && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { bool Overflow; APInt NewC = Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); // If there is overflow, the result must be true or false. // TODO: Can we assert there is no overflow because InstSimplify always // handles those cases? if (!Overflow) // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); } auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); const APInt &Upper = CR.getUpper(); const APInt &Lower = CR.getLower(); if (Cmp.isSigned()) { if (Lower.isSignMask()) return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); if (Upper.isSignMask()) return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); } else { if (Lower.isMinValue()) return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); if (Upper.isMinValue()) return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); } if (!Add->hasOneUse()) return nullptr; // X+C <u C2 -> (X & -C2) == C // iff C & (C2-1) == 0 // C2 is a power of 2 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), ConstantExpr::getNeg(cast<Constant>(Y))); // X+C >u C2 -> (X & ~C2) != C // iff C & C2 == 0 // C2+1 is a power of 2 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), ConstantExpr::getNeg(cast<Constant>(Y))); return nullptr; } bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS, ConstantInt *&Less, ConstantInt *&Equal, ConstantInt *&Greater) { // TODO: Generalize this to work with other comparison idioms or ensure // they get canonicalized into this form. // select i1 (a == b), // i32 Equal, // i32 (select i1 (a < b), i32 Less, i32 Greater) // where Equal, Less and Greater are placeholders for any three constants. ICmpInst::Predicate PredA; if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || !ICmpInst::isEquality(PredA)) return false; Value *EqualVal = SI->getTrueValue(); Value *UnequalVal = SI->getFalseValue(); // We still can get non-canonical predicate here, so canonicalize. if (PredA == ICmpInst::ICMP_NE) std::swap(EqualVal, UnequalVal); if (!match(EqualVal, m_ConstantInt(Equal))) return false; ICmpInst::Predicate PredB; Value *LHS2, *RHS2; if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), m_ConstantInt(Less), m_ConstantInt(Greater)))) return false; // We can get predicate mismatch here, so canonicalize if possible: // First, ensure that 'LHS' match. if (LHS2 != LHS) { // x sgt y <--> y slt x std::swap(LHS2, RHS2); PredB = ICmpInst::getSwappedPredicate(PredB); } if (LHS2 != LHS) return false; // We also need to canonicalize 'RHS'. if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { // x sgt C-1 <--> x sge C <--> not(x slt C) auto FlippedStrictness = InstCombiner::getFlippedStrictnessPredicateAndConstant( PredB, cast<Constant>(RHS2)); if (!FlippedStrictness) return false; assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); RHS2 = FlippedStrictness->second; // And kind-of perform the result swap. std::swap(Less, Greater); PredB = ICmpInst::ICMP_SLT; } return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; } Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select, ConstantInt *C) { assert(C && "Cmp RHS should be a constant int!"); // If we're testing a constant value against the result of a three way // comparison, the result can be expressed directly in terms of the // original values being compared. Note: We could possibly be more // aggressive here and remove the hasOneUse test. The original select is // really likely to simplify or sink when we remove a test of the result. Value *OrigLHS, *OrigRHS; ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; if (Cmp.hasOneUse() && matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, C3GreaterThan)) { assert(C1LessThan && C2Equal && C3GreaterThan); bool TrueWhenLessThan = ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) ->isAllOnesValue(); bool TrueWhenEqual = ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) ->isAllOnesValue(); bool TrueWhenGreaterThan = ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) ->isAllOnesValue(); // This generates the new instruction that will replace the original Cmp // Instruction. Instead of enumerating the various combinations when // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus // false, we rely on chaining of ORs and future passes of InstCombine to // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). // When none of the three constants satisfy the predicate for the RHS (C), // the entire original Cmp can be simplified to a false. Value *Cond = Builder.getFalse(); if (TrueWhenLessThan) Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, OrigLHS, OrigRHS)); if (TrueWhenEqual) Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, OrigLHS, OrigRHS)); if (TrueWhenGreaterThan) Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, OrigLHS, OrigRHS)); return replaceInstUsesWith(Cmp, Cond); } return nullptr; } static Instruction *foldICmpBitCast(ICmpInst &Cmp, InstCombiner::BuilderTy &Builder) { auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); if (!Bitcast) return nullptr; ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *Op1 = Cmp.getOperand(1); Value *BCSrcOp = Bitcast->getOperand(0); // Make sure the bitcast doesn't change the number of vector elements. if (Bitcast->getSrcTy()->getScalarSizeInBits() == Bitcast->getDestTy()->getScalarSizeInBits()) { // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. Value *X; if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && match(Op1, m_Zero())) return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) return new ICmpInst(Pred, X, ConstantInt::getAllOnesValue(X->getType())); } // Zero-equality checks are preserved through unsigned floating-point casts: // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) if (Cmp.isEquality() && match(Op1, m_Zero())) return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); // If this is a sign-bit test of a bitcast of a casted FP value, eliminate // the FP extend/truncate because that cast does not change the sign-bit. // This is true for all standard IEEE-754 types and the X86 80-bit type. // The sign-bit is always the most significant bit in those types. const APInt *C; bool TrueIfSigned; if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { if (match(BCSrcOp, m_FPExt(m_Value(X))) || match(BCSrcOp, m_FPTrunc(m_Value(X)))) { // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 Type *XType = X->getType(); // We can't currently handle Power style floating point operations here. if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); if (auto *XVTy = dyn_cast<VectorType>(XType)) NewType = VectorType::get(NewType, XVTy->getElementCount()); Value *NewBitcast = Builder.CreateBitCast(X, NewType); if (TrueIfSigned) return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, ConstantInt::getNullValue(NewType)); else return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, ConstantInt::getAllOnesValue(NewType)); } } } } // Test to see if the operands of the icmp are casted versions of other // values. If the ptr->ptr cast can be stripped off both arguments, do so. if (Bitcast->getType()->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast // so eliminate it as well. if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) Op1 = BC2->getOperand(0); Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); return new ICmpInst(Pred, BCSrcOp, Op1); } // Folding: icmp <pred> iN X, C // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN // and C is a splat of a K-bit pattern // and SC is a constant vector = <C', C', C', ..., C'> // Into: // %E = extractelement <M x iK> %vec, i32 C' // icmp <pred> iK %E, trunc(C) const APInt *C; if (!match(Cmp.getOperand(1), m_APInt(C)) || !Bitcast->getType()->isIntegerTy() || !Bitcast->getSrcTy()->isIntOrIntVectorTy()) return nullptr; Value *Vec; ArrayRef<int> Mask; if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { // Check whether every element of Mask is the same constant if (is_splat(Mask)) { auto *VecTy = cast<VectorType>(BCSrcOp->getType()); auto *EltTy = cast<IntegerType>(VecTy->getElementType()); if (C->isSplat(EltTy->getBitWidth())) { // Fold the icmp based on the value of C // If C is M copies of an iK sized bit pattern, // then: // => %E = extractelement <N x iK> %vec, i32 Elem // icmp <pred> iK %SplatVal, <pattern> Value *Elem = Builder.getInt32(Mask[0]); Value *Extract = Builder.CreateExtractElement(Vec, Elem); Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); return new ICmpInst(Pred, Extract, NewC); } } } return nullptr; } /// Try to fold integer comparisons with a constant operand: icmp Pred X, C /// where X is some kind of instruction. Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { const APInt *C; if (!match(Cmp.getOperand(1), m_APInt(C))) return nullptr; if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { switch (BO->getOpcode()) { case Instruction::Xor: if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) return I; break; case Instruction::And: if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) return I; break; case Instruction::Or: if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) return I; break; case Instruction::Mul: if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) return I; break; case Instruction::Shl: if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) return I; break; case Instruction::LShr: case Instruction::AShr: if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) return I; break; case Instruction::SRem: if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) return I; break; case Instruction::UDiv: if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) return I; LLVM_FALLTHROUGH; case Instruction::SDiv: if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) return I; break; case Instruction::Sub: if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) return I; break; case Instruction::Add: if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) return I; break; default: break; } // TODO: These folds could be refactored to be part of the above calls. if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) return I; } // Match against CmpInst LHS being instructions other than binary operators. if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { // For now, we only support constant integers while folding the // ICMP(SELECT)) pattern. We can extend this to support vector of integers // similar to the cases handled by binary ops above. if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) return I; } if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) return I; } if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) return I; return nullptr; } /// Fold an icmp equality instruction with binary operator LHS and constant RHS: /// icmp eq/ne BO, C. Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { // TODO: Some of these folds could work with arbitrary constants, but this // function is limited to scalar and vector splat constants. if (!Cmp.isEquality()) return nullptr; ICmpInst::Predicate Pred = Cmp.getPredicate(); bool isICMP_NE = Pred == ICmpInst::ICMP_NE; Constant *RHS = cast<Constant>(Cmp.getOperand(1)); Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); switch (BO->getOpcode()) { case Instruction::SRem: // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. if (C.isNullValue() && BO->hasOneUse()) { const APInt *BOC; if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); return new ICmpInst(Pred, NewRem, Constant::getNullValue(BO->getType())); } } break; case Instruction::Add: { // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. if (Constant *BOC = dyn_cast<Constant>(BOp1)) { if (BO->hasOneUse()) return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); } else if (C.isNullValue()) { // Replace ((add A, B) != 0) with (A != -B) if A or B is // efficiently invertible, or if the add has just this one use. if (Value *NegVal = dyn_castNegVal(BOp1)) return new ICmpInst(Pred, BOp0, NegVal); if (Value *NegVal = dyn_castNegVal(BOp0)) return new ICmpInst(Pred, NegVal, BOp1); if (BO->hasOneUse()) { Value *Neg = Builder.CreateNeg(BOp1); Neg->takeName(BO); return new ICmpInst(Pred, BOp0, Neg); } } break; } case Instruction::Xor: if (BO->hasOneUse()) { if (Constant *BOC = dyn_cast<Constant>(BOp1)) { // For the xor case, we can xor two constants together, eliminating // the explicit xor. return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); } else if (C.isNullValue()) { // Replace ((xor A, B) != 0) with (A != B) return new ICmpInst(Pred, BOp0, BOp1); } } break; case Instruction::Sub: if (BO->hasOneUse()) { // Only check for constant LHS here, as constant RHS will be canonicalized // to add and use the fold above. if (Constant *BOC = dyn_cast<Constant>(BOp0)) { // Replace ((sub BOC, B) != C) with (B != BOC-C). return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); } else if (C.isNullValue()) { // Replace ((sub A, B) != 0) with (A != B). return new ICmpInst(Pred, BOp0, BOp1); } } break; case Instruction::Or: { const APInt *BOC; if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { // Comparing if all bits outside of a constant mask are set? // Replace (X | C) == -1 with (X & ~C) == ~C. // This removes the -1 constant. Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); Value *And = Builder.CreateAnd(BOp0, NotBOC); return new ICmpInst(Pred, And, NotBOC); } break; } case Instruction::And: { const APInt *BOC; if (match(BOp1, m_APInt(BOC))) { // If we have ((X & C) == C), turn it into ((X & C) != 0). if (C == *BOC && C.isPowerOf2()) return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, BO, Constant::getNullValue(RHS->getType())); } break; } case Instruction::UDiv: if (C.isNullValue()) { // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; return new ICmpInst(NewPred, BOp1, BOp0); } break; default: break; } return nullptr; } /// Fold an equality icmp with LLVM intrinsic and constant operand. Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { Type *Ty = II->getType(); unsigned BitWidth = C.getBitWidth(); switch (II->getIntrinsicID()) { case Intrinsic::abs: // abs(A) == 0 -> A == 0 // abs(A) == INT_MIN -> A == INT_MIN if (C.isNullValue() || C.isMinSignedValue()) return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), ConstantInt::get(Ty, C)); break; case Intrinsic::bswap: // bswap(A) == C -> A == bswap(C) return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), ConstantInt::get(Ty, C.byteSwap())); case Intrinsic::ctlz: case Intrinsic::cttz: { // ctz(A) == bitwidth(A) -> A == 0 and likewise for != if (C == BitWidth) return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), ConstantInt::getNullValue(Ty)); // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. // Limit to one use to ensure we don't increase instruction count. unsigned Num = C.getLimitedValue(BitWidth); if (Num != BitWidth && II->hasOneUse()) { bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) : APInt::getHighBitsSet(BitWidth, Num + 1); APInt Mask2 = IsTrailing ? APInt::getOneBitSet(BitWidth, Num) : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); return new ICmpInst(Cmp.getPredicate(), Builder.CreateAnd(II->getArgOperand(0), Mask1), ConstantInt::get(Ty, Mask2)); } break; } case Intrinsic::ctpop: { // popcount(A) == 0 -> A == 0 and likewise for != // popcount(A) == bitwidth(A) -> A == -1 and likewise for != bool IsZero = C.isNullValue(); if (IsZero || C == BitWidth) return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); break; } case Intrinsic::uadd_sat: { // uadd.sat(a, b) == 0 -> (a | b) == 0 if (C.isNullValue()) { Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); } break; } case Intrinsic::usub_sat: { // usub.sat(a, b) == 0 -> a <= b if (C.isNullValue()) { ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); } break; } default: break; } return nullptr; } /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { if (Cmp.isEquality()) return foldICmpEqIntrinsicWithConstant(Cmp, II, C); Type *Ty = II->getType(); unsigned BitWidth = C.getBitWidth(); ICmpInst::Predicate Pred = Cmp.getPredicate(); switch (II->getIntrinsicID()) { case Intrinsic::ctpop: { // (ctpop X > BitWidth - 1) --> X == -1 Value *X = II->getArgOperand(0); if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, ConstantInt::getAllOnesValue(Ty)); // (ctpop X < BitWidth) --> X != -1 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, ConstantInt::getAllOnesValue(Ty)); break; } case Intrinsic::ctlz: { // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { unsigned Num = C.getLimitedValue(); APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, II->getArgOperand(0), ConstantInt::get(Ty, Limit)); } // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { unsigned Num = C.getLimitedValue(); APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, II->getArgOperand(0), ConstantInt::get(Ty, Limit)); } break; } case Intrinsic::cttz: { // Limit to one use to ensure we don't increase instruction count. if (!II->hasOneUse()) return nullptr; // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Builder.CreateAnd(II->getArgOperand(0), Mask), ConstantInt::getNullValue(Ty)); } // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, Builder.CreateAnd(II->getArgOperand(0), Mask), ConstantInt::getNullValue(Ty)); } break; } default: break; } return nullptr; } /// Handle icmp with constant (but not simple integer constant) RHS. Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); Constant *RHSC = dyn_cast<Constant>(Op1); Instruction *LHSI = dyn_cast<Instruction>(Op0); if (!RHSC || !LHSI) return nullptr; switch (LHSI->getOpcode()) { case Instruction::GetElementPtr: // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null if (RHSC->isNullValue() && cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) return new ICmpInst( I.getPredicate(), LHSI->getOperand(0), Constant::getNullValue(LHSI->getOperand(0)->getType())); break; case Instruction::PHI: // Only fold icmp into the PHI if the phi and icmp are in the same // block. If in the same block, we're encouraging jump threading. If // not, we are just pessimizing the code by making an i1 phi. if (LHSI->getParent() == I.getParent()) if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) return NV; break; case Instruction::Select: { // If either operand of the select is a constant, we can fold the // comparison into the select arms, which will cause one to be // constant folded and the select turned into a bitwise or. Value *Op1 = nullptr, *Op2 = nullptr; ConstantInt *CI = nullptr; if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); CI = dyn_cast<ConstantInt>(Op1); } if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); CI = dyn_cast<ConstantInt>(Op2); } // We only want to perform this transformation if it will not lead to // additional code. This is true if either both sides of the select // fold to a constant (in which case the icmp is replaced with a select // which will usually simplify) or this is the only user of the // select (in which case we are trading a select+icmp for a simpler // select+icmp) or all uses of the select can be replaced based on // dominance information ("Global cases"). bool Transform = false; if (Op1 && Op2) Transform = true; else if (Op1 || Op2) { // Local case if (LHSI->hasOneUse()) Transform = true; // Global cases else if (CI && !CI->isZero()) // When Op1 is constant try replacing select with second operand. // Otherwise Op2 is constant and try replacing select with first // operand. Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); } if (Transform) { if (!Op1) Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, I.getName()); if (!Op2) Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, I.getName()); return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); } break; } case Instruction::IntToPtr: // icmp pred inttoptr(X), null -> icmp pred X, 0 if (RHSC->isNullValue() && DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) return new ICmpInst( I.getPredicate(), LHSI->getOperand(0), Constant::getNullValue(LHSI->getOperand(0)->getType())); break; case Instruction::Load: // Try to optimize things like "A[i] > 4" to index computations. if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) if (GV->isConstant() && GV->hasDefinitiveInitializer() && !cast<LoadInst>(LHSI)->isVolatile()) if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) return Res; } break; } return nullptr; } /// Some comparisons can be simplified. /// In this case, we are looking for comparisons that look like /// a check for a lossy truncation. /// Folds: /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask /// Where Mask is some pattern that produces all-ones in low bits: /// (-1 >> y) /// ((-1 << y) >> y) <- non-canonical, has extra uses /// ~(-1 << y) /// ((1 << y) + (-1)) <- non-canonical, has extra uses /// The Mask can be a constant, too. /// For some predicates, the operands are commutative. /// For others, x can only be on a specific side. static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, InstCombiner::BuilderTy &Builder) { ICmpInst::Predicate SrcPred; Value *X, *M, *Y; auto m_VariableMask = m_CombineOr( m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), m_CombineOr(m_LShr(m_AllOnes(), m_Value()), m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); if (!match(&I, m_c_ICmp(SrcPred, m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), m_Deferred(X)))) return nullptr; ICmpInst::Predicate DstPred; switch (SrcPred) { case ICmpInst::Predicate::ICMP_EQ: // x & (-1 >> y) == x -> x u<= (-1 >> y) DstPred = ICmpInst::Predicate::ICMP_ULE; break; case ICmpInst::Predicate::ICMP_NE: // x & (-1 >> y) != x -> x u> (-1 >> y) DstPred = ICmpInst::Predicate::ICMP_UGT; break; case ICmpInst::Predicate::ICMP_ULT: // x & (-1 >> y) u< x -> x u> (-1 >> y) // x u> x & (-1 >> y) -> x u> (-1 >> y) DstPred = ICmpInst::Predicate::ICMP_UGT; break; case ICmpInst::Predicate::ICMP_UGE: // x & (-1 >> y) u>= x -> x u<= (-1 >> y) // x u<= x & (-1 >> y) -> x u<= (-1 >> y) DstPred = ICmpInst::Predicate::ICMP_ULE; break; case ICmpInst::Predicate::ICMP_SLT: // x & (-1 >> y) s< x -> x s> (-1 >> y) // x s> x & (-1 >> y) -> x s> (-1 >> y) if (!match(M, m_Constant())) // Can not do this fold with non-constant. return nullptr; if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. return nullptr; DstPred = ICmpInst::Predicate::ICMP_SGT; break; case ICmpInst::Predicate::ICMP_SGE: // x & (-1 >> y) s>= x -> x s<= (-1 >> y) // x s<= x & (-1 >> y) -> x s<= (-1 >> y) if (!match(M, m_Constant())) // Can not do this fold with non-constant. return nullptr; if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. return nullptr; DstPred = ICmpInst::Predicate::ICMP_SLE; break; case ICmpInst::Predicate::ICMP_SGT: case ICmpInst::Predicate::ICMP_SLE: return nullptr; case ICmpInst::Predicate::ICMP_UGT: case ICmpInst::Predicate::ICMP_ULE: llvm_unreachable("Instsimplify took care of commut. variant"); break; default: llvm_unreachable("All possible folds are handled."); } // The mask value may be a vector constant that has undefined elements. But it // may not be safe to propagate those undefs into the new compare, so replace // those elements by copying an existing, defined, and safe scalar constant. Type *OpTy = M->getType(); auto *VecC = dyn_cast<Constant>(M); auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { Constant *SafeReplacementConstant = nullptr; for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { if (!isa<UndefValue>(VecC->getAggregateElement(i))) { SafeReplacementConstant = VecC->getAggregateElement(i); break; } } assert(SafeReplacementConstant && "Failed to find undef replacement"); M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); } return Builder.CreateICmp(DstPred, X, M); } /// Some comparisons can be simplified. /// In this case, we are looking for comparisons that look like /// a check for a lossy signed truncation. /// Folds: (MaskedBits is a constant.) /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x /// Into: /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) /// Where KeptBits = bitwidth(%x) - MaskedBits static Value * foldICmpWithTruncSignExtendedVal(ICmpInst &I, InstCombiner::BuilderTy &Builder) { ICmpInst::Predicate SrcPred; Value *X; const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. if (!match(&I, m_c_ICmp(SrcPred, m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), m_APInt(C1))), m_Deferred(X)))) return nullptr; // Potential handling of non-splats: for each element: // * if both are undef, replace with constant 0. // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. // * if both are not undef, and are different, bailout. // * else, only one is undef, then pick the non-undef one. // The shift amount must be equal. if (*C0 != *C1) return nullptr; const APInt &MaskedBits = *C0; assert(MaskedBits != 0 && "shift by zero should be folded away already."); ICmpInst::Predicate DstPred; switch (SrcPred) { case ICmpInst::Predicate::ICMP_EQ: // ((%x << MaskedBits) a>> MaskedBits) == %x // => // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) DstPred = ICmpInst::Predicate::ICMP_ULT; break; case ICmpInst::Predicate::ICMP_NE: // ((%x << MaskedBits) a>> MaskedBits) != %x // => // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) DstPred = ICmpInst::Predicate::ICMP_UGE; break; // FIXME: are more folds possible? default: return nullptr; } auto *XType = X->getType(); const unsigned XBitWidth = XType->getScalarSizeInBits(); const APInt BitWidth = APInt(XBitWidth, XBitWidth); assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); // KeptBits = bitwidth(%x) - MaskedBits const APInt KeptBits = BitWidth - MaskedBits; assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); // ICmpCst = (1 << KeptBits) const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); assert(ICmpCst.isPowerOf2()); // AddCst = (1 << (KeptBits-1)) const APInt AddCst = ICmpCst.lshr(1); assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); // T0 = add %x, AddCst Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); // T1 = T0 DstPred ICmpCst Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); return T1; } // Given pattern: // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 // we should move shifts to the same hand of 'and', i.e. rewrite as // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) // We are only interested in opposite logical shifts here. // One of the shifts can be truncated. // If we can, we want to end up creating 'lshr' shift. static Value * foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, InstCombiner::BuilderTy &Builder) { if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || !I.getOperand(0)->hasOneUse()) return nullptr; auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); // Look for an 'and' of two logical shifts, one of which may be truncated. // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. Instruction *XShift, *MaybeTruncation, *YShift; if (!match( I.getOperand(0), m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), m_CombineAnd(m_TruncOrSelf(m_CombineAnd( m_AnyLogicalShift, m_Instruction(YShift))), m_Instruction(MaybeTruncation))))) return nullptr; // We potentially looked past 'trunc', but only when matching YShift, // therefore YShift must have the widest type. Instruction *WidestShift = YShift; // Therefore XShift must have the shallowest type. // Or they both have identical types if there was no truncation. Instruction *NarrowestShift = XShift; Type *WidestTy = WidestShift->getType(); Type *NarrowestTy = NarrowestShift->getType(); assert(NarrowestTy == I.getOperand(0)->getType() && "We did not look past any shifts while matching XShift though."); bool HadTrunc = WidestTy != I.getOperand(0)->getType(); // If YShift is a 'lshr', swap the shifts around. if (match(YShift, m_LShr(m_Value(), m_Value()))) std::swap(XShift, YShift); // The shifts must be in opposite directions. auto XShiftOpcode = XShift->getOpcode(); if (XShiftOpcode == YShift->getOpcode()) return nullptr; // Do not care about same-direction shifts here. Value *X, *XShAmt, *Y, *YShAmt; match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); // If one of the values being shifted is a constant, then we will end with // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, // however, we will need to ensure that we won't increase instruction count. if (!isa<Constant>(X) && !isa<Constant>(Y)) { // At least one of the hands of the 'and' should be one-use shift. if (!match(I.getOperand(0), m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) return nullptr; if (HadTrunc) { // Due to the 'trunc', we will need to widen X. For that either the old // 'trunc' or the shift amt in the non-truncated shift should be one-use. if (!MaybeTruncation->hasOneUse() && !NarrowestShift->getOperand(1)->hasOneUse()) return nullptr; } } // We have two shift amounts from two different shifts. The types of those // shift amounts may not match. If that's the case let's bailout now. if (XShAmt->getType() != YShAmt->getType()) return nullptr; // As input, we have the following pattern: // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 // We want to rewrite that as: // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) // While we know that originally (Q+K) would not overflow // (because 2 * (N-1) u<= iN -1), we have looked past extensions of // shift amounts. so it may now overflow in smaller bitwidth. // To ensure that does not happen, we need to ensure that the total maximal // shift amount is still representable in that smaller bit width. unsigned MaximalPossibleTotalShiftAmount = (WidestTy->getScalarSizeInBits() - 1) + (NarrowestTy->getScalarSizeInBits() - 1); APInt MaximalRepresentableShiftAmount = APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) return nullptr; // Can we fold (XShAmt+YShAmt) ? auto *NewShAmt = dyn_cast_or_null<Constant>( SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, /*isNUW=*/false, SQ.getWithInstruction(&I))); if (!NewShAmt) return nullptr; NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); // Is the new shift amount smaller than the bit width? // FIXME: could also rely on ConstantRange. if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(WidestBitWidth, WidestBitWidth)))) return nullptr; // An extra legality check is needed if we had trunc-of-lshr. if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, WidestShift]() { // It isn't obvious whether it's worth it to analyze non-constants here. // Also, let's basically give up on non-splat cases, pessimizing vectors. // If *any* of these preconditions matches we can perform the fold. Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() ? NewShAmt->getSplatValue() : NewShAmt; // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. if (NewShAmtSplat && (NewShAmtSplat->isNullValue() || NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) return true; // We consider *min* leading zeros so a single outlier // blocks the transform as opposed to allowing it. if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { KnownBits Known = computeKnownBits(C, SQ.DL); unsigned MinLeadZero = Known.countMinLeadingZeros(); // If the value being shifted has at most lowest bit set we can fold. unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; if (MaxActiveBits <= 1) return true; // Precondition: NewShAmt u<= countLeadingZeros(C) if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) return true; } if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { KnownBits Known = computeKnownBits(C, SQ.DL); unsigned MinLeadZero = Known.countMinLeadingZeros(); // If the value being shifted has at most lowest bit set we can fold. unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; if (MaxActiveBits <= 1) return true; // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) if (NewShAmtSplat) { APInt AdjNewShAmt = (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); if (AdjNewShAmt.ule(MinLeadZero)) return true; } } return false; // Can't tell if it's ok. }; if (!CanFold()) return nullptr; } // All good, we can do this fold. X = Builder.CreateZExt(X, WidestTy); Y = Builder.CreateZExt(Y, WidestTy); // The shift is the same that was for X. Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr ? Builder.CreateLShr(X, NewShAmt) : Builder.CreateShl(X, NewShAmt); Value *T1 = Builder.CreateAnd(T0, Y); return Builder.CreateICmp(I.getPredicate(), T1, Constant::getNullValue(WidestTy)); } /// Fold /// (-1 u/ x) u< y /// ((x * y) u/ x) != y /// to /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit /// Note that the comparison is commutative, while inverted (u>=, ==) predicate /// will mean that we are looking for the opposite answer. Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { ICmpInst::Predicate Pred; Value *X, *Y; Instruction *Mul; bool NeedNegation; // Look for: (-1 u/ x) u</u>= y if (!I.isEquality() && match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), m_Value(Y)))) { Mul = nullptr; // Are we checking that overflow does not happen, or does happen? switch (Pred) { case ICmpInst::Predicate::ICMP_ULT: NeedNegation = false; break; // OK case ICmpInst::Predicate::ICMP_UGE: NeedNegation = true; break; // OK default: return nullptr; // Wrong predicate. } } else // Look for: ((x * y) u/ x) !=/== y if (I.isEquality() && match(&I, m_c_ICmp(Pred, m_Value(Y), m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), m_Value(X)), m_Instruction(Mul)), m_Deferred(X)))))) { NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; } else return nullptr; BuilderTy::InsertPointGuard Guard(Builder); // If the pattern included (x * y), we'll want to insert new instructions // right before that original multiplication so that we can replace it. bool MulHadOtherUses = Mul && !Mul->hasOneUse(); if (MulHadOtherUses) Builder.SetInsertPoint(Mul); Function *F = Intrinsic::getDeclaration( I.getModule(), Intrinsic::umul_with_overflow, X->getType()); CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); // If the multiplication was used elsewhere, to ensure that we don't leave // "duplicate" instructions, replace uses of that original multiplication // with the multiplication result from the with.overflow intrinsic. if (MulHadOtherUses) replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); if (NeedNegation) // This technically increases instruction count. Res = Builder.CreateNot(Res, "umul.not.ov"); // If we replaced the mul, erase it. Do this after all uses of Builder, // as the mul is used as insertion point. if (MulHadOtherUses) eraseInstFromFunction(*Mul); return Res; } static Instruction *foldICmpXNegX(ICmpInst &I) { CmpInst::Predicate Pred; Value *X; if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) return nullptr; if (ICmpInst::isSigned(Pred)) Pred = ICmpInst::getSwappedPredicate(Pred); else if (ICmpInst::isUnsigned(Pred)) Pred = ICmpInst::getSignedPredicate(Pred); // else for equality-comparisons just keep the predicate. return ICmpInst::Create(Instruction::ICmp, Pred, X, Constant::getNullValue(X->getType()), I.getName()); } /// Try to fold icmp (binop), X or icmp X, (binop). /// TODO: A large part of this logic is duplicated in InstSimplify's /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code /// duplication. Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) { const SimplifyQuery Q = SQ.getWithInstruction(&I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Special logic for binary operators. BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); if (!BO0 && !BO1) return nullptr; if (Instruction *NewICmp = foldICmpXNegX(I)) return NewICmp; const CmpInst::Predicate Pred = I.getPredicate(); Value *X; // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) return new ICmpInst(Pred, Builder.CreateNot(Op1), X); // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; if (BO0 && isa<OverflowingBinaryOperator>(BO0)) NoOp0WrapProblem = ICmpInst::isEquality(Pred) || (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); if (BO1 && isa<OverflowingBinaryOperator>(BO1)) NoOp1WrapProblem = ICmpInst::isEquality(Pred) || (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); // Analyze the case when either Op0 or Op1 is an add instruction. // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; if (BO0 && BO0->getOpcode() == Instruction::Add) { A = BO0->getOperand(0); B = BO0->getOperand(1); } if (BO1 && BO1->getOpcode() == Instruction::Add) { C = BO1->getOperand(0); D = BO1->getOperand(1); } // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. if ((A == Op1 || B == Op1) && NoOp0WrapProblem) return new ICmpInst(Pred, A == Op1 ? B : A, Constant::getNullValue(Op1->getType())); // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. if ((C == Op0 || D == Op0) && NoOp1WrapProblem) return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), C == Op0 ? D : C); // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && NoOp1WrapProblem) { // Determine Y and Z in the form icmp (X+Y), (X+Z). Value *Y, *Z; if (A == C) { // C + B == C + D -> B == D Y = B; Z = D; } else if (A == D) { // D + B == C + D -> B == C Y = B; Z = C; } else if (B == C) { // A + C == C + D -> A == D Y = A; Z = D; } else { assert(B == D); // A + D == C + D -> A == C Y = A; Z = C; } return new ICmpInst(Pred, Y, Z); } // icmp slt (A + -1), Op1 -> icmp sle A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && match(B, m_AllOnes())) return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && match(B, m_AllOnes())) return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); // icmp sle (A + 1), Op1 -> icmp slt A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); // icmp sgt Op0, (C + -1) -> icmp sge Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && match(D, m_AllOnes())) return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); // icmp sle Op0, (C + -1) -> icmp slt Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && match(D, m_AllOnes())) return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); // icmp sge Op0, (C + 1) -> icmp sgt Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); // icmp slt Op0, (C + 1) -> icmp sle Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); // TODO: The subtraction-related identities shown below also hold, but // canonicalization from (X -nuw 1) to (X + -1) means that the combinations // wouldn't happen even if they were implemented. // // icmp ult (A - 1), Op1 -> icmp ule A, Op1 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C // icmp ule Op0, (C - 1) -> icmp ult Op0, C // icmp ule (A + 1), Op0 -> icmp ult A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); // icmp uge Op0, (C + 1) -> icmp ugt Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); // icmp ult Op0, (C + 1) -> icmp ule Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); // if C1 has greater magnitude than C2: // icmp (A + C1), (C + C2) -> icmp (A + C3), C // s.t. C3 = C1 - C2 // // if C2 has greater magnitude than C1: // icmp (A + C1), (C + C2) -> icmp A, (C + C3) // s.t. C3 = C2 - C1 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { const APInt &AP1 = C1->getValue(); const APInt &AP2 = C2->getValue(); if (AP1.isNegative() == AP2.isNegative()) { APInt AP1Abs = C1->getValue().abs(); APInt AP2Abs = C2->getValue().abs(); if (AP1Abs.uge(AP2Abs)) { ConstantInt *C3 = Builder.getInt(AP1 - AP2); Value *NewAdd = Builder.CreateNSWAdd(A, C3); return new ICmpInst(Pred, NewAdd, C); } else { ConstantInt *C3 = Builder.getInt(AP2 - AP1); Value *NewAdd = Builder.CreateNSWAdd(C, C3); return new ICmpInst(Pred, A, NewAdd); } } } // Analyze the case when either Op0 or Op1 is a sub instruction. // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). A = nullptr; B = nullptr; C = nullptr; D = nullptr; if (BO0 && BO0->getOpcode() == Instruction::Sub) { A = BO0->getOperand(0); B = BO0->getOperand(1); } if (BO1 && BO1->getOpcode() == Instruction::Sub) { C = BO1->getOperand(0); D = BO1->getOperand(1); } // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. if (A == Op1 && NoOp0WrapProblem) return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. if (C == Op0 && NoOp1WrapProblem) return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); // Convert sub-with-unsigned-overflow comparisons into a comparison of args. // (A - B) u>/u<= A --> B u>/u<= A if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) return new ICmpInst(Pred, B, A); // C u</u>= (C - D) --> C u</u>= D if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) return new ICmpInst(Pred, C, D); // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); // C u<=/u> (C - D) --> C u</u>= D iff B != 0 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) return new ICmpInst(Pred, A, C); // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) return new ICmpInst(Pred, D, B); // icmp (0-X) < cst --> x > -cst if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { Value *X; if (match(BO0, m_Neg(m_Value(X)))) if (Constant *RHSC = dyn_cast<Constant>(Op1)) if (RHSC->isNotMinSignedValue()) return new ICmpInst(I.getSwappedPredicate(), X, ConstantExpr::getNeg(RHSC)); } { // Try to remove shared constant multiplier from equality comparison: // X * C == Y * C (with no overflowing/aliasing) --> X == Y Value *X, *Y; const APInt *C; if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) if (!C->countTrailingZeros() || (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) return new ICmpInst(Pred, X, Y); } BinaryOperator *SRem = nullptr; // icmp (srem X, Y), Y if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) SRem = BO0; // icmp Y, (srem X, Y) else if (BO1 && BO1->getOpcode() == Instruction::SRem && Op0 == BO1->getOperand(1)) SRem = BO1; if (SRem) { // We don't check hasOneUse to avoid increasing register pressure because // the value we use is the same value this instruction was already using. switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { default: break; case ICmpInst::ICMP_EQ: return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); case ICmpInst::ICMP_NE: return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), Constant::getAllOnesValue(SRem->getType())); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), Constant::getNullValue(SRem->getType())); } } if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { switch (BO0->getOpcode()) { default: break; case Instruction::Add: case Instruction::Sub: case Instruction::Xor: { if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); const APInt *C; if (match(BO0->getOperand(1), m_APInt(C))) { // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b if (C->isSignMask()) { ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); } // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); NewPred = I.getSwappedPredicate(NewPred); return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); } } break; } case Instruction::Mul: { if (!I.isEquality()) break; const APInt *C; if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && !C->isOneValue()) { // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) // Mask = -1 >> count-trailing-zeros(C). if (unsigned TZs = C->countTrailingZeros()) { Constant *Mask = ConstantInt::get( BO0->getType(), APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); return new ICmpInst(Pred, And1, And2); } } break; } case Instruction::UDiv: case Instruction::LShr: if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) break; return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); case Instruction::SDiv: if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) break; return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); case Instruction::AShr: if (!BO0->isExact() || !BO1->isExact()) break; return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); case Instruction::Shl: { bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); if (!NUW && !NSW) break; if (!NSW && I.isSigned()) break; return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); } } } if (BO0) { // Transform A & (L - 1) `ult` L --> L != 0 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); auto BitwiseAnd = m_c_And(m_Value(), LSubOne); if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { auto *Zero = Constant::getNullValue(BO0->getType()); return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); } } if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) return replaceInstUsesWith(I, V); if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) return replaceInstUsesWith(I, V); if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) return replaceInstUsesWith(I, V); if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) return replaceInstUsesWith(I, V); return nullptr; } /// Fold icmp Pred min|max(X, Y), X. static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *Op0 = Cmp.getOperand(0); Value *X = Cmp.getOperand(1); // Canonicalize minimum or maximum operand to LHS of the icmp. if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || match(X, m_c_SMax(m_Specific(Op0), m_Value())) || match(X, m_c_UMin(m_Specific(Op0), m_Value())) || match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { std::swap(Op0, X); Pred = Cmp.getSwappedPredicate(); } Value *Y; if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { // smin(X, Y) == X --> X s<= Y // smin(X, Y) s>= X --> X s<= Y if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); // smin(X, Y) != X --> X s> Y // smin(X, Y) s< X --> X s> Y if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); // These cases should be handled in InstSimplify: // smin(X, Y) s<= X --> true // smin(X, Y) s> X --> false return nullptr; } if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { // smax(X, Y) == X --> X s>= Y // smax(X, Y) s<= X --> X s>= Y if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); // smax(X, Y) != X --> X s< Y // smax(X, Y) s> X --> X s< Y if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); // These cases should be handled in InstSimplify: // smax(X, Y) s>= X --> true // smax(X, Y) s< X --> false return nullptr; } if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { // umin(X, Y) == X --> X u<= Y // umin(X, Y) u>= X --> X u<= Y if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); // umin(X, Y) != X --> X u> Y // umin(X, Y) u< X --> X u> Y if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); // These cases should be handled in InstSimplify: // umin(X, Y) u<= X --> true // umin(X, Y) u> X --> false return nullptr; } if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { // umax(X, Y) == X --> X u>= Y // umax(X, Y) u<= X --> X u>= Y if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); // umax(X, Y) != X --> X u< Y // umax(X, Y) u> X --> X u< Y if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); // These cases should be handled in InstSimplify: // umax(X, Y) u>= X --> true // umax(X, Y) u< X --> false return nullptr; } return nullptr; } Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { if (!I.isEquality()) return nullptr; Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); const CmpInst::Predicate Pred = I.getPredicate(); Value *A, *B, *C, *D; if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 Value *OtherVal = A == Op1 ? B : A; return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); } if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { // A^c1 == C^c2 --> A == C^(c1^c2) ConstantInt *C1, *C2; if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); Value *Xor = Builder.CreateXor(C, NC); return new ICmpInst(Pred, A, Xor); } // A^B == A^D -> B == D if (A == C) return new ICmpInst(Pred, B, D); if (A == D) return new ICmpInst(Pred, B, C); if (B == C) return new ICmpInst(Pred, A, D); if (B == D) return new ICmpInst(Pred, A, C); } } if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { // A == (A^B) -> B == 0 Value *OtherVal = A == Op0 ? B : A; return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); } // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { Value *X = nullptr, *Y = nullptr, *Z = nullptr; if (A == C) { X = B; Y = D; Z = A; } else if (A == D) { X = B; Y = C; Z = A; } else if (B == C) { X = A; Y = D; Z = B; } else if (B == D) { X = A; Y = C; Z = B; } if (X) { // Build (X^Y) & Z Op1 = Builder.CreateXor(X, Y); Op1 = Builder.CreateAnd(Op1, Z); return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); } } // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) ConstantInt *Cst1; if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && match(Op1, m_ZExt(m_Value(A))))) { APInt Pow2 = Cst1->getValue() + 1; if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); } // (A >> C) == (B >> C) --> (A^B) u< (1 << C) // For lshr and ashr pairs. if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { unsigned TypeBits = Cst1->getBitWidth(); unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); if (ShAmt < TypeBits && ShAmt != 0) { ICmpInst::Predicate NewPred = Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); } } // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { unsigned TypeBits = Cst1->getBitWidth(); unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); if (ShAmt < TypeBits && ShAmt != 0) { Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), I.getName() + ".mask"); return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); } } // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to // "icmp (and X, mask), cst" uint64_t ShAmt = 0; if (Op0->hasOneUse() && match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && match(Op1, m_ConstantInt(Cst1)) && // Only do this when A has multiple uses. This is most important to do // when it exposes other optimizations. !A->hasOneUse()) { unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); if (ShAmt < ASize) { APInt MaskV = APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); MaskV <<= ShAmt; APInt CmpV = Cst1->getValue().zext(ASize); CmpV <<= ShAmt; Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); } } // If both operands are byte-swapped or bit-reversed, just compare the // original values. // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() // and handle more intrinsics. if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || (match(Op0, m_BitReverse(m_Value(A))) && match(Op1, m_BitReverse(m_Value(B))))) return new ICmpInst(Pred, A, B); // Canonicalize checking for a power-of-2-or-zero value: // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), m_Deferred(A)))) || !match(Op1, m_ZeroInt())) A = nullptr; // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) A = Op1; else if (match(Op1, m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) A = Op0; if (A) { Type *Ty = A->getType(); CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); return Pred == ICmpInst::ICMP_EQ ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); } return nullptr; } static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, InstCombiner::BuilderTy &Builder) { assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); Value *X; if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) return nullptr; bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; bool IsSignedCmp = ICmp.isSigned(); if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { // If the signedness of the two casts doesn't agree (i.e. one is a sext // and the other is a zext), then we can't handle this. // TODO: This is too strict. We can handle some predicates (equality?). if (CastOp0->getOpcode() != CastOp1->getOpcode()) return nullptr; // Not an extension from the same type? Value *Y = CastOp1->getOperand(0); Type *XTy = X->getType(), *YTy = Y->getType(); if (XTy != YTy) { // One of the casts must have one use because we are creating a new cast. if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) return nullptr; // Extend the narrower operand to the type of the wider operand. if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); else return nullptr; } // (zext X) == (zext Y) --> X == Y // (sext X) == (sext Y) --> X == Y if (ICmp.isEquality()) return new ICmpInst(ICmp.getPredicate(), X, Y); // A signed comparison of sign extended values simplifies into a // signed comparison. if (IsSignedCmp && IsSignedExt) return new ICmpInst(ICmp.getPredicate(), X, Y); // The other three cases all fold into an unsigned comparison. return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); } // Below here, we are only folding a compare with constant. auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); if (!C) return nullptr; // Compute the constant that would happen if we truncated to SrcTy then // re-extended to DestTy. Type *SrcTy = CastOp0->getSrcTy(); Type *DestTy = CastOp0->getDestTy(); Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); // If the re-extended constant didn't change... if (Res2 == C) { if (ICmp.isEquality()) return new ICmpInst(ICmp.getPredicate(), X, Res1); // A signed comparison of sign extended values simplifies into a // signed comparison. if (IsSignedExt && IsSignedCmp) return new ICmpInst(ICmp.getPredicate(), X, Res1); // The other three cases all fold into an unsigned comparison. return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); } // The re-extended constant changed, partly changed (in the case of a vector), // or could not be determined to be equal (in the case of a constant // expression), so the constant cannot be represented in the shorter type. // All the cases that fold to true or false will have already been handled // by SimplifyICmpInst, so only deal with the tricky case. if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) return nullptr; // Is source op positive? // icmp ult (sext X), C --> icmp sgt X, -1 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); // Is source op negative? // icmp ugt (sext X), C --> icmp slt X, 0 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); } /// Handle icmp (cast x), (cast or constant). Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); if (!CastOp0) return nullptr; if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) return nullptr; Value *Op0Src = CastOp0->getOperand(0); Type *SrcTy = CastOp0->getSrcTy(); Type *DestTy = CastOp0->getDestTy(); // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the // integer type is the same size as the pointer type. auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { if (isa<VectorType>(SrcTy)) { SrcTy = cast<VectorType>(SrcTy)->getElementType(); DestTy = cast<VectorType>(DestTy)->getElementType(); } return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); }; if (CastOp0->getOpcode() == Instruction::PtrToInt && CompatibleSizes(SrcTy, DestTy)) { Value *NewOp1 = nullptr; if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { Value *PtrSrc = PtrToIntOp1->getOperand(0); if (PtrSrc->getType()->getPointerAddressSpace() == Op0Src->getType()->getPointerAddressSpace()) { NewOp1 = PtrToIntOp1->getOperand(0); // If the pointer types don't match, insert a bitcast. if (Op0Src->getType() != NewOp1->getType()) NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); } } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); } if (NewOp1) return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); } return foldICmpWithZextOrSext(ICmp, Builder); } static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { switch (BinaryOp) { default: llvm_unreachable("Unsupported binary op"); case Instruction::Add: case Instruction::Sub: return match(RHS, m_Zero()); case Instruction::Mul: return match(RHS, m_One()); } } OverflowResult InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const { switch (BinaryOp) { default: llvm_unreachable("Unsupported binary op"); case Instruction::Add: if (IsSigned) return computeOverflowForSignedAdd(LHS, RHS, CxtI); else return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); case Instruction::Sub: if (IsSigned) return computeOverflowForSignedSub(LHS, RHS, CxtI); else return computeOverflowForUnsignedSub(LHS, RHS, CxtI); case Instruction::Mul: if (IsSigned) return computeOverflowForSignedMul(LHS, RHS, CxtI); else return computeOverflowForUnsignedMul(LHS, RHS, CxtI); } } bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction &OrigI, Value *&Result, Constant *&Overflow) { if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) std::swap(LHS, RHS); // If the overflow check was an add followed by a compare, the insertion point // may be pointing to the compare. We want to insert the new instructions // before the add in case there are uses of the add between the add and the // compare. Builder.SetInsertPoint(&OrigI); Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); if (isNeutralValue(BinaryOp, RHS)) { Result = LHS; Overflow = ConstantInt::getFalse(OverflowTy); return true; } switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { case OverflowResult::MayOverflow: return false; case OverflowResult::AlwaysOverflowsLow: case OverflowResult::AlwaysOverflowsHigh: Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); Result->takeName(&OrigI); Overflow = ConstantInt::getTrue(OverflowTy); return true; case OverflowResult::NeverOverflows: Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); Result->takeName(&OrigI); Overflow = ConstantInt::getFalse(OverflowTy); if (auto *Inst = dyn_cast<Instruction>(Result)) { if (IsSigned) Inst->setHasNoSignedWrap(); else Inst->setHasNoUnsignedWrap(); } return true; } llvm_unreachable("Unexpected overflow result"); } /// Recognize and process idiom involving test for multiplication /// overflow. /// /// The caller has matched a pattern of the form: /// I = cmp u (mul(zext A, zext B), V /// The function checks if this is a test for overflow and if so replaces /// multiplication with call to 'mul.with.overflow' intrinsic. /// /// \param I Compare instruction. /// \param MulVal Result of 'mult' instruction. It is one of the arguments of /// the compare instruction. Must be of integer type. /// \param OtherVal The other argument of compare instruction. /// \returns Instruction which must replace the compare instruction, NULL if no /// replacement required. static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, Value *OtherVal, InstCombinerImpl &IC) { // Don't bother doing this transformation for pointers, don't do it for // vectors. if (!isa<IntegerType>(MulVal->getType())) return nullptr; assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); auto *MulInstr = dyn_cast<Instruction>(MulVal); if (!MulInstr) return nullptr; assert(MulInstr->getOpcode() == Instruction::Mul); auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); assert(LHS->getOpcode() == Instruction::ZExt); assert(RHS->getOpcode() == Instruction::ZExt); Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); // Calculate type and width of the result produced by mul.with.overflow. Type *TyA = A->getType(), *TyB = B->getType(); unsigned WidthA = TyA->getPrimitiveSizeInBits(), WidthB = TyB->getPrimitiveSizeInBits(); unsigned MulWidth; Type *MulType; if (WidthB > WidthA) { MulWidth = WidthB; MulType = TyB; } else { MulWidth = WidthA; MulType = TyA; } // In order to replace the original mul with a narrower mul.with.overflow, // all uses must ignore upper bits of the product. The number of used low // bits must be not greater than the width of mul.with.overflow. if (MulVal->hasNUsesOrMore(2)) for (User *U : MulVal->users()) { if (U == &I) continue; if (TruncInst *TI = dyn_cast<TruncInst>(U)) { // Check if truncation ignores bits above MulWidth. unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); if (TruncWidth > MulWidth) return nullptr; } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { // Check if AND ignores bits above MulWidth. if (BO->getOpcode() != Instruction::And) return nullptr; if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { const APInt &CVal = CI->getValue(); if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) return nullptr; } else { // In this case we could have the operand of the binary operation // being defined in another block, and performing the replacement // could break the dominance relation. return nullptr; } } else { // Other uses prohibit this transformation. return nullptr; } } // Recognize patterns switch (I.getPredicate()) { case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: // Recognize pattern: // mulval = mul(zext A, zext B) // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. ConstantInt *CI; Value *ValToMask; if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { if (ValToMask != MulVal) return nullptr; const APInt &CVal = CI->getValue() + 1; if (CVal.isPowerOf2()) { unsigned MaskWidth = CVal.logBase2(); if (MaskWidth == MulWidth) break; // Recognized } } return nullptr; case ICmpInst::ICMP_UGT: // Recognize pattern: // mulval = mul(zext A, zext B) // cmp ugt mulval, max if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { APInt MaxVal = APInt::getMaxValue(MulWidth); MaxVal = MaxVal.zext(CI->getBitWidth()); if (MaxVal.eq(CI->getValue())) break; // Recognized } return nullptr; case ICmpInst::ICMP_UGE: // Recognize pattern: // mulval = mul(zext A, zext B) // cmp uge mulval, max+1 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); if (MaxVal.eq(CI->getValue())) break; // Recognized } return nullptr; case ICmpInst::ICMP_ULE: // Recognize pattern: // mulval = mul(zext A, zext B) // cmp ule mulval, max if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { APInt MaxVal = APInt::getMaxValue(MulWidth); MaxVal = MaxVal.zext(CI->getBitWidth()); if (MaxVal.eq(CI->getValue())) break; // Recognized } return nullptr; case ICmpInst::ICMP_ULT: // Recognize pattern: // mulval = mul(zext A, zext B) // cmp ule mulval, max + 1 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); if (MaxVal.eq(CI->getValue())) break; // Recognized } return nullptr; default: return nullptr; } InstCombiner::BuilderTy &Builder = IC.Builder; Builder.SetInsertPoint(MulInstr); // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) Value *MulA = A, *MulB = B; if (WidthA < MulWidth) MulA = Builder.CreateZExt(A, MulType); if (WidthB < MulWidth) MulB = Builder.CreateZExt(B, MulType); Function *F = Intrinsic::getDeclaration( I.getModule(), Intrinsic::umul_with_overflow, MulType); CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); IC.addToWorklist(MulInstr); // If there are uses of mul result other than the comparison, we know that // they are truncation or binary AND. Change them to use result of // mul.with.overflow and adjust properly mask/size. if (MulVal->hasNUsesOrMore(2)) { Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); for (User *U : make_early_inc_range(MulVal->users())) { if (U == &I || U == OtherVal) continue; if (TruncInst *TI = dyn_cast<TruncInst>(U)) { if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) IC.replaceInstUsesWith(*TI, Mul); else TI->setOperand(0, Mul); } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { assert(BO->getOpcode() == Instruction::And); // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); APInt ShortMask = CI->getValue().trunc(MulWidth); Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); IC.replaceInstUsesWith(*BO, Zext); } else { llvm_unreachable("Unexpected Binary operation"); } IC.addToWorklist(cast<Instruction>(U)); } } if (isa<Instruction>(OtherVal)) IC.addToWorklist(cast<Instruction>(OtherVal)); // The original icmp gets replaced with the overflow value, maybe inverted // depending on predicate. bool Inverse = false; switch (I.getPredicate()) { case ICmpInst::ICMP_NE: break; case ICmpInst::ICMP_EQ: Inverse = true; break; case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: if (I.getOperand(0) == MulVal) break; Inverse = true; break; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: if (I.getOperand(1) == MulVal) break; Inverse = true; break; default: llvm_unreachable("Unexpected predicate"); } if (Inverse) { Value *Res = Builder.CreateExtractValue(Call, 1); return BinaryOperator::CreateNot(Res); } return ExtractValueInst::Create(Call, 1); } /// When performing a comparison against a constant, it is possible that not all /// the bits in the LHS are demanded. This helper method computes the mask that /// IS demanded. static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { const APInt *RHS; if (!match(I.getOperand(1), m_APInt(RHS))) return APInt::getAllOnesValue(BitWidth); // If this is a normal comparison, it demands all bits. If it is a sign bit // comparison, it only demands the sign bit. bool UnusedBit; if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) return APInt::getSignMask(BitWidth); switch (I.getPredicate()) { // For a UGT comparison, we don't care about any bits that // correspond to the trailing ones of the comparand. The value of these // bits doesn't impact the outcome of the comparison, because any value // greater than the RHS must differ in a bit higher than these due to carry. case ICmpInst::ICMP_UGT: return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); // Similarly, for a ULT comparison, we don't care about the trailing zeros. // Any value less than the RHS must differ in a higher bit because of carries. case ICmpInst::ICMP_ULT: return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); default: return APInt::getAllOnesValue(BitWidth); } } /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst /// should be swapped. /// The decision is based on how many times these two operands are reused /// as subtract operands and their positions in those instructions. /// The rationale is that several architectures use the same instruction for /// both subtract and cmp. Thus, it is better if the order of those operands /// match. /// \return true if Op0 and Op1 should be swapped. static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { // Filter out pointer values as those cannot appear directly in subtract. // FIXME: we may want to go through inttoptrs or bitcasts. if (Op0->getType()->isPointerTy()) return false; // If a subtract already has the same operands as a compare, swapping would be // bad. If a subtract has the same operands as a compare but in reverse order, // then swapping is good. int GoodToSwap = 0; for (const User *U : Op0->users()) { if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) GoodToSwap++; else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) GoodToSwap--; } return GoodToSwap > 0; } /// Check that one use is in the same block as the definition and all /// other uses are in blocks dominated by a given block. /// /// \param DI Definition /// \param UI Use /// \param DB Block that must dominate all uses of \p DI outside /// the parent block /// \return true when \p UI is the only use of \p DI in the parent block /// and all other uses of \p DI are in blocks dominated by \p DB. /// bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, const Instruction *UI, const BasicBlock *DB) const { assert(DI && UI && "Instruction not defined\n"); // Ignore incomplete definitions. if (!DI->getParent()) return false; // DI and UI must be in the same block. if (DI->getParent() != UI->getParent()) return false; // Protect from self-referencing blocks. if (DI->getParent() == DB) return false; for (const User *U : DI->users()) { auto *Usr = cast<Instruction>(U); if (Usr != UI && !DT.dominates(DB, Usr->getParent())) return false; } return true; } /// Return true when the instruction sequence within a block is select-cmp-br. static bool isChainSelectCmpBranch(const SelectInst *SI) { const BasicBlock *BB = SI->getParent(); if (!BB) return false; auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); if (!BI || BI->getNumSuccessors() != 2) return false; auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) return false; return true; } /// True when a select result is replaced by one of its operands /// in select-icmp sequence. This will eventually result in the elimination /// of the select. /// /// \param SI Select instruction /// \param Icmp Compare instruction /// \param SIOpd Operand that replaces the select /// /// Notes: /// - The replacement is global and requires dominator information /// - The caller is responsible for the actual replacement /// /// Example: /// /// entry: /// %4 = select i1 %3, %C* %0, %C* null /// %5 = icmp eq %C* %4, null /// br i1 %5, label %9, label %7 /// ... /// ; <label>:7 ; preds = %entry /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 /// ... /// /// can be transformed to /// /// %5 = icmp eq %C* %0, null /// %6 = select i1 %3, i1 %5, i1 true /// br i1 %6, label %9, label %7 /// ... /// ; <label>:7 ; preds = %entry /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! /// /// Similar when the first operand of the select is a constant or/and /// the compare is for not equal rather than equal. /// /// NOTE: The function is only called when the select and compare constants /// are equal, the optimization can work only for EQ predicates. This is not a /// major restriction since a NE compare should be 'normalized' to an equal /// compare, which usually happens in the combiner and test case /// select-cmp-br.ll checks for it. bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp, const unsigned SIOpd) { assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); // The check for the single predecessor is not the best that can be // done. But it protects efficiently against cases like when SI's // home block has two successors, Succ and Succ1, and Succ1 predecessor // of Succ. Then SI can't be replaced by SIOpd because the use that gets // replaced can be reached on either path. So the uniqueness check // guarantees that the path all uses of SI (outside SI's parent) are on // is disjoint from all other paths out of SI. But that information // is more expensive to compute, and the trade-off here is in favor // of compile-time. It should also be noticed that we check for a single // predecessor and not only uniqueness. This to handle the situation when // Succ and Succ1 points to the same basic block. if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { NumSel++; SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); return true; } } return false; } /// Try to fold the comparison based on range information we can get by checking /// whether bits are known to be zero or one in the inputs. Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); Type *Ty = Op0->getType(); ICmpInst::Predicate Pred = I.getPredicate(); // Get scalar or pointer size. unsigned BitWidth = Ty->isIntOrIntVectorTy() ? Ty->getScalarSizeInBits() : DL.getPointerTypeSizeInBits(Ty->getScalarType()); if (!BitWidth) return nullptr; KnownBits Op0Known(BitWidth); KnownBits Op1Known(BitWidth); if (SimplifyDemandedBits(&I, 0, getDemandedBitsLHSMask(I, BitWidth), Op0Known, 0)) return &I; if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), Op1Known, 0)) return &I; // Given the known and unknown bits, compute a range that the LHS could be // in. Compute the Min, Max and RHS values based on the known bits. For the // EQ and NE we use unsigned values. APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); if (I.isSigned()) { Op0Min = Op0Known.getSignedMinValue(); Op0Max = Op0Known.getSignedMaxValue(); Op1Min = Op1Known.getSignedMinValue(); Op1Max = Op1Known.getSignedMaxValue(); } else { Op0Min = Op0Known.getMinValue(); Op0Max = Op0Known.getMaxValue(); Op1Min = Op1Known.getMinValue(); Op1Max = Op1Known.getMaxValue(); } // If Min and Max are known to be the same, then SimplifyDemandedBits figured // out that the LHS or RHS is a constant. Constant fold this now, so that // code below can assume that Min != Max. if (!isa<Constant>(Op0) && Op0Min == Op0Max) return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); if (!isa<Constant>(Op1) && Op1Min == Op1Max) return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); // Based on the range information we know about the LHS, see if we can // simplify this comparison. For example, (x&4) < 8 is always true. switch (Pred) { default: llvm_unreachable("Unknown icmp opcode!"); case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: { if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) return replaceInstUsesWith( I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); // If all bits are known zero except for one, then we know at most one bit // is set. If the comparison is against zero, then this is a check to see if // *that* bit is set. APInt Op0KnownZeroInverted = ~Op0Known.Zero; if (Op1Known.isZero()) { // If the LHS is an AND with the same constant, look through it. Value *LHS = nullptr; const APInt *LHSC; if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || *LHSC != Op0KnownZeroInverted) LHS = Op0; Value *X; if (match(LHS, m_Shl(m_One(), m_Value(X)))) { APInt ValToCheck = Op0KnownZeroInverted; Type *XTy = X->getType(); if (ValToCheck.isPowerOf2()) { // ((1 << X) & 8) == 0 -> X != 3 // ((1 << X) & 8) != 0 -> X == 3 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); auto NewPred = ICmpInst::getInversePredicate(Pred); return new ICmpInst(NewPred, X, CmpC); } else if ((++ValToCheck).isPowerOf2()) { // ((1 << X) & 7) == 0 -> X >= 3 // ((1 << X) & 7) != 0 -> X < 3 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); auto NewPred = Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; return new ICmpInst(NewPred, X, CmpC); } } // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. const APInt *CI; if (Op0KnownZeroInverted.isOneValue() && match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { // ((8 >>u X) & 1) == 0 -> X != 3 // ((8 >>u X) & 1) != 0 -> X == 3 unsigned CmpVal = CI->countTrailingZeros(); auto NewPred = ICmpInst::getInversePredicate(Pred); return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); } } break; } case ICmpInst::ICMP_ULT: { if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); const APInt *CmpC; if (match(Op1, m_APInt(CmpC))) { // A <u C -> A == C-1 if min(A)+1 == C if (*CmpC == Op0Min + 1) return new ICmpInst(ICmpInst::ICMP_EQ, Op0, ConstantInt::get(Op1->getType(), *CmpC - 1)); // X <u C --> X == 0, if the number of zero bits in the bottom of X // exceeds the log2 of C. if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Constant::getNullValue(Op1->getType())); } break; } case ICmpInst::ICMP_UGT: { if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); const APInt *CmpC; if (match(Op1, m_APInt(CmpC))) { // A >u C -> A == C+1 if max(a)-1 == C if (*CmpC == Op0Max - 1) return new ICmpInst(ICmpInst::ICMP_EQ, Op0, ConstantInt::get(Op1->getType(), *CmpC + 1)); // X >u C --> X != 0, if the number of zero bits in the bottom of X // exceeds the log2 of C. if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) return new ICmpInst(ICmpInst::ICMP_NE, Op0, Constant::getNullValue(Op1->getType())); } break; } case ICmpInst::ICMP_SLT: { if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); const APInt *CmpC; if (match(Op1, m_APInt(CmpC))) { if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C return new ICmpInst(ICmpInst::ICMP_EQ, Op0, ConstantInt::get(Op1->getType(), *CmpC - 1)); } break; } case ICmpInst::ICMP_SGT: { if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); const APInt *CmpC; if (match(Op1, m_APInt(CmpC))) { if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C return new ICmpInst(ICmpInst::ICMP_EQ, Op0, ConstantInt::get(Op1->getType(), *CmpC + 1)); } break; } case ICmpInst::ICMP_SGE: assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); break; case ICmpInst::ICMP_SLE: assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); break; case ICmpInst::ICMP_UGE: assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); break; case ICmpInst::ICMP_ULE: assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); break; } // Turn a signed comparison into an unsigned one if both operands are known to // have the same sign. if (I.isSigned() && ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); return nullptr; } llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, Constant *C) { assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && "Only for relational integer predicates."); Type *Type = C->getType(); bool IsSigned = ICmpInst::isSigned(Pred); CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); bool WillIncrement = UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; // Check if the constant operand can be safely incremented/decremented // without overflowing/underflowing. auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); }; Constant *SafeReplacementConstant = nullptr; if (auto *CI = dyn_cast<ConstantInt>(C)) { // Bail out if the constant can't be safely incremented/decremented. if (!ConstantIsOk(CI)) return llvm::None; } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { unsigned NumElts = FVTy->getNumElements(); for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = C->getAggregateElement(i); if (!Elt) return llvm::None; if (isa<UndefValue>(Elt)) continue; // Bail out if we can't determine if this constant is min/max or if we // know that this constant is min/max. auto *CI = dyn_cast<ConstantInt>(Elt); if (!CI || !ConstantIsOk(CI)) return llvm::None; if (!SafeReplacementConstant) SafeReplacementConstant = CI; } } else { // ConstantExpr? return llvm::None; } // It may not be safe to change a compare predicate in the presence of // undefined elements, so replace those elements with the first safe constant // that we found. // TODO: in case of poison, it is safe; let's replace undefs only. if (C->containsUndefOrPoisonElement()) { assert(SafeReplacementConstant && "Replacement constant not set"); C = Constant::replaceUndefsWith(C, SafeReplacementConstant); } CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); // Increment or decrement the constant. Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); return std::make_pair(NewPred, NewC); } /// If we have an icmp le or icmp ge instruction with a constant operand, turn /// it into the appropriate icmp lt or icmp gt instruction. This transform /// allows them to be folded in visitICmpInst. static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { ICmpInst::Predicate Pred = I.getPredicate(); if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || InstCombiner::isCanonicalPredicate(Pred)) return nullptr; Value *Op0 = I.getOperand(0); Value *Op1 = I.getOperand(1); auto *Op1C = dyn_cast<Constant>(Op1); if (!Op1C) return nullptr; auto FlippedStrictness = InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); if (!FlippedStrictness) return nullptr; return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); } /// If we have a comparison with a non-canonical predicate, if we can update /// all the users, invert the predicate and adjust all the users. CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { // Is the predicate already canonical? CmpInst::Predicate Pred = I.getPredicate(); if (InstCombiner::isCanonicalPredicate(Pred)) return nullptr; // Can all users be adjusted to predicate inversion? if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) return nullptr; // Ok, we can canonicalize comparison! // Let's first invert the comparison's predicate. I.setPredicate(CmpInst::getInversePredicate(Pred)); I.setName(I.getName() + ".not"); // And, adapt users. freelyInvertAllUsersOf(&I); return &I; } /// Integer compare with boolean values can always be turned into bitwise ops. static Instruction *canonicalizeICmpBool(ICmpInst &I, InstCombiner::BuilderTy &Builder) { Value *A = I.getOperand(0), *B = I.getOperand(1); assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); // A boolean compared to true/false can be simplified to Op0/true/false in // 14 out of the 20 (10 predicates * 2 constants) possible combinations. // Cases not handled by InstSimplify are always 'not' of Op0. if (match(B, m_Zero())) { switch (I.getPredicate()) { case CmpInst::ICMP_EQ: // A == 0 -> !A case CmpInst::ICMP_ULE: // A <=u 0 -> !A case CmpInst::ICMP_SGE: // A >=s 0 -> !A return BinaryOperator::CreateNot(A); default: llvm_unreachable("ICmp i1 X, C not simplified as expected."); } } else if (match(B, m_One())) { switch (I.getPredicate()) { case CmpInst::ICMP_NE: // A != 1 -> !A case CmpInst::ICMP_ULT: // A <u 1 -> !A case CmpInst::ICMP_SGT: // A >s -1 -> !A return BinaryOperator::CreateNot(A); default: llvm_unreachable("ICmp i1 X, C not simplified as expected."); } } switch (I.getPredicate()) { default: llvm_unreachable("Invalid icmp instruction!"); case ICmpInst::ICMP_EQ: // icmp eq i1 A, B -> ~(A ^ B) return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); case ICmpInst::ICMP_NE: // icmp ne i1 A, B -> A ^ B return BinaryOperator::CreateXor(A, B); case ICmpInst::ICMP_UGT: // icmp ugt -> icmp ult std::swap(A, B); LLVM_FALLTHROUGH; case ICmpInst::ICMP_ULT: // icmp ult i1 A, B -> ~A & B return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); case ICmpInst::ICMP_SGT: // icmp sgt -> icmp slt std::swap(A, B); LLVM_FALLTHROUGH; case ICmpInst::ICMP_SLT: // icmp slt i1 A, B -> A & ~B return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); case ICmpInst::ICMP_UGE: // icmp uge -> icmp ule std::swap(A, B); LLVM_FALLTHROUGH; case ICmpInst::ICMP_ULE: // icmp ule i1 A, B -> ~A | B return BinaryOperator::CreateOr(Builder.CreateNot(A), B); case ICmpInst::ICMP_SGE: // icmp sge -> icmp sle std::swap(A, B); LLVM_FALLTHROUGH; case ICmpInst::ICMP_SLE: // icmp sle i1 A, B -> A | ~B return BinaryOperator::CreateOr(Builder.CreateNot(B), A); } } // Transform pattern like: // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X // Into: // (X l>> Y) != 0 // (X l>> Y) == 0 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, InstCombiner::BuilderTy &Builder) { ICmpInst::Predicate Pred, NewPred; Value *X, *Y; if (match(&Cmp, m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { switch (Pred) { case ICmpInst::ICMP_ULE: NewPred = ICmpInst::ICMP_NE; break; case ICmpInst::ICMP_UGT: NewPred = ICmpInst::ICMP_EQ; break; default: return nullptr; } } else if (match(&Cmp, m_c_ICmp(Pred, m_OneUse(m_CombineOr( m_Not(m_Shl(m_AllOnes(), m_Value(Y))), m_Add(m_Shl(m_One(), m_Value(Y)), m_AllOnes()))), m_Value(X)))) { // The variant with 'add' is not canonical, (the variant with 'not' is) // we only get it because it has extra uses, and can't be canonicalized, switch (Pred) { case ICmpInst::ICMP_ULT: NewPred = ICmpInst::ICMP_NE; break; case ICmpInst::ICMP_UGE: NewPred = ICmpInst::ICMP_EQ; break; default: return nullptr; } } else return nullptr; Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); Constant *Zero = Constant::getNullValue(NewX->getType()); return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); } static Instruction *foldVectorCmp(CmpInst &Cmp, InstCombiner::BuilderTy &Builder) { const CmpInst::Predicate Pred = Cmp.getPredicate(); Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); Value *V1, *V2; ArrayRef<int> M; if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) return nullptr; // If both arguments of the cmp are shuffles that use the same mask and // shuffle within a single vector, move the shuffle after the cmp: // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M Type *V1Ty = V1->getType(); if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); } // Try to canonicalize compare with splatted operand and splat constant. // TODO: We could generalize this for more than splats. See/use the code in // InstCombiner::foldVectorBinop(). Constant *C; if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) return nullptr; // Length-changing splats are ok, so adjust the constants as needed: // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); int MaskSplatIndex; if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { // We allow undefs in matching, but this transform removes those for safety. // Demanded elements analysis should be able to recover some/all of that. C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), ScalarC); SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); Value *NewCmp = Builder.CreateCmp(Pred, V1, C); return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), NewM); } return nullptr; } // extract(uadd.with.overflow(A, B), 0) ult A // -> extract(uadd.with.overflow(A, B), 1) static Instruction *foldICmpOfUAddOv(ICmpInst &I) { CmpInst::Predicate Pred = I.getPredicate(); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); Value *UAddOv; Value *A, *B; auto UAddOvResultPat = m_ExtractValue<0>( m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); if (match(Op0, UAddOvResultPat) && ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && (match(A, m_One()) || match(B, m_One()))) || (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) // extract(uadd.with.overflow(A, B), 0) < A // extract(uadd.with.overflow(A, 1), 0) == 0 // extract(uadd.with.overflow(A, -1), 0) != -1 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); else if (match(Op1, UAddOvResultPat) && Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) // A > extract(uadd.with.overflow(A, B), 0) UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); else return nullptr; return ExtractValueInst::Create(UAddOv, 1); } Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { bool Changed = false; const SimplifyQuery Q = SQ.getWithInstruction(&I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); unsigned Op0Cplxity = getComplexity(Op0); unsigned Op1Cplxity = getComplexity(Op1); /// Orders the operands of the compare so that they are listed from most /// complex to least complex. This puts constants before unary operators, /// before binary operators. if (Op0Cplxity < Op1Cplxity || (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { I.swapOperands(); std::swap(Op0, Op1); Changed = true; } if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) return replaceInstUsesWith(I, V); // Comparing -val or val with non-zero is the same as just comparing val // ie, abs(val) != 0 -> val != 0 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { Value *Cond, *SelectTrue, *SelectFalse; if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), m_Value(SelectFalse)))) { if (Value *V = dyn_castNegVal(SelectTrue)) { if (V == SelectFalse) return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); } else if (Value *V = dyn_castNegVal(SelectFalse)) { if (V == SelectTrue) return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); } } } if (Op0->getType()->isIntOrIntVectorTy(1)) if (Instruction *Res = canonicalizeICmpBool(I, Builder)) return Res; if (Instruction *Res = canonicalizeCmpWithConstant(I)) return Res; if (Instruction *Res = canonicalizeICmpPredicate(I)) return Res; if (Instruction *Res = foldICmpWithConstant(I)) return Res; if (Instruction *Res = foldICmpWithDominatingICmp(I)) return Res; if (Instruction *Res = foldICmpBinOp(I, Q)) return Res; if (Instruction *Res = foldICmpUsingKnownBits(I)) return Res; // Test if the ICmpInst instruction is used exclusively by a select as // part of a minimum or maximum operation. If so, refrain from doing // any other folding. This helps out other analyses which understand // non-obfuscated minimum and maximum idioms, such as ScalarEvolution // and CodeGen. And in this case, at least one of the comparison // operands has at least one user besides the compare (the select), // which would often largely negate the benefit of folding anyway. // // Do the same for the other patterns recognized by matchSelectPattern. if (I.hasOneUse()) if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { Value *A, *B; SelectPatternResult SPR = matchSelectPattern(SI, A, B); if (SPR.Flavor != SPF_UNKNOWN) return nullptr; } // Do this after checking for min/max to prevent infinite looping. if (Instruction *Res = foldICmpWithZero(I)) return Res; // FIXME: We only do this after checking for min/max to prevent infinite // looping caused by a reverse canonicalization of these patterns for min/max. // FIXME: The organization of folds is a mess. These would naturally go into // canonicalizeCmpWithConstant(), but we can't move all of the above folds // down here after the min/max restriction. ICmpInst::Predicate Pred = I.getPredicate(); const APInt *C; if (match(Op1, m_APInt(C))) { // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { Constant *Zero = Constant::getNullValue(Op0->getType()); return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); } // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); } } if (Instruction *Res = foldICmpInstWithConstant(I)) return Res; // Try to match comparison as a sign bit test. Intentionally do this after // foldICmpInstWithConstant() to potentially let other folds to happen first. if (Instruction *New = foldSignBitTest(I)) return New; if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) return Res; // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) return NI; if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) if (Instruction *NI = foldGEPICmp(GEP, Op0, ICmpInst::getSwappedPredicate(I.getPredicate()), I)) return NI; // Try to optimize equality comparisons against alloca-based pointers. if (Op0->getType()->isPointerTy() && I.isEquality()) { assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) return New; if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) return New; } if (Instruction *Res = foldICmpBitCast(I, Builder)) return Res; // TODO: Hoist this above the min/max bailout. if (Instruction *R = foldICmpWithCastOp(I)) return R; if (Instruction *Res = foldICmpWithMinMax(I)) return Res; { Value *A, *B; // Transform (A & ~B) == 0 --> (A & B) != 0 // and (A & ~B) != 0 --> (A & B) == 0 // if A is a power of 2. if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), Op1); // ~X < ~Y --> Y < X // ~X < C --> X > ~C if (match(Op0, m_Not(m_Value(A)))) { if (match(Op1, m_Not(m_Value(B)))) return new ICmpInst(I.getPredicate(), B, A); const APInt *C; if (match(Op1, m_APInt(C))) return new ICmpInst(I.getSwappedPredicate(), A, ConstantInt::get(Op1->getType(), ~(*C))); } Instruction *AddI = nullptr; if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))) && isa<IntegerType>(A->getType())) { Value *Result; Constant *Overflow; // m_UAddWithOverflow can match patterns that do not include an explicit // "add" instruction, so check the opcode of the matched op. if (AddI->getOpcode() == Instruction::Add && OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, Result, Overflow)) { replaceInstUsesWith(*AddI, Result); eraseInstFromFunction(*AddI); return replaceInstUsesWith(I, Overflow); } } // (zext a) * (zext b) --> llvm.umul.with.overflow. if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) return R; } if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) return R; } } if (Instruction *Res = foldICmpEquality(I)) return Res; if (Instruction *Res = foldICmpOfUAddOv(I)) return Res; // The 'cmpxchg' instruction returns an aggregate containing the old value and // an i1 which indicates whether or not we successfully did the swap. // // Replace comparisons between the old value and the expected value with the // indicator that 'cmpxchg' returns. // // N.B. This transform is only valid when the 'cmpxchg' is not permitted to // spuriously fail. In those cases, the old value may equal the expected // value but it is possible for the swap to not occur. if (I.getPredicate() == ICmpInst::ICMP_EQ) if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && !ACXI->isWeak()) return ExtractValueInst::Create(ACXI, 1); { Value *X; const APInt *C; // icmp X+Cst, X if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) return foldICmpAddOpConst(X, *C, I.getPredicate()); // icmp X, X+Cst if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); } if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) return Res; if (I.getType()->isVectorTy()) if (Instruction *Res = foldVectorCmp(I, Builder)) return Res; return Changed ? &I : nullptr; } /// Fold fcmp ([us]itofp x, cst) if possible. Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, Constant *RHSC) { if (!isa<ConstantFP>(RHSC)) return nullptr; const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); // Get the width of the mantissa. We don't want to hack on conversions that // might lose information from the integer, e.g. "i64 -> float" int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); if (MantissaWidth == -1) return nullptr; // Unknown. IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); bool LHSUnsigned = isa<UIToFPInst>(LHSI); if (I.isEquality()) { FCmpInst::Predicate P = I.getPredicate(); bool IsExact = false; APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); // If the floating point constant isn't an integer value, we know if we will // ever compare equal / not equal to it. if (!IsExact) { // TODO: Can never be -0.0 and other non-representable values APFloat RHSRoundInt(RHS); RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); if (RHS != RHSRoundInt) { if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) return replaceInstUsesWith(I, Builder.getFalse()); assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); return replaceInstUsesWith(I, Builder.getTrue()); } } // TODO: If the constant is exactly representable, is it always OK to do // equality compares as integer? } // Check to see that the input is converted from an integer type that is small // enough that preserves all bits. TODO: check here for "known" sign bits. // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. unsigned InputSize = IntTy->getScalarSizeInBits(); // Following test does NOT adjust InputSize downwards for signed inputs, // because the most negative value still requires all the mantissa bits // to distinguish it from one less than that value. if ((int)InputSize > MantissaWidth) { // Conversion would lose accuracy. Check if loss can impact comparison. int Exp = ilogb(RHS); if (Exp == APFloat::IEK_Inf) { int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); if (MaxExponent < (int)InputSize - !LHSUnsigned) // Conversion could create infinity. return nullptr; } else { // Note that if RHS is zero or NaN, then Exp is negative // and first condition is trivially false. if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) // Conversion could affect comparison. return nullptr; } } // Otherwise, we can potentially simplify the comparison. We know that it // will always come through as an integer value and we know the constant is // not a NAN (it would have been previously simplified). assert(!RHS.isNaN() && "NaN comparison not already folded!"); ICmpInst::Predicate Pred; switch (I.getPredicate()) { default: llvm_unreachable("Unexpected predicate!"); case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_OEQ: Pred = ICmpInst::ICMP_EQ; break; case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_OGT: Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; break; case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_OGE: Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; break; case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_OLT: Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; break; case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_OLE: Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; break; case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_ONE: Pred = ICmpInst::ICMP_NE; break; case FCmpInst::FCMP_ORD: return replaceInstUsesWith(I, Builder.getTrue()); case FCmpInst::FCMP_UNO: return replaceInstUsesWith(I, Builder.getFalse()); } // Now we know that the APFloat is a normal number, zero or inf. // See if the FP constant is too large for the integer. For example, // comparing an i8 to 300.0. unsigned IntWidth = IntTy->getScalarSizeInBits(); if (!LHSUnsigned) { // If the RHS value is > SignedMax, fold the comparison. This handles +INF // and large values. APFloat SMax(RHS.getSemantics()); SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, APFloat::rmNearestTiesToEven); if (SMax < RHS) { // smax < 13123.0 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) return replaceInstUsesWith(I, Builder.getTrue()); return replaceInstUsesWith(I, Builder.getFalse()); } } else { // If the RHS value is > UnsignedMax, fold the comparison. This handles // +INF and large values. APFloat UMax(RHS.getSemantics()); UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, APFloat::rmNearestTiesToEven); if (UMax < RHS) { // umax < 13123.0 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) return replaceInstUsesWith(I, Builder.getTrue()); return replaceInstUsesWith(I, Builder.getFalse()); } } if (!LHSUnsigned) { // See if the RHS value is < SignedMin. APFloat SMin(RHS.getSemantics()); SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, APFloat::rmNearestTiesToEven); if (SMin > RHS) { // smin > 12312.0 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) return replaceInstUsesWith(I, Builder.getTrue()); return replaceInstUsesWith(I, Builder.getFalse()); } } else { // See if the RHS value is < UnsignedMin. APFloat UMin(RHS.getSemantics()); UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, APFloat::rmNearestTiesToEven); if (UMin > RHS) { // umin > 12312.0 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) return replaceInstUsesWith(I, Builder.getTrue()); return replaceInstUsesWith(I, Builder.getFalse()); } } // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or // [0, UMAX], but it may still be fractional. See if it is fractional by // casting the FP value to the integer value and back, checking for equality. // Don't do this for zero, because -0.0 is not fractional. Constant *RHSInt = LHSUnsigned ? ConstantExpr::getFPToUI(RHSC, IntTy) : ConstantExpr::getFPToSI(RHSC, IntTy); if (!RHS.isZero()) { bool Equal = LHSUnsigned ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; if (!Equal) { // If we had a comparison against a fractional value, we have to adjust // the compare predicate and sometimes the value. RHSC is rounded towards // zero at this point. switch (Pred) { default: llvm_unreachable("Unexpected integer comparison!"); case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true return replaceInstUsesWith(I, Builder.getTrue()); case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false return replaceInstUsesWith(I, Builder.getFalse()); case ICmpInst::ICMP_ULE: // (float)int <= 4.4 --> int <= 4 // (float)int <= -4.4 --> false if (RHS.isNegative()) return replaceInstUsesWith(I, Builder.getFalse()); break; case ICmpInst::ICMP_SLE: // (float)int <= 4.4 --> int <= 4 // (float)int <= -4.4 --> int < -4 if (RHS.isNegative()) Pred = ICmpInst::ICMP_SLT; break; case ICmpInst::ICMP_ULT: // (float)int < -4.4 --> false // (float)int < 4.4 --> int <= 4 if (RHS.isNegative()) return replaceInstUsesWith(I, Builder.getFalse()); Pred = ICmpInst::ICMP_ULE; break; case ICmpInst::ICMP_SLT: // (float)int < -4.4 --> int < -4 // (float)int < 4.4 --> int <= 4 if (!RHS.isNegative()) Pred = ICmpInst::ICMP_SLE; break; case ICmpInst::ICMP_UGT: // (float)int > 4.4 --> int > 4 // (float)int > -4.4 --> true if (RHS.isNegative()) return replaceInstUsesWith(I, Builder.getTrue()); break; case ICmpInst::ICMP_SGT: // (float)int > 4.4 --> int > 4 // (float)int > -4.4 --> int >= -4 if (RHS.isNegative()) Pred = ICmpInst::ICMP_SGE; break; case ICmpInst::ICMP_UGE: // (float)int >= -4.4 --> true // (float)int >= 4.4 --> int > 4 if (RHS.isNegative()) return replaceInstUsesWith(I, Builder.getTrue()); Pred = ICmpInst::ICMP_UGT; break; case ICmpInst::ICMP_SGE: // (float)int >= -4.4 --> int >= -4 // (float)int >= 4.4 --> int > 4 if (!RHS.isNegative()) Pred = ICmpInst::ICMP_SGT; break; } } } // Lower this FP comparison into an appropriate integer version of the // comparison. return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); } /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, Constant *RHSC) { // When C is not 0.0 and infinities are not allowed: // (C / X) < 0.0 is a sign-bit test of X // (C / X) < 0.0 --> X < 0.0 (if C is positive) // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) // // Proof: // Multiply (C / X) < 0.0 by X * X / C. // - X is non zero, if it is the flag 'ninf' is violated. // - C defines the sign of X * X * C. Thus it also defines whether to swap // the predicate. C is also non zero by definition. // // Thus X * X / C is non zero and the transformation is valid. [qed] FCmpInst::Predicate Pred = I.getPredicate(); // Check that predicates are valid. if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) return nullptr; // Check that RHS operand is zero. if (!match(RHSC, m_AnyZeroFP())) return nullptr; // Check fastmath flags ('ninf'). if (!LHSI->hasNoInfs() || !I.hasNoInfs()) return nullptr; // Check the properties of the dividend. It must not be zero to avoid a // division by zero (see Proof). const APFloat *C; if (!match(LHSI->getOperand(0), m_APFloat(C))) return nullptr; if (C->isZero()) return nullptr; // Get swapped predicate if necessary. if (C->isNegative()) Pred = I.getSwappedPredicate(); return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); } /// Optimize fabs(X) compared with zero. static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { Value *X; if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || !match(I.getOperand(1), m_PosZeroFP())) return nullptr; auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { I->setPredicate(P); return IC.replaceOperand(*I, 0, X); }; switch (I.getPredicate()) { case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_OLT: // fabs(X) >= 0.0 --> true // fabs(X) < 0.0 --> false llvm_unreachable("fcmp should have simplified"); case FCmpInst::FCMP_OGT: // fabs(X) > 0.0 --> X != 0.0 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); case FCmpInst::FCMP_UGT: // fabs(X) u> 0.0 --> X u!= 0.0 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); case FCmpInst::FCMP_OLE: // fabs(X) <= 0.0 --> X == 0.0 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); case FCmpInst::FCMP_ULE: // fabs(X) u<= 0.0 --> X u== 0.0 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); case FCmpInst::FCMP_OGE: // fabs(X) >= 0.0 --> !isnan(X) assert(!I.hasNoNaNs() && "fcmp should have simplified"); return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); case FCmpInst::FCMP_ULT: // fabs(X) u< 0.0 --> isnan(X) assert(!I.hasNoNaNs() && "fcmp should have simplified"); return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_ORD: case FCmpInst::FCMP_UNO: // Look through the fabs() because it doesn't change anything but the sign. // fabs(X) == 0.0 --> X == 0.0, // fabs(X) != 0.0 --> X != 0.0 // isnan(fabs(X)) --> isnan(X) // !isnan(fabs(X) --> !isnan(X) return replacePredAndOp0(&I, I.getPredicate(), X); default: return nullptr; } } Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { bool Changed = false; /// Orders the operands of the compare so that they are listed from most /// complex to least complex. This puts constants before unary operators, /// before binary operators. if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { I.swapOperands(); Changed = true; } const CmpInst::Predicate Pred = I.getPredicate(); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), SQ.getWithInstruction(&I))) return replaceInstUsesWith(I, V); // Simplify 'fcmp pred X, X' Type *OpType = Op0->getType(); assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); if (Op0 == Op1) { switch (Pred) { default: break; case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) case FCmpInst::FCMP_ULT: // True if unordered or less than case FCmpInst::FCMP_UGT: // True if unordered or greater than case FCmpInst::FCMP_UNE: // True if unordered or not equal // Canonicalize these to be 'fcmp uno %X, 0.0'. I.setPredicate(FCmpInst::FCMP_UNO); I.setOperand(1, Constant::getNullValue(OpType)); return &I; case FCmpInst::FCMP_ORD: // True if ordered (no nans) case FCmpInst::FCMP_OEQ: // True if ordered and equal case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal case FCmpInst::FCMP_OLE: // True if ordered and less than or equal // Canonicalize these to be 'fcmp ord %X, 0.0'. I.setPredicate(FCmpInst::FCMP_ORD); I.setOperand(1, Constant::getNullValue(OpType)); return &I; } } // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, // then canonicalize the operand to 0.0. if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); } // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y Value *X, *Y; if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); // Test if the FCmpInst instruction is used exclusively by a select as // part of a minimum or maximum operation. If so, refrain from doing // any other folding. This helps out other analyses which understand // non-obfuscated minimum and maximum idioms, such as ScalarEvolution // and CodeGen. And in this case, at least one of the comparison // operands has at least one user besides the compare (the select), // which would often largely negate the benefit of folding anyway. if (I.hasOneUse()) if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { Value *A, *B; SelectPatternResult SPR = matchSelectPattern(SI, A, B); if (SPR.Flavor != SPF_UNKNOWN) return nullptr; } // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); // Handle fcmp with instruction LHS and constant RHS. Instruction *LHSI; Constant *RHSC; if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { switch (LHSI->getOpcode()) { case Instruction::PHI: // Only fold fcmp into the PHI if the phi and fcmp are in the same // block. If in the same block, we're encouraging jump threading. If // not, we are just pessimizing the code by making an i1 phi. if (LHSI->getParent() == I.getParent()) if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) return NV; break; case Instruction::SIToFP: case Instruction::UIToFP: if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) return NV; break; case Instruction::FDiv: if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) return NV; break; case Instruction::Load: if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) if (GV->isConstant() && GV->hasDefinitiveInitializer() && !cast<LoadInst>(LHSI)->isVolatile()) if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) return Res; break; } } if (Instruction *R = foldFabsWithFcmpZero(I, *this)) return R; if (match(Op0, m_FNeg(m_Value(X)))) { // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C Constant *C; if (match(Op1, m_Constant(C))) { Constant *NegC = ConstantExpr::getFNeg(C); return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); } } if (match(Op0, m_FPExt(m_Value(X)))) { // fcmp (fpext X), (fpext Y) -> fcmp X, Y if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) return new FCmpInst(Pred, X, Y, "", &I); // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless const APFloat *C; if (match(Op1, m_APFloat(C))) { const fltSemantics &FPSem = X->getType()->getScalarType()->getFltSemantics(); bool Lossy; APFloat TruncC = *C; TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); // Avoid lossy conversions and denormals. // Zero is a special case that's OK to convert. APFloat Fabs = TruncC; Fabs.clearSign(); if (!Lossy && (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { Constant *NewC = ConstantFP::get(X->getType(), TruncC); return new FCmpInst(Pred, X, NewC, "", &I); } } } if (I.getType()->isVectorTy()) if (Instruction *Res = foldVectorCmp(I, Builder)) return Res; return Changed ? &I : nullptr; }