//===- InstCombineCompares.cpp --------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the visitICmp and visitFCmp functions. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/CmpInstAnalysis.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/Utils/Local.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/InstCombine/InstCombiner.h" #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "instcombine" // How many times is a select replaced by one of its operands? STATISTIC(NumSel, "Number of select opts"); /// Compute Result = In1+In2, returning true if the result overflowed for this /// type. static bool addWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, bool IsSigned = false) { bool Overflow; if (IsSigned) Result = In1.sadd_ov(In2, Overflow); else Result = In1.uadd_ov(In2, Overflow); return Overflow; } /// Compute Result = In1-In2, returning true if the result overflowed for this /// type. static bool subWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, bool IsSigned = false) { bool Overflow; if (IsSigned) Result = In1.ssub_ov(In2, Overflow); else Result = In1.usub_ov(In2, Overflow); return Overflow; } /// Given an icmp instruction, return true if any use of this comparison is a /// branch on sign bit comparison. static bool hasBranchUse(ICmpInst &I) { for (auto *U : I.users()) if (isa(U)) return true; return false; } /// Returns true if the exploded icmp can be expressed as a signed comparison /// to zero and updates the predicate accordingly. /// The signedness of the comparison is preserved. /// TODO: Refactor with decomposeBitTestICmp()? static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { if (!ICmpInst::isSigned(Pred)) return false; if (C.isZero()) return ICmpInst::isRelational(Pred); if (C.isOne()) { if (Pred == ICmpInst::ICMP_SLT) { Pred = ICmpInst::ICMP_SLE; return true; } } else if (C.isAllOnes()) { if (Pred == ICmpInst::ICMP_SGT) { Pred = ICmpInst::ICMP_SGE; return true; } } return false; } /// This is called when we see this pattern: /// cmp pred (load (gep GV, ...)), cmpcst /// where GV is a global variable with a constant initializer. Try to simplify /// this into some simple computation that does not need the load. For example /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". /// /// If AndCst is non-null, then the loaded value is masked with that constant /// before doing the comparison. This handles cases like "A[i]&4 == 0". Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, ConstantInt *AndCst) { if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || GV->getValueType() != GEP->getSourceElementType() || !GV->isConstant() || !GV->hasDefinitiveInitializer()) return nullptr; Constant *Init = GV->getInitializer(); if (!isa(Init) && !isa(Init)) return nullptr; uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); // Don't blow up on huge arrays. if (ArrayElementCount > MaxArraySizeForCombine) return nullptr; // There are many forms of this optimization we can handle, for now, just do // the simple index into a single-dimensional array. // // Require: GEP GV, 0, i {{, constant indices}} if (GEP->getNumOperands() < 3 || !isa(GEP->getOperand(1)) || !cast(GEP->getOperand(1))->isZero() || isa(GEP->getOperand(2))) return nullptr; // Check that indices after the variable are constants and in-range for the // type they index. Collect the indices. This is typically for arrays of // structs. SmallVector LaterIndices; Type *EltTy = Init->getType()->getArrayElementType(); for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { ConstantInt *Idx = dyn_cast(GEP->getOperand(i)); if (!Idx) return nullptr; // Variable index. uint64_t IdxVal = Idx->getZExtValue(); if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. if (StructType *STy = dyn_cast(EltTy)) EltTy = STy->getElementType(IdxVal); else if (ArrayType *ATy = dyn_cast(EltTy)) { if (IdxVal >= ATy->getNumElements()) return nullptr; EltTy = ATy->getElementType(); } else { return nullptr; // Unknown type. } LaterIndices.push_back(IdxVal); } enum { Overdefined = -3, Undefined = -2 }; // Variables for our state machines. // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form // "i == 47 | i == 87", where 47 is the first index the condition is true for, // and 87 is the second (and last) index. FirstTrueElement is -2 when // undefined, otherwise set to the first true element. SecondTrueElement is // -2 when undefined, -3 when overdefined and >= 0 when that index is true. int FirstTrueElement = Undefined, SecondTrueElement = Undefined; // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the // form "i != 47 & i != 87". Same state transitions as for true elements. int FirstFalseElement = Undefined, SecondFalseElement = Undefined; /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these /// define a state machine that triggers for ranges of values that the index /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. /// This is -2 when undefined, -3 when overdefined, and otherwise the last /// index in the range (inclusive). We use -2 for undefined here because we /// use relative comparisons and don't want 0-1 to match -1. int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; // MagicBitvector - This is a magic bitvector where we set a bit if the // comparison is true for element 'i'. If there are 64 elements or less in // the array, this will fully represent all the comparison results. uint64_t MagicBitvector = 0; // Scan the array and see if one of our patterns matches. Constant *CompareRHS = cast(ICI.getOperand(1)); for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { Constant *Elt = Init->getAggregateElement(i); if (!Elt) return nullptr; // If this is indexing an array of structures, get the structure element. if (!LaterIndices.empty()) { Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices); if (!Elt) return nullptr; } // If the element is masked, handle it. if (AndCst) { Elt = ConstantFoldBinaryOpOperands(Instruction::And, Elt, AndCst, DL); if (!Elt) return nullptr; } // Find out if the comparison would be true or false for the i'th element. Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, CompareRHS, DL, &TLI); if (!C) return nullptr; // If the result is undef for this element, ignore it. if (isa(C)) { // Extend range state machines to cover this element in case there is an // undef in the middle of the range. if (TrueRangeEnd == (int)i - 1) TrueRangeEnd = i; if (FalseRangeEnd == (int)i - 1) FalseRangeEnd = i; continue; } // If we can't compute the result for any of the elements, we have to give // up evaluating the entire conditional. if (!isa(C)) return nullptr; // Otherwise, we know if the comparison is true or false for this element, // update our state machines. bool IsTrueForElt = !cast(C)->isZero(); // State machine for single/double/range index comparison. if (IsTrueForElt) { // Update the TrueElement state machine. if (FirstTrueElement == Undefined) FirstTrueElement = TrueRangeEnd = i; // First true element. else { // Update double-compare state machine. if (SecondTrueElement == Undefined) SecondTrueElement = i; else SecondTrueElement = Overdefined; // Update range state machine. if (TrueRangeEnd == (int)i - 1) TrueRangeEnd = i; else TrueRangeEnd = Overdefined; } } else { // Update the FalseElement state machine. if (FirstFalseElement == Undefined) FirstFalseElement = FalseRangeEnd = i; // First false element. else { // Update double-compare state machine. if (SecondFalseElement == Undefined) SecondFalseElement = i; else SecondFalseElement = Overdefined; // Update range state machine. if (FalseRangeEnd == (int)i - 1) FalseRangeEnd = i; else FalseRangeEnd = Overdefined; } } // If this element is in range, update our magic bitvector. if (i < 64 && IsTrueForElt) MagicBitvector |= 1ULL << i; // If all of our states become overdefined, bail out early. Since the // predicate is expensive, only check it every 8 elements. This is only // really useful for really huge arrays. if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && FalseRangeEnd == Overdefined) return nullptr; } // Now that we've scanned the entire array, emit our new comparison(s). We // order the state machines in complexity of the generated code. Value *Idx = GEP->getOperand(2); // If the index is larger than the pointer offset size of the target, truncate // the index down like the GEP would do implicitly. We don't have to do this // for an inbounds GEP because the index can't be out of range. if (!GEP->isInBounds()) { Type *PtrIdxTy = DL.getIndexType(GEP->getType()); unsigned OffsetSize = PtrIdxTy->getIntegerBitWidth(); if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize) Idx = Builder.CreateTrunc(Idx, PtrIdxTy); } // If inbounds keyword is not present, Idx * ElementSize can overflow. // Let's assume that ElementSize is 2 and the wanted value is at offset 0. // Then, there are two possible values for Idx to match offset 0: // 0x00..00, 0x80..00. // Emitting 'icmp eq Idx, 0' isn't correct in this case because the // comparison is false if Idx was 0x80..00. // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. unsigned ElementSize = DL.getTypeAllocSize(Init->getType()->getArrayElementType()); auto MaskIdx = [&](Value *Idx) { if (!GEP->isInBounds() && llvm::countr_zero(ElementSize) != 0) { Value *Mask = ConstantInt::get(Idx->getType(), -1); Mask = Builder.CreateLShr(Mask, llvm::countr_zero(ElementSize)); Idx = Builder.CreateAnd(Idx, Mask); } return Idx; }; // If the comparison is only true for one or two elements, emit direct // comparisons. if (SecondTrueElement != Overdefined) { Idx = MaskIdx(Idx); // None true -> false. if (FirstTrueElement == Undefined) return replaceInstUsesWith(ICI, Builder.getFalse()); Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); // True for one element -> 'i == 47'. if (SecondTrueElement == Undefined) return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); // True for two elements -> 'i == 47 | i == 72'. Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); return BinaryOperator::CreateOr(C1, C2); } // If the comparison is only false for one or two elements, emit direct // comparisons. if (SecondFalseElement != Overdefined) { Idx = MaskIdx(Idx); // None false -> true. if (FirstFalseElement == Undefined) return replaceInstUsesWith(ICI, Builder.getTrue()); Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); // False for one element -> 'i != 47'. if (SecondFalseElement == Undefined) return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); // False for two elements -> 'i != 47 & i != 72'. Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); Value *SecondFalseIdx = ConstantInt::get(Idx->getType(), SecondFalseElement); Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); return BinaryOperator::CreateAnd(C1, C2); } // If the comparison can be replaced with a range comparison for the elements // where it is true, emit the range check. if (TrueRangeEnd != Overdefined) { assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); Idx = MaskIdx(Idx); // Generate (i-FirstTrue) getType(), -FirstTrueElement); Idx = Builder.CreateAdd(Idx, Offs); } Value *End = ConstantInt::get(Idx->getType(), TrueRangeEnd - FirstTrueElement + 1); return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); } // False range check. if (FalseRangeEnd != Overdefined) { assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); Idx = MaskIdx(Idx); // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). if (FirstFalseElement) { Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); Idx = Builder.CreateAdd(Idx, Offs); } Value *End = ConstantInt::get(Idx->getType(), FalseRangeEnd - FirstFalseElement); return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); } // If a magic bitvector captures the entire comparison state // of this load, replace it with computation that does: // ((magic_cst >> i) & 1) != 0 { Type *Ty = nullptr; // Look for an appropriate type: // - The type of Idx if the magic fits // - The smallest fitting legal type if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) Ty = Idx->getType(); else Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); if (Ty) { Idx = MaskIdx(Idx); Value *V = Builder.CreateIntCast(Idx, Ty, false); V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); } } return nullptr; } /// Returns true if we can rewrite Start as a GEP with pointer Base /// and some integer offset. The nodes that need to be re-written /// for this transformation will be added to Explored. static bool canRewriteGEPAsOffset(Value *Start, Value *Base, const DataLayout &DL, SetVector &Explored) { SmallVector WorkList(1, Start); Explored.insert(Base); // The following traversal gives us an order which can be used // when doing the final transformation. Since in the final // transformation we create the PHI replacement instructions first, // we don't have to get them in any particular order. // // However, for other instructions we will have to traverse the // operands of an instruction first, which means that we have to // do a post-order traversal. while (!WorkList.empty()) { SetVector PHIs; while (!WorkList.empty()) { if (Explored.size() >= 100) return false; Value *V = WorkList.back(); if (Explored.contains(V)) { WorkList.pop_back(); continue; } if (!isa(V) && !isa(V)) // We've found some value that we can't explore which is different from // the base. Therefore we can't do this transformation. return false; if (auto *GEP = dyn_cast(V)) { // Only allow inbounds GEPs with at most one variable offset. auto IsNonConst = [](Value *V) { return !isa(V); }; if (!GEP->isInBounds() || count_if(GEP->indices(), IsNonConst) > 1) return false; if (!Explored.contains(GEP->getOperand(0))) WorkList.push_back(GEP->getOperand(0)); } if (WorkList.back() == V) { WorkList.pop_back(); // We've finished visiting this node, mark it as such. Explored.insert(V); } if (auto *PN = dyn_cast(V)) { // We cannot transform PHIs on unsplittable basic blocks. if (isa(PN->getParent()->getTerminator())) return false; Explored.insert(PN); PHIs.insert(PN); } } // Explore the PHI nodes further. for (auto *PN : PHIs) for (Value *Op : PN->incoming_values()) if (!Explored.contains(Op)) WorkList.push_back(Op); } // Make sure that we can do this. Since we can't insert GEPs in a basic // block before a PHI node, we can't easily do this transformation if // we have PHI node users of transformed instructions. for (Value *Val : Explored) { for (Value *Use : Val->uses()) { auto *PHI = dyn_cast(Use); auto *Inst = dyn_cast(Val); if (Inst == Base || Inst == PHI || !Inst || !PHI || !Explored.contains(PHI)) continue; if (PHI->getParent() == Inst->getParent()) return false; } } return true; } // Sets the appropriate insert point on Builder where we can add // a replacement Instruction for V (if that is possible). static void setInsertionPoint(IRBuilder<> &Builder, Value *V, bool Before = true) { if (auto *PHI = dyn_cast(V)) { BasicBlock *Parent = PHI->getParent(); Builder.SetInsertPoint(Parent, Parent->getFirstInsertionPt()); return; } if (auto *I = dyn_cast(V)) { if (!Before) I = &*std::next(I->getIterator()); Builder.SetInsertPoint(I); return; } if (auto *A = dyn_cast(V)) { // Set the insertion point in the entry block. BasicBlock &Entry = A->getParent()->getEntryBlock(); Builder.SetInsertPoint(&Entry, Entry.getFirstInsertionPt()); return; } // Otherwise, this is a constant and we don't need to set a new // insertion point. assert(isa(V) && "Setting insertion point for unknown value!"); } /// Returns a re-written value of Start as an indexed GEP using Base as a /// pointer. static Value *rewriteGEPAsOffset(Value *Start, Value *Base, const DataLayout &DL, SetVector &Explored, InstCombiner &IC) { // Perform all the substitutions. This is a bit tricky because we can // have cycles in our use-def chains. // 1. Create the PHI nodes without any incoming values. // 2. Create all the other values. // 3. Add the edges for the PHI nodes. // 4. Emit GEPs to get the original pointers. // 5. Remove the original instructions. Type *IndexType = IntegerType::get( Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); DenseMap NewInsts; NewInsts[Base] = ConstantInt::getNullValue(IndexType); // Create the new PHI nodes, without adding any incoming values. for (Value *Val : Explored) { if (Val == Base) continue; // Create empty phi nodes. This avoids cyclic dependencies when creating // the remaining instructions. if (auto *PHI = dyn_cast(Val)) NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), PHI->getName() + ".idx", PHI->getIterator()); } IRBuilder<> Builder(Base->getContext()); // Create all the other instructions. for (Value *Val : Explored) { if (NewInsts.contains(Val)) continue; if (auto *GEP = dyn_cast(Val)) { setInsertionPoint(Builder, GEP); Value *Op = NewInsts[GEP->getOperand(0)]; Value *OffsetV = emitGEPOffset(&Builder, DL, GEP); if (isa(Op) && cast(Op)->isZero()) NewInsts[GEP] = OffsetV; else NewInsts[GEP] = Builder.CreateNSWAdd( Op, OffsetV, GEP->getOperand(0)->getName() + ".add"); continue; } if (isa(Val)) continue; llvm_unreachable("Unexpected instruction type"); } // Add the incoming values to the PHI nodes. for (Value *Val : Explored) { if (Val == Base) continue; // All the instructions have been created, we can now add edges to the // phi nodes. if (auto *PHI = dyn_cast(Val)) { PHINode *NewPhi = static_cast(NewInsts[PHI]); for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { Value *NewIncoming = PHI->getIncomingValue(I); if (NewInsts.contains(NewIncoming)) NewIncoming = NewInsts[NewIncoming]; NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); } } } for (Value *Val : Explored) { if (Val == Base) continue; setInsertionPoint(Builder, Val, false); // Create GEP for external users. Value *NewVal = Builder.CreateInBoundsGEP( Builder.getInt8Ty(), Base, NewInsts[Val], Val->getName() + ".ptr"); IC.replaceInstUsesWith(*cast(Val), NewVal); // Add old instruction to worklist for DCE. We don't directly remove it // here because the original compare is one of the users. IC.addToWorklist(cast(Val)); } return NewInsts[Start]; } /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. /// We can look through PHIs, GEPs and casts in order to determine a common base /// between GEPLHS and RHS. static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, const DataLayout &DL, InstCombiner &IC) { // FIXME: Support vector of pointers. if (GEPLHS->getType()->isVectorTy()) return nullptr; if (!GEPLHS->hasAllConstantIndices()) return nullptr; APInt Offset(DL.getIndexTypeSizeInBits(GEPLHS->getType()), 0); Value *PtrBase = GEPLHS->stripAndAccumulateConstantOffsets(DL, Offset, /*AllowNonInbounds*/ false); // Bail if we looked through addrspacecast. if (PtrBase->getType() != GEPLHS->getType()) return nullptr; // The set of nodes that will take part in this transformation. SetVector Nodes; if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) return nullptr; // We know we can re-write this as // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) // Since we've only looked through inbouds GEPs we know that we // can't have overflow on either side. We can therefore re-write // this as: // OFFSET1 cmp OFFSET2 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes, IC); // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written // GEP having PtrBase as the pointer base, and has returned in NewRHS the // offset. Since Index is the offset of LHS to the base pointer, we will now // compare the offsets instead of comparing the pointers. return new ICmpInst(ICmpInst::getSignedPredicate(Cond), IC.Builder.getInt(Offset), NewRHS); } /// Fold comparisons between a GEP instruction and something else. At this point /// we know that the GEP is on the LHS of the comparison. Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, Instruction &I) { // Don't transform signed compares of GEPs into index compares. Even if the // GEP is inbounds, the final add of the base pointer can have signed overflow // and would change the result of the icmp. // e.g. "&foo[0] (RHS)) RHS = RHS->stripPointerCasts(); Value *PtrBase = GEPLHS->getOperand(0); if (PtrBase == RHS && (GEPLHS->isInBounds() || ICmpInst::isEquality(Cond))) { // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). Value *Offset = EmitGEPOffset(GEPLHS); return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, Constant::getNullValue(Offset->getType())); } if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && isa(RHS) && cast(RHS)->isNullValue() && !NullPointerIsDefined(I.getFunction(), RHS->getType()->getPointerAddressSpace())) { // For most address spaces, an allocation can't be placed at null, but null // itself is treated as a 0 size allocation in the in bounds rules. Thus, // the only valid inbounds address derived from null, is null itself. // Thus, we have four cases to consider: // 1) Base == nullptr, Offset == 0 -> inbounds, null // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) // // (Note if we're indexing a type of size 0, that simply collapses into one // of the buckets above.) // // In general, we're allowed to make values less poison (i.e. remove // sources of full UB), so in this case, we just select between the two // non-poison cases (1 and 4 above). // // For vectors, we apply the same reasoning on a per-lane basis. auto *Base = GEPLHS->getPointerOperand(); if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { auto EC = cast(GEPLHS->getType())->getElementCount(); Base = Builder.CreateVectorSplat(EC, Base); } return new ICmpInst(Cond, Base, ConstantExpr::getPointerBitCastOrAddrSpaceCast( cast(RHS), Base->getType())); } else if (GEPOperator *GEPRHS = dyn_cast(RHS)) { // If the base pointers are different, but the indices are the same, just // compare the base pointer. if (PtrBase != GEPRHS->getOperand(0)) { bool IndicesTheSame = GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && GEPLHS->getPointerOperand()->getType() == GEPRHS->getPointerOperand()->getType() && GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); if (IndicesTheSame) for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { IndicesTheSame = false; break; } // If all indices are the same, just compare the base pointers. Type *BaseType = GEPLHS->getOperand(0)->getType(); if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); // If we're comparing GEPs with two base pointers that only differ in type // and both GEPs have only constant indices or just one use, then fold // the compare with the adjusted indices. // FIXME: Support vector of pointers. if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && PtrBase->stripPointerCasts() == GEPRHS->getOperand(0)->stripPointerCasts() && !GEPLHS->getType()->isVectorTy()) { Value *LOffset = EmitGEPOffset(GEPLHS); Value *ROffset = EmitGEPOffset(GEPRHS); // If we looked through an addrspacecast between different sized address // spaces, the LHS and RHS pointers are different sized // integers. Truncate to the smaller one. Type *LHSIndexTy = LOffset->getType(); Type *RHSIndexTy = ROffset->getType(); if (LHSIndexTy != RHSIndexTy) { if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() < RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) { ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); } else LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); } Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), LOffset, ROffset); return replaceInstUsesWith(I, Cmp); } // Otherwise, the base pointers are different and the indices are // different. Try convert this to an indexed compare by looking through // PHIs/casts. return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); } bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { // If the GEPs only differ by one index, compare it. unsigned NumDifferences = 0; // Keep track of # differences. unsigned DiffOperand = 0; // The operand that differs. for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { Type *LHSType = GEPLHS->getOperand(i)->getType(); Type *RHSType = GEPRHS->getOperand(i)->getType(); // FIXME: Better support for vector of pointers. if (LHSType->getPrimitiveSizeInBits() != RHSType->getPrimitiveSizeInBits() || (GEPLHS->getType()->isVectorTy() && (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { // Irreconcilable differences. NumDifferences = 2; break; } if (NumDifferences++) break; DiffOperand = i; } if (NumDifferences == 0) // SAME GEP? return replaceInstUsesWith(I, // No comparison is needed here. ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); else if (NumDifferences == 1 && GEPsInBounds) { Value *LHSV = GEPLHS->getOperand(DiffOperand); Value *RHSV = GEPRHS->getOperand(DiffOperand); // Make sure we do a signed comparison here. return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); } } if (GEPsInBounds || CmpInst::isEquality(Cond)) { // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) Value *L = EmitGEPOffset(GEPLHS, /*RewriteGEP=*/true); Value *R = EmitGEPOffset(GEPRHS, /*RewriteGEP=*/true); return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); } } // Try convert this to an indexed compare by looking through PHIs/casts as a // last resort. return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); } bool InstCombinerImpl::foldAllocaCmp(AllocaInst *Alloca) { // It would be tempting to fold away comparisons between allocas and any // pointer not based on that alloca (e.g. an argument). However, even // though such pointers cannot alias, they can still compare equal. // // But LLVM doesn't specify where allocas get their memory, so if the alloca // doesn't escape we can argue that it's impossible to guess its value, and we // can therefore act as if any such guesses are wrong. // // However, we need to ensure that this folding is consistent: We can't fold // one comparison to false, and then leave a different comparison against the // same value alone (as it might evaluate to true at runtime, leading to a // contradiction). As such, this code ensures that all comparisons are folded // at the same time, and there are no other escapes. struct CmpCaptureTracker : public CaptureTracker { AllocaInst *Alloca; bool Captured = false; /// The value of the map is a bit mask of which icmp operands the alloca is /// used in. SmallMapVector ICmps; CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {} void tooManyUses() override { Captured = true; } bool captured(const Use *U) override { auto *ICmp = dyn_cast(U->getUser()); // We need to check that U is based *only* on the alloca, and doesn't // have other contributions from a select/phi operand. // TODO: We could check whether getUnderlyingObjects() reduces to one // object, which would allow looking through phi nodes. if (ICmp && ICmp->isEquality() && getUnderlyingObject(*U) == Alloca) { // Collect equality icmps of the alloca, and don't treat them as // captures. auto Res = ICmps.insert({ICmp, 0}); Res.first->second |= 1u << U->getOperandNo(); return false; } Captured = true; return true; } }; CmpCaptureTracker Tracker(Alloca); PointerMayBeCaptured(Alloca, &Tracker); if (Tracker.Captured) return false; bool Changed = false; for (auto [ICmp, Operands] : Tracker.ICmps) { switch (Operands) { case 1: case 2: { // The alloca is only used in one icmp operand. Assume that the // equality is false. auto *Res = ConstantInt::get( ICmp->getType(), ICmp->getPredicate() == ICmpInst::ICMP_NE); replaceInstUsesWith(*ICmp, Res); eraseInstFromFunction(*ICmp); Changed = true; break; } case 3: // Both icmp operands are based on the alloca, so this is comparing // pointer offsets, without leaking any information about the address // of the alloca. Ignore such comparisons. break; default: llvm_unreachable("Cannot happen"); } } return Changed; } /// Fold "icmp pred (X+C), X". Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, ICmpInst::Predicate Pred) { // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, // so the values can never be equal. Similarly for all other "or equals" // operators. assert(!!C && "C should not be zero!"); // (X+1) X >u (MAXUINT-1) --> X == 255 // (X+2) X >u (MAXUINT-2) --> X > 253 // (X+MAXUINT) X >u (MAXUINT-MAXUINT) --> X != 0 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { Constant *R = ConstantInt::get(X->getType(), APInt::getMaxValue(C.getBitWidth()) - C); return new ICmpInst(ICmpInst::ICMP_UGT, X, R); } // (X+1) >u X --> X X != 255 // (X+2) >u X --> X X u X --> X X X == 0 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(X->getType(), -C)); APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); // (X+ 1) X >s (MAXSINT-1) --> X == 127 // (X+ 2) X >s (MAXSINT-2) --> X >s 125 // (X+MAXSINT) X >s (MAXSINT-MAXSINT) --> X >s 0 // (X+MINSINT) X >s (MAXSINT-MINSINT) --> X >s -1 // (X+ -2) X >s (MAXSINT- -2) --> X >s 126 // (X+ -1) X >s (MAXSINT- -1) --> X != 127 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(X->getType(), SMax - C)); // (X+ 1) >s X --> X X != 127 // (X+ 2) >s X --> X X s X --> X X s X --> X X s X --> X X s X --> X X == -128 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(X->getType(), SMax - (C - 1))); } /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> /// (icmp eq/ne A, Log2(AP2/AP1)) -> /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, const APInt &AP1, const APInt &AP2) { assert(I.isEquality() && "Cannot fold icmp gt/lt"); auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { if (I.getPredicate() == I.ICMP_NE) Pred = CmpInst::getInversePredicate(Pred); return new ICmpInst(Pred, LHS, RHS); }; // Don't bother doing any work for cases which InstSimplify handles. if (AP2.isZero()) return nullptr; bool IsAShr = isa(I.getOperand(0)); if (IsAShr) { if (AP2.isAllOnes()) return nullptr; if (AP2.isNegative() != AP1.isNegative()) return nullptr; if (AP2.sgt(AP1)) return nullptr; } if (!AP1) // 'A' must be large enough to shift out the highest set bit. return getICmp(I.ICMP_UGT, A, ConstantInt::get(A->getType(), AP2.logBase2())); if (AP1 == AP2) return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); int Shift; if (IsAShr && AP1.isNegative()) Shift = AP1.countl_one() - AP2.countl_one(); else Shift = AP1.countl_zero() - AP2.countl_zero(); if (Shift > 0) { if (IsAShr && AP1 == AP2.ashr(Shift)) { // There are multiple solutions if we are comparing against -1 and the LHS // of the ashr is not a power of two. if (AP1.isAllOnes() && !AP2.isPowerOf2()) return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); } else if (AP1 == AP2.lshr(Shift)) { return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); } } // Shifting const2 will never be equal to const1. // FIXME: This should always be handled by InstSimplify? auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); return replaceInstUsesWith(I, TorF); } /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, const APInt &AP1, const APInt &AP2) { assert(I.isEquality() && "Cannot fold icmp gt/lt"); auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { if (I.getPredicate() == I.ICMP_NE) Pred = CmpInst::getInversePredicate(Pred); return new ICmpInst(Pred, LHS, RHS); }; // Don't bother doing any work for cases which InstSimplify handles. if (AP2.isZero()) return nullptr; unsigned AP2TrailingZeros = AP2.countr_zero(); if (!AP1 && AP2TrailingZeros != 0) return getICmp( I.ICMP_UGE, A, ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); if (AP1 == AP2) return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); // Get the distance between the lowest bits that are set. int Shift = AP1.countr_zero() - AP2TrailingZeros; if (Shift > 0 && AP2.shl(Shift) == AP1) return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); // Shifting const2 will never be equal to const1. // FIXME: This should always be handled by InstSimplify? auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); return replaceInstUsesWith(I, TorF); } /// The caller has matched a pattern of the form: /// I = icmp ugt (add (add A, B), CI2), CI1 /// If this is of the form: /// sum = a + b /// if (sum+128 >u 255) /// Then replace it with llvm.sadd.with.overflow.i8. /// static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, ConstantInt *CI2, ConstantInt *CI1, InstCombinerImpl &IC) { // The transformation we're trying to do here is to transform this into an // llvm.sadd.with.overflow. To do this, we have to replace the original add // with a narrower add, and discard the add-with-constant that is part of the // range check (if we can't eliminate it, this isn't profitable). // In order to eliminate the add-with-constant, the compare can be its only // use. Instruction *AddWithCst = cast(I.getOperand(0)); if (!AddWithCst->hasOneUse()) return nullptr; // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. if (!CI2->getValue().isPowerOf2()) return nullptr; unsigned NewWidth = CI2->getValue().countr_zero(); if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr; // The width of the new add formed is 1 more than the bias. ++NewWidth; // Check to see that CI1 is an all-ones value with NewWidth bits. if (CI1->getBitWidth() == NewWidth || CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) return nullptr; // This is only really a signed overflow check if the inputs have been // sign-extended; check for that condition. For example, if CI2 is 2^31 and // the operands of the add are 64 bits wide, we need at least 33 sign bits. if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) return nullptr; // In order to replace the original add with a narrower // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant // and truncates that discard the high bits of the add. Verify that this is // the case. Instruction *OrigAdd = cast(AddWithCst->getOperand(0)); for (User *U : OrigAdd->users()) { if (U == AddWithCst) continue; // Only accept truncates for now. We would really like a nice recursive // predicate like SimplifyDemandedBits, but which goes downwards the use-def // chain to see which bits of a value are actually demanded. If the // original add had another add which was then immediately truncated, we // could still do the transformation. TruncInst *TI = dyn_cast(U); if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) return nullptr; } // If the pattern matches, truncate the inputs to the narrower type and // use the sadd_with_overflow intrinsic to efficiently compute both the // result and the overflow bit. Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); Function *F = Intrinsic::getDeclaration( I.getModule(), Intrinsic::sadd_with_overflow, NewType); InstCombiner::BuilderTy &Builder = IC.Builder; // Put the new code above the original add, in case there are any uses of the // add between the add and the compare. Builder.SetInsertPoint(OrigAdd); Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); // The inner add was the result of the narrow add, zero extended to the // wider type. Replace it with the result computed by the intrinsic. IC.replaceInstUsesWith(*OrigAdd, ZExt); IC.eraseInstFromFunction(*OrigAdd); // The original icmp gets replaced with the overflow value. return ExtractValueInst::Create(Call, 1, "sadd.overflow"); } /// If we have: /// icmp eq/ne (urem/srem %x, %y), 0 /// iff %y is a power-of-two, we can replace this with a bit test: /// icmp eq/ne (and %x, (add %y, -1)), 0 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { // This fold is only valid for equality predicates. if (!I.isEquality()) return nullptr; ICmpInst::Predicate Pred; Value *X, *Y, *Zero; if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), m_CombineAnd(m_Zero(), m_Value(Zero))))) return nullptr; if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) return nullptr; // This may increase instruction count, we don't enforce that Y is a constant. Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); Value *Masked = Builder.CreateAnd(X, Mask); return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); } /// Fold equality-comparison between zero and any (maybe truncated) right-shift /// by one-less-than-bitwidth into a sign test on the original value. Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { Instruction *Val; ICmpInst::Predicate Pred; if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) return nullptr; Value *X; Type *XTy; Constant *C; if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { XTy = X->getType(); unsigned XBitWidth = XTy->getScalarSizeInBits(); if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(XBitWidth, XBitWidth - 1)))) return nullptr; } else if (isa(Val) && (X = reassociateShiftAmtsOfTwoSameDirectionShifts( cast(Val), SQ.getWithInstruction(Val), /*AnalyzeForSignBitExtraction=*/true))) { XTy = X->getType(); } else return nullptr; return ICmpInst::Create(Instruction::ICmp, Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLT, X, ConstantInt::getNullValue(XTy)); } // Handle icmp pred X, 0 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { CmpInst::Predicate Pred = Cmp.getPredicate(); if (!match(Cmp.getOperand(1), m_Zero())) return nullptr; // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) if (Pred == ICmpInst::ICMP_SGT) { Value *A, *B; if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { if (isKnownPositive(A, SQ.getWithInstruction(&Cmp))) return new ICmpInst(Pred, B, Cmp.getOperand(1)); if (isKnownPositive(B, SQ.getWithInstruction(&Cmp))) return new ICmpInst(Pred, A, Cmp.getOperand(1)); } } if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) return New; // Given: // icmp eq/ne (urem %x, %y), 0 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': // icmp eq/ne %x, 0 Value *X, *Y; if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && ICmpInst::isEquality(Pred)) { KnownBits XKnown = computeKnownBits(X, 0, &Cmp); KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) return new ICmpInst(Pred, X, Cmp.getOperand(1)); } // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are // odd/non-zero/there is no overflow. if (match(Cmp.getOperand(0), m_Mul(m_Value(X), m_Value(Y))) && ICmpInst::isEquality(Pred)) { KnownBits XKnown = computeKnownBits(X, 0, &Cmp); // if X % 2 != 0 // (icmp eq/ne Y) if (XKnown.countMaxTrailingZeros() == 0) return new ICmpInst(Pred, Y, Cmp.getOperand(1)); KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); // if Y % 2 != 0 // (icmp eq/ne X) if (YKnown.countMaxTrailingZeros() == 0) return new ICmpInst(Pred, X, Cmp.getOperand(1)); auto *BO0 = cast(Cmp.getOperand(0)); if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) { const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()` // but to avoid unnecessary work, first just if this is an obvious case. // if X non-zero and NoOverflow(X * Y) // (icmp eq/ne Y) if (!XKnown.One.isZero() || isKnownNonZero(X, Q)) return new ICmpInst(Pred, Y, Cmp.getOperand(1)); // if Y non-zero and NoOverflow(X * Y) // (icmp eq/ne X) if (!YKnown.One.isZero() || isKnownNonZero(Y, Q)) return new ICmpInst(Pred, X, Cmp.getOperand(1)); } // Note, we are skipping cases: // if Y % 2 != 0 AND X % 2 != 0 // (false/true) // if X non-zero and Y non-zero and NoOverflow(X * Y) // (false/true) // Those can be simplified later as we would have already replaced the (icmp // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that // will fold to a constant elsewhere. } return nullptr; } /// Fold icmp Pred X, C. /// TODO: This code structure does not make sense. The saturating add fold /// should be moved to some other helper and extended as noted below (it is also /// possible that code has been made unnecessary - do we canonicalize IR to /// overflow/saturating intrinsics or not?). Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { // Match the following pattern, which is a common idiom when writing // overflow-safe integer arithmetic functions. The source performs an addition // in wider type and explicitly checks for overflow using comparisons against // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. // // TODO: This could probably be generalized to handle other overflow-safe // operations if we worked out the formulas to compute the appropriate magic // constants. // // sum = a + b // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 CmpInst::Predicate Pred = Cmp.getPredicate(); Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); Value *A, *B; ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) return Res; // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). Constant *C = dyn_cast(Op1); if (!C) return nullptr; if (auto *Phi = dyn_cast(Op0)) if (all_of(Phi->operands(), [](Value *V) { return isa(V); })) { SmallVector Ops; for (Value *V : Phi->incoming_values()) { Constant *Res = ConstantFoldCompareInstOperands(Pred, cast(V), C, DL); if (!Res) return nullptr; Ops.push_back(Res); } Builder.SetInsertPoint(Phi); PHINode *NewPhi = Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands()); for (auto [V, Pred] : zip(Ops, Phi->blocks())) NewPhi->addIncoming(V, Pred); return replaceInstUsesWith(Cmp, NewPhi); } if (Instruction *R = tryFoldInstWithCtpopWithNot(&Cmp)) return R; return nullptr; } /// Canonicalize icmp instructions based on dominating conditions. Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { // We already checked simple implication in InstSimplify, only handle complex // cases here. Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); const APInt *C; if (!match(Y, m_APInt(C))) return nullptr; CmpInst::Predicate Pred = Cmp.getPredicate(); ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); auto handleDomCond = [&](ICmpInst::Predicate DomPred, const APInt *DomC) -> Instruction * { // We have 2 compares of a variable with constants. Calculate the constant // ranges of those compares to see if we can transform the 2nd compare: // DomBB: // DomCond = icmp DomPred X, DomC // br DomCond, CmpBB, FalseBB // CmpBB: // Cmp = icmp Pred X, C ConstantRange DominatingCR = ConstantRange::makeExactICmpRegion(DomPred, *DomC); ConstantRange Intersection = DominatingCR.intersectWith(CR); ConstantRange Difference = DominatingCR.difference(CR); if (Intersection.isEmptySet()) return replaceInstUsesWith(Cmp, Builder.getFalse()); if (Difference.isEmptySet()) return replaceInstUsesWith(Cmp, Builder.getTrue()); // Canonicalizing a sign bit comparison that gets used in a branch, // pessimizes codegen by generating branch on zero instruction instead // of a test and branch. So we avoid canonicalizing in such situations // because test and branch instruction has better branch displacement // than compare and branch instruction. bool UnusedBit; bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) return nullptr; // Avoid an infinite loop with min/max canonicalization. // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. if (Cmp.hasOneUse() && match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) return nullptr; if (const APInt *EqC = Intersection.getSingleElement()) return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); if (const APInt *NeC = Difference.getSingleElement()) return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); return nullptr; }; for (BranchInst *BI : DC.conditionsFor(X)) { ICmpInst::Predicate DomPred; const APInt *DomC; if (!match(BI->getCondition(), m_ICmp(DomPred, m_Specific(X), m_APInt(DomC)))) continue; BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0)); if (DT.dominates(Edge0, Cmp.getParent())) { if (auto *V = handleDomCond(DomPred, DomC)) return V; } else { BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1)); if (DT.dominates(Edge1, Cmp.getParent())) if (auto *V = handleDomCond(CmpInst::getInversePredicate(DomPred), DomC)) return V; } } return nullptr; } /// Fold icmp (trunc X), C. Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc, const APInt &C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *X = Trunc->getOperand(0); Type *SrcTy = X->getType(); unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), SrcBits = SrcTy->getScalarSizeInBits(); // Match (icmp pred (trunc nuw/nsw X), C) // Which we can convert to (icmp pred X, (sext/zext C)) if (shouldChangeType(Trunc->getType(), SrcTy)) { if (Trunc->hasNoSignedWrap()) return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.sext(SrcBits))); if (!Cmp.isSigned() && Trunc->hasNoUnsignedWrap()) return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.zext(SrcBits))); } if (C.isOne() && C.getBitWidth() > 1) { // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 Value *V = nullptr; if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) return new ICmpInst(ICmpInst::ICMP_SLT, V, ConstantInt::get(V->getType(), 1)); } // TODO: Handle any shifted constant by subtracting trailing zeros. // TODO: Handle non-equality predicates. Value *Y; if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) { // (trunc (1 << Y) to iN) == 0 --> Y u>= N // (trunc (1 << Y) to iN) != 0 --> Y u< N if (C.isZero()) { auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT; return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits)); } // (trunc (1 << Y) to iN) == 2**C --> Y == C // (trunc (1 << Y) to iN) != 2**C --> Y != C if (C.isPowerOf2()) return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2())); } if (Cmp.isEquality() && Trunc->hasOneUse()) { // Canonicalize to a mask and wider compare if the wide type is suitable: // (trunc X to i8) == C --> (X & 0xff) == (zext C) if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) { Constant *Mask = ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits)); Value *And = Builder.CreateAnd(X, Mask); Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits)); return new ICmpInst(Pred, And, WideC); } // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all // of the high bits truncated out of x are known. KnownBits Known = computeKnownBits(X, 0, &Cmp); // If all the high bits are known, we can do this xform. if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) { // Pull in the high bits from known-ones set. APInt NewRHS = C.zext(SrcBits); NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS)); } } // Look through truncated right-shift of the sign-bit for a sign-bit check: // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 Value *ShOp; const APInt *ShAmtC; bool TrueIfSigned; if (isSignBitCheck(Pred, C, TrueIfSigned) && match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && DstBits == SrcBits - ShAmtC->getZExtValue()) { return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, ConstantInt::getNullValue(SrcTy)) : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, ConstantInt::getAllOnesValue(SrcTy)); } return nullptr; } /// Fold icmp (trunc nuw/nsw X), (trunc nuw/nsw Y). /// Fold icmp (trunc nuw/nsw X), (zext/sext Y). Instruction * InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst &Cmp, const SimplifyQuery &Q) { Value *X, *Y; ICmpInst::Predicate Pred; bool YIsSExt = false; // Try to match icmp (trunc X), (trunc Y) if (match(&Cmp, m_ICmp(Pred, m_Trunc(m_Value(X)), m_Trunc(m_Value(Y))))) { unsigned NoWrapFlags = cast(Cmp.getOperand(0))->getNoWrapKind() & cast(Cmp.getOperand(1))->getNoWrapKind(); if (Cmp.isSigned()) { // For signed comparisons, both truncs must be nsw. if (!(NoWrapFlags & TruncInst::NoSignedWrap)) return nullptr; } else { // For unsigned and equality comparisons, either both must be nuw or // both must be nsw, we don't care which. if (!NoWrapFlags) return nullptr; } if (X->getType() != Y->getType() && (!Cmp.getOperand(0)->hasOneUse() || !Cmp.getOperand(1)->hasOneUse())) return nullptr; if (!isDesirableIntType(X->getType()->getScalarSizeInBits()) && isDesirableIntType(Y->getType()->getScalarSizeInBits())) { std::swap(X, Y); Pred = Cmp.getSwappedPredicate(Pred); } YIsSExt = !(NoWrapFlags & TruncInst::NoUnsignedWrap); } // Try to match icmp (trunc nuw X), (zext Y) else if (!Cmp.isSigned() && match(&Cmp, m_c_ICmp(Pred, m_NUWTrunc(m_Value(X)), m_OneUse(m_ZExt(m_Value(Y)))))) { // Can fold trunc nuw + zext for unsigned and equality predicates. } // Try to match icmp (trunc nsw X), (sext Y) else if (match(&Cmp, m_c_ICmp(Pred, m_NSWTrunc(m_Value(X)), m_OneUse(m_ZExtOrSExt(m_Value(Y)))))) { // Can fold trunc nsw + zext/sext for all predicates. YIsSExt = isa(Cmp.getOperand(0)) || isa(Cmp.getOperand(1)); } else return nullptr; Type *TruncTy = Cmp.getOperand(0)->getType(); unsigned TruncBits = TruncTy->getScalarSizeInBits(); // If this transform will end up changing from desirable types -> undesirable // types skip it. if (isDesirableIntType(TruncBits) && !isDesirableIntType(X->getType()->getScalarSizeInBits())) return nullptr; Value *NewY = Builder.CreateIntCast(Y, X->getType(), YIsSExt); return new ICmpInst(Pred, X, NewY); } /// Fold icmp (xor X, Y), C. Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor, const APInt &C) { if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C)) return I; Value *X = Xor->getOperand(0); Value *Y = Xor->getOperand(1); const APInt *XorC; if (!match(Y, m_APInt(XorC))) return nullptr; // If this is a comparison that tests the signbit (X < 0) or (x > -1), // fold the xor. ICmpInst::Predicate Pred = Cmp.getPredicate(); bool TrueIfSigned = false; if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { // If the sign bit of the XorCst is not set, there is no change to // the operation, just stop using the Xor. if (!XorC->isNegative()) return replaceOperand(Cmp, 0, X); // Emit the opposite comparison. if (TrueIfSigned) return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::getAllOnesValue(X->getType())); else return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::getNullValue(X->getType())); } if (Xor->hasOneUse()) { // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) if (!Cmp.isEquality() && XorC->isSignMask()) { Pred = Cmp.getFlippedSignednessPredicate(); return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); } // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { Pred = Cmp.getFlippedSignednessPredicate(); Pred = Cmp.getSwappedPredicate(Pred); return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); } } // Mask constant magic can eliminate an 'xor' with unsigned compares. if (Pred == ICmpInst::ICMP_UGT) { // (xor X, ~C) >u C --> X u C --> X >u C (when C+1 is a power of 2) if (*XorC == C && (C + 1).isPowerOf2()) return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); } if (Pred == ICmpInst::ICMP_ULT) { // (xor X, -C) X >u ~C (when C is a power of 2) if (*XorC == -C && C.isPowerOf2()) return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(X->getType(), ~C)); // (xor X, C) X >u ~C (when -C is a power of 2) if (*XorC == C && (-C).isPowerOf2()) return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(X->getType(), ~C)); } return nullptr; } /// For power-of-2 C: /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1) /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1) Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp, BinaryOperator *Xor, const APInt &C) { CmpInst::Predicate Pred = Cmp.getPredicate(); APInt PowerOf2; if (Pred == ICmpInst::ICMP_ULT) PowerOf2 = C; else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue()) PowerOf2 = C + 1; else return nullptr; if (!PowerOf2.isPowerOf2()) return nullptr; Value *X; const APInt *ShiftC; if (!match(Xor, m_OneUse(m_c_Xor(m_Value(X), m_AShr(m_Deferred(X), m_APInt(ShiftC)))))) return nullptr; uint64_t Shift = ShiftC->getLimitedValue(); Type *XType = X->getType(); if (Shift == 0 || PowerOf2.isMinSignedValue()) return nullptr; Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2)); APInt Bound = Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1); return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound)); } /// Fold icmp (and (sh X, Y), C2), C1. Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, const APInt &C1, const APInt &C2) { BinaryOperator *Shift = dyn_cast(And->getOperand(0)); if (!Shift || !Shift->isShift()) return nullptr; // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in // code produced by the clang front-end, for bitfield access. // This seemingly simple opportunity to fold away a shift turns out to be // rather complicated. See PR17827 for details. unsigned ShiftOpcode = Shift->getOpcode(); bool IsShl = ShiftOpcode == Instruction::Shl; const APInt *C3; if (match(Shift->getOperand(1), m_APInt(C3))) { APInt NewAndCst, NewCmpCst; bool AnyCmpCstBitsShiftedOut; if (ShiftOpcode == Instruction::Shl) { // For a left shift, we can fold if the comparison is not signed. We can // also fold a signed comparison if the mask value and comparison value // are not negative. These constraints may not be obvious, but we can // prove that they are correct using an SMT solver. if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) return nullptr; NewCmpCst = C1.lshr(*C3); NewAndCst = C2.lshr(*C3); AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; } else if (ShiftOpcode == Instruction::LShr) { // For a logical right shift, we can fold if the comparison is not signed. // We can also fold a signed comparison if the shifted mask value and the // shifted comparison value are not negative. These constraints may not be // obvious, but we can prove that they are correct using an SMT solver. NewCmpCst = C1.shl(*C3); NewAndCst = C2.shl(*C3); AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) return nullptr; } else { // For an arithmetic shift, check that both constants don't use (in a // signed sense) the top bits being shifted out. assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); NewCmpCst = C1.shl(*C3); NewAndCst = C2.shl(*C3); AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; if (NewAndCst.ashr(*C3) != C2) return nullptr; } if (AnyCmpCstBitsShiftedOut) { // If we shifted bits out, the fold is not going to work out. As a // special case, check to see if this means that the result is always // true or false now. if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); if (Cmp.getPredicate() == ICmpInst::ICMP_NE) return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); } else { Value *NewAnd = Builder.CreateAnd( Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); return new ICmpInst(Cmp.getPredicate(), NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); } } // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is // preferable because it allows the C2 << Y expression to be hoisted out of a // loop if Y is invariant and X is not. if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && !Shift->isArithmeticShift() && !isa(Shift->getOperand(0))) { // Compute C2 << Y. Value *NewShift = IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); // Compute X & (C2 << Y). Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); return replaceOperand(Cmp, 0, NewAnd); } return nullptr; } /// Fold icmp (and X, C2), C1. Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And, const APInt &C1) { bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 // TODO: We canonicalize to the longer form for scalars because we have // better analysis/folds for icmp, and codegen may be better with icmp. if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && match(And->getOperand(1), m_One())) return new TruncInst(And->getOperand(0), Cmp.getType()); const APInt *C2; Value *X; if (!match(And, m_And(m_Value(X), m_APInt(C2)))) return nullptr; // Don't perform the following transforms if the AND has multiple uses if (!And->hasOneUse()) return nullptr; if (Cmp.isEquality() && C1.isZero()) { // Restrict this fold to single-use 'and' (PR10267). // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 if (C2->isSignMask()) { Constant *Zero = Constant::getNullValue(X->getType()); auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; return new ICmpInst(NewPred, X, Zero); } APInt NewC2 = *C2; KnownBits Know = computeKnownBits(And->getOperand(0), 0, And); // Set high zeros of C2 to allow matching negated power-of-2. NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(), Know.countMinLeadingZeros()); // Restrict this fold only for single-use 'and' (PR10267). // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. if (NewC2.isNegatedPowerOf2()) { Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2); auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; return new ICmpInst(NewPred, X, NegBOC); } } // If the LHS is an 'and' of a truncate and we can widen the and/compare to // the input width without changing the value produced, eliminate the cast: // // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' // // We can do this transformation if the constants do not have their sign bits // set or if it is an equality comparison. Extending a relational comparison // when we're checking the sign bit would not work. Value *W; if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { // TODO: Is this a good transform for vectors? Wider types may reduce // throughput. Should this transform be limited (even for scalars) by using // shouldChangeType()? if (!Cmp.getType()->isVectorTy()) { Type *WideType = W->getType(); unsigned WideScalarBits = WideType->getScalarSizeInBits(); Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); } } if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) return I; // (icmp pred (and (or (lshr A, B), A), 1), 0) --> // (icmp pred (and A, (or (shl 1, B), 1), 0)) // // iff pred isn't signed if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && match(And->getOperand(1), m_One())) { Constant *One = cast(And->getOperand(1)); Value *Or = And->getOperand(0); Value *A, *B, *LShr; if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { unsigned UsesRemoved = 0; if (And->hasOneUse()) ++UsesRemoved; if (Or->hasOneUse()) ++UsesRemoved; if (LShr->hasOneUse()) ++UsesRemoved; // Compute A & ((1 << B) | 1) unsigned RequireUsesRemoved = match(B, m_ImmConstant()) ? 1 : 3; if (UsesRemoved >= RequireUsesRemoved) { Value *NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), /*HasNUW=*/true), One, Or->getName()); Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); return replaceOperand(Cmp, 0, NewAnd); } } } // (icmp eq (and (bitcast X to int), ExponentMask), ExponentMask) --> // llvm.is.fpclass(X, fcInf|fcNan) // (icmp ne (and (bitcast X to int), ExponentMask), ExponentMask) --> // llvm.is.fpclass(X, ~(fcInf|fcNan)) Value *V; if (!Cmp.getParent()->getParent()->hasFnAttribute( Attribute::NoImplicitFloat) && Cmp.isEquality() && match(X, m_OneUse(m_ElementWiseBitCast(m_Value(V))))) { Type *FPType = V->getType()->getScalarType(); if (FPType->isIEEELikeFPTy() && C1 == *C2) { APInt ExponentMask = APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt(); if (C1 == ExponentMask) { unsigned Mask = FPClassTest::fcNan | FPClassTest::fcInf; if (isICMP_NE) Mask = ~Mask & fcAllFlags; return replaceInstUsesWith(Cmp, Builder.createIsFPClass(V, Mask)); } } } return nullptr; } /// Fold icmp (and X, Y), C. Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And, const APInt &C) { if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) return I; const ICmpInst::Predicate Pred = Cmp.getPredicate(); bool TrueIfNeg; if (isSignBitCheck(Pred, C, TrueIfNeg)) { // ((X - 1) & ~X) < 0 --> X == 0 // ((X - 1) & ~X) >= 0 --> X != 0 Value *X; if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && match(And->getOperand(1), m_Not(m_Specific(X)))) { auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); } // (X & -X) < 0 --> X == MinSignedC // (X & -X) > -1 --> X != MinSignedC if (match(And, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) { Constant *MinSignedC = ConstantInt::get( X->getType(), APInt::getSignedMinValue(X->getType()->getScalarSizeInBits())); auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; return new ICmpInst(NewPred, X, MinSignedC); } } // TODO: These all require that Y is constant too, so refactor with the above. // Try to optimize things like "A[i] & 42 == 0" to index computations. Value *X = And->getOperand(0); Value *Y = And->getOperand(1); if (auto *C2 = dyn_cast(Y)) if (auto *LI = dyn_cast(X)) if (auto *GEP = dyn_cast(LI->getOperand(0))) if (auto *GV = dyn_cast(GEP->getOperand(0))) if (Instruction *Res = foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) return Res; if (!Cmp.isEquality()) return nullptr; // X & -C == -C -> X > u ~C // X & -C != -C -> X <= u ~C // iff C is a power of 2 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { auto NewPred = Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; return new ICmpInst(NewPred, X, SubOne(cast(Cmp.getOperand(1)))); } // If we are testing the intersection of 2 select-of-nonzero-constants with no // common bits set, it's the same as checking if exactly one select condition // is set: // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B) // TODO: Generalize for non-constant values. // TODO: Handle signed/unsigned predicates. // TODO: Handle other bitwise logic connectors. // TODO: Extend to handle a non-zero compare constant. if (C.isZero() && (Pred == CmpInst::ICMP_EQ || And->hasOneUse())) { assert(Cmp.isEquality() && "Not expecting non-equality predicates"); Value *A, *B; const APInt *TC, *FC; if (match(X, m_Select(m_Value(A), m_APInt(TC), m_APInt(FC))) && match(Y, m_Select(m_Value(B), m_SpecificInt(*TC), m_SpecificInt(*FC))) && !TC->isZero() && !FC->isZero() && !TC->intersects(*FC)) { Value *R = Builder.CreateXor(A, B); if (Pred == CmpInst::ICMP_NE) R = Builder.CreateNot(R); return replaceInstUsesWith(Cmp, R); } } // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X) // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X) // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X) // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X) if (match(And, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X))), m_Value(Y)))) && X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) { Value *TruncY = Builder.CreateTrunc(Y, X->getType()); if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) { Value *And = Builder.CreateAnd(TruncY, X); return BinaryOperator::CreateNot(And); } return BinaryOperator::CreateAnd(TruncY, X); } // (icmp eq/ne (and (shl -1, X), Y), 0) // -> (icmp eq/ne (lshr Y, X), 0) // We could technically handle any C == 0 or (C < 0 && isOdd(C)) but it seems // highly unlikely the non-zero case will ever show up in code. if (C.isZero() && match(And, m_OneUse(m_c_And(m_OneUse(m_Shl(m_AllOnes(), m_Value(X))), m_Value(Y))))) { Value *LShr = Builder.CreateLShr(Y, X); return new ICmpInst(Pred, LShr, Constant::getNullValue(LShr->getType())); } return nullptr; } /// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0. static Value *foldICmpOrXorSubChain(ICmpInst &Cmp, BinaryOperator *Or, InstCombiner::BuilderTy &Builder) { // Are we using xors or subs to bitwise check for a pair or pairs of // (in)equalities? Convert to a shorter form that has more potential to be // folded even further. // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4) // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4) // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 --> // (X1 == X2) && (X3 == X4) && (X5 == X6) // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 --> // (X1 != X2) || (X3 != X4) || (X5 != X6) SmallVector, 2> CmpValues; SmallVector WorkList(1, Or); while (!WorkList.empty()) { auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) { Value *Lhs, *Rhs; if (match(OrOperatorArgument, m_OneUse(m_Xor(m_Value(Lhs), m_Value(Rhs))))) { CmpValues.emplace_back(Lhs, Rhs); return; } if (match(OrOperatorArgument, m_OneUse(m_Sub(m_Value(Lhs), m_Value(Rhs))))) { CmpValues.emplace_back(Lhs, Rhs); return; } WorkList.push_back(OrOperatorArgument); }; Value *CurrentValue = WorkList.pop_back_val(); Value *OrOperatorLhs, *OrOperatorRhs; if (!match(CurrentValue, m_Or(m_Value(OrOperatorLhs), m_Value(OrOperatorRhs)))) { return nullptr; } MatchOrOperatorArgument(OrOperatorRhs); MatchOrOperatorArgument(OrOperatorLhs); } ICmpInst::Predicate Pred = Cmp.getPredicate(); auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.rbegin()->first, CmpValues.rbegin()->second); for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) { Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second); LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp); } return LhsCmp; } /// Fold icmp (or X, Y), C. Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, const APInt &C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); if (C.isOne()) { // icmp slt signum(V) 1 --> icmp slt V, 1 Value *V = nullptr; if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) return new ICmpInst(ICmpInst::ICMP_SLT, V, ConstantInt::get(V->getType(), 1)); } Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); // (icmp eq/ne (or disjoint x, C0), C1) // -> (icmp eq/ne x, C0^C1) if (Cmp.isEquality() && match(OrOp1, m_ImmConstant()) && cast(Or)->isDisjoint()) { Value *NewC = Builder.CreateXor(OrOp1, ConstantInt::get(OrOp1->getType(), C)); return new ICmpInst(Pred, OrOp0, NewC); } const APInt *MaskC; if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { if (*MaskC == C && (C + 1).isPowerOf2()) { // X | C == C --> X <=u C // X | C != C --> X >u C // iff C+1 is a power of 2 (C is a bitmask of the low bits) Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; return new ICmpInst(Pred, OrOp0, OrOp1); } // More general: canonicalize 'equality with set bits mask' to // 'equality with clear bits mask'. // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC if (Or->hasOneUse()) { Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); return new ICmpInst(Pred, And, NewC); } } // (X | (X-1)) s< 0 --> X s< 1 // (X | (X-1)) s> -1 --> X s> 0 Value *X; bool TrueIfSigned; if (isSignBitCheck(Pred, C, TrueIfSigned) && match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); return new ICmpInst(NewPred, X, NewC); } const APInt *OrC; // icmp(X | OrC, C) --> icmp(X, 0) if (C.isNonNegative() && match(Or, m_Or(m_Value(X), m_APInt(OrC)))) { switch (Pred) { // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0 case ICmpInst::ICMP_SLT: // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0 case ICmpInst::ICMP_SGE: if (OrC->sge(C)) return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); break; // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0 case ICmpInst::ICMP_SLE: // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0 case ICmpInst::ICMP_SGT: if (OrC->sgt(C)) return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), X, ConstantInt::getNullValue(X->getType())); break; default: break; } } if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) return nullptr; Value *P, *Q; if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 // -> and (icmp eq P, null), (icmp eq Q, null). Value *CmpP = Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); Value *CmpQ = Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; return BinaryOperator::Create(BOpc, CmpP, CmpQ); } if (Value *V = foldICmpOrXorSubChain(Cmp, Or, Builder)) return replaceInstUsesWith(Cmp, V); return nullptr; } /// Fold icmp (mul X, Y), C. Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul, const APInt &C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); Type *MulTy = Mul->getType(); Value *X = Mul->getOperand(0); // If there's no overflow: // X * X == 0 --> X == 0 // X * X != 0 --> X != 0 if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) && (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap())) return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); const APInt *MulC; if (!match(Mul->getOperand(1), m_APInt(MulC))) return nullptr; // If this is a test of the sign bit and the multiply is sign-preserving with // a constant operand, use the multiply LHS operand instead: // (X * +MulC) < 0 --> X < 0 // (X * -MulC) < 0 --> X > 0 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { if (MulC->isNegative()) Pred = ICmpInst::getSwappedPredicate(Pred); return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); } if (MulC->isZero()) return nullptr; // If the multiply does not wrap or the constant is odd, try to divide the // compare constant by the multiplication factor. if (Cmp.isEquality()) { // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC)); return new ICmpInst(Pred, X, NewC); } // C % MulC == 0 is weaker than we could use if MulC is odd because it // correct to transform if MulC * N == C including overflow. I.e with i8 // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we // miss that case. if (C.urem(*MulC).isZero()) { // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC // (mul X, OddC) eq/ne N * C --> X eq/ne N if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) { Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC)); return new ICmpInst(Pred, X, NewC); } } } // With a matching no-overflow guarantee, fold the constants: // (X * MulC) < C --> X < (C / MulC) // (X * MulC) > C --> X > (C / MulC) // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE? Constant *NewC = nullptr; if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(Pred)) { // MININT / -1 --> overflow. if (C.isMinSignedValue() && MulC->isAllOnes()) return nullptr; if (MulC->isNegative()) Pred = ICmpInst::getSwappedPredicate(Pred); if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { NewC = ConstantInt::get( MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP)); } else { assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) && "Unexpected predicate"); NewC = ConstantInt::get( MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN)); } } else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred)) { if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) { NewC = ConstantInt::get( MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP)); } else { assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && "Unexpected predicate"); NewC = ConstantInt::get( MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN)); } } return NewC ? new ICmpInst(Pred, X, NewC) : nullptr; } /// Fold icmp (shl 1, Y), C. static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, const APInt &C) { Value *Y; if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) return nullptr; Type *ShiftType = Shl->getType(); unsigned TypeBits = C.getBitWidth(); bool CIsPowerOf2 = C.isPowerOf2(); ICmpInst::Predicate Pred = Cmp.getPredicate(); if (Cmp.isUnsigned()) { // (1 << Y) pred C -> Y pred Log2(C) if (!CIsPowerOf2) { // (1 << Y) < 30 -> Y <= 4 // (1 << Y) <= 30 -> Y <= 4 // (1 << Y) >= 30 -> Y > 4 // (1 << Y) > 30 -> Y > 4 if (Pred == ICmpInst::ICMP_ULT) Pred = ICmpInst::ICMP_ULE; else if (Pred == ICmpInst::ICMP_UGE) Pred = ICmpInst::ICMP_UGT; } unsigned CLog2 = C.logBase2(); return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); } else if (Cmp.isSigned()) { Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); // (1 << Y) > 0 -> Y != 31 // (1 << Y) > C -> Y != 31 if C is negative. if (Pred == ICmpInst::ICMP_SGT && C.sle(0)) return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); // (1 << Y) < 0 -> Y == 31 // (1 << Y) < 1 -> Y == 31 // (1 << Y) < C -> Y == 31 if C is negative and not signed min. // Exclude signed min by subtracting 1 and lower the upper bound to 0. if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0)) return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); } return nullptr; } /// Fold icmp (shl X, Y), C. Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl, const APInt &C) { const APInt *ShiftVal; if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); ICmpInst::Predicate Pred = Cmp.getPredicate(); // (icmp pred (shl nuw&nsw X, Y), Csle0) // -> (icmp pred X, Csle0) // // The idea is the nuw/nsw essentially freeze the sign bit for the shift op // so X's must be what is used. if (C.sle(0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap()) return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); // (icmp eq/ne (shl nuw|nsw X, Y), 0) // -> (icmp eq/ne X, 0) if (ICmpInst::isEquality(Pred) && C.isZero() && (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap())) return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); // (icmp slt (shl nsw X, Y), 0/1) // -> (icmp slt X, 0/1) // (icmp sgt (shl nsw X, Y), 0/-1) // -> (icmp sgt X, 0/-1) // // NB: sge/sle with a constant will canonicalize to sgt/slt. if (Shl->hasNoSignedWrap() && (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne())) return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); const APInt *ShiftAmt; if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) return foldICmpShlOne(Cmp, Shl, C); // Check that the shift amount is in range. If not, don't perform undefined // shifts. When the shift is visited, it will be simplified. unsigned TypeBits = C.getBitWidth(); if (ShiftAmt->uge(TypeBits)) return nullptr; Value *X = Shl->getOperand(0); Type *ShType = Shl->getType(); // NSW guarantees that we are only shifting out sign bits from the high bits, // so we can ASHR the compare constant without needing a mask and eliminate // the shift. if (Shl->hasNoSignedWrap()) { if (Pred == ICmpInst::ICMP_SGT) { // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) APInt ShiftedC = C.ashr(*ShiftAmt); return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { APInt ShiftedC = C.ashr(*ShiftAmt); return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } if (Pred == ICmpInst::ICMP_SLT) { // SLE is the same as above, but SLE is canonicalized to SLT, so convert: // (X << S) <=s C is equiv to X <=s (C >> S) for all C // (X << S) > S) + 1 if C > S) + 1 if C >s SMIN assert(!C.isMinSignedValue() && "Unexpected icmp slt"); APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } } // NUW guarantees that we are only shifting out zero bits from the high bits, // so we can LSHR the compare constant without needing a mask and eliminate // the shift. if (Shl->hasNoUnsignedWrap()) { if (Pred == ICmpInst::ICMP_UGT) { // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) APInt ShiftedC = C.lshr(*ShiftAmt); return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { APInt ShiftedC = C.lshr(*ShiftAmt); return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } if (Pred == ICmpInst::ICMP_ULT) { // ULE is the same as above, but ULE is canonicalized to ULT, so convert: // (X << S) <=u C is equiv to X <=u (C >> S) for all C // (X << S) > S) + 1 if C > S) + 1 if C >u 0 assert(C.ugt(0) && "ult 0 should have been eliminated"); APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); } } if (Cmp.isEquality() && Shl->hasOneUse()) { // Strength-reduce the shift into an 'and'. Constant *Mask = ConstantInt::get( ShType, APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); return new ICmpInst(Pred, And, LShrC); } // Otherwise, if this is a comparison of the sign bit, simplify to and/test. bool TrueIfSigned = false; if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { // (X << 31) (X & 1) != 0 Constant *Mask = ConstantInt::get( ShType, APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, And, Constant::getNullValue(ShType)); } // Simplify 'shl' inequality test into 'and' equality test. if (Cmp.isUnsigned() && Shl->hasOneUse()) { // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 if ((C + 1).isPowerOf2() && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, And, Constant::getNullValue(ShType)); } // (X l<< C2) u= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 if (C.isPowerOf2() && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { Value *And = Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, And, Constant::getNullValue(ShType)); } } // Transform (icmp pred iM (shl iM %v, N), C) // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. // This enables us to get rid of the shift in favor of a trunc that may be // free on the target. It has the additional benefit of comparing to a // smaller constant that may be more target-friendly. unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); if (Shl->hasOneUse() && Amt != 0 && shouldChangeType(ShType->getScalarSizeInBits(), TypeBits - Amt)) { ICmpInst::Predicate CmpPred = Pred; APInt RHSC = C; if (RHSC.countr_zero() < Amt && ICmpInst::isStrictPredicate(CmpPred)) { // Try the flipped strictness predicate. // e.g.: // icmp ult i64 (shl X, 32), 8589934593 -> // icmp ule i64 (shl X, 32), 8589934592 -> // icmp ule i32 (trunc X, i32), 2 -> // icmp ult i32 (trunc X, i32), 3 if (auto FlippedStrictness = InstCombiner::getFlippedStrictnessPredicateAndConstant( Pred, ConstantInt::get(ShType->getContext(), C))) { CmpPred = FlippedStrictness->first; RHSC = cast(FlippedStrictness->second)->getValue(); } } if (RHSC.countr_zero() >= Amt) { Type *TruncTy = ShType->getWithNewBitWidth(TypeBits - Amt); Constant *NewC = ConstantInt::get(TruncTy, RHSC.ashr(*ShiftAmt).trunc(TypeBits - Amt)); return new ICmpInst(CmpPred, Builder.CreateTrunc(X, TruncTy, "", /*IsNUW=*/false, Shl->hasNoSignedWrap()), NewC); } } return nullptr; } /// Fold icmp ({al}shr X, Y), C. Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr, const APInt &C) { // An exact shr only shifts out zero bits, so: // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 Value *X = Shr->getOperand(0); CmpInst::Predicate Pred = Cmp.getPredicate(); if (Cmp.isEquality() && Shr->isExact() && C.isZero()) return new ICmpInst(Pred, X, Cmp.getOperand(1)); bool IsAShr = Shr->getOpcode() == Instruction::AShr; const APInt *ShiftValC; if (match(X, m_APInt(ShiftValC))) { if (Cmp.isEquality()) return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC); // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0 // (ShiftValC >> Y) Y == 0 with ShiftValC < 0 bool TrueIfSigned; if (!IsAShr && ShiftValC->isNegative() && isSignBitCheck(Pred, C, TrueIfSigned)) return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE, Shr->getOperand(1), ConstantInt::getNullValue(X->getType())); // If the shifted constant is a power-of-2, test the shift amount directly: // (ShiftValC >> Y) >u C --> X > Y) X >=u (LZ(C-1) - LZ(ShiftValC)) if (!IsAShr && ShiftValC->isPowerOf2() && (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) { bool IsUGT = Pred == CmpInst::ICMP_UGT; assert(ShiftValC->uge(C) && "Expected simplify of compare"); assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify"); unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero(); unsigned ShiftLZ = ShiftValC->countl_zero(); Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ); auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; return new ICmpInst(NewPred, Shr->getOperand(1), NewC); } } const APInt *ShiftAmtC; if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC))) return nullptr; // Check that the shift amount is in range. If not, don't perform undefined // shifts. When the shift is visited it will be simplified. unsigned TypeBits = C.getBitWidth(); unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits); if (ShAmtVal >= TypeBits || ShAmtVal == 0) return nullptr; bool IsExact = Shr->isExact(); Type *ShrTy = Shr->getType(); // TODO: If we could guarantee that InstSimplify would handle all of the // constant-value-based preconditions in the folds below, then we could assert // those conditions rather than checking them. This is difficult because of // undef/poison (PR34838). if (IsAShr && Shr->hasOneUse()) { if (IsExact && (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) && (C - 1).isPowerOf2() && C.countLeadingZeros() > ShAmtVal) { // When C - 1 is a power of two and the transform can be legally // performed, prefer this form so the produced constant is close to a // power of two. // icmp slt/ult (ashr exact X, ShAmtC), C // --> icmp slt/ult X, (C - 1) << ShAmtC) + 1 APInt ShiftedC = (C - 1).shl(ShAmtVal) + 1; return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { // When ShAmtC can be shifted losslessly: // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) APInt ShiftedC = C.shl(ShAmtVal); if (ShiftedC.ashr(ShAmtVal) == C) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } if (Pred == CmpInst::ICMP_SGT) { // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } if (Pred == CmpInst::ICMP_UGT) { // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd // clause accounts for that pattern. APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) || (C + 1).shl(ShAmtVal).isMinSignedValue()) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } // If the compare constant has significant bits above the lowest sign-bit, // then convert an unsigned cmp to a test of the sign-bit: // (ashr X, ShiftC) u> C --> X s< 0 // (ashr X, ShiftC) u< C --> X s> -1 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { if (Pred == CmpInst::ICMP_UGT) { return new ICmpInst(CmpInst::ICMP_SLT, X, ConstantInt::getNullValue(ShrTy)); } if (Pred == CmpInst::ICMP_ULT) { return new ICmpInst(CmpInst::ICMP_SGT, X, ConstantInt::getAllOnesValue(ShrTy)); } } } else if (!IsAShr) { if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) APInt ShiftedC = C.shl(ShAmtVal); if (ShiftedC.lshr(ShAmtVal) == C) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } if (Pred == CmpInst::ICMP_UGT) { // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); } } if (!Cmp.isEquality()) return nullptr; // Handle equality comparisons of shift-by-constant. // If the comparison constant changes with the shift, the comparison cannot // succeed (bits of the comparison constant cannot match the shifted value). // This should be known by InstSimplify and already be folded to true/false. assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && "Expected icmp+shr simplify did not occur."); // If the bits shifted out are known zero, compare the unshifted value: // (X & 4) >> 1 == 2 --> (X & 4) == 4. if (Shr->isExact()) return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); if (C.isZero()) { // == 0 is u< 1. if (Pred == CmpInst::ICMP_EQ) return new ICmpInst(CmpInst::ICMP_ULT, X, ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); else return new ICmpInst(CmpInst::ICMP_UGT, X, ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); } if (Shr->hasOneUse()) { // Canonicalize the shift into an 'and': // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); Constant *Mask = ConstantInt::get(ShrTy, Val); Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); } return nullptr; } Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *SRem, const APInt &C) { // Match an 'is positive' or 'is negative' comparison of remainder by a // constant power-of-2 value: // (X % pow2C) sgt/slt 0 const ICmpInst::Predicate Pred = Cmp.getPredicate(); if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) return nullptr; // TODO: The one-use check is standard because we do not typically want to // create longer instruction sequences, but this might be a special-case // because srem is not good for analysis or codegen. if (!SRem->hasOneUse()) return nullptr; const APInt *DivisorC; if (!match(SRem->getOperand(1), m_Power2(DivisorC))) return nullptr; // For cmp_sgt/cmp_slt only zero valued C is handled. // For cmp_eq/cmp_ne only positive valued C is handled. if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && !C.isZero()) || ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && !C.isStrictlyPositive())) return nullptr; // Mask off the sign bit and the modulo bits (low-bits). Type *Ty = SRem->getType(); APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); // For 'is positive?' check that the sign-bit is clear and at least 1 masked // bit is set. Example: // (i8 X % 32) s> 0 --> (X & 159) s> 0 if (Pred == ICmpInst::ICMP_SGT) return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); // For 'is negative?' check that the sign-bit is set and at least 1 masked // bit is set. Example: // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); } /// Fold icmp (udiv X, Y), C. Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv, const APInt &C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *X = UDiv->getOperand(0); Value *Y = UDiv->getOperand(1); Type *Ty = UDiv->getType(); const APInt *C2; if (!match(X, m_APInt(C2))) return nullptr; assert(*C2 != 0 && "udiv 0, X should have been simplified already."); // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) if (Pred == ICmpInst::ICMP_UGT) { assert(!C.isMaxValue() && "icmp ugt X, UINT_MAX should have been simplified already."); return new ICmpInst(ICmpInst::ICMP_ULE, Y, ConstantInt::get(Ty, C2->udiv(C + 1))); } // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) if (Pred == ICmpInst::ICMP_ULT) { assert(C != 0 && "icmp ult X, 0 should have been simplified already."); return new ICmpInst(ICmpInst::ICMP_UGT, Y, ConstantInt::get(Ty, C2->udiv(C))); } return nullptr; } /// Fold icmp ({su}div X, Y), C. Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div, const APInt &C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *X = Div->getOperand(0); Value *Y = Div->getOperand(1); Type *Ty = Div->getType(); bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; // If unsigned division and the compare constant is bigger than // UMAX/2 (negative), there's only one pair of values that satisfies an // equality check, so eliminate the division: // (X u/ Y) == C --> (X == C) && (Y == 1) // (X u/ Y) != C --> (X != C) || (Y != 1) // Similarly, if signed division and the compare constant is exactly SMIN: // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && (!DivIsSigned || C.isMinSignedValue())) { Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; return BinaryOperator::Create(Logic, XBig, YOne); } // Fold: icmp pred ([us]div X, C2), C -> range test // Fold this div into the comparison, producing a range check. // Determine, based on the divide type, what the range is being // checked. If there is an overflow on the low or high side, remember // it, otherwise compute the range [low, hi) bounding the new value. // See: InsertRangeTest above for the kinds of replacements possible. const APInt *C2; if (!match(Y, m_APInt(C2))) return nullptr; // FIXME: If the operand types don't match the type of the divide // then don't attempt this transform. The code below doesn't have the // logic to deal with a signed divide and an unsigned compare (and // vice versa). This is because (x /s C2) isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) return nullptr; // Compute Prod = C * C2. We are essentially solving an equation of // form X / C2 = C. We solve for X by multiplying C2 and C. // By solving for X, we can turn this into a range check instead of computing // a divide. APInt Prod = C * *C2; // Determine if the product overflows by seeing if the product is not equal to // the divide. Make sure we do the same kind of divide as in the LHS // instruction that we're folding. bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; // If the division is known to be exact, then there is no remainder from the // divide, so the covered range size is unit, otherwise it is the divisor. APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; // Figure out the interval that is being checked. For example, a comparison // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). // Compute this interval based on the constants involved and the signedness of // the compare/divide. This computes a half-open interval, keeping track of // whether either value in the interval overflows. After analysis each // overflow variable is set to 0 if it's corresponding bound variable is valid // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. int LoOverflow = 0, HiOverflow = 0; APInt LoBound, HiBound; if (!DivIsSigned) { // udiv // e.g. X/5 op 3 --> [15, 20) LoBound = Prod; HiOverflow = LoOverflow = ProdOV; if (!HiOverflow) { // If this is not an exact divide, then many values in the range collapse // to the same result value. HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); } } else if (C2->isStrictlyPositive()) { // Divisor is > 0. if (C.isZero()) { // (X / pos) op 0 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) LoBound = -(RangeSize - 1); HiBound = RangeSize; } else if (C.isStrictlyPositive()) { // (X / pos) op pos LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) HiOverflow = LoOverflow = ProdOV; if (!HiOverflow) HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); } else { // (X / pos) op neg // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) HiBound = Prod + 1; LoOverflow = HiOverflow = ProdOV ? -1 : 0; if (!LoOverflow) { APInt DivNeg = -RangeSize; LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; } } } else if (C2->isNegative()) { // Divisor is < 0. if (Div->isExact()) RangeSize.negate(); if (C.isZero()) { // (X / neg) op 0 // e.g. X/-5 op 0 --> [-4, 5) LoBound = RangeSize + 1; HiBound = -RangeSize; if (HiBound == *C2) { // -INTMIN = INTMIN HiOverflow = 1; // [INTMIN+1, overflow) HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN } } else if (C.isStrictlyPositive()) { // (X / neg) op pos // e.g. X/-5 op 3 --> [-19, -14) HiBound = Prod + 1; HiOverflow = LoOverflow = ProdOV ? -1 : 0; if (!LoOverflow) LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; } else { // (X / neg) op neg LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) LoOverflow = HiOverflow = ProdOV; if (!HiOverflow) HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); } // Dividing by a negative swaps the condition. LT <-> GT Pred = ICmpInst::getSwappedPredicate(Pred); } switch (Pred) { default: llvm_unreachable("Unhandled icmp predicate!"); case ICmpInst::ICMP_EQ: if (LoOverflow && HiOverflow) return replaceInstUsesWith(Cmp, Builder.getFalse()); if (HiOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, LoBound)); if (LoOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, HiBound)); return replaceInstUsesWith( Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); case ICmpInst::ICMP_NE: if (LoOverflow && HiOverflow) return replaceInstUsesWith(Cmp, Builder.getTrue()); if (HiOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, LoBound)); if (LoOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); return replaceInstUsesWith( Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: if (LoOverflow == +1) // Low bound is greater than input range. return replaceInstUsesWith(Cmp, Builder.getTrue()); if (LoOverflow == -1) // Low bound is less than input range. return replaceInstUsesWith(Cmp, Builder.getFalse()); return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGT: if (HiOverflow == +1) // High bound greater than input range. return replaceInstUsesWith(Cmp, Builder.getFalse()); if (HiOverflow == -1) // High bound less than input range. return replaceInstUsesWith(Cmp, Builder.getTrue()); if (Pred == ICmpInst::ICMP_UGT) return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); } return nullptr; } /// Fold icmp (sub X, Y), C. Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub, const APInt &C) { Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); ICmpInst::Predicate Pred = Cmp.getPredicate(); Type *Ty = Sub->getType(); // (SubC - Y) == C) --> Y == (SubC - C) // (SubC - Y) != C) --> Y != (SubC - C) Constant *SubC; if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { return new ICmpInst(Pred, Y, ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); } // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) const APInt *C2; APInt SubResult; ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); bool HasNSW = Sub->hasNoSignedWrap(); bool HasNUW = Sub->hasNoUnsignedWrap(); if (match(X, m_APInt(C2)) && ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); // X - Y == 0 --> X == Y. // X - Y != 0 --> X != Y. // TODO: We allow this with multiple uses as long as the other uses are not // in phis. The phi use check is guarding against a codegen regression // for a loop test. If the backend could undo this (and possibly // subsequent transforms), we would not need this hack. if (Cmp.isEquality() && C.isZero() && none_of((Sub->users()), [](const User *U) { return isa(U); })) return new ICmpInst(Pred, X, Y); // The following transforms are only worth it if the only user of the subtract // is the icmp. // TODO: This is an artificial restriction for all of the transforms below // that only need a single replacement icmp. Can these use the phi test // like the transform above here? if (!Sub->hasOneUse()) return nullptr; if (Sub->hasNoSignedWrap()) { // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) if (Pred == ICmpInst::ICMP_SGT && C.isZero()) return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) if (Pred == ICmpInst::ICMP_SLT && C.isZero()) return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) if (Pred == ICmpInst::ICMP_SLT && C.isOne()) return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); } if (!match(X, m_APInt(C2))) return nullptr; // C2 - Y (Y | (C - 1)) == C2 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == (C - 1)) return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); // C2 - Y >u C -> (Y | C) != C2 // iff C2 & C == C and C + 1 is a power of 2 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); // We have handled special cases that reduce. // Canonicalize any remaining sub to add as: // (C2 - Y) > C --> (Y + ~C2) < ~C Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", HasNUW, HasNSW); return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); } static Value *createLogicFromTable(const std::bitset<4> &Table, Value *Op0, Value *Op1, IRBuilderBase &Builder, bool HasOneUse) { auto FoldConstant = [&](bool Val) { Constant *Res = Val ? Builder.getTrue() : Builder.getFalse(); if (Op0->getType()->isVectorTy()) Res = ConstantVector::getSplat( cast(Op0->getType())->getElementCount(), Res); return Res; }; switch (Table.to_ulong()) { case 0: // 0 0 0 0 return FoldConstant(false); case 1: // 0 0 0 1 return HasOneUse ? Builder.CreateNot(Builder.CreateOr(Op0, Op1)) : nullptr; case 2: // 0 0 1 0 return HasOneUse ? Builder.CreateAnd(Builder.CreateNot(Op0), Op1) : nullptr; case 3: // 0 0 1 1 return Builder.CreateNot(Op0); case 4: // 0 1 0 0 return HasOneUse ? Builder.CreateAnd(Op0, Builder.CreateNot(Op1)) : nullptr; case 5: // 0 1 0 1 return Builder.CreateNot(Op1); case 6: // 0 1 1 0 return Builder.CreateXor(Op0, Op1); case 7: // 0 1 1 1 return HasOneUse ? Builder.CreateNot(Builder.CreateAnd(Op0, Op1)) : nullptr; case 8: // 1 0 0 0 return Builder.CreateAnd(Op0, Op1); case 9: // 1 0 0 1 return HasOneUse ? Builder.CreateNot(Builder.CreateXor(Op0, Op1)) : nullptr; case 10: // 1 0 1 0 return Op1; case 11: // 1 0 1 1 return HasOneUse ? Builder.CreateOr(Builder.CreateNot(Op0), Op1) : nullptr; case 12: // 1 1 0 0 return Op0; case 13: // 1 1 0 1 return HasOneUse ? Builder.CreateOr(Op0, Builder.CreateNot(Op1)) : nullptr; case 14: // 1 1 1 0 return Builder.CreateOr(Op0, Op1); case 15: // 1 1 1 1 return FoldConstant(true); default: llvm_unreachable("Invalid Operation"); } return nullptr; } /// Fold icmp (add X, Y), C. Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add, const APInt &C) { Value *Y = Add->getOperand(1); Value *X = Add->getOperand(0); Value *Op0, *Op1; Instruction *Ext0, *Ext1; const CmpInst::Predicate Pred = Cmp.getPredicate(); if (match(Add, m_Add(m_CombineAnd(m_Instruction(Ext0), m_ZExtOrSExt(m_Value(Op0))), m_CombineAnd(m_Instruction(Ext1), m_ZExtOrSExt(m_Value(Op1))))) && Op0->getType()->isIntOrIntVectorTy(1) && Op1->getType()->isIntOrIntVectorTy(1)) { unsigned BW = C.getBitWidth(); std::bitset<4> Table; auto ComputeTable = [&](bool Op0Val, bool Op1Val) { int Res = 0; if (Op0Val) Res += isa(Ext0) ? 1 : -1; if (Op1Val) Res += isa(Ext1) ? 1 : -1; return ICmpInst::compare(APInt(BW, Res, true), C, Pred); }; Table[0] = ComputeTable(false, false); Table[1] = ComputeTable(false, true); Table[2] = ComputeTable(true, false); Table[3] = ComputeTable(true, true); if (auto *Cond = createLogicFromTable(Table, Op0, Op1, Builder, Add->hasOneUse())) return replaceInstUsesWith(Cmp, Cond); } const APInt *C2; if (Cmp.isEquality() || !match(Y, m_APInt(C2))) return nullptr; // Fold icmp pred (add X, C2), C. Type *Ty = Add->getType(); // If the add does not wrap, we can always adjust the compare by subtracting // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE // are canonicalized to SGT/SLT/UGT/ULT. if ((Add->hasNoSignedWrap() && (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || (Add->hasNoUnsignedWrap() && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { bool Overflow; APInt NewC = Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); // If there is overflow, the result must be true or false. // TODO: Can we assert there is no overflow because InstSimplify always // handles those cases? if (!Overflow) // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); } auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); const APInt &Upper = CR.getUpper(); const APInt &Lower = CR.getLower(); if (Cmp.isSigned()) { if (Lower.isSignMask()) return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); if (Upper.isSignMask()) return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); } else { if (Lower.isMinValue()) return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); if (Upper.isMinValue()) return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); } // This set of folds is intentionally placed after folds that use no-wrapping // flags because those folds are likely better for later analysis/codegen. const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); // Fold compare with offset to opposite sign compare if it eliminates offset: // (X + C2) >u C --> X X >s ~C2 (if C == C2 + SMIN) if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); // (X + C2) >s C --> X X >u (C ^ SMAX) (if C == C2) if (Pred == CmpInst::ICMP_SLT && C == *C2) return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); // (X + -1) X <=u C (if X is never null) if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) { const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); if (llvm::isKnownNonZero(X, Q)) return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C)); } if (!Add->hasOneUse()) return nullptr; // X+C (X & -C2) == C // iff C & (C2-1) == 0 // C2 is a power of 2 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), ConstantExpr::getNeg(cast(Y))); // X+C2 (X & C) == 2C // iff C == -(C2) // C2 is a power of 2 if (Pred == ICmpInst::ICMP_ULT && C2->isPowerOf2() && C == -*C2) return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, C), ConstantInt::get(Ty, C * 2)); // X+C >u C2 -> (X & ~C2) != C // iff C & C2 == 0 // C2+1 is a power of 2 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), ConstantExpr::getNeg(cast(Y))); // The range test idiom can use either ult or ugt. Arbitrarily canonicalize // to the ult form. // X+C2 >u C -> X+(C2-C-1) getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || !ICmpInst::isEquality(PredA)) return false; Value *EqualVal = SI->getTrueValue(); Value *UnequalVal = SI->getFalseValue(); // We still can get non-canonical predicate here, so canonicalize. if (PredA == ICmpInst::ICMP_NE) std::swap(EqualVal, UnequalVal); if (!match(EqualVal, m_ConstantInt(Equal))) return false; ICmpInst::Predicate PredB; Value *LHS2, *RHS2; if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), m_ConstantInt(Less), m_ConstantInt(Greater)))) return false; // We can get predicate mismatch here, so canonicalize if possible: // First, ensure that 'LHS' match. if (LHS2 != LHS) { // x sgt y <--> y slt x std::swap(LHS2, RHS2); PredB = ICmpInst::getSwappedPredicate(PredB); } if (LHS2 != LHS) return false; // We also need to canonicalize 'RHS'. if (PredB == ICmpInst::ICMP_SGT && isa(RHS2)) { // x sgt C-1 <--> x sge C <--> not(x slt C) auto FlippedStrictness = InstCombiner::getFlippedStrictnessPredicateAndConstant( PredB, cast(RHS2)); if (!FlippedStrictness) return false; assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "basic correctness failure"); RHS2 = FlippedStrictness->second; // And kind-of perform the result swap. std::swap(Less, Greater); PredB = ICmpInst::ICMP_SLT; } return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; } Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select, ConstantInt *C) { assert(C && "Cmp RHS should be a constant int!"); // If we're testing a constant value against the result of a three way // comparison, the result can be expressed directly in terms of the // original values being compared. Note: We could possibly be more // aggressive here and remove the hasOneUse test. The original select is // really likely to simplify or sink when we remove a test of the result. Value *OrigLHS, *OrigRHS; ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; if (Cmp.hasOneUse() && matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, C3GreaterThan)) { assert(C1LessThan && C2Equal && C3GreaterThan); bool TrueWhenLessThan = ICmpInst::compare( C1LessThan->getValue(), C->getValue(), Cmp.getPredicate()); bool TrueWhenEqual = ICmpInst::compare(C2Equal->getValue(), C->getValue(), Cmp.getPredicate()); bool TrueWhenGreaterThan = ICmpInst::compare( C3GreaterThan->getValue(), C->getValue(), Cmp.getPredicate()); // This generates the new instruction that will replace the original Cmp // Instruction. Instead of enumerating the various combinations when // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus // false, we rely on chaining of ORs and future passes of InstCombine to // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). // When none of the three constants satisfy the predicate for the RHS (C), // the entire original Cmp can be simplified to a false. Value *Cond = Builder.getFalse(); if (TrueWhenLessThan) Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, OrigLHS, OrigRHS)); if (TrueWhenEqual) Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, OrigLHS, OrigRHS)); if (TrueWhenGreaterThan) Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, OrigLHS, OrigRHS)); return replaceInstUsesWith(Cmp, Cond); } return nullptr; } Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { auto *Bitcast = dyn_cast(Cmp.getOperand(0)); if (!Bitcast) return nullptr; ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *Op1 = Cmp.getOperand(1); Value *BCSrcOp = Bitcast->getOperand(0); Type *SrcType = Bitcast->getSrcTy(); Type *DstType = Bitcast->getType(); // Make sure the bitcast doesn't change between scalar and vector and // doesn't change the number of vector elements. if (SrcType->isVectorTy() == DstType->isVectorTy() && SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. Value *X; if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && match(Op1, m_Zero())) return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) return new ICmpInst(Pred, X, ConstantInt::getAllOnesValue(X->getType())); } // Zero-equality checks are preserved through unsigned floating-point casts: // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) if (Cmp.isEquality() && match(Op1, m_Zero())) return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); const APInt *C; bool TrueIfSigned; if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse()) { // If this is a sign-bit test of a bitcast of a casted FP value, eliminate // the FP extend/truncate because that cast does not change the sign-bit. // This is true for all standard IEEE-754 types and the X86 80-bit type. // The sign-bit is always the most significant bit in those types. if (isSignBitCheck(Pred, *C, TrueIfSigned) && (match(BCSrcOp, m_FPExt(m_Value(X))) || match(BCSrcOp, m_FPTrunc(m_Value(X))))) { // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 Type *XType = X->getType(); // We can't currently handle Power style floating point operations here. if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); if (auto *XVTy = dyn_cast(XType)) NewType = VectorType::get(NewType, XVTy->getElementCount()); Value *NewBitcast = Builder.CreateBitCast(X, NewType); if (TrueIfSigned) return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, ConstantInt::getNullValue(NewType)); else return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, ConstantInt::getAllOnesValue(NewType)); } } // icmp eq/ne (bitcast X to int), special fp -> llvm.is.fpclass(X, class) Type *FPType = SrcType->getScalarType(); if (!Cmp.getParent()->getParent()->hasFnAttribute( Attribute::NoImplicitFloat) && Cmp.isEquality() && FPType->isIEEELikeFPTy()) { FPClassTest Mask = APFloat(FPType->getFltSemantics(), *C).classify(); if (Mask & (fcInf | fcZero)) { if (Pred == ICmpInst::ICMP_NE) Mask = ~Mask; return replaceInstUsesWith(Cmp, Builder.createIsFPClass(BCSrcOp, Mask)); } } } } const APInt *C; if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || !SrcType->isIntOrIntVectorTy()) return nullptr; // If this is checking if all elements of a vector compare are set or not, // invert the casted vector equality compare and test if all compare // elements are clear or not. Compare against zero is generally easier for // analysis and codegen. // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 // Example: are all elements equal? --> are zero elements not equal? // TODO: Try harder to reduce compare of 2 freely invertible operands? if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse()) { if (Value *NotBCSrcOp = getFreelyInverted(BCSrcOp, BCSrcOp->hasOneUse(), &Builder)) { Value *Cast = Builder.CreateBitCast(NotBCSrcOp, DstType); return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); } } // If this is checking if all elements of an extended vector are clear or not, // compare in a narrow type to eliminate the extend: // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 Value *X; if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { if (auto *VecTy = dyn_cast(X->getType())) { Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); Value *NewCast = Builder.CreateBitCast(X, NewType); return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); } } // Folding: icmp iN X, C // where X = bitcast (shufflevector %vec, undef, SC)) to iN // and C is a splat of a K-bit pattern // and SC is a constant vector = // Into: // %E = extractelement %vec, i32 C' // icmp iK %E, trunc(C) Value *Vec; ArrayRef Mask; if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { // Check whether every element of Mask is the same constant if (all_equal(Mask)) { auto *VecTy = cast(SrcType); auto *EltTy = cast(VecTy->getElementType()); if (C->isSplat(EltTy->getBitWidth())) { // Fold the icmp based on the value of C // If C is M copies of an iK sized bit pattern, // then: // => %E = extractelement %vec, i32 Elem // icmp iK %SplatVal, Value *Elem = Builder.getInt32(Mask[0]); Value *Extract = Builder.CreateExtractElement(Vec, Elem); Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); return new ICmpInst(Pred, Extract, NewC); } } } return nullptr; } /// Try to fold integer comparisons with a constant operand: icmp Pred X, C /// where X is some kind of instruction. Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { const APInt *C; if (match(Cmp.getOperand(1), m_APInt(C))) { if (auto *BO = dyn_cast(Cmp.getOperand(0))) if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) return I; if (auto *SI = dyn_cast(Cmp.getOperand(0))) // For now, we only support constant integers while folding the // ICMP(SELECT)) pattern. We can extend this to support vector of integers // similar to the cases handled by binary ops above. if (auto *ConstRHS = dyn_cast(Cmp.getOperand(1))) if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) return I; if (auto *TI = dyn_cast(Cmp.getOperand(0))) if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) return I; if (auto *II = dyn_cast(Cmp.getOperand(0))) if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) return I; // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y // TODO: This checks one-use, but that is not strictly necessary. Value *Cmp0 = Cmp.getOperand(0); Value *X, *Y; if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() && (match(Cmp0, m_ExtractValue<0>(m_Intrinsic( m_Value(X), m_Value(Y)))) || match(Cmp0, m_ExtractValue<0>(m_Intrinsic( m_Value(X), m_Value(Y)))))) return new ICmpInst(Cmp.getPredicate(), X, Y); } if (match(Cmp.getOperand(1), m_APIntAllowPoison(C))) return foldICmpInstWithConstantAllowPoison(Cmp, *C); return nullptr; } /// Fold an icmp equality instruction with binary operator LHS and constant RHS: /// icmp eq/ne BO, C. Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { // TODO: Some of these folds could work with arbitrary constants, but this // function is limited to scalar and vector splat constants. if (!Cmp.isEquality()) return nullptr; ICmpInst::Predicate Pred = Cmp.getPredicate(); bool isICMP_NE = Pred == ICmpInst::ICMP_NE; Constant *RHS = cast(Cmp.getOperand(1)); Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); switch (BO->getOpcode()) { case Instruction::SRem: // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. if (C.isZero() && BO->hasOneUse()) { const APInt *BOC; if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); return new ICmpInst(Pred, NewRem, Constant::getNullValue(BO->getType())); } } break; case Instruction::Add: { // (A + C2) == C --> A == (C - C2) // (A + C2) != C --> A != (C - C2) // TODO: Remove the one-use limitation? See discussion in D58633. if (Constant *C2 = dyn_cast(BOp1)) { if (BO->hasOneUse()) return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2)); } else if (C.isZero()) { // Replace ((add A, B) != 0) with (A != -B) if A or B is // efficiently invertible, or if the add has just this one use. if (Value *NegVal = dyn_castNegVal(BOp1)) return new ICmpInst(Pred, BOp0, NegVal); if (Value *NegVal = dyn_castNegVal(BOp0)) return new ICmpInst(Pred, NegVal, BOp1); if (BO->hasOneUse()) { // (add nuw A, B) != 0 -> (or A, B) != 0 if (match(BO, m_NUWAdd(m_Value(), m_Value()))) { Value *Or = Builder.CreateOr(BOp0, BOp1); return new ICmpInst(Pred, Or, Constant::getNullValue(BO->getType())); } Value *Neg = Builder.CreateNeg(BOp1); Neg->takeName(BO); return new ICmpInst(Pred, BOp0, Neg); } } break; } case Instruction::Xor: if (Constant *BOC = dyn_cast(BOp1)) { // For the xor case, we can xor two constants together, eliminating // the explicit xor. return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); } else if (C.isZero()) { // Replace ((xor A, B) != 0) with (A != B) return new ICmpInst(Pred, BOp0, BOp1); } break; case Instruction::Or: { const APInt *BOC; if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { // Comparing if all bits outside of a constant mask are set? // Replace (X | C) == -1 with (X & ~C) == ~C. // This removes the -1 constant. Constant *NotBOC = ConstantExpr::getNot(cast(BOp1)); Value *And = Builder.CreateAnd(BOp0, NotBOC); return new ICmpInst(Pred, And, NotBOC); } break; } case Instruction::UDiv: case Instruction::SDiv: if (BO->isExact()) { // div exact X, Y eq/ne 0 -> X eq/ne 0 // div exact X, Y eq/ne 1 -> X eq/ne Y // div exact X, Y eq/ne C -> // if Y * C never-overflow && OneUse: // -> Y * C eq/ne X if (C.isZero()) return new ICmpInst(Pred, BOp0, Constant::getNullValue(BO->getType())); else if (C.isOne()) return new ICmpInst(Pred, BOp0, BOp1); else if (BO->hasOneUse()) { OverflowResult OR = computeOverflow( Instruction::Mul, BO->getOpcode() == Instruction::SDiv, BOp1, Cmp.getOperand(1), BO); if (OR == OverflowResult::NeverOverflows) { Value *YC = Builder.CreateMul(BOp1, ConstantInt::get(BO->getType(), C)); return new ICmpInst(Pred, YC, BOp0); } } } if (BO->getOpcode() == Instruction::UDiv && C.isZero()) { // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; return new ICmpInst(NewPred, BOp1, BOp0); } break; default: break; } return nullptr; } static Instruction *foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs, const APInt &CRhs, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q) { assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop && "Non-ctpop intrin in ctpop fold"); if (!CtpopLhs->hasOneUse()) return nullptr; // Power of 2 test: // isPow2OrZero : ctpop(X) u< 2 // isPow2 : ctpop(X) == 1 // NotPow2OrZero: ctpop(X) u> 1 // NotPow2 : ctpop(X) != 1 // If we know any bit of X can be folded to: // IsPow2 : X & (~Bit) == 0 // NotPow2 : X & (~Bit) != 0 const ICmpInst::Predicate Pred = I.getPredicate(); if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) || (Pred == ICmpInst::ICMP_ULT && CRhs == 2)) { Value *Op = CtpopLhs->getArgOperand(0); KnownBits OpKnown = computeKnownBits(Op, Q.DL, /*Depth*/ 0, Q.AC, Q.CxtI, Q.DT); // No need to check for count > 1, that should be already constant folded. if (OpKnown.countMinPopulation() == 1) { Value *And = Builder.CreateAnd( Op, Constant::getIntegerValue(Op->getType(), ~(OpKnown.One))); return new ICmpInst( (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT) ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, And, Constant::getNullValue(Op->getType())); } } return nullptr; } /// Fold an equality icmp with LLVM intrinsic and constant operand. Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { Type *Ty = II->getType(); unsigned BitWidth = C.getBitWidth(); const ICmpInst::Predicate Pred = Cmp.getPredicate(); switch (II->getIntrinsicID()) { case Intrinsic::abs: // abs(A) == 0 -> A == 0 // abs(A) == INT_MIN -> A == INT_MIN if (C.isZero() || C.isMinSignedValue()) return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); break; case Intrinsic::bswap: // bswap(A) == C -> A == bswap(C) return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C.byteSwap())); case Intrinsic::bitreverse: // bitreverse(A) == C -> A == bitreverse(C) return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C.reverseBits())); case Intrinsic::ctlz: case Intrinsic::cttz: { // ctz(A) == bitwidth(A) -> A == 0 and likewise for != if (C == BitWidth) return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::getNullValue(Ty)); // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. // Limit to one use to ensure we don't increase instruction count. unsigned Num = C.getLimitedValue(BitWidth); if (Num != BitWidth && II->hasOneUse()) { bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) : APInt::getHighBitsSet(BitWidth, Num + 1); APInt Mask2 = IsTrailing ? APInt::getOneBitSet(BitWidth, Num) : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), ConstantInt::get(Ty, Mask2)); } break; } case Intrinsic::ctpop: { // popcount(A) == 0 -> A == 0 and likewise for != // popcount(A) == bitwidth(A) -> A == -1 and likewise for != bool IsZero = C.isZero(); if (IsZero || C == BitWidth) return new ICmpInst(Pred, II->getArgOperand(0), IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); break; } case Intrinsic::fshl: case Intrinsic::fshr: if (II->getArgOperand(0) == II->getArgOperand(1)) { const APInt *RotAmtC; // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) if (match(II->getArgOperand(2), m_APInt(RotAmtC))) return new ICmpInst(Pred, II->getArgOperand(0), II->getIntrinsicID() == Intrinsic::fshl ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) : ConstantInt::get(Ty, C.rotl(*RotAmtC))); } break; case Intrinsic::umax: case Intrinsic::uadd_sat: { // uadd.sat(a, b) == 0 -> (a | b) == 0 // umax(a, b) == 0 -> (a | b) == 0 if (C.isZero() && II->hasOneUse()) { Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); } break; } case Intrinsic::ssub_sat: // ssub.sat(a, b) == 0 -> a == b if (C.isZero()) return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); break; case Intrinsic::usub_sat: { // usub.sat(a, b) == 0 -> a <= b if (C.isZero()) { ICmpInst::Predicate NewPred = Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); } break; } default: break; } return nullptr; } /// Fold an icmp with LLVM intrinsics static Instruction * foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp, InstCombiner::BuilderTy &Builder) { assert(Cmp.isEquality()); ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *Op0 = Cmp.getOperand(0); Value *Op1 = Cmp.getOperand(1); const auto *IIOp0 = dyn_cast(Op0); const auto *IIOp1 = dyn_cast(Op1); if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) return nullptr; switch (IIOp0->getIntrinsicID()) { case Intrinsic::bswap: case Intrinsic::bitreverse: // If both operands are byte-swapped or bit-reversed, just compare the // original values. return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); case Intrinsic::fshl: case Intrinsic::fshr: { // If both operands are rotated by same amount, just compare the // original values. if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) break; if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) break; if (IIOp0->getOperand(2) == IIOp1->getOperand(2)) return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); // rotate(X, AmtX) == rotate(Y, AmtY) // -> rotate(X, AmtX - AmtY) == Y // Do this if either both rotates have one use or if only one has one use // and AmtX/AmtY are constants. unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse(); if (OneUses == 2 || (OneUses == 1 && match(IIOp0->getOperand(2), m_ImmConstant()) && match(IIOp1->getOperand(2), m_ImmConstant()))) { Value *SubAmt = Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2)); Value *CombinedRotate = Builder.CreateIntrinsic( Op0->getType(), IIOp0->getIntrinsicID(), {IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt}); return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate); } } break; default: break; } return nullptr; } /// Try to fold integer comparisons with a constant operand: icmp Pred X, C /// where X is some kind of instruction and C is AllowPoison. /// TODO: Move more folds which allow poison to this function. Instruction * InstCombinerImpl::foldICmpInstWithConstantAllowPoison(ICmpInst &Cmp, const APInt &C) { const ICmpInst::Predicate Pred = Cmp.getPredicate(); if (auto *II = dyn_cast(Cmp.getOperand(0))) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::fshl: case Intrinsic::fshr: if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { // (rot X, ?) == 0/-1 --> X == 0/-1 if (C.isZero() || C.isAllOnes()) return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); } break; } } return nullptr; } /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { switch (BO->getOpcode()) { case Instruction::Xor: if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) return I; break; case Instruction::And: if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) return I; break; case Instruction::Or: if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) return I; break; case Instruction::Mul: if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) return I; break; case Instruction::Shl: if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) return I; break; case Instruction::LShr: case Instruction::AShr: if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) return I; break; case Instruction::SRem: if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) return I; break; case Instruction::UDiv: if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) return I; [[fallthrough]]; case Instruction::SDiv: if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) return I; break; case Instruction::Sub: if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) return I; break; case Instruction::Add: if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) return I; break; default: break; } // TODO: These folds could be refactored to be part of the above calls. return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); } static Instruction * foldICmpUSubSatOrUAddSatWithConstant(ICmpInst::Predicate Pred, SaturatingInst *II, const APInt &C, InstCombiner::BuilderTy &Builder) { // This transform may end up producing more than one instruction for the // intrinsic, so limit it to one user of the intrinsic. if (!II->hasOneUse()) return nullptr; // Let Y = [add/sub]_sat(X, C) pred C2 // SatVal = The saturating value for the operation // WillWrap = Whether or not the operation will underflow / overflow // => Y = (WillWrap ? SatVal : (X binop C)) pred C2 // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2) // // When (SatVal pred C2) is true, then // Y = WillWrap ? true : ((X binop C) pred C2) // => Y = WillWrap || ((X binop C) pred C2) // else // Y = WillWrap ? false : ((X binop C) pred C2) // => Y = !WillWrap ? ((X binop C) pred C2) : false // => Y = !WillWrap && ((X binop C) pred C2) Value *Op0 = II->getOperand(0); Value *Op1 = II->getOperand(1); const APInt *COp1; // This transform only works when the intrinsic has an integral constant or // splat vector as the second operand. if (!match(Op1, m_APInt(COp1))) return nullptr; APInt SatVal; switch (II->getIntrinsicID()) { default: llvm_unreachable( "This function only works with usub_sat and uadd_sat for now!"); case Intrinsic::uadd_sat: SatVal = APInt::getAllOnes(C.getBitWidth()); break; case Intrinsic::usub_sat: SatVal = APInt::getZero(C.getBitWidth()); break; } // Check (SatVal pred C2) bool SatValCheck = ICmpInst::compare(SatVal, C, Pred); // !WillWrap. ConstantRange C1 = ConstantRange::makeExactNoWrapRegion( II->getBinaryOp(), *COp1, II->getNoWrapKind()); // WillWrap. if (SatValCheck) C1 = C1.inverse(); ConstantRange C2 = ConstantRange::makeExactICmpRegion(Pred, C); if (II->getBinaryOp() == Instruction::Add) C2 = C2.sub(*COp1); else C2 = C2.add(*COp1); Instruction::BinaryOps CombiningOp = SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And; std::optional Combination; if (CombiningOp == Instruction::BinaryOps::Or) Combination = C1.exactUnionWith(C2); else /* CombiningOp == Instruction::BinaryOps::And */ Combination = C1.exactIntersectWith(C2); if (!Combination) return nullptr; CmpInst::Predicate EquivPred; APInt EquivInt; APInt EquivOffset; Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset); return new ICmpInst( EquivPred, Builder.CreateAdd(Op0, ConstantInt::get(Op1->getType(), EquivOffset)), ConstantInt::get(Op1->getType(), EquivInt)); } static Instruction * foldICmpOfCmpIntrinsicWithConstant(ICmpInst::Predicate Pred, IntrinsicInst *I, const APInt &C, InstCombiner::BuilderTy &Builder) { std::optional NewPredicate = std::nullopt; switch (Pred) { case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: if (C.isZero()) NewPredicate = Pred; else if (C.isOne()) NewPredicate = Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE; else if (C.isAllOnes()) NewPredicate = Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; break; case ICmpInst::ICMP_SGT: if (C.isAllOnes()) NewPredicate = ICmpInst::ICMP_UGE; else if (C.isZero()) NewPredicate = ICmpInst::ICMP_UGT; break; case ICmpInst::ICMP_SLT: if (C.isZero()) NewPredicate = ICmpInst::ICMP_ULT; else if (C.isOne()) NewPredicate = ICmpInst::ICMP_ULE; break; default: break; } if (!NewPredicate) return nullptr; if (I->getIntrinsicID() == Intrinsic::scmp) NewPredicate = ICmpInst::getSignedPredicate(*NewPredicate); Value *LHS = I->getOperand(0); Value *RHS = I->getOperand(1); return new ICmpInst(*NewPredicate, LHS, RHS); } /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); // Handle folds that apply for any kind of icmp. switch (II->getIntrinsicID()) { default: break; case Intrinsic::uadd_sat: case Intrinsic::usub_sat: if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant( Pred, cast(II), C, Builder)) return Folded; break; case Intrinsic::ctpop: { const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); if (Instruction *R = foldCtpopPow2Test(Cmp, II, C, Builder, Q)) return R; } break; case Intrinsic::scmp: case Intrinsic::ucmp: if (auto *Folded = foldICmpOfCmpIntrinsicWithConstant(Pred, II, C, Builder)) return Folded; break; } if (Cmp.isEquality()) return foldICmpEqIntrinsicWithConstant(Cmp, II, C); Type *Ty = II->getType(); unsigned BitWidth = C.getBitWidth(); switch (II->getIntrinsicID()) { case Intrinsic::ctpop: { // (ctpop X > BitWidth - 1) --> X == -1 Value *X = II->getArgOperand(0); if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, ConstantInt::getAllOnesValue(Ty)); // (ctpop X < BitWidth) --> X != -1 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, ConstantInt::getAllOnesValue(Ty)); break; } case Intrinsic::ctlz: { // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { unsigned Num = C.getLimitedValue(); APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, II->getArgOperand(0), ConstantInt::get(Ty, Limit)); } // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { unsigned Num = C.getLimitedValue(); APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, II->getArgOperand(0), ConstantInt::get(Ty, Limit)); } break; } case Intrinsic::cttz: { // Limit to one use to ensure we don't increase instruction count. if (!II->hasOneUse()) return nullptr; // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Builder.CreateAnd(II->getArgOperand(0), Mask), ConstantInt::getNullValue(Ty)); } // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, Builder.CreateAnd(II->getArgOperand(0), Mask), ConstantInt::getNullValue(Ty)); } break; } case Intrinsic::ssub_sat: // ssub.sat(a, b) spred 0 -> a spred b if (ICmpInst::isSigned(Pred)) { if (C.isZero()) return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); // X s<= 0 is cannonicalized to X s< 1 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(0), II->getArgOperand(1)); // X s>= 0 is cannonicalized to X s> -1 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(0), II->getArgOperand(1)); } break; default: break; } return nullptr; } /// Handle icmp with constant (but not simple integer constant) RHS. Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); Constant *RHSC = dyn_cast(Op1); Instruction *LHSI = dyn_cast(Op0); if (!RHSC || !LHSI) return nullptr; switch (LHSI->getOpcode()) { case Instruction::PHI: if (Instruction *NV = foldOpIntoPhi(I, cast(LHSI))) return NV; break; case Instruction::IntToPtr: // icmp pred inttoptr(X), null -> icmp pred X, 0 if (RHSC->isNullValue() && DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) return new ICmpInst( I.getPredicate(), LHSI->getOperand(0), Constant::getNullValue(LHSI->getOperand(0)->getType())); break; case Instruction::Load: // Try to optimize things like "A[i] > 4" to index computations. if (GetElementPtrInst *GEP = dyn_cast(LHSI->getOperand(0))) if (GlobalVariable *GV = dyn_cast(GEP->getOperand(0))) if (Instruction *Res = foldCmpLoadFromIndexedGlobal(cast(LHSI), GEP, GV, I)) return Res; break; } return nullptr; } Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, SelectInst *SI, Value *RHS, const ICmpInst &I) { // Try to fold the comparison into the select arms, which will cause the // select to be converted into a logical and/or. auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ)) return Res; if (std::optional Impl = isImpliedCondition( SI->getCondition(), Pred, Op, RHS, DL, SelectCondIsTrue)) return ConstantInt::get(I.getType(), *Impl); return nullptr; }; ConstantInt *CI = nullptr; Value *Op1 = SimplifyOp(SI->getOperand(1), true); if (Op1) CI = dyn_cast(Op1); Value *Op2 = SimplifyOp(SI->getOperand(2), false); if (Op2) CI = dyn_cast(Op2); // We only want to perform this transformation if it will not lead to // additional code. This is true if either both sides of the select // fold to a constant (in which case the icmp is replaced with a select // which will usually simplify) or this is the only user of the // select (in which case we are trading a select+icmp for a simpler // select+icmp) or all uses of the select can be replaced based on // dominance information ("Global cases"). bool Transform = false; if (Op1 && Op2) Transform = true; else if (Op1 || Op2) { // Local case if (SI->hasOneUse()) Transform = true; // Global cases else if (CI && !CI->isZero()) // When Op1 is constant try replacing select with second operand. // Otherwise Op2 is constant and try replacing select with first // operand. Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); } if (Transform) { if (!Op1) Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); if (!Op2) Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); return SelectInst::Create(SI->getOperand(0), Op1, Op2); } return nullptr; } // Returns whether V is a Mask ((X + 1) & X == 0) or ~Mask (-Pow2OrZero) static bool isMaskOrZero(const Value *V, bool Not, const SimplifyQuery &Q, unsigned Depth = 0) { if (Not ? match(V, m_NegatedPower2OrZero()) : match(V, m_LowBitMaskOrZero())) return true; if (V->getType()->getScalarSizeInBits() == 1) return true; if (Depth++ >= MaxAnalysisRecursionDepth) return false; Value *X; const Instruction *I = dyn_cast(V); if (!I) return false; switch (I->getOpcode()) { case Instruction::ZExt: // ZExt(Mask) is a Mask. return !Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth); case Instruction::SExt: // SExt(Mask) is a Mask. // SExt(~Mask) is a ~Mask. return isMaskOrZero(I->getOperand(0), Not, Q, Depth); case Instruction::And: case Instruction::Or: // Mask0 | Mask1 is a Mask. // Mask0 & Mask1 is a Mask. // ~Mask0 | ~Mask1 is a ~Mask. // ~Mask0 & ~Mask1 is a ~Mask. return isMaskOrZero(I->getOperand(1), Not, Q, Depth) && isMaskOrZero(I->getOperand(0), Not, Q, Depth); case Instruction::Xor: if (match(V, m_Not(m_Value(X)))) return isMaskOrZero(X, !Not, Q, Depth); // (X ^ -X) is a ~Mask if (Not) return match(V, m_c_Xor(m_Value(X), m_Neg(m_Deferred(X)))); // (X ^ (X - 1)) is a Mask else return match(V, m_c_Xor(m_Value(X), m_Add(m_Deferred(X), m_AllOnes()))); case Instruction::Select: // c ? Mask0 : Mask1 is a Mask. return isMaskOrZero(I->getOperand(1), Not, Q, Depth) && isMaskOrZero(I->getOperand(2), Not, Q, Depth); case Instruction::Shl: // (~Mask) << X is a ~Mask. return Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth); case Instruction::LShr: // Mask >> X is a Mask. return !Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth); case Instruction::AShr: // Mask s>> X is a Mask. // ~Mask s>> X is a ~Mask. return isMaskOrZero(I->getOperand(0), Not, Q, Depth); case Instruction::Add: // Pow2 - 1 is a Mask. if (!Not && match(I->getOperand(1), m_AllOnes())) return isKnownToBeAPowerOfTwo(I->getOperand(0), Q.DL, /*OrZero*/ true, Depth, Q.AC, Q.CxtI, Q.DT); break; case Instruction::Sub: // -Pow2 is a ~Mask. if (Not && match(I->getOperand(0), m_Zero())) return isKnownToBeAPowerOfTwo(I->getOperand(1), Q.DL, /*OrZero*/ true, Depth, Q.AC, Q.CxtI, Q.DT); break; case Instruction::Call: { if (auto *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { // min/max(Mask0, Mask1) is a Mask. // min/max(~Mask0, ~Mask1) is a ~Mask. case Intrinsic::umax: case Intrinsic::smax: case Intrinsic::umin: case Intrinsic::smin: return isMaskOrZero(II->getArgOperand(1), Not, Q, Depth) && isMaskOrZero(II->getArgOperand(0), Not, Q, Depth); // In the context of masks, bitreverse(Mask) == ~Mask case Intrinsic::bitreverse: return isMaskOrZero(II->getArgOperand(0), !Not, Q, Depth); default: break; } } break; } default: break; } return false; } /// Some comparisons can be simplified. /// In this case, we are looking for comparisons that look like /// a check for a lossy truncation. /// Folds: /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask /// icmp SrcPred (x & ~Mask), ~Mask to icmp DstPred x, ~Mask /// icmp eq/ne (x & ~Mask), 0 to icmp DstPred x, Mask /// icmp eq/ne (~x | Mask), -1 to icmp DstPred x, Mask /// Where Mask is some pattern that produces all-ones in low bits: /// (-1 >> y) /// ((-1 << y) >> y) <- non-canonical, has extra uses /// ~(-1 << y) /// ((1 << y) + (-1)) <- non-canonical, has extra uses /// The Mask can be a constant, too. /// For some predicates, the operands are commutative. /// For others, x can only be on a specific side. static Value *foldICmpWithLowBitMaskedVal(ICmpInst::Predicate Pred, Value *Op0, Value *Op1, const SimplifyQuery &Q, InstCombiner &IC) { ICmpInst::Predicate DstPred; switch (Pred) { case ICmpInst::Predicate::ICMP_EQ: // x & Mask == x // x & ~Mask == 0 // ~x | Mask == -1 // -> x u<= Mask // x & ~Mask == ~Mask // -> ~Mask u<= x DstPred = ICmpInst::Predicate::ICMP_ULE; break; case ICmpInst::Predicate::ICMP_NE: // x & Mask != x // x & ~Mask != 0 // ~x | Mask != -1 // -> x u> Mask // x & ~Mask != ~Mask // -> ~Mask u> x DstPred = ICmpInst::Predicate::ICMP_UGT; break; case ICmpInst::Predicate::ICMP_ULT: // x & Mask u< x // -> x u> Mask // x & ~Mask u< ~Mask // -> ~Mask u> x DstPred = ICmpInst::Predicate::ICMP_UGT; break; case ICmpInst::Predicate::ICMP_UGE: // x & Mask u>= x // -> x u<= Mask // x & ~Mask u>= ~Mask // -> ~Mask u<= x DstPred = ICmpInst::Predicate::ICMP_ULE; break; case ICmpInst::Predicate::ICMP_SLT: // x & Mask s< x [iff Mask s>= 0] // -> x s> Mask // x & ~Mask s< ~Mask [iff ~Mask != 0] // -> ~Mask s> x DstPred = ICmpInst::Predicate::ICMP_SGT; break; case ICmpInst::Predicate::ICMP_SGE: // x & Mask s>= x [iff Mask s>= 0] // -> x s<= Mask // x & ~Mask s>= ~Mask [iff ~Mask != 0] // -> ~Mask s<= x DstPred = ICmpInst::Predicate::ICMP_SLE; break; default: // We don't support sgt,sle // ult/ugt are simplified to true/false respectively. return nullptr; } Value *X, *M; // Put search code in lambda for early positive returns. auto IsLowBitMask = [&]() { if (match(Op0, m_c_And(m_Specific(Op1), m_Value(M)))) { X = Op1; // Look for: x & Mask pred x if (isMaskOrZero(M, /*Not=*/false, Q)) { return !ICmpInst::isSigned(Pred) || (match(M, m_NonNegative()) || isKnownNonNegative(M, Q)); } // Look for: x & ~Mask pred ~Mask if (isMaskOrZero(X, /*Not=*/true, Q)) { return !ICmpInst::isSigned(Pred) || isKnownNonZero(X, Q); } return false; } if (ICmpInst::isEquality(Pred) && match(Op1, m_AllOnes()) && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(M))))) { auto Check = [&]() { // Look for: ~x | Mask == -1 if (isMaskOrZero(M, /*Not=*/false, Q)) { if (Value *NotX = IC.getFreelyInverted(X, X->hasOneUse(), &IC.Builder)) { X = NotX; return true; } } return false; }; if (Check()) return true; std::swap(X, M); return Check(); } if (ICmpInst::isEquality(Pred) && match(Op1, m_Zero()) && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(M))))) { auto Check = [&]() { // Look for: x & ~Mask == 0 if (isMaskOrZero(M, /*Not=*/true, Q)) { if (Value *NotM = IC.getFreelyInverted(M, M->hasOneUse(), &IC.Builder)) { M = NotM; return true; } } return false; }; if (Check()) return true; std::swap(X, M); return Check(); } return false; }; if (!IsLowBitMask()) return nullptr; return IC.Builder.CreateICmp(DstPred, X, M); } /// Some comparisons can be simplified. /// In this case, we are looking for comparisons that look like /// a check for a lossy signed truncation. /// Folds: (MaskedBits is a constant.) /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x /// Into: /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) /// Where KeptBits = bitwidth(%x) - MaskedBits static Value * foldICmpWithTruncSignExtendedVal(ICmpInst &I, InstCombiner::BuilderTy &Builder) { ICmpInst::Predicate SrcPred; Value *X; const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. if (!match(&I, m_c_ICmp(SrcPred, m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), m_APInt(C1))), m_Deferred(X)))) return nullptr; // Potential handling of non-splats: for each element: // * if both are undef, replace with constant 0. // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. // * if both are not undef, and are different, bailout. // * else, only one is undef, then pick the non-undef one. // The shift amount must be equal. if (*C0 != *C1) return nullptr; const APInt &MaskedBits = *C0; assert(MaskedBits != 0 && "shift by zero should be folded away already."); ICmpInst::Predicate DstPred; switch (SrcPred) { case ICmpInst::Predicate::ICMP_EQ: // ((%x << MaskedBits) a>> MaskedBits) == %x // => // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) DstPred = ICmpInst::Predicate::ICMP_ULT; break; case ICmpInst::Predicate::ICMP_NE: // ((%x << MaskedBits) a>> MaskedBits) != %x // => // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) DstPred = ICmpInst::Predicate::ICMP_UGE; break; // FIXME: are more folds possible? default: return nullptr; } auto *XType = X->getType(); const unsigned XBitWidth = XType->getScalarSizeInBits(); const APInt BitWidth = APInt(XBitWidth, XBitWidth); assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); // KeptBits = bitwidth(%x) - MaskedBits const APInt KeptBits = BitWidth - MaskedBits; assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); // ICmpCst = (1 << KeptBits) const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); assert(ICmpCst.isPowerOf2()); // AddCst = (1 << (KeptBits-1)) const APInt AddCst = ICmpCst.lshr(1); assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); // T0 = add %x, AddCst Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); // T1 = T0 DstPred ICmpCst Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); return T1; } // Given pattern: // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 // we should move shifts to the same hand of 'and', i.e. rewrite as // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) // We are only interested in opposite logical shifts here. // One of the shifts can be truncated. // If we can, we want to end up creating 'lshr' shift. static Value * foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, InstCombiner::BuilderTy &Builder) { if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || !I.getOperand(0)->hasOneUse()) return nullptr; auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); // Look for an 'and' of two logical shifts, one of which may be truncated. // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. Instruction *XShift, *MaybeTruncation, *YShift; if (!match( I.getOperand(0), m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), m_CombineAnd(m_TruncOrSelf(m_CombineAnd( m_AnyLogicalShift, m_Instruction(YShift))), m_Instruction(MaybeTruncation))))) return nullptr; // We potentially looked past 'trunc', but only when matching YShift, // therefore YShift must have the widest type. Instruction *WidestShift = YShift; // Therefore XShift must have the shallowest type. // Or they both have identical types if there was no truncation. Instruction *NarrowestShift = XShift; Type *WidestTy = WidestShift->getType(); Type *NarrowestTy = NarrowestShift->getType(); assert(NarrowestTy == I.getOperand(0)->getType() && "We did not look past any shifts while matching XShift though."); bool HadTrunc = WidestTy != I.getOperand(0)->getType(); // If YShift is a 'lshr', swap the shifts around. if (match(YShift, m_LShr(m_Value(), m_Value()))) std::swap(XShift, YShift); // The shifts must be in opposite directions. auto XShiftOpcode = XShift->getOpcode(); if (XShiftOpcode == YShift->getOpcode()) return nullptr; // Do not care about same-direction shifts here. Value *X, *XShAmt, *Y, *YShAmt; match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); // If one of the values being shifted is a constant, then we will end with // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, // however, we will need to ensure that we won't increase instruction count. if (!isa(X) && !isa(Y)) { // At least one of the hands of the 'and' should be one-use shift. if (!match(I.getOperand(0), m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) return nullptr; if (HadTrunc) { // Due to the 'trunc', we will need to widen X. For that either the old // 'trunc' or the shift amt in the non-truncated shift should be one-use. if (!MaybeTruncation->hasOneUse() && !NarrowestShift->getOperand(1)->hasOneUse()) return nullptr; } } // We have two shift amounts from two different shifts. The types of those // shift amounts may not match. If that's the case let's bailout now. if (XShAmt->getType() != YShAmt->getType()) return nullptr; // As input, we have the following pattern: // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 // We want to rewrite that as: // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) // While we know that originally (Q+K) would not overflow // (because 2 * (N-1) u<= iN -1), we have looked past extensions of // shift amounts. so it may now overflow in smaller bitwidth. // To ensure that does not happen, we need to ensure that the total maximal // shift amount is still representable in that smaller bit width. unsigned MaximalPossibleTotalShiftAmount = (WidestTy->getScalarSizeInBits() - 1) + (NarrowestTy->getScalarSizeInBits() - 1); APInt MaximalRepresentableShiftAmount = APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) return nullptr; // Can we fold (XShAmt+YShAmt) ? auto *NewShAmt = dyn_cast_or_null( simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, /*isNUW=*/false, SQ.getWithInstruction(&I))); if (!NewShAmt) return nullptr; if (NewShAmt->getType() != WidestTy) { NewShAmt = ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, WidestTy, SQ.DL); if (!NewShAmt) return nullptr; } unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); // Is the new shift amount smaller than the bit width? // FIXME: could also rely on ConstantRange. if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(WidestBitWidth, WidestBitWidth)))) return nullptr; // An extra legality check is needed if we had trunc-of-lshr. if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, WidestShift]() { // It isn't obvious whether it's worth it to analyze non-constants here. // Also, let's basically give up on non-splat cases, pessimizing vectors. // If *any* of these preconditions matches we can perform the fold. Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() ? NewShAmt->getSplatValue() : NewShAmt; // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. if (NewShAmtSplat && (NewShAmtSplat->isNullValue() || NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) return true; // We consider *min* leading zeros so a single outlier // blocks the transform as opposed to allowing it. if (auto *C = dyn_cast(NarrowestShift->getOperand(0))) { KnownBits Known = computeKnownBits(C, SQ.DL); unsigned MinLeadZero = Known.countMinLeadingZeros(); // If the value being shifted has at most lowest bit set we can fold. unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; if (MaxActiveBits <= 1) return true; // Precondition: NewShAmt u<= countLeadingZeros(C) if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) return true; } if (auto *C = dyn_cast(WidestShift->getOperand(0))) { KnownBits Known = computeKnownBits(C, SQ.DL); unsigned MinLeadZero = Known.countMinLeadingZeros(); // If the value being shifted has at most lowest bit set we can fold. unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; if (MaxActiveBits <= 1) return true; // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) if (NewShAmtSplat) { APInt AdjNewShAmt = (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); if (AdjNewShAmt.ule(MinLeadZero)) return true; } } return false; // Can't tell if it's ok. }; if (!CanFold()) return nullptr; } // All good, we can do this fold. X = Builder.CreateZExt(X, WidestTy); Y = Builder.CreateZExt(Y, WidestTy); // The shift is the same that was for X. Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr ? Builder.CreateLShr(X, NewShAmt) : Builder.CreateShl(X, NewShAmt); Value *T1 = Builder.CreateAnd(T0, Y); return Builder.CreateICmp(I.getPredicate(), T1, Constant::getNullValue(WidestTy)); } /// Fold /// (-1 u/ x) u< y /// ((x * y) ?/ x) != y /// to /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit /// Note that the comparison is commutative, while inverted (u>=, ==) predicate /// will mean that we are looking for the opposite answer. Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { ICmpInst::Predicate Pred; Value *X, *Y; Instruction *Mul; Instruction *Div; bool NeedNegation; // Look for: (-1 u/ x) u= y if (!I.isEquality() && match(&I, m_c_ICmp(Pred, m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), m_Instruction(Div)), m_Value(Y)))) { Mul = nullptr; // Are we checking that overflow does not happen, or does happen? switch (Pred) { case ICmpInst::Predicate::ICMP_ULT: NeedNegation = false; break; // OK case ICmpInst::Predicate::ICMP_UGE: NeedNegation = true; break; // OK default: return nullptr; // Wrong predicate. } } else // Look for: ((x * y) / x) !=/== y if (I.isEquality() && match(&I, m_c_ICmp(Pred, m_Value(Y), m_CombineAnd( m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), m_Value(X)), m_Instruction(Mul)), m_Deferred(X))), m_Instruction(Div))))) { NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; } else return nullptr; BuilderTy::InsertPointGuard Guard(Builder); // If the pattern included (x * y), we'll want to insert new instructions // right before that original multiplication so that we can replace it. bool MulHadOtherUses = Mul && !Mul->hasOneUse(); if (MulHadOtherUses) Builder.SetInsertPoint(Mul); Function *F = Intrinsic::getDeclaration(I.getModule(), Div->getOpcode() == Instruction::UDiv ? Intrinsic::umul_with_overflow : Intrinsic::smul_with_overflow, X->getType()); CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); // If the multiplication was used elsewhere, to ensure that we don't leave // "duplicate" instructions, replace uses of that original multiplication // with the multiplication result from the with.overflow intrinsic. if (MulHadOtherUses) replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); if (NeedNegation) // This technically increases instruction count. Res = Builder.CreateNot(Res, "mul.not.ov"); // If we replaced the mul, erase it. Do this after all uses of Builder, // as the mul is used as insertion point. if (MulHadOtherUses) eraseInstFromFunction(*Mul); return Res; } static Instruction *foldICmpXNegX(ICmpInst &I, InstCombiner::BuilderTy &Builder) { CmpInst::Predicate Pred; Value *X; if (match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) { if (ICmpInst::isSigned(Pred)) Pred = ICmpInst::getSwappedPredicate(Pred); else if (ICmpInst::isUnsigned(Pred)) Pred = ICmpInst::getSignedPredicate(Pred); // else for equality-comparisons just keep the predicate. return ICmpInst::Create(Instruction::ICmp, Pred, X, Constant::getNullValue(X->getType()), I.getName()); } // A value is not equal to its negation unless that value is 0 or // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0 if (match(&I, m_c_ICmp(Pred, m_OneUse(m_Neg(m_Value(X))), m_Deferred(X))) && ICmpInst::isEquality(Pred)) { Type *Ty = X->getType(); uint32_t BitWidth = Ty->getScalarSizeInBits(); Constant *MaxSignedVal = ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); Value *And = Builder.CreateAnd(X, MaxSignedVal); Constant *Zero = Constant::getNullValue(Ty); return CmpInst::Create(Instruction::ICmp, Pred, And, Zero); } return nullptr; } static Instruction *foldICmpAndXX(ICmpInst &I, const SimplifyQuery &Q, InstCombinerImpl &IC) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; // Normalize and operand as operand 0. CmpInst::Predicate Pred = I.getPredicate(); if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) { std::swap(Op0, Op1); Pred = ICmpInst::getSwappedPredicate(Pred); } if (!match(Op0, m_c_And(m_Specific(Op1), m_Value(A)))) return nullptr; // (icmp (X & Y) u< X --> (X & Y) != X if (Pred == ICmpInst::ICMP_ULT) return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); // (icmp (X & Y) u>= X --> (X & Y) == X if (Pred == ICmpInst::ICMP_UGE) return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) { // icmp (X & Y) eq/ne Y --> (X | ~Y) eq/ne -1 if Y is freely invertible and // Y is non-constant. If Y is constant the `X & C == C` form is preferable // so don't do this fold. if (!match(Op1, m_ImmConstant())) if (auto *NotOp1 = IC.getFreelyInverted(Op1, !Op1->hasNUsesOrMore(3), &IC.Builder)) return new ICmpInst(Pred, IC.Builder.CreateOr(A, NotOp1), Constant::getAllOnesValue(Op1->getType())); // icmp (X & Y) eq/ne Y --> (~X & Y) eq/ne 0 if X is freely invertible. if (auto *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder)) return new ICmpInst(Pred, IC.Builder.CreateAnd(Op1, NotA), Constant::getNullValue(Op1->getType())); } if (!ICmpInst::isSigned(Pred)) return nullptr; KnownBits KnownY = IC.computeKnownBits(A, /*Depth=*/0, &I); // (X & NegY) spred X --> (X & NegY) upred X if (KnownY.isNegative()) return new ICmpInst(ICmpInst::getUnsignedPredicate(Pred), Op0, Op1); if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGT) return nullptr; if (KnownY.isNonNegative()) // (X & PosY) s<= X --> X s>= 0 // (X & PosY) s> X --> X s< 0 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1, Constant::getNullValue(Op1->getType())); if (isKnownNegative(Op1, IC.getSimplifyQuery().getWithInstruction(&I))) // (NegX & Y) s<= NegX --> Y s< 0 // (NegX & Y) s> NegX --> Y s>= 0 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), A, Constant::getNullValue(A->getType())); return nullptr; } static Instruction *foldICmpOrXX(ICmpInst &I, const SimplifyQuery &Q, InstCombinerImpl &IC) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; // Normalize or operand as operand 0. CmpInst::Predicate Pred = I.getPredicate(); if (match(Op1, m_c_Or(m_Specific(Op0), m_Value(A)))) { std::swap(Op0, Op1); Pred = ICmpInst::getSwappedPredicate(Pred); } else if (!match(Op0, m_c_Or(m_Specific(Op1), m_Value(A)))) { return nullptr; } // icmp (X | Y) u<= X --> (X | Y) == X if (Pred == ICmpInst::ICMP_ULE) return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); // icmp (X | Y) u> X --> (X | Y) != X if (Pred == ICmpInst::ICMP_UGT) return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) { // icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible if (Value *NotOp1 = IC.getFreelyInverted(Op1, !Op1->hasNUsesOrMore(3), &IC.Builder)) return new ICmpInst(Pred, IC.Builder.CreateAnd(A, NotOp1), Constant::getNullValue(Op1->getType())); // icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X is freely invertible. if (Value *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder)) return new ICmpInst(Pred, IC.Builder.CreateOr(Op1, NotA), Constant::getAllOnesValue(Op1->getType())); } return nullptr; } static Instruction *foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q, InstCombinerImpl &IC) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; // Normalize xor operand as operand 0. CmpInst::Predicate Pred = I.getPredicate(); if (match(Op1, m_c_Xor(m_Specific(Op0), m_Value()))) { std::swap(Op0, Op1); Pred = ICmpInst::getSwappedPredicate(Pred); } if (!match(Op0, m_c_Xor(m_Specific(Op1), m_Value(A)))) return nullptr; // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X CmpInst::Predicate PredOut = CmpInst::getStrictPredicate(Pred); if (PredOut != Pred && isKnownNonZero(A, Q)) return new ICmpInst(PredOut, Op0, Op1); return nullptr; } /// Try to fold icmp (binop), X or icmp X, (binop). /// TODO: A large part of this logic is duplicated in InstSimplify's /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code /// duplication. Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) { const SimplifyQuery Q = SQ.getWithInstruction(&I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Special logic for binary operators. BinaryOperator *BO0 = dyn_cast(Op0); BinaryOperator *BO1 = dyn_cast(Op1); if (!BO0 && !BO1) return nullptr; if (Instruction *NewICmp = foldICmpXNegX(I, Builder)) return NewICmp; const CmpInst::Predicate Pred = I.getPredicate(); Value *X; // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. // (Op1 + X) u= Op1 --> ~Op1 u= X if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) return new ICmpInst(Pred, Builder.CreateNot(Op1), X); // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); { // (Op1 + X) + C u= Op1 --> ~C - X u= Op1 Constant *C; if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), m_ImmConstant(C)))) && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { Constant *C2 = ConstantExpr::getNot(C); return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); } // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), m_ImmConstant(C)))) && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { Constant *C2 = ConstantExpr::getNot(C); return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); } } { // Similar to above: an unsigned overflow comparison may use offset + mask: // ((Op1 + C) & C) u< Op1 --> Op1 != 0 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 BinaryOperator *BO; const APInt *C; if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowPoison(*C)))) { CmpInst::Predicate NewPred = Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; Constant *Zero = ConstantInt::getNullValue(Op1->getType()); return new ICmpInst(NewPred, Op1, Zero); } if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowPoison(*C)))) { CmpInst::Predicate NewPred = Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; Constant *Zero = ConstantInt::getNullValue(Op1->getType()); return new ICmpInst(NewPred, Op0, Zero); } } bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; bool Op0HasNUW = false, Op1HasNUW = false; bool Op0HasNSW = false, Op1HasNSW = false; // Analyze the case when either Op0 or Op1 is an add instruction. // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). auto hasNoWrapProblem = [](const BinaryOperator &BO, CmpInst::Predicate Pred, bool &HasNSW, bool &HasNUW) -> bool { if (isa(BO)) { HasNUW = BO.hasNoUnsignedWrap(); HasNSW = BO.hasNoSignedWrap(); return ICmpInst::isEquality(Pred) || (CmpInst::isUnsigned(Pred) && HasNUW) || (CmpInst::isSigned(Pred) && HasNSW); } else if (BO.getOpcode() == Instruction::Or) { HasNUW = true; HasNSW = true; return true; } else { return false; } }; Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; if (BO0) { match(BO0, m_AddLike(m_Value(A), m_Value(B))); NoOp0WrapProblem = hasNoWrapProblem(*BO0, Pred, Op0HasNSW, Op0HasNUW); } if (BO1) { match(BO1, m_AddLike(m_Value(C), m_Value(D))); NoOp1WrapProblem = hasNoWrapProblem(*BO1, Pred, Op1HasNSW, Op1HasNUW); } // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. if ((A == Op1 || B == Op1) && NoOp0WrapProblem) return new ICmpInst(Pred, A == Op1 ? B : A, Constant::getNullValue(Op1->getType())); // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. if ((C == Op0 || D == Op0) && NoOp1WrapProblem) return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), C == Op0 ? D : C); // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && NoOp1WrapProblem) { // Determine Y and Z in the form icmp (X+Y), (X+Z). Value *Y, *Z; if (A == C) { // C + B == C + D -> B == D Y = B; Z = D; } else if (A == D) { // D + B == C + D -> B == C Y = B; Z = C; } else if (B == C) { // A + C == C + D -> A == D Y = A; Z = D; } else { assert(B == D); // A + D == C + D -> A == C Y = A; Z = C; } return new ICmpInst(Pred, Y, Z); } // icmp slt (A + -1), Op1 -> icmp sle A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && match(B, m_AllOnes())) return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && match(B, m_AllOnes())) return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); // icmp sle (A + 1), Op1 -> icmp slt A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); // icmp sgt Op0, (C + -1) -> icmp sge Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && match(D, m_AllOnes())) return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); // icmp sle Op0, (C + -1) -> icmp slt Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && match(D, m_AllOnes())) return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); // icmp sge Op0, (C + 1) -> icmp sgt Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); // icmp slt Op0, (C + 1) -> icmp sle Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); // TODO: The subtraction-related identities shown below also hold, but // canonicalization from (X -nuw 1) to (X + -1) means that the combinations // wouldn't happen even if they were implemented. // // icmp ult (A - 1), Op1 -> icmp ule A, Op1 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C // icmp ule Op0, (C - 1) -> icmp ult Op0, C // icmp ule (A + 1), Op0 -> icmp ult A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); // icmp uge Op0, (C + 1) -> icmp ugt Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); // icmp ult Op0, (C + 1) -> icmp ule Op0, C if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); // if C1 has greater magnitude than C2: // icmp (A + C1), (C + C2) -> icmp (A + C3), C // s.t. C3 = C1 - C2 // // if C2 has greater magnitude than C1: // icmp (A + C1), (C + C2) -> icmp A, (C + C3) // s.t. C3 = C2 - C1 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { const APInt *AP1, *AP2; // TODO: Support non-uniform vectors. // TODO: Allow poison passthrough if B or D's element is poison. if (match(B, m_APIntAllowPoison(AP1)) && match(D, m_APIntAllowPoison(AP2)) && AP1->isNegative() == AP2->isNegative()) { APInt AP1Abs = AP1->abs(); APInt AP2Abs = AP2->abs(); if (AP1Abs.uge(AP2Abs)) { APInt Diff = *AP1 - *AP2; Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); Value *NewAdd = Builder.CreateAdd( A, C3, "", Op0HasNUW && Diff.ule(*AP1), Op0HasNSW); return new ICmpInst(Pred, NewAdd, C); } else { APInt Diff = *AP2 - *AP1; Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); Value *NewAdd = Builder.CreateAdd( C, C3, "", Op1HasNUW && Diff.ule(*AP2), Op1HasNSW); return new ICmpInst(Pred, A, NewAdd); } } Constant *Cst1, *Cst2; if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && ICmpInst::isEquality(Pred)) { Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); Value *NewAdd = Builder.CreateAdd(C, Diff); return new ICmpInst(Pred, A, NewAdd); } } // Analyze the case when either Op0 or Op1 is a sub instruction. // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). A = nullptr; B = nullptr; C = nullptr; D = nullptr; if (BO0 && BO0->getOpcode() == Instruction::Sub) { A = BO0->getOperand(0); B = BO0->getOperand(1); } if (BO1 && BO1->getOpcode() == Instruction::Sub) { C = BO1->getOperand(0); D = BO1->getOperand(1); } // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. if (A == Op1 && NoOp0WrapProblem) return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. if (C == Op0 && NoOp1WrapProblem) return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); // Convert sub-with-unsigned-overflow comparisons into a comparison of args. // (A - B) u>/u<= A --> B u>/u<= A if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) return new ICmpInst(Pred, B, A); // C u= (C - D) --> C u= D if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) return new ICmpInst(Pred, C, D); // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && isKnownNonZero(B, Q)) return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); // C u<=/u> (C - D) --> C u= D iff B != 0 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && isKnownNonZero(D, Q)) return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) return new ICmpInst(Pred, A, C); // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) return new ICmpInst(Pred, D, B); // icmp (0-X) < cst --> x > -cst if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { Value *X; if (match(BO0, m_Neg(m_Value(X)))) if (Constant *RHSC = dyn_cast(Op1)) if (RHSC->isNotMinSignedValue()) return new ICmpInst(I.getSwappedPredicate(), X, ConstantExpr::getNeg(RHSC)); } if (Instruction * R = foldICmpXorXX(I, Q, *this)) return R; if (Instruction *R = foldICmpOrXX(I, Q, *this)) return R; { // Try to remove shared multiplier from comparison: // X * Z u{lt/le/gt/ge}/eq/ne Y * Z Value *X, *Y, *Z; if (Pred == ICmpInst::getUnsignedPredicate(Pred) && ((match(Op0, m_Mul(m_Value(X), m_Value(Z))) && match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))) || (match(Op0, m_Mul(m_Value(Z), m_Value(X))) && match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))))) { bool NonZero; if (ICmpInst::isEquality(Pred)) { KnownBits ZKnown = computeKnownBits(Z, 0, &I); // if Z % 2 != 0 // X * Z eq/ne Y * Z -> X eq/ne Y if (ZKnown.countMaxTrailingZeros() == 0) return new ICmpInst(Pred, X, Y); NonZero = !ZKnown.One.isZero() || isKnownNonZero(Z, Q); // if Z != 0 and nsw(X * Z) and nsw(Y * Z) // X * Z eq/ne Y * Z -> X eq/ne Y if (NonZero && BO0 && BO1 && Op0HasNSW && Op1HasNSW) return new ICmpInst(Pred, X, Y); } else NonZero = isKnownNonZero(Z, Q); // If Z != 0 and nuw(X * Z) and nuw(Y * Z) // X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y if (NonZero && BO0 && BO1 && Op0HasNUW && Op1HasNUW) return new ICmpInst(Pred, X, Y); } } BinaryOperator *SRem = nullptr; // icmp (srem X, Y), Y if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) SRem = BO0; // icmp Y, (srem X, Y) else if (BO1 && BO1->getOpcode() == Instruction::SRem && Op0 == BO1->getOperand(1)) SRem = BO1; if (SRem) { // We don't check hasOneUse to avoid increasing register pressure because // the value we use is the same value this instruction was already using. switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { default: break; case ICmpInst::ICMP_EQ: return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); case ICmpInst::ICMP_NE: return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), Constant::getAllOnesValue(SRem->getType())); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), Constant::getNullValue(SRem->getType())); } } if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && (BO0->hasOneUse() || BO1->hasOneUse()) && BO0->getOperand(1) == BO1->getOperand(1)) { switch (BO0->getOpcode()) { default: break; case Instruction::Add: case Instruction::Sub: case Instruction::Xor: { if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); const APInt *C; if (match(BO0->getOperand(1), m_APInt(C))) { // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b if (C->isSignMask()) { ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); } // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); NewPred = I.getSwappedPredicate(NewPred); return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); } } break; } case Instruction::Mul: { if (!I.isEquality()) break; const APInt *C; if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && !C->isOne()) { // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) // Mask = -1 >> count-trailing-zeros(C). if (unsigned TZs = C->countr_zero()) { Constant *Mask = ConstantInt::get( BO0->getType(), APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); return new ICmpInst(Pred, And1, And2); } } break; } case Instruction::UDiv: case Instruction::LShr: if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) break; return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); case Instruction::SDiv: if (!(I.isEquality() || match(BO0->getOperand(1), m_NonNegative())) || !BO0->isExact() || !BO1->isExact()) break; return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); case Instruction::AShr: if (!BO0->isExact() || !BO1->isExact()) break; return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); case Instruction::Shl: { bool NUW = Op0HasNUW && Op1HasNUW; bool NSW = Op0HasNSW && Op1HasNSW; if (!NUW && !NSW) break; if (!NSW && I.isSigned()) break; return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); } } } if (BO0) { // Transform A & (L - 1) `ult` L --> L != 0 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); auto BitwiseAnd = m_c_And(m_Value(), LSubOne); if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { auto *Zero = Constant::getNullValue(BO0->getType()); return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); } } // For unsigned predicates / eq / ne: // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0 // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x if (!ICmpInst::isSigned(Pred)) { if (match(Op0, m_Shl(m_Specific(Op1), m_One()))) return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1, Constant::getNullValue(Op1->getType())); else if (match(Op1, m_Shl(m_Specific(Op0), m_One()))) return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Constant::getNullValue(Op0->getType()), Op0); } if (Value *V = foldMultiplicationOverflowCheck(I)) return replaceInstUsesWith(I, V); if (Instruction *R = foldICmpAndXX(I, Q, *this)) return R; if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) return replaceInstUsesWith(I, V); if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) return replaceInstUsesWith(I, V); return nullptr; } /// Fold icmp Pred min|max(X, Y), Z. Instruction *InstCombinerImpl::foldICmpWithMinMax(Instruction &I, MinMaxIntrinsic *MinMax, Value *Z, ICmpInst::Predicate Pred) { Value *X = MinMax->getLHS(); Value *Y = MinMax->getRHS(); if (ICmpInst::isSigned(Pred) && !MinMax->isSigned()) return nullptr; if (ICmpInst::isUnsigned(Pred) && MinMax->isSigned()) { // Revert the transform signed pred -> unsigned pred // TODO: We can flip the signedness of predicate if both operands of icmp // are negative. if (isKnownNonNegative(Z, SQ.getWithInstruction(&I)) && isKnownNonNegative(MinMax, SQ.getWithInstruction(&I))) { Pred = ICmpInst::getFlippedSignednessPredicate(Pred); } else return nullptr; } SimplifyQuery Q = SQ.getWithInstruction(&I); auto IsCondKnownTrue = [](Value *Val) -> std::optional { if (!Val) return std::nullopt; if (match(Val, m_One())) return true; if (match(Val, m_Zero())) return false; return std::nullopt; }; auto CmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred, X, Z, Q)); auto CmpYZ = IsCondKnownTrue(simplifyICmpInst(Pred, Y, Z, Q)); if (!CmpXZ.has_value() && !CmpYZ.has_value()) return nullptr; if (!CmpXZ.has_value()) { std::swap(X, Y); std::swap(CmpXZ, CmpYZ); } auto FoldIntoCmpYZ = [&]() -> Instruction * { if (CmpYZ.has_value()) return replaceInstUsesWith(I, ConstantInt::getBool(I.getType(), *CmpYZ)); return ICmpInst::Create(Instruction::ICmp, Pred, Y, Z); }; switch (Pred) { case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: { // If X == Z: // Expr Result // min(X, Y) == Z X <= Y // max(X, Y) == Z X >= Y // min(X, Y) != Z X > Y // max(X, Y) != Z X < Y if ((Pred == ICmpInst::ICMP_EQ) == *CmpXZ) { ICmpInst::Predicate NewPred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); if (Pred == ICmpInst::ICMP_NE) NewPred = ICmpInst::getInversePredicate(NewPred); return ICmpInst::Create(Instruction::ICmp, NewPred, X, Y); } // Otherwise (X != Z): ICmpInst::Predicate NewPred = MinMax->getPredicate(); auto MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q)); if (!MinMaxCmpXZ.has_value()) { std::swap(X, Y); std::swap(CmpXZ, CmpYZ); // Re-check pre-condition X != Z if (!CmpXZ.has_value() || (Pred == ICmpInst::ICMP_EQ) == *CmpXZ) break; MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q)); } if (!MinMaxCmpXZ.has_value()) break; if (*MinMaxCmpXZ) { // Expr Fact Result // min(X, Y) == Z X < Z false // max(X, Y) == Z X > Z false // min(X, Y) != Z X < Z true // max(X, Y) != Z X > Z true return replaceInstUsesWith( I, ConstantInt::getBool(I.getType(), Pred == ICmpInst::ICMP_NE)); } else { // Expr Fact Result // min(X, Y) == Z X > Z Y == Z // max(X, Y) == Z X < Z Y == Z // min(X, Y) != Z X > Z Y != Z // max(X, Y) != Z X < Z Y != Z return FoldIntoCmpYZ(); } break; } case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_UGE: { bool IsSame = MinMax->getPredicate() == ICmpInst::getStrictPredicate(Pred); if (*CmpXZ) { if (IsSame) { // Expr Fact Result // min(X, Y) < Z X < Z true // min(X, Y) <= Z X <= Z true // max(X, Y) > Z X > Z true // max(X, Y) >= Z X >= Z true return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); } else { // Expr Fact Result // max(X, Y) < Z X < Z Y < Z // max(X, Y) <= Z X <= Z Y <= Z // min(X, Y) > Z X > Z Y > Z // min(X, Y) >= Z X >= Z Y >= Z return FoldIntoCmpYZ(); } } else { if (IsSame) { // Expr Fact Result // min(X, Y) < Z X >= Z Y < Z // min(X, Y) <= Z X > Z Y <= Z // max(X, Y) > Z X <= Z Y > Z // max(X, Y) >= Z X < Z Y >= Z return FoldIntoCmpYZ(); } else { // Expr Fact Result // max(X, Y) < Z X >= Z false // max(X, Y) <= Z X > Z false // min(X, Y) > Z X <= Z false // min(X, Y) >= Z X < Z false return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); } } break; } default: break; } return nullptr; } // Canonicalize checking for a power-of-2-or-zero value: static Instruction *foldICmpPow2Test(ICmpInst &I, InstCombiner::BuilderTy &Builder) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); const CmpInst::Predicate Pred = I.getPredicate(); Value *A = nullptr; bool CheckIs; if (I.isEquality()) { // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), m_Deferred(A)))) || !match(Op1, m_ZeroInt())) A = nullptr; // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) A = Op1; else if (match(Op1, m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) A = Op0; CheckIs = Pred == ICmpInst::ICMP_EQ; } else if (ICmpInst::isUnsigned(Pred)) { // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants) // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants) if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && match(Op0, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1), m_AllOnes()), m_Specific(Op1))))) { A = Op1; CheckIs = Pred == ICmpInst::ICMP_UGE; } else if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && match(Op1, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0), m_AllOnes()), m_Specific(Op0))))) { A = Op0; CheckIs = Pred == ICmpInst::ICMP_ULE; } } if (A) { Type *Ty = A->getType(); CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); return CheckIs ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); } return nullptr; } Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { if (!I.isEquality()) return nullptr; Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); const CmpInst::Predicate Pred = I.getPredicate(); Value *A, *B, *C, *D; if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 Value *OtherVal = A == Op1 ? B : A; return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); } if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { // A^c1 == C^c2 --> A == C^(c1^c2) ConstantInt *C1, *C2; if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); Value *Xor = Builder.CreateXor(C, NC); return new ICmpInst(Pred, A, Xor); } // A^B == A^D -> B == D if (A == C) return new ICmpInst(Pred, B, D); if (A == D) return new ICmpInst(Pred, B, C); if (B == C) return new ICmpInst(Pred, A, D); if (B == D) return new ICmpInst(Pred, A, C); } } if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { // A == (A^B) -> B == 0 Value *OtherVal = A == Op0 ? B : A; return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); } // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 if (match(Op0, m_And(m_Value(A), m_Value(B))) && match(Op1, m_And(m_Value(C), m_Value(D)))) { Value *X = nullptr, *Y = nullptr, *Z = nullptr; if (A == C) { X = B; Y = D; Z = A; } else if (A == D) { X = B; Y = C; Z = A; } else if (B == C) { X = A; Y = D; Z = B; } else if (B == D) { X = A; Y = C; Z = B; } if (X) { // If X^Y is a negative power of two, then `icmp eq/ne (Z & NegP2), 0` // will fold to `icmp ult/uge Z, -NegP2` incurringb no additional // instructions. const APInt *C0, *C1; bool XorIsNegP2 = match(X, m_APInt(C0)) && match(Y, m_APInt(C1)) && (*C0 ^ *C1).isNegatedPowerOf2(); // If either Op0/Op1 are both one use or X^Y will constant fold and one of // Op0/Op1 are one use, proceed. In those cases we are instruction neutral // but `icmp eq/ne A, 0` is easier to analyze than `icmp eq/ne A, B`. int UseCnt = int(Op0->hasOneUse()) + int(Op1->hasOneUse()) + (int(match(X, m_ImmConstant()) && match(Y, m_ImmConstant()))); if (XorIsNegP2 || UseCnt >= 2) { // Build (X^Y) & Z Op1 = Builder.CreateXor(X, Y); Op1 = Builder.CreateAnd(Op1, Z); return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); } } } { // Similar to above, but specialized for constant because invert is needed: // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 Value *X, *Y; Constant *C; if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { Value *Xor = Builder.CreateXor(X, Y); Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); } } if (match(Op1, m_ZExt(m_Value(A))) && (Op0->hasOneUse() || Op1->hasOneUse())) { // (B & (Pow2C-1)) == zext A --> A == trunc B // (B & (Pow2C-1)) != zext A --> A != trunc B const APInt *MaskC; if (match(Op0, m_And(m_Value(B), m_LowBitMask(MaskC))) && MaskC->countr_one() == A->getType()->getScalarSizeInBits()) return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); } // (A >> C) == (B >> C) --> (A^B) u< (1 << C) // For lshr and ashr pairs. const APInt *AP1, *AP2; if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowPoison(AP1)))) && match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowPoison(AP2))))) || (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowPoison(AP1)))) && match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowPoison(AP2)))))) { if (AP1 != AP2) return nullptr; unsigned TypeBits = AP1->getBitWidth(); unsigned ShAmt = AP1->getLimitedValue(TypeBits); if (ShAmt < TypeBits && ShAmt != 0) { ICmpInst::Predicate NewPred = Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal)); } } // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 ConstantInt *Cst1; if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { unsigned TypeBits = Cst1->getBitWidth(); unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); if (ShAmt < TypeBits && ShAmt != 0) { Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), I.getName() + ".mask"); return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); } } // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to // "icmp (and X, mask), cst" uint64_t ShAmt = 0; if (Op0->hasOneUse() && match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && match(Op1, m_ConstantInt(Cst1)) && // Only do this when A has multiple uses. This is most important to do // when it exposes other optimizations. !A->hasOneUse()) { unsigned ASize = cast(A->getType())->getPrimitiveSizeInBits(); if (ShAmt < ASize) { APInt MaskV = APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); MaskV <<= ShAmt; APInt CmpV = Cst1->getValue().zext(ASize); CmpV <<= ShAmt; Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); } } if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I, Builder)) return ICmp; // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps // of instcombine. unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && A->getType()->getScalarSizeInBits() == BitWidth * 2 && (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE, Add, ConstantInt::get(A->getType(), C.shl(1))); } // Canonicalize: // Assume B_Pow2 != 0 // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0 // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())) && isKnownToBeAPowerOfTwo(Op1, /* OrZero */ false, 0, &I)) return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0, ConstantInt::getNullValue(Op0->getType())); if (match(Op1, m_c_And(m_Specific(Op0), m_Value())) && isKnownToBeAPowerOfTwo(Op0, /* OrZero */ false, 0, &I)) return new ICmpInst(CmpInst::getInversePredicate(Pred), Op1, ConstantInt::getNullValue(Op1->getType())); // Canonicalize: // icmp eq/ne X, OneUse(rotate-right(X)) // -> icmp eq/ne X, rotate-left(X) // We generally try to convert rotate-right -> rotate-left, this just // canonicalizes another case. CmpInst::Predicate PredUnused = Pred; if (match(&I, m_c_ICmp(PredUnused, m_Value(A), m_OneUse(m_Intrinsic( m_Deferred(A), m_Deferred(A), m_Value(B)))))) return new ICmpInst( Pred, A, Builder.CreateIntrinsic(Op0->getType(), Intrinsic::fshl, {A, A, B})); // Canonicalize: // icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst Constant *Cst; if (match(&I, m_c_ICmp(PredUnused, m_OneUse(m_Xor(m_Value(A), m_ImmConstant(Cst))), m_CombineAnd(m_Value(B), m_Unless(m_ImmConstant()))))) return new ICmpInst(Pred, Builder.CreateXor(A, B), Cst); { // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) auto m_Matcher = m_CombineOr(m_CombineOr(m_c_Add(m_Value(B), m_Deferred(A)), m_c_Xor(m_Value(B), m_Deferred(A))), m_Sub(m_Value(B), m_Deferred(A))); std::optional IsZero = std::nullopt; if (match(&I, m_c_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)), m_Deferred(A)))) IsZero = false; // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) else if (match(&I, m_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)), m_Zero()))) IsZero = true; if (IsZero && isKnownToBeAPowerOfTwo(A, /* OrZero */ true, /*Depth*/ 0, &I)) // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) // -> (icmp eq/ne (and X, P2), 0) // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) // -> (icmp eq/ne (and X, P2), P2) return new ICmpInst(Pred, Builder.CreateAnd(B, A), *IsZero ? A : ConstantInt::getNullValue(A->getType())); } return nullptr; } Instruction *InstCombinerImpl::foldICmpWithTrunc(ICmpInst &ICmp) { ICmpInst::Predicate Pred = ICmp.getPredicate(); Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); // Try to canonicalize trunc + compare-to-constant into a mask + cmp. // The trunc masks high bits while the compare may effectively mask low bits. Value *X; const APInt *C; if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) return nullptr; // This matches patterns corresponding to tests of the signbit as well as: // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) APInt Mask; if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { Value *And = Builder.CreateAnd(X, Mask); Constant *Zero = ConstantInt::getNullValue(X->getType()); return new ICmpInst(Pred, And, Zero); } unsigned SrcBits = X->getType()->getScalarSizeInBits(); if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { // If C is a negative power-of-2 (high-bit mask): // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); Value *And = Builder.CreateAnd(X, MaskC); return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); } if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { // If C is not-of-power-of-2 (one clear bit): // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); Value *And = Builder.CreateAnd(X, MaskC); return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); } if (auto *II = dyn_cast(X)) { if (II->getIntrinsicID() == Intrinsic::cttz || II->getIntrinsicID() == Intrinsic::ctlz) { unsigned MaxRet = SrcBits; // If the "is_zero_poison" argument is set, then we know at least // one bit is set in the input, so the result is always at least one // less than the full bitwidth of that input. if (match(II->getArgOperand(1), m_One())) MaxRet--; // Make sure the destination is wide enough to hold the largest output of // the intrinsic. if (llvm::Log2_32(MaxRet) + 1 <= Op0->getType()->getScalarSizeInBits()) if (Instruction *I = foldICmpIntrinsicWithConstant(ICmp, II, C->zext(SrcBits))) return I; } } return nullptr; } Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { assert(isa(ICmp.getOperand(0)) && "Expected cast for operand 0"); auto *CastOp0 = cast(ICmp.getOperand(0)); Value *X; if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) return nullptr; bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; bool IsSignedCmp = ICmp.isSigned(); // icmp Pred (ext X), (ext Y) Value *Y; if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { bool IsZext0 = isa(ICmp.getOperand(0)); bool IsZext1 = isa(ICmp.getOperand(1)); if (IsZext0 != IsZext1) { // If X and Y and both i1 // (icmp eq/ne (zext X) (sext Y)) // eq -> (icmp eq (or X, Y), 0) // ne -> (icmp ne (or X, Y), 0) if (ICmp.isEquality() && X->getType()->isIntOrIntVectorTy(1) && Y->getType()->isIntOrIntVectorTy(1)) return new ICmpInst(ICmp.getPredicate(), Builder.CreateOr(X, Y), Constant::getNullValue(X->getType())); // If we have mismatched casts and zext has the nneg flag, we can // treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit. auto *NonNegInst0 = dyn_cast(ICmp.getOperand(0)); auto *NonNegInst1 = dyn_cast(ICmp.getOperand(1)); bool IsNonNeg0 = NonNegInst0 && NonNegInst0->hasNonNeg(); bool IsNonNeg1 = NonNegInst1 && NonNegInst1->hasNonNeg(); if ((IsZext0 && IsNonNeg0) || (IsZext1 && IsNonNeg1)) IsSignedExt = true; else return nullptr; } // Not an extension from the same type? Type *XTy = X->getType(), *YTy = Y->getType(); if (XTy != YTy) { // One of the casts must have one use because we are creating a new cast. if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) return nullptr; // Extend the narrower operand to the type of the wider operand. CastInst::CastOps CastOpcode = IsSignedExt ? Instruction::SExt : Instruction::ZExt; if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) X = Builder.CreateCast(CastOpcode, X, YTy); else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) Y = Builder.CreateCast(CastOpcode, Y, XTy); else return nullptr; } // (zext X) == (zext Y) --> X == Y // (sext X) == (sext Y) --> X == Y if (ICmp.isEquality()) return new ICmpInst(ICmp.getPredicate(), X, Y); // A signed comparison of sign extended values simplifies into a // signed comparison. if (IsSignedCmp && IsSignedExt) return new ICmpInst(ICmp.getPredicate(), X, Y); // The other three cases all fold into an unsigned comparison. return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); } // Below here, we are only folding a compare with constant. auto *C = dyn_cast(ICmp.getOperand(1)); if (!C) return nullptr; // If a lossless truncate is possible... Type *SrcTy = CastOp0->getSrcTy(); Constant *Res = getLosslessTrunc(C, SrcTy, CastOp0->getOpcode()); if (Res) { if (ICmp.isEquality()) return new ICmpInst(ICmp.getPredicate(), X, Res); // A signed comparison of sign extended values simplifies into a // signed comparison. if (IsSignedExt && IsSignedCmp) return new ICmpInst(ICmp.getPredicate(), X, Res); // The other three cases all fold into an unsigned comparison. return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res); } // The re-extended constant changed, partly changed (in the case of a vector), // or could not be determined to be equal (in the case of a constant // expression), so the constant cannot be represented in the shorter type. // All the cases that fold to true or false will have already been handled // by simplifyICmpInst, so only deal with the tricky case. if (IsSignedCmp || !IsSignedExt || !isa(C)) return nullptr; // Is source op positive? // icmp ult (sext X), C --> icmp sgt X, -1 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); // Is source op negative? // icmp ugt (sext X), C --> icmp slt X, 0 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); } /// Handle icmp (cast x), (cast or constant). Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { // If any operand of ICmp is a inttoptr roundtrip cast then remove it as // icmp compares only pointer's value. // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); if (SimplifiedOp0 || SimplifiedOp1) return new ICmpInst(ICmp.getPredicate(), SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); auto *CastOp0 = dyn_cast(ICmp.getOperand(0)); if (!CastOp0) return nullptr; if (!isa(ICmp.getOperand(1)) && !isa(ICmp.getOperand(1))) return nullptr; Value *Op0Src = CastOp0->getOperand(0); Type *SrcTy = CastOp0->getSrcTy(); Type *DestTy = CastOp0->getDestTy(); // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the // integer type is the same size as the pointer type. auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { if (isa(SrcTy)) { SrcTy = cast(SrcTy)->getElementType(); DestTy = cast(DestTy)->getElementType(); } return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); }; if (CastOp0->getOpcode() == Instruction::PtrToInt && CompatibleSizes(SrcTy, DestTy)) { Value *NewOp1 = nullptr; if (auto *PtrToIntOp1 = dyn_cast(ICmp.getOperand(1))) { Value *PtrSrc = PtrToIntOp1->getOperand(0); if (PtrSrc->getType() == Op0Src->getType()) NewOp1 = PtrToIntOp1->getOperand(0); } else if (auto *RHSC = dyn_cast(ICmp.getOperand(1))) { NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); } if (NewOp1) return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); } if (Instruction *R = foldICmpWithTrunc(ICmp)) return R; return foldICmpWithZextOrSext(ICmp); } static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned) { switch (BinaryOp) { default: llvm_unreachable("Unsupported binary op"); case Instruction::Add: case Instruction::Sub: return match(RHS, m_Zero()); case Instruction::Mul: return !(RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) && match(RHS, m_One()); } } OverflowResult InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const { switch (BinaryOp) { default: llvm_unreachable("Unsupported binary op"); case Instruction::Add: if (IsSigned) return computeOverflowForSignedAdd(LHS, RHS, CxtI); else return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); case Instruction::Sub: if (IsSigned) return computeOverflowForSignedSub(LHS, RHS, CxtI); else return computeOverflowForUnsignedSub(LHS, RHS, CxtI); case Instruction::Mul: if (IsSigned) return computeOverflowForSignedMul(LHS, RHS, CxtI); else return computeOverflowForUnsignedMul(LHS, RHS, CxtI); } } bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction &OrigI, Value *&Result, Constant *&Overflow) { if (OrigI.isCommutative() && isa(LHS) && !isa(RHS)) std::swap(LHS, RHS); // If the overflow check was an add followed by a compare, the insertion point // may be pointing to the compare. We want to insert the new instructions // before the add in case there are uses of the add between the add and the // compare. Builder.SetInsertPoint(&OrigI); Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); if (auto *LHSTy = dyn_cast(LHS->getType())) OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); if (isNeutralValue(BinaryOp, RHS, IsSigned)) { Result = LHS; Overflow = ConstantInt::getFalse(OverflowTy); return true; } switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { case OverflowResult::MayOverflow: return false; case OverflowResult::AlwaysOverflowsLow: case OverflowResult::AlwaysOverflowsHigh: Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); Result->takeName(&OrigI); Overflow = ConstantInt::getTrue(OverflowTy); return true; case OverflowResult::NeverOverflows: Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); Result->takeName(&OrigI); Overflow = ConstantInt::getFalse(OverflowTy); if (auto *Inst = dyn_cast(Result)) { if (IsSigned) Inst->setHasNoSignedWrap(); else Inst->setHasNoUnsignedWrap(); } return true; } llvm_unreachable("Unexpected overflow result"); } /// Recognize and process idiom involving test for multiplication /// overflow. /// /// The caller has matched a pattern of the form: /// I = cmp u (mul(zext A, zext B), V /// The function checks if this is a test for overflow and if so replaces /// multiplication with call to 'mul.with.overflow' intrinsic. /// /// \param I Compare instruction. /// \param MulVal Result of 'mult' instruction. It is one of the arguments of /// the compare instruction. Must be of integer type. /// \param OtherVal The other argument of compare instruction. /// \returns Instruction which must replace the compare instruction, NULL if no /// replacement required. static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, const APInt *OtherVal, InstCombinerImpl &IC) { // Don't bother doing this transformation for pointers, don't do it for // vectors. if (!isa(MulVal->getType())) return nullptr; auto *MulInstr = dyn_cast(MulVal); if (!MulInstr) return nullptr; assert(MulInstr->getOpcode() == Instruction::Mul); auto *LHS = cast(MulInstr->getOperand(0)), *RHS = cast(MulInstr->getOperand(1)); assert(LHS->getOpcode() == Instruction::ZExt); assert(RHS->getOpcode() == Instruction::ZExt); Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); // Calculate type and width of the result produced by mul.with.overflow. Type *TyA = A->getType(), *TyB = B->getType(); unsigned WidthA = TyA->getPrimitiveSizeInBits(), WidthB = TyB->getPrimitiveSizeInBits(); unsigned MulWidth; Type *MulType; if (WidthB > WidthA) { MulWidth = WidthB; MulType = TyB; } else { MulWidth = WidthA; MulType = TyA; } // In order to replace the original mul with a narrower mul.with.overflow, // all uses must ignore upper bits of the product. The number of used low // bits must be not greater than the width of mul.with.overflow. if (MulVal->hasNUsesOrMore(2)) for (User *U : MulVal->users()) { if (U == &I) continue; if (TruncInst *TI = dyn_cast(U)) { // Check if truncation ignores bits above MulWidth. unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); if (TruncWidth > MulWidth) return nullptr; } else if (BinaryOperator *BO = dyn_cast(U)) { // Check if AND ignores bits above MulWidth. if (BO->getOpcode() != Instruction::And) return nullptr; if (ConstantInt *CI = dyn_cast(BO->getOperand(1))) { const APInt &CVal = CI->getValue(); if (CVal.getBitWidth() - CVal.countl_zero() > MulWidth) return nullptr; } else { // In this case we could have the operand of the binary operation // being defined in another block, and performing the replacement // could break the dominance relation. return nullptr; } } else { // Other uses prohibit this transformation. return nullptr; } } // Recognize patterns switch (I.getPredicate()) { case ICmpInst::ICMP_UGT: { // Recognize pattern: // mulval = mul(zext A, zext B) // cmp ugt mulval, max APInt MaxVal = APInt::getMaxValue(MulWidth); MaxVal = MaxVal.zext(OtherVal->getBitWidth()); if (MaxVal.eq(*OtherVal)) break; // Recognized return nullptr; } case ICmpInst::ICMP_ULT: { // Recognize pattern: // mulval = mul(zext A, zext B) // cmp ule mulval, max + 1 APInt MaxVal = APInt::getOneBitSet(OtherVal->getBitWidth(), MulWidth); if (MaxVal.eq(*OtherVal)) break; // Recognized return nullptr; } default: return nullptr; } InstCombiner::BuilderTy &Builder = IC.Builder; Builder.SetInsertPoint(MulInstr); // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) Value *MulA = A, *MulB = B; if (WidthA < MulWidth) MulA = Builder.CreateZExt(A, MulType); if (WidthB < MulWidth) MulB = Builder.CreateZExt(B, MulType); Function *F = Intrinsic::getDeclaration( I.getModule(), Intrinsic::umul_with_overflow, MulType); CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); IC.addToWorklist(MulInstr); // If there are uses of mul result other than the comparison, we know that // they are truncation or binary AND. Change them to use result of // mul.with.overflow and adjust properly mask/size. if (MulVal->hasNUsesOrMore(2)) { Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); for (User *U : make_early_inc_range(MulVal->users())) { if (U == &I) continue; if (TruncInst *TI = dyn_cast(U)) { if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) IC.replaceInstUsesWith(*TI, Mul); else TI->setOperand(0, Mul); } else if (BinaryOperator *BO = dyn_cast(U)) { assert(BO->getOpcode() == Instruction::And); // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) ConstantInt *CI = cast(BO->getOperand(1)); APInt ShortMask = CI->getValue().trunc(MulWidth); Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); IC.replaceInstUsesWith(*BO, Zext); } else { llvm_unreachable("Unexpected Binary operation"); } IC.addToWorklist(cast(U)); } } // The original icmp gets replaced with the overflow value, maybe inverted // depending on predicate. if (I.getPredicate() == ICmpInst::ICMP_ULT) { Value *Res = Builder.CreateExtractValue(Call, 1); return BinaryOperator::CreateNot(Res); } return ExtractValueInst::Create(Call, 1); } /// When performing a comparison against a constant, it is possible that not all /// the bits in the LHS are demanded. This helper method computes the mask that /// IS demanded. static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { const APInt *RHS; if (!match(I.getOperand(1), m_APInt(RHS))) return APInt::getAllOnes(BitWidth); // If this is a normal comparison, it demands all bits. If it is a sign bit // comparison, it only demands the sign bit. bool UnusedBit; if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) return APInt::getSignMask(BitWidth); switch (I.getPredicate()) { // For a UGT comparison, we don't care about any bits that // correspond to the trailing ones of the comparand. The value of these // bits doesn't impact the outcome of the comparison, because any value // greater than the RHS must differ in a bit higher than these due to carry. case ICmpInst::ICMP_UGT: return APInt::getBitsSetFrom(BitWidth, RHS->countr_one()); // Similarly, for a ULT comparison, we don't care about the trailing zeros. // Any value less than the RHS must differ in a higher bit because of carries. case ICmpInst::ICMP_ULT: return APInt::getBitsSetFrom(BitWidth, RHS->countr_zero()); default: return APInt::getAllOnes(BitWidth); } } /// Check that one use is in the same block as the definition and all /// other uses are in blocks dominated by a given block. /// /// \param DI Definition /// \param UI Use /// \param DB Block that must dominate all uses of \p DI outside /// the parent block /// \return true when \p UI is the only use of \p DI in the parent block /// and all other uses of \p DI are in blocks dominated by \p DB. /// bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, const Instruction *UI, const BasicBlock *DB) const { assert(DI && UI && "Instruction not defined\n"); // Ignore incomplete definitions. if (!DI->getParent()) return false; // DI and UI must be in the same block. if (DI->getParent() != UI->getParent()) return false; // Protect from self-referencing blocks. if (DI->getParent() == DB) return false; for (const User *U : DI->users()) { auto *Usr = cast(U); if (Usr != UI && !DT.dominates(DB, Usr->getParent())) return false; } return true; } /// Return true when the instruction sequence within a block is select-cmp-br. static bool isChainSelectCmpBranch(const SelectInst *SI) { const BasicBlock *BB = SI->getParent(); if (!BB) return false; auto *BI = dyn_cast_or_null(BB->getTerminator()); if (!BI || BI->getNumSuccessors() != 2) return false; auto *IC = dyn_cast(BI->getCondition()); if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) return false; return true; } /// True when a select result is replaced by one of its operands /// in select-icmp sequence. This will eventually result in the elimination /// of the select. /// /// \param SI Select instruction /// \param Icmp Compare instruction /// \param SIOpd Operand that replaces the select /// /// Notes: /// - The replacement is global and requires dominator information /// - The caller is responsible for the actual replacement /// /// Example: /// /// entry: /// %4 = select i1 %3, %C* %0, %C* null /// %5 = icmp eq %C* %4, null /// br i1 %5, label %9, label %7 /// ... /// ;