//===- InstCombineCalls.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the visitCall, visitInvoke, and visitCallBr functions. // //===----------------------------------------------------------------------===// #include "InstCombineInternal.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SimplifyLibCalls.h" #include #include #include #include #include #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "instcombine" STATISTIC(NumSimplified, "Number of library calls simplified"); static cl::opt GuardWideningWindow( "instcombine-guard-widening-window", cl::init(3), cl::desc("How wide an instruction window to bypass looking for " "another guard")); /// Return the specified type promoted as it would be to pass though a va_arg /// area. static Type *getPromotedType(Type *Ty) { if (IntegerType* ITy = dyn_cast(Ty)) { if (ITy->getBitWidth() < 32) return Type::getInt32Ty(Ty->getContext()); } return Ty; } /// Return a constant boolean vector that has true elements in all positions /// where the input constant data vector has an element with the sign bit set. static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) { SmallVector BoolVec; IntegerType *BoolTy = Type::getInt1Ty(V->getContext()); for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) { Constant *Elt = V->getElementAsConstant(I); assert((isa(Elt) || isa(Elt)) && "Unexpected constant data vector element type"); bool Sign = V->getElementType()->isIntegerTy() ? cast(Elt)->isNegative() : cast(Elt)->isNegative(); BoolVec.push_back(ConstantInt::get(BoolTy, Sign)); } return ConstantVector::get(BoolVec); } Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); unsigned CopyDstAlign = MI->getDestAlignment(); if (CopyDstAlign < DstAlign){ MI->setDestAlignment(DstAlign); return MI; } unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); unsigned CopySrcAlign = MI->getSourceAlignment(); if (CopySrcAlign < SrcAlign) { MI->setSourceAlignment(SrcAlign); return MI; } // If we have a store to a location which is known constant, we can conclude // that the store must be storing the constant value (else the memory // wouldn't be constant), and this must be a noop. if (AA->pointsToConstantMemory(MI->getDest())) { // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setLength(Constant::getNullValue(MI->getLength()->getType())); return MI; } // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with // load/store. ConstantInt *MemOpLength = dyn_cast(MI->getLength()); if (!MemOpLength) return nullptr; // Source and destination pointer types are always "i8*" for intrinsic. See // if the size is something we can handle with a single primitive load/store. // A single load+store correctly handles overlapping memory in the memmove // case. uint64_t Size = MemOpLength->getLimitedValue(); assert(Size && "0-sized memory transferring should be removed already."); if (Size > 8 || (Size&(Size-1))) return nullptr; // If not 1/2/4/8 bytes, exit. // If it is an atomic and alignment is less than the size then we will // introduce the unaligned memory access which will be later transformed // into libcall in CodeGen. This is not evident performance gain so disable // it now. if (isa(MI)) if (CopyDstAlign < Size || CopySrcAlign < Size) return nullptr; // Use an integer load+store unless we can find something better. unsigned SrcAddrSp = cast(MI->getArgOperand(1)->getType())->getAddressSpace(); unsigned DstAddrSp = cast(MI->getArgOperand(0)->getType())->getAddressSpace(); IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); // If the memcpy has metadata describing the members, see if we can get the // TBAA tag describing our copy. MDNode *CopyMD = nullptr; if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) { CopyMD = M; } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { if (M->getNumOperands() == 3 && M->getOperand(0) && mdconst::hasa(M->getOperand(0)) && mdconst::extract(M->getOperand(0))->isZero() && M->getOperand(1) && mdconst::hasa(M->getOperand(1)) && mdconst::extract(M->getOperand(1))->getValue() == Size && M->getOperand(2) && isa(M->getOperand(2))) CopyMD = cast(M->getOperand(2)); } Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); LoadInst *L = Builder.CreateLoad(IntType, Src); // Alignment from the mem intrinsic will be better, so use it. L->setAlignment( MaybeAlign(CopySrcAlign)); // FIXME: Check if we can use Align instead. if (CopyMD) L->setMetadata(LLVMContext::MD_tbaa, CopyMD); MDNode *LoopMemParallelMD = MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); if (LoopMemParallelMD) L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); if (AccessGroupMD) L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); StoreInst *S = Builder.CreateStore(L, Dest); // Alignment from the mem intrinsic will be better, so use it. S->setAlignment( MaybeAlign(CopyDstAlign)); // FIXME: Check if we can use Align instead. if (CopyMD) S->setMetadata(LLVMContext::MD_tbaa, CopyMD); if (LoopMemParallelMD) S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); if (AccessGroupMD) S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); if (auto *MT = dyn_cast(MI)) { // non-atomics can be volatile L->setVolatile(MT->isVolatile()); S->setVolatile(MT->isVolatile()); } if (isa(MI)) { // atomics have to be unordered L->setOrdering(AtomicOrdering::Unordered); S->setOrdering(AtomicOrdering::Unordered); } // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setLength(Constant::getNullValue(MemOpLength->getType())); return MI; } Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) { const unsigned KnownAlignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); if (MI->getDestAlignment() < KnownAlignment) { MI->setDestAlignment(KnownAlignment); return MI; } // If we have a store to a location which is known constant, we can conclude // that the store must be storing the constant value (else the memory // wouldn't be constant), and this must be a noop. if (AA->pointsToConstantMemory(MI->getDest())) { // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setLength(Constant::getNullValue(MI->getLength()->getType())); return MI; } // Extract the length and alignment and fill if they are constant. ConstantInt *LenC = dyn_cast(MI->getLength()); ConstantInt *FillC = dyn_cast(MI->getValue()); if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) return nullptr; const uint64_t Len = LenC->getLimitedValue(); assert(Len && "0-sized memory setting should be removed already."); const Align Alignment = assumeAligned(MI->getDestAlignment()); // If it is an atomic and alignment is less than the size then we will // introduce the unaligned memory access which will be later transformed // into libcall in CodeGen. This is not evident performance gain so disable // it now. if (isa(MI)) if (Alignment < Len) return nullptr; // memset(s,c,n) -> store s, c (for n=1,2,4,8) if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. Value *Dest = MI->getDest(); unsigned DstAddrSp = cast(Dest->getType())->getAddressSpace(); Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); Dest = Builder.CreateBitCast(Dest, NewDstPtrTy); // Extract the fill value and store. uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest, MI->isVolatile()); S->setAlignment(Alignment); if (isa(MI)) S->setOrdering(AtomicOrdering::Unordered); // Set the size of the copy to 0, it will be deleted on the next iteration. MI->setLength(Constant::getNullValue(LenC->getType())); return MI; } return nullptr; } static Value *simplifyX86immShift(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { bool LogicalShift = false; bool ShiftLeft = false; switch (II.getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic!"); case Intrinsic::x86_sse2_psra_d: case Intrinsic::x86_sse2_psra_w: case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_avx2_psra_d: case Intrinsic::x86_avx2_psra_w: case Intrinsic::x86_avx2_psrai_d: case Intrinsic::x86_avx2_psrai_w: case Intrinsic::x86_avx512_psra_q_128: case Intrinsic::x86_avx512_psrai_q_128: case Intrinsic::x86_avx512_psra_q_256: case Intrinsic::x86_avx512_psrai_q_256: case Intrinsic::x86_avx512_psra_d_512: case Intrinsic::x86_avx512_psra_q_512: case Intrinsic::x86_avx512_psra_w_512: case Intrinsic::x86_avx512_psrai_d_512: case Intrinsic::x86_avx512_psrai_q_512: case Intrinsic::x86_avx512_psrai_w_512: LogicalShift = false; ShiftLeft = false; break; case Intrinsic::x86_sse2_psrl_d: case Intrinsic::x86_sse2_psrl_q: case Intrinsic::x86_sse2_psrl_w: case Intrinsic::x86_sse2_psrli_d: case Intrinsic::x86_sse2_psrli_q: case Intrinsic::x86_sse2_psrli_w: case Intrinsic::x86_avx2_psrl_d: case Intrinsic::x86_avx2_psrl_q: case Intrinsic::x86_avx2_psrl_w: case Intrinsic::x86_avx2_psrli_d: case Intrinsic::x86_avx2_psrli_q: case Intrinsic::x86_avx2_psrli_w: case Intrinsic::x86_avx512_psrl_d_512: case Intrinsic::x86_avx512_psrl_q_512: case Intrinsic::x86_avx512_psrl_w_512: case Intrinsic::x86_avx512_psrli_d_512: case Intrinsic::x86_avx512_psrli_q_512: case Intrinsic::x86_avx512_psrli_w_512: LogicalShift = true; ShiftLeft = false; break; case Intrinsic::x86_sse2_psll_d: case Intrinsic::x86_sse2_psll_q: case Intrinsic::x86_sse2_psll_w: case Intrinsic::x86_sse2_pslli_d: case Intrinsic::x86_sse2_pslli_q: case Intrinsic::x86_sse2_pslli_w: case Intrinsic::x86_avx2_psll_d: case Intrinsic::x86_avx2_psll_q: case Intrinsic::x86_avx2_psll_w: case Intrinsic::x86_avx2_pslli_d: case Intrinsic::x86_avx2_pslli_q: case Intrinsic::x86_avx2_pslli_w: case Intrinsic::x86_avx512_psll_d_512: case Intrinsic::x86_avx512_psll_q_512: case Intrinsic::x86_avx512_psll_w_512: case Intrinsic::x86_avx512_pslli_d_512: case Intrinsic::x86_avx512_pslli_q_512: case Intrinsic::x86_avx512_pslli_w_512: LogicalShift = true; ShiftLeft = true; break; } assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); // Simplify if count is constant. auto Arg1 = II.getArgOperand(1); auto CAZ = dyn_cast(Arg1); auto CDV = dyn_cast(Arg1); auto CInt = dyn_cast(Arg1); if (!CAZ && !CDV && !CInt) return nullptr; APInt Count(64, 0); if (CDV) { // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector // operand to compute the shift amount. auto VT = cast(CDV->getType()); unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits(); assert((64 % BitWidth) == 0 && "Unexpected packed shift size"); unsigned NumSubElts = 64 / BitWidth; // Concatenate the sub-elements to create the 64-bit value. for (unsigned i = 0; i != NumSubElts; ++i) { unsigned SubEltIdx = (NumSubElts - 1) - i; auto SubElt = cast(CDV->getElementAsConstant(SubEltIdx)); Count <<= BitWidth; Count |= SubElt->getValue().zextOrTrunc(64); } } else if (CInt) Count = CInt->getValue(); auto Vec = II.getArgOperand(0); auto VT = cast(Vec->getType()); auto SVT = VT->getElementType(); unsigned VWidth = VT->getNumElements(); unsigned BitWidth = SVT->getPrimitiveSizeInBits(); // If shift-by-zero then just return the original value. if (Count.isNullValue()) return Vec; // Handle cases when Shift >= BitWidth. if (Count.uge(BitWidth)) { // If LogicalShift - just return zero. if (LogicalShift) return ConstantAggregateZero::get(VT); // If ArithmeticShift - clamp Shift to (BitWidth - 1). Count = APInt(64, BitWidth - 1); } // Get a constant vector of the same type as the first operand. auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth)); auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt); if (ShiftLeft) return Builder.CreateShl(Vec, ShiftVec); if (LogicalShift) return Builder.CreateLShr(Vec, ShiftVec); return Builder.CreateAShr(Vec, ShiftVec); } // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift. // Unlike the generic IR shifts, the intrinsics have defined behaviour for out // of range shift amounts (logical - set to zero, arithmetic - splat sign bit). static Value *simplifyX86varShift(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { bool LogicalShift = false; bool ShiftLeft = false; switch (II.getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic!"); case Intrinsic::x86_avx2_psrav_d: case Intrinsic::x86_avx2_psrav_d_256: case Intrinsic::x86_avx512_psrav_q_128: case Intrinsic::x86_avx512_psrav_q_256: case Intrinsic::x86_avx512_psrav_d_512: case Intrinsic::x86_avx512_psrav_q_512: case Intrinsic::x86_avx512_psrav_w_128: case Intrinsic::x86_avx512_psrav_w_256: case Intrinsic::x86_avx512_psrav_w_512: LogicalShift = false; ShiftLeft = false; break; case Intrinsic::x86_avx2_psrlv_d: case Intrinsic::x86_avx2_psrlv_d_256: case Intrinsic::x86_avx2_psrlv_q: case Intrinsic::x86_avx2_psrlv_q_256: case Intrinsic::x86_avx512_psrlv_d_512: case Intrinsic::x86_avx512_psrlv_q_512: case Intrinsic::x86_avx512_psrlv_w_128: case Intrinsic::x86_avx512_psrlv_w_256: case Intrinsic::x86_avx512_psrlv_w_512: LogicalShift = true; ShiftLeft = false; break; case Intrinsic::x86_avx2_psllv_d: case Intrinsic::x86_avx2_psllv_d_256: case Intrinsic::x86_avx2_psllv_q: case Intrinsic::x86_avx2_psllv_q_256: case Intrinsic::x86_avx512_psllv_d_512: case Intrinsic::x86_avx512_psllv_q_512: case Intrinsic::x86_avx512_psllv_w_128: case Intrinsic::x86_avx512_psllv_w_256: case Intrinsic::x86_avx512_psllv_w_512: LogicalShift = true; ShiftLeft = true; break; } assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); // Simplify if all shift amounts are constant/undef. auto *CShift = dyn_cast(II.getArgOperand(1)); if (!CShift) return nullptr; auto Vec = II.getArgOperand(0); auto VT = cast(II.getType()); auto SVT = VT->getVectorElementType(); int NumElts = VT->getNumElements(); int BitWidth = SVT->getIntegerBitWidth(); // Collect each element's shift amount. // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth. bool AnyOutOfRange = false; SmallVector ShiftAmts; for (int I = 0; I < NumElts; ++I) { auto *CElt = CShift->getAggregateElement(I); if (CElt && isa(CElt)) { ShiftAmts.push_back(-1); continue; } auto *COp = dyn_cast_or_null(CElt); if (!COp) return nullptr; // Handle out of range shifts. // If LogicalShift - set to BitWidth (special case). // If ArithmeticShift - set to (BitWidth - 1) (sign splat). APInt ShiftVal = COp->getValue(); if (ShiftVal.uge(BitWidth)) { AnyOutOfRange = LogicalShift; ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1); continue; } ShiftAmts.push_back((int)ShiftVal.getZExtValue()); } // If all elements out of range or UNDEF, return vector of zeros/undefs. // ArithmeticShift should only hit this if they are all UNDEF. auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); }; if (llvm::all_of(ShiftAmts, OutOfRange)) { SmallVector ConstantVec; for (int Idx : ShiftAmts) { if (Idx < 0) { ConstantVec.push_back(UndefValue::get(SVT)); } else { assert(LogicalShift && "Logical shift expected"); ConstantVec.push_back(ConstantInt::getNullValue(SVT)); } } return ConstantVector::get(ConstantVec); } // We can't handle only some out of range values with generic logical shifts. if (AnyOutOfRange) return nullptr; // Build the shift amount constant vector. SmallVector ShiftVecAmts; for (int Idx : ShiftAmts) { if (Idx < 0) ShiftVecAmts.push_back(UndefValue::get(SVT)); else ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx)); } auto ShiftVec = ConstantVector::get(ShiftVecAmts); if (ShiftLeft) return Builder.CreateShl(Vec, ShiftVec); if (LogicalShift) return Builder.CreateLShr(Vec, ShiftVec); return Builder.CreateAShr(Vec, ShiftVec); } static Value *simplifyX86pack(IntrinsicInst &II, InstCombiner::BuilderTy &Builder, bool IsSigned) { Value *Arg0 = II.getArgOperand(0); Value *Arg1 = II.getArgOperand(1); Type *ResTy = II.getType(); // Fast all undef handling. if (isa(Arg0) && isa(Arg1)) return UndefValue::get(ResTy); Type *ArgTy = Arg0->getType(); unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128; unsigned NumSrcElts = ArgTy->getVectorNumElements(); assert(ResTy->getVectorNumElements() == (2 * NumSrcElts) && "Unexpected packing types"); unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes; unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits(); unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits(); assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) && "Unexpected packing types"); // Constant folding. if (!isa(Arg0) || !isa(Arg1)) return nullptr; // Clamp Values - signed/unsigned both use signed clamp values, but they // differ on the min/max values. APInt MinValue, MaxValue; if (IsSigned) { // PACKSS: Truncate signed value with signed saturation. // Source values less than dst minint are saturated to minint. // Source values greater than dst maxint are saturated to maxint. MinValue = APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); MaxValue = APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); } else { // PACKUS: Truncate signed value with unsigned saturation. // Source values less than zero are saturated to zero. // Source values greater than dst maxuint are saturated to maxuint. MinValue = APInt::getNullValue(SrcScalarSizeInBits); MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits); } auto *MinC = Constant::getIntegerValue(ArgTy, MinValue); auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue); Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0); Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1); Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0); Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1); // Shuffle clamped args together at the lane level. SmallVector PackMask; for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane)); for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts); } auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask); // Truncate to dst size. return Builder.CreateTrunc(Shuffle, ResTy); } static Value *simplifyX86movmsk(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { Value *Arg = II.getArgOperand(0); Type *ResTy = II.getType(); Type *ArgTy = Arg->getType(); // movmsk(undef) -> zero as we must ensure the upper bits are zero. if (isa(Arg)) return Constant::getNullValue(ResTy); // We can't easily peek through x86_mmx types. if (!ArgTy->isVectorTy()) return nullptr; // Expand MOVMSK to compare/bitcast/zext: // e.g. PMOVMSKB(v16i8 x): // %cmp = icmp slt <16 x i8> %x, zeroinitializer // %int = bitcast <16 x i1> %cmp to i16 // %res = zext i16 %int to i32 unsigned NumElts = ArgTy->getVectorNumElements(); Type *IntegerVecTy = VectorType::getInteger(cast(ArgTy)); Type *IntegerTy = Builder.getIntNTy(NumElts); Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy); Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy)); Res = Builder.CreateBitCast(Res, IntegerTy); Res = Builder.CreateZExtOrTrunc(Res, ResTy); return Res; } static Value *simplifyX86addcarry(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { Value *CarryIn = II.getArgOperand(0); Value *Op1 = II.getArgOperand(1); Value *Op2 = II.getArgOperand(2); Type *RetTy = II.getType(); Type *OpTy = Op1->getType(); assert(RetTy->getStructElementType(0)->isIntegerTy(8) && RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() && "Unexpected types for x86 addcarry"); // If carry-in is zero, this is just an unsigned add with overflow. if (match(CarryIn, m_ZeroInt())) { Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy, { Op1, Op2 }); // The types have to be adjusted to match the x86 call types. Value *UAddResult = Builder.CreateExtractValue(UAdd, 0); Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1), Builder.getInt8Ty()); Value *Res = UndefValue::get(RetTy); Res = Builder.CreateInsertValue(Res, UAddOV, 0); return Builder.CreateInsertValue(Res, UAddResult, 1); } return nullptr; } static Value *simplifyX86insertps(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { auto *CInt = dyn_cast(II.getArgOperand(2)); if (!CInt) return nullptr; VectorType *VecTy = cast(II.getType()); assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type"); // The immediate permute control byte looks like this: // [3:0] - zero mask for each 32-bit lane // [5:4] - select one 32-bit destination lane // [7:6] - select one 32-bit source lane uint8_t Imm = CInt->getZExtValue(); uint8_t ZMask = Imm & 0xf; uint8_t DestLane = (Imm >> 4) & 0x3; uint8_t SourceLane = (Imm >> 6) & 0x3; ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); // If all zero mask bits are set, this was just a weird way to // generate a zero vector. if (ZMask == 0xf) return ZeroVector; // Initialize by passing all of the first source bits through. uint32_t ShuffleMask[4] = { 0, 1, 2, 3 }; // We may replace the second operand with the zero vector. Value *V1 = II.getArgOperand(1); if (ZMask) { // If the zero mask is being used with a single input or the zero mask // overrides the destination lane, this is a shuffle with the zero vector. if ((II.getArgOperand(0) == II.getArgOperand(1)) || (ZMask & (1 << DestLane))) { V1 = ZeroVector; // We may still move 32-bits of the first source vector from one lane // to another. ShuffleMask[DestLane] = SourceLane; // The zero mask may override the previous insert operation. for (unsigned i = 0; i < 4; ++i) if ((ZMask >> i) & 0x1) ShuffleMask[i] = i + 4; } else { // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? return nullptr; } } else { // Replace the selected destination lane with the selected source lane. ShuffleMask[DestLane] = SourceLane + 4; } return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask); } /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding /// or conversion to a shuffle vector. static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0, ConstantInt *CILength, ConstantInt *CIIndex, InstCombiner::BuilderTy &Builder) { auto LowConstantHighUndef = [&](uint64_t Val) { Type *IntTy64 = Type::getInt64Ty(II.getContext()); Constant *Args[] = {ConstantInt::get(IntTy64, Val), UndefValue::get(IntTy64)}; return ConstantVector::get(Args); }; // See if we're dealing with constant values. Constant *C0 = dyn_cast(Op0); ConstantInt *CI0 = C0 ? dyn_cast_or_null(C0->getAggregateElement((unsigned)0)) : nullptr; // Attempt to constant fold. if (CILength && CIIndex) { // From AMD documentation: "The bit index and field length are each six // bits in length other bits of the field are ignored." APInt APIndex = CIIndex->getValue().zextOrTrunc(6); APInt APLength = CILength->getValue().zextOrTrunc(6); unsigned Index = APIndex.getZExtValue(); // From AMD documentation: "a value of zero in the field length is // defined as length of 64". unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); // From AMD documentation: "If the sum of the bit index + length field // is greater than 64, the results are undefined". unsigned End = Index + Length; // Note that both field index and field length are 8-bit quantities. // Since variables 'Index' and 'Length' are unsigned values // obtained from zero-extending field index and field length // respectively, their sum should never wrap around. if (End > 64) return UndefValue::get(II.getType()); // If we are inserting whole bytes, we can convert this to a shuffle. // Lowering can recognize EXTRQI shuffle masks. if ((Length % 8) == 0 && (Index % 8) == 0) { // Convert bit indices to byte indices. Length /= 8; Index /= 8; Type *IntTy8 = Type::getInt8Ty(II.getContext()); Type *IntTy32 = Type::getInt32Ty(II.getContext()); VectorType *ShufTy = VectorType::get(IntTy8, 16); SmallVector ShuffleMask; for (int i = 0; i != (int)Length; ++i) ShuffleMask.push_back( Constant::getIntegerValue(IntTy32, APInt(32, i + Index))); for (int i = Length; i != 8; ++i) ShuffleMask.push_back( Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); for (int i = 8; i != 16; ++i) ShuffleMask.push_back(UndefValue::get(IntTy32)); Value *SV = Builder.CreateShuffleVector( Builder.CreateBitCast(Op0, ShufTy), ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask)); return Builder.CreateBitCast(SV, II.getType()); } // Constant Fold - shift Index'th bit to lowest position and mask off // Length bits. if (CI0) { APInt Elt = CI0->getValue(); Elt.lshrInPlace(Index); Elt = Elt.zextOrTrunc(Length); return LowConstantHighUndef(Elt.getZExtValue()); } // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { Value *Args[] = {Op0, CILength, CIIndex}; Module *M = II.getModule(); Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi); return Builder.CreateCall(F, Args); } } // Constant Fold - extraction from zero is always {zero, undef}. if (CI0 && CI0->isZero()) return LowConstantHighUndef(0); return nullptr; } /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant /// folding or conversion to a shuffle vector. static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, APInt APLength, APInt APIndex, InstCombiner::BuilderTy &Builder) { // From AMD documentation: "The bit index and field length are each six bits // in length other bits of the field are ignored." APIndex = APIndex.zextOrTrunc(6); APLength = APLength.zextOrTrunc(6); // Attempt to constant fold. unsigned Index = APIndex.getZExtValue(); // From AMD documentation: "a value of zero in the field length is // defined as length of 64". unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); // From AMD documentation: "If the sum of the bit index + length field // is greater than 64, the results are undefined". unsigned End = Index + Length; // Note that both field index and field length are 8-bit quantities. // Since variables 'Index' and 'Length' are unsigned values // obtained from zero-extending field index and field length // respectively, their sum should never wrap around. if (End > 64) return UndefValue::get(II.getType()); // If we are inserting whole bytes, we can convert this to a shuffle. // Lowering can recognize INSERTQI shuffle masks. if ((Length % 8) == 0 && (Index % 8) == 0) { // Convert bit indices to byte indices. Length /= 8; Index /= 8; Type *IntTy8 = Type::getInt8Ty(II.getContext()); Type *IntTy32 = Type::getInt32Ty(II.getContext()); VectorType *ShufTy = VectorType::get(IntTy8, 16); SmallVector ShuffleMask; for (int i = 0; i != (int)Index; ++i) ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); for (int i = 0; i != (int)Length; ++i) ShuffleMask.push_back( Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); for (int i = Index + Length; i != 8; ++i) ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); for (int i = 8; i != 16; ++i) ShuffleMask.push_back(UndefValue::get(IntTy32)); Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy), Builder.CreateBitCast(Op1, ShufTy), ConstantVector::get(ShuffleMask)); return Builder.CreateBitCast(SV, II.getType()); } // See if we're dealing with constant values. Constant *C0 = dyn_cast(Op0); Constant *C1 = dyn_cast(Op1); ConstantInt *CI00 = C0 ? dyn_cast_or_null(C0->getAggregateElement((unsigned)0)) : nullptr; ConstantInt *CI10 = C1 ? dyn_cast_or_null(C1->getAggregateElement((unsigned)0)) : nullptr; // Constant Fold - insert bottom Length bits starting at the Index'th bit. if (CI00 && CI10) { APInt V00 = CI00->getValue(); APInt V10 = CI10->getValue(); APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index); V00 = V00 & ~Mask; V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index); APInt Val = V00 | V10; Type *IntTy64 = Type::getInt64Ty(II.getContext()); Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()), UndefValue::get(IntTy64)}; return ConstantVector::get(Args); } // If we were an INSERTQ call, we'll save demanded elements if we convert to // INSERTQI. if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { Type *IntTy8 = Type::getInt8Ty(II.getContext()); Constant *CILength = ConstantInt::get(IntTy8, Length, false); Constant *CIIndex = ConstantInt::get(IntTy8, Index, false); Value *Args[] = {Op0, Op1, CILength, CIIndex}; Module *M = II.getModule(); Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi); return Builder.CreateCall(F, Args); } return nullptr; } /// Attempt to convert pshufb* to shufflevector if the mask is constant. static Value *simplifyX86pshufb(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { Constant *V = dyn_cast(II.getArgOperand(1)); if (!V) return nullptr; auto *VecTy = cast(II.getType()); auto *MaskEltTy = Type::getInt32Ty(II.getContext()); unsigned NumElts = VecTy->getNumElements(); assert((NumElts == 16 || NumElts == 32 || NumElts == 64) && "Unexpected number of elements in shuffle mask!"); // Construct a shuffle mask from constant integers or UNDEFs. Constant *Indexes[64] = {nullptr}; // Each byte in the shuffle control mask forms an index to permute the // corresponding byte in the destination operand. for (unsigned I = 0; I < NumElts; ++I) { Constant *COp = V->getAggregateElement(I); if (!COp || (!isa(COp) && !isa(COp))) return nullptr; if (isa(COp)) { Indexes[I] = UndefValue::get(MaskEltTy); continue; } int8_t Index = cast(COp)->getValue().getZExtValue(); // If the most significant bit (bit[7]) of each byte of the shuffle // control mask is set, then zero is written in the result byte. // The zero vector is in the right-hand side of the resulting // shufflevector. // The value of each index for the high 128-bit lane is the least // significant 4 bits of the respective shuffle control byte. Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0); Indexes[I] = ConstantInt::get(MaskEltTy, Index); } auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); auto V1 = II.getArgOperand(0); auto V2 = Constant::getNullValue(VecTy); return Builder.CreateShuffleVector(V1, V2, ShuffleMask); } /// Attempt to convert vpermilvar* to shufflevector if the mask is constant. static Value *simplifyX86vpermilvar(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { Constant *V = dyn_cast(II.getArgOperand(1)); if (!V) return nullptr; auto *VecTy = cast(II.getType()); auto *MaskEltTy = Type::getInt32Ty(II.getContext()); unsigned NumElts = VecTy->getVectorNumElements(); bool IsPD = VecTy->getScalarType()->isDoubleTy(); unsigned NumLaneElts = IsPD ? 2 : 4; assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2); // Construct a shuffle mask from constant integers or UNDEFs. Constant *Indexes[16] = {nullptr}; // The intrinsics only read one or two bits, clear the rest. for (unsigned I = 0; I < NumElts; ++I) { Constant *COp = V->getAggregateElement(I); if (!COp || (!isa(COp) && !isa(COp))) return nullptr; if (isa(COp)) { Indexes[I] = UndefValue::get(MaskEltTy); continue; } APInt Index = cast(COp)->getValue(); Index = Index.zextOrTrunc(32).getLoBits(2); // The PD variants uses bit 1 to select per-lane element index, so // shift down to convert to generic shuffle mask index. if (IsPD) Index.lshrInPlace(1); // The _256 variants are a bit trickier since the mask bits always index // into the corresponding 128 half. In order to convert to a generic // shuffle, we have to make that explicit. Index += APInt(32, (I / NumLaneElts) * NumLaneElts); Indexes[I] = ConstantInt::get(MaskEltTy, Index); } auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); auto V1 = II.getArgOperand(0); auto V2 = UndefValue::get(V1->getType()); return Builder.CreateShuffleVector(V1, V2, ShuffleMask); } /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant. static Value *simplifyX86vpermv(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { auto *V = dyn_cast(II.getArgOperand(1)); if (!V) return nullptr; auto *VecTy = cast(II.getType()); auto *MaskEltTy = Type::getInt32Ty(II.getContext()); unsigned Size = VecTy->getNumElements(); assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) && "Unexpected shuffle mask size"); // Construct a shuffle mask from constant integers or UNDEFs. Constant *Indexes[64] = {nullptr}; for (unsigned I = 0; I < Size; ++I) { Constant *COp = V->getAggregateElement(I); if (!COp || (!isa(COp) && !isa(COp))) return nullptr; if (isa(COp)) { Indexes[I] = UndefValue::get(MaskEltTy); continue; } uint32_t Index = cast(COp)->getZExtValue(); Index &= Size - 1; Indexes[I] = ConstantInt::get(MaskEltTy, Index); } auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size)); auto V1 = II.getArgOperand(0); auto V2 = UndefValue::get(VecTy); return Builder.CreateShuffleVector(V1, V2, ShuffleMask); } // TODO, Obvious Missing Transforms: // * Narrow width by halfs excluding zero/undef lanes Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) { Value *LoadPtr = II.getArgOperand(0); unsigned Alignment = cast(II.getArgOperand(1))->getZExtValue(); // If the mask is all ones or undefs, this is a plain vector load of the 1st // argument. if (maskIsAllOneOrUndef(II.getArgOperand(2))) return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, "unmaskedload"); // If we can unconditionally load from this address, replace with a // load/select idiom. TODO: use DT for context sensitive query if (isDereferenceableAndAlignedPointer( LoadPtr, II.getType(), MaybeAlign(Alignment), II.getModule()->getDataLayout(), &II, nullptr)) { Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, "unmaskedload"); return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); } return nullptr; } // TODO, Obvious Missing Transforms: // * Single constant active lane -> store // * Narrow width by halfs excluding zero/undef lanes Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) { auto *ConstMask = dyn_cast(II.getArgOperand(3)); if (!ConstMask) return nullptr; // If the mask is all zeros, this instruction does nothing. if (ConstMask->isNullValue()) return eraseInstFromFunction(II); // If the mask is all ones, this is a plain vector store of the 1st argument. if (ConstMask->isAllOnesValue()) { Value *StorePtr = II.getArgOperand(1); MaybeAlign Alignment( cast(II.getArgOperand(2))->getZExtValue()); return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); } // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); APInt UndefElts(DemandedElts.getBitWidth(), 0); if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) { II.setOperand(0, V); return &II; } return nullptr; } // TODO, Obvious Missing Transforms: // * Single constant active lane load -> load // * Dereferenceable address & few lanes -> scalarize speculative load/selects // * Adjacent vector addresses -> masked.load // * Narrow width by halfs excluding zero/undef lanes // * Vector splat address w/known mask -> scalar load // * Vector incrementing address -> vector masked load Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) { return nullptr; } // TODO, Obvious Missing Transforms: // * Single constant active lane -> store // * Adjacent vector addresses -> masked.store // * Narrow store width by halfs excluding zero/undef lanes // * Vector splat address w/known mask -> scalar store // * Vector incrementing address -> vector masked store Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) { auto *ConstMask = dyn_cast(II.getArgOperand(3)); if (!ConstMask) return nullptr; // If the mask is all zeros, a scatter does nothing. if (ConstMask->isNullValue()) return eraseInstFromFunction(II); // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); APInt UndefElts(DemandedElts.getBitWidth(), 0); if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) { II.setOperand(0, V); return &II; } if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts)) { II.setOperand(1, V); return &II; } return nullptr; } /// This function transforms launder.invariant.group and strip.invariant.group /// like: /// launder(launder(%x)) -> launder(%x) (the result is not the argument) /// launder(strip(%x)) -> launder(%x) /// strip(strip(%x)) -> strip(%x) (the result is not the argument) /// strip(launder(%x)) -> strip(%x) /// This is legal because it preserves the most recent information about /// the presence or absence of invariant.group. static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, InstCombiner &IC) { auto *Arg = II.getArgOperand(0); auto *StrippedArg = Arg->stripPointerCasts(); auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups(); if (StrippedArg == StrippedInvariantGroupsArg) return nullptr; // No launders/strips to remove. Value *Result = nullptr; if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); else llvm_unreachable( "simplifyInvariantGroupIntrinsic only handles launder and strip"); if (Result->getType()->getPointerAddressSpace() != II.getType()->getPointerAddressSpace()) Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); if (Result->getType() != II.getType()) Result = IC.Builder.CreateBitCast(Result, II.getType()); return cast(Result); } static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) { assert((II.getIntrinsicID() == Intrinsic::cttz || II.getIntrinsicID() == Intrinsic::ctlz) && "Expected cttz or ctlz intrinsic"); bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; Value *Op0 = II.getArgOperand(0); Value *X; // ctlz(bitreverse(x)) -> cttz(x) // cttz(bitreverse(x)) -> ctlz(x) if (match(Op0, m_BitReverse(m_Value(X)))) { Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); return CallInst::Create(F, {X, II.getArgOperand(1)}); } if (IsTZ) { // cttz(-x) -> cttz(x) if (match(Op0, m_Neg(m_Value(X)))) { II.setOperand(0, X); return &II; } // cttz(abs(x)) -> cttz(x) // cttz(nabs(x)) -> cttz(x) Value *Y; SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; if (SPF == SPF_ABS || SPF == SPF_NABS) { II.setOperand(0, X); return &II; } } KnownBits Known = IC.computeKnownBits(Op0, 0, &II); // Create a mask for bits above (ctlz) or below (cttz) the first known one. unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() : Known.countMaxLeadingZeros(); unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() : Known.countMinLeadingZeros(); // If all bits above (ctlz) or below (cttz) the first known one are known // zero, this value is constant. // FIXME: This should be in InstSimplify because we're replacing an // instruction with a constant. if (PossibleZeros == DefiniteZeros) { auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); return IC.replaceInstUsesWith(II, C); } // If the input to cttz/ctlz is known to be non-zero, // then change the 'ZeroIsUndef' parameter to 'true' // because we know the zero behavior can't affect the result. if (!Known.One.isNullValue() || isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, &IC.getDominatorTree())) { if (!match(II.getArgOperand(1), m_One())) { II.setOperand(1, IC.Builder.getTrue()); return &II; } } // Add range metadata since known bits can't completely reflect what we know. // TODO: Handle splat vectors. auto *IT = dyn_cast(Op0->getType()); if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { Metadata *LowAndHigh[] = { ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), LowAndHigh)); return &II; } return nullptr; } static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) { assert(II.getIntrinsicID() == Intrinsic::ctpop && "Expected ctpop intrinsic"); Value *Op0 = II.getArgOperand(0); Value *X; // ctpop(bitreverse(x)) -> ctpop(x) // ctpop(bswap(x)) -> ctpop(x) if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) { II.setOperand(0, X); return &II; } // FIXME: Try to simplify vectors of integers. auto *IT = dyn_cast(Op0->getType()); if (!IT) return nullptr; unsigned BitWidth = IT->getBitWidth(); KnownBits Known(BitWidth); IC.computeKnownBits(Op0, Known, 0, &II); unsigned MinCount = Known.countMinPopulation(); unsigned MaxCount = Known.countMaxPopulation(); // Add range metadata since known bits can't completely reflect what we know. if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { Metadata *LowAndHigh[] = { ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), LowAndHigh)); return &II; } return nullptr; } // TODO: If the x86 backend knew how to convert a bool vector mask back to an // XMM register mask efficiently, we could transform all x86 masked intrinsics // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) { Value *Ptr = II.getOperand(0); Value *Mask = II.getOperand(1); Constant *ZeroVec = Constant::getNullValue(II.getType()); // Special case a zero mask since that's not a ConstantDataVector. // This masked load instruction creates a zero vector. if (isa(Mask)) return IC.replaceInstUsesWith(II, ZeroVec); auto *ConstMask = dyn_cast(Mask); if (!ConstMask) return nullptr; // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic // to allow target-independent optimizations. // First, cast the x86 intrinsic scalar pointer to a vector pointer to match // the LLVM intrinsic definition for the pointer argument. unsigned AddrSpace = cast(Ptr->getType())->getAddressSpace(); PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace); Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); // Second, convert the x86 XMM integer vector mask to a vector of bools based // on each element's most significant bit (the sign bit). Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); // The pass-through vector for an x86 masked load is a zero vector. CallInst *NewMaskedLoad = IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec); return IC.replaceInstUsesWith(II, NewMaskedLoad); } // TODO: If the x86 backend knew how to convert a bool vector mask back to an // XMM register mask efficiently, we could transform all x86 masked intrinsics // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) { Value *Ptr = II.getOperand(0); Value *Mask = II.getOperand(1); Value *Vec = II.getOperand(2); // Special case a zero mask since that's not a ConstantDataVector: // this masked store instruction does nothing. if (isa(Mask)) { IC.eraseInstFromFunction(II); return true; } // The SSE2 version is too weird (eg, unaligned but non-temporal) to do // anything else at this level. if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu) return false; auto *ConstMask = dyn_cast(Mask); if (!ConstMask) return false; // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic // to allow target-independent optimizations. // First, cast the x86 intrinsic scalar pointer to a vector pointer to match // the LLVM intrinsic definition for the pointer argument. unsigned AddrSpace = cast(Ptr->getType())->getAddressSpace(); PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace); Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); // Second, convert the x86 XMM integer vector mask to a vector of bools based // on each element's most significant bit (the sign bit). Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask); // 'Replace uses' doesn't work for stores. Erase the original masked store. IC.eraseInstFromFunction(II); return true; } // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. // // A single NaN input is folded to minnum, so we rely on that folding for // handling NaNs. static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, const APFloat &Src2) { APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); APFloat::cmpResult Cmp0 = Max3.compare(Src0); assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); if (Cmp0 == APFloat::cmpEqual) return maxnum(Src1, Src2); APFloat::cmpResult Cmp1 = Max3.compare(Src1); assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); if (Cmp1 == APFloat::cmpEqual) return maxnum(Src0, Src2); return maxnum(Src0, Src1); } /// Convert a table lookup to shufflevector if the mask is constant. /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in /// which case we could lower the shufflevector with rev64 instructions /// as it's actually a byte reverse. static Value *simplifyNeonTbl1(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder) { // Bail out if the mask is not a constant. auto *C = dyn_cast(II.getArgOperand(1)); if (!C) return nullptr; auto *VecTy = cast(II.getType()); unsigned NumElts = VecTy->getNumElements(); // Only perform this transformation for <8 x i8> vector types. if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) return nullptr; uint32_t Indexes[8]; for (unsigned I = 0; I < NumElts; ++I) { Constant *COp = C->getAggregateElement(I); if (!COp || !isa(COp)) return nullptr; Indexes[I] = cast(COp)->getLimitedValue(); // Make sure the mask indices are in range. if (Indexes[I] >= NumElts) return nullptr; } auto *ShuffleMask = ConstantDataVector::get(II.getContext(), makeArrayRef(Indexes)); auto *V1 = II.getArgOperand(0); auto *V2 = Constant::getNullValue(V1->getType()); return Builder.CreateShuffleVector(V1, V2, ShuffleMask); } /// Convert a vector load intrinsic into a simple llvm load instruction. /// This is beneficial when the underlying object being addressed comes /// from a constant, since we get constant-folding for free. static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, InstCombiner::BuilderTy &Builder) { auto *IntrAlign = dyn_cast(II.getArgOperand(1)); if (!IntrAlign) return nullptr; unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ? MemAlign : IntrAlign->getLimitedValue(); if (!isPowerOf2_32(Alignment)) return nullptr; auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), PointerType::get(II.getType(), 0)); return Builder.CreateAlignedLoad(II.getType(), BCastInst, Alignment); } // Returns true iff the 2 intrinsics have the same operands, limiting the // comparison to the first NumOperands. static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, unsigned NumOperands) { assert(I.getNumArgOperands() >= NumOperands && "Not enough operands"); assert(E.getNumArgOperands() >= NumOperands && "Not enough operands"); for (unsigned i = 0; i < NumOperands; i++) if (I.getArgOperand(i) != E.getArgOperand(i)) return false; return true; } // Remove trivially empty start/end intrinsic ranges, i.e. a start // immediately followed by an end (ignoring debuginfo or other // start/end intrinsics in between). As this handles only the most trivial // cases, tracking the nesting level is not needed: // // call @llvm.foo.start(i1 0) ; &I // call @llvm.foo.start(i1 0) // call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed // call @llvm.foo.end(i1 0) static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID, unsigned EndID, InstCombiner &IC) { assert(I.getIntrinsicID() == StartID && "Start intrinsic does not have expected ID"); BasicBlock::iterator BI(I), BE(I.getParent()->end()); for (++BI; BI != BE; ++BI) { if (auto *E = dyn_cast(BI)) { if (isa(E) || E->getIntrinsicID() == StartID) continue; if (E->getIntrinsicID() == EndID && haveSameOperands(I, *E, E->getNumArgOperands())) { IC.eraseInstFromFunction(*E); IC.eraseInstFromFunction(I); return true; } } break; } return false; } // Convert NVVM intrinsics to target-generic LLVM code where possible. static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) { // Each NVVM intrinsic we can simplify can be replaced with one of: // // * an LLVM intrinsic, // * an LLVM cast operation, // * an LLVM binary operation, or // * ad-hoc LLVM IR for the particular operation. // Some transformations are only valid when the module's // flush-denormals-to-zero (ftz) setting is true/false, whereas other // transformations are valid regardless of the module's ftz setting. enum FtzRequirementTy { FTZ_Any, // Any ftz setting is ok. FTZ_MustBeOn, // Transformation is valid only if ftz is on. FTZ_MustBeOff, // Transformation is valid only if ftz is off. }; // Classes of NVVM intrinsics that can't be replaced one-to-one with a // target-generic intrinsic, cast op, or binary op but that we can nonetheless // simplify. enum SpecialCase { SPC_Reciprocal, }; // SimplifyAction is a poor-man's variant (plus an additional flag) that // represents how to replace an NVVM intrinsic with target-generic LLVM IR. struct SimplifyAction { // Invariant: At most one of these Optionals has a value. Optional IID; Optional CastOp; Optional BinaryOp; Optional Special; FtzRequirementTy FtzRequirement = FTZ_Any; SimplifyAction() = default; SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq) : IID(IID), FtzRequirement(FtzReq) {} // Cast operations don't have anything to do with FTZ, so we skip that // argument. SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {} SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq) : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {} SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq) : Special(Special), FtzRequirement(FtzReq) {} }; // Try to generate a SimplifyAction describing how to replace our // IntrinsicInstr with target-generic LLVM IR. const SimplifyAction Action = [II]() -> SimplifyAction { switch (II->getIntrinsicID()) { // NVVM intrinsics that map directly to LLVM intrinsics. case Intrinsic::nvvm_ceil_d: return {Intrinsic::ceil, FTZ_Any}; case Intrinsic::nvvm_ceil_f: return {Intrinsic::ceil, FTZ_MustBeOff}; case Intrinsic::nvvm_ceil_ftz_f: return {Intrinsic::ceil, FTZ_MustBeOn}; case Intrinsic::nvvm_fabs_d: return {Intrinsic::fabs, FTZ_Any}; case Intrinsic::nvvm_fabs_f: return {Intrinsic::fabs, FTZ_MustBeOff}; case Intrinsic::nvvm_fabs_ftz_f: return {Intrinsic::fabs, FTZ_MustBeOn}; case Intrinsic::nvvm_floor_d: return {Intrinsic::floor, FTZ_Any}; case Intrinsic::nvvm_floor_f: return {Intrinsic::floor, FTZ_MustBeOff}; case Intrinsic::nvvm_floor_ftz_f: return {Intrinsic::floor, FTZ_MustBeOn}; case Intrinsic::nvvm_fma_rn_d: return {Intrinsic::fma, FTZ_Any}; case Intrinsic::nvvm_fma_rn_f: return {Intrinsic::fma, FTZ_MustBeOff}; case Intrinsic::nvvm_fma_rn_ftz_f: return {Intrinsic::fma, FTZ_MustBeOn}; case Intrinsic::nvvm_fmax_d: return {Intrinsic::maxnum, FTZ_Any}; case Intrinsic::nvvm_fmax_f: return {Intrinsic::maxnum, FTZ_MustBeOff}; case Intrinsic::nvvm_fmax_ftz_f: return {Intrinsic::maxnum, FTZ_MustBeOn}; case Intrinsic::nvvm_fmin_d: return {Intrinsic::minnum, FTZ_Any}; case Intrinsic::nvvm_fmin_f: return {Intrinsic::minnum, FTZ_MustBeOff}; case Intrinsic::nvvm_fmin_ftz_f: return {Intrinsic::minnum, FTZ_MustBeOn}; case Intrinsic::nvvm_round_d: return {Intrinsic::round, FTZ_Any}; case Intrinsic::nvvm_round_f: return {Intrinsic::round, FTZ_MustBeOff}; case Intrinsic::nvvm_round_ftz_f: return {Intrinsic::round, FTZ_MustBeOn}; case Intrinsic::nvvm_sqrt_rn_d: return {Intrinsic::sqrt, FTZ_Any}; case Intrinsic::nvvm_sqrt_f: // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are // the versions with explicit ftz-ness. return {Intrinsic::sqrt, FTZ_Any}; case Intrinsic::nvvm_sqrt_rn_f: return {Intrinsic::sqrt, FTZ_MustBeOff}; case Intrinsic::nvvm_sqrt_rn_ftz_f: return {Intrinsic::sqrt, FTZ_MustBeOn}; case Intrinsic::nvvm_trunc_d: return {Intrinsic::trunc, FTZ_Any}; case Intrinsic::nvvm_trunc_f: return {Intrinsic::trunc, FTZ_MustBeOff}; case Intrinsic::nvvm_trunc_ftz_f: return {Intrinsic::trunc, FTZ_MustBeOn}; // NVVM intrinsics that map to LLVM cast operations. // // Note that llvm's target-generic conversion operators correspond to the rz // (round to zero) versions of the nvvm conversion intrinsics, even though // most everything else here uses the rn (round to nearest even) nvvm ops. case Intrinsic::nvvm_d2i_rz: case Intrinsic::nvvm_f2i_rz: case Intrinsic::nvvm_d2ll_rz: case Intrinsic::nvvm_f2ll_rz: return {Instruction::FPToSI}; case Intrinsic::nvvm_d2ui_rz: case Intrinsic::nvvm_f2ui_rz: case Intrinsic::nvvm_d2ull_rz: case Intrinsic::nvvm_f2ull_rz: return {Instruction::FPToUI}; case Intrinsic::nvvm_i2d_rz: case Intrinsic::nvvm_i2f_rz: case Intrinsic::nvvm_ll2d_rz: case Intrinsic::nvvm_ll2f_rz: return {Instruction::SIToFP}; case Intrinsic::nvvm_ui2d_rz: case Intrinsic::nvvm_ui2f_rz: case Intrinsic::nvvm_ull2d_rz: case Intrinsic::nvvm_ull2f_rz: return {Instruction::UIToFP}; // NVVM intrinsics that map to LLVM binary ops. case Intrinsic::nvvm_add_rn_d: return {Instruction::FAdd, FTZ_Any}; case Intrinsic::nvvm_add_rn_f: return {Instruction::FAdd, FTZ_MustBeOff}; case Intrinsic::nvvm_add_rn_ftz_f: return {Instruction::FAdd, FTZ_MustBeOn}; case Intrinsic::nvvm_mul_rn_d: return {Instruction::FMul, FTZ_Any}; case Intrinsic::nvvm_mul_rn_f: return {Instruction::FMul, FTZ_MustBeOff}; case Intrinsic::nvvm_mul_rn_ftz_f: return {Instruction::FMul, FTZ_MustBeOn}; case Intrinsic::nvvm_div_rn_d: return {Instruction::FDiv, FTZ_Any}; case Intrinsic::nvvm_div_rn_f: return {Instruction::FDiv, FTZ_MustBeOff}; case Intrinsic::nvvm_div_rn_ftz_f: return {Instruction::FDiv, FTZ_MustBeOn}; // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but // need special handling. // // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just // as well. case Intrinsic::nvvm_rcp_rn_d: return {SPC_Reciprocal, FTZ_Any}; case Intrinsic::nvvm_rcp_rn_f: return {SPC_Reciprocal, FTZ_MustBeOff}; case Intrinsic::nvvm_rcp_rn_ftz_f: return {SPC_Reciprocal, FTZ_MustBeOn}; // We do not currently simplify intrinsics that give an approximate answer. // These include: // // - nvvm_cos_approx_{f,ftz_f} // - nvvm_ex2_approx_{d,f,ftz_f} // - nvvm_lg2_approx_{d,f,ftz_f} // - nvvm_sin_approx_{f,ftz_f} // - nvvm_sqrt_approx_{f,ftz_f} // - nvvm_rsqrt_approx_{d,f,ftz_f} // - nvvm_div_approx_{ftz_d,ftz_f,f} // - nvvm_rcp_approx_ftz_d // // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast" // means that fastmath is enabled in the intrinsic. Unfortunately only // binary operators (currently) have a fastmath bit in SelectionDAG, so this // information gets lost and we can't select on it. // // TODO: div and rcp are lowered to a binary op, so these we could in theory // lower them to "fast fdiv". default: return {}; } }(); // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we // can bail out now. (Notice that in the case that IID is not an NVVM // intrinsic, we don't have to look up any module metadata, as // FtzRequirementTy will be FTZ_Any.) if (Action.FtzRequirement != FTZ_Any) { bool FtzEnabled = II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() == "true"; if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn)) return nullptr; } // Simplify to target-generic intrinsic. if (Action.IID) { SmallVector Args(II->arg_operands()); // All the target-generic intrinsics currently of interest to us have one // type argument, equal to that of the nvvm intrinsic's argument. Type *Tys[] = {II->getArgOperand(0)->getType()}; return CallInst::Create( Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args); } // Simplify to target-generic binary op. if (Action.BinaryOp) return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0), II->getArgOperand(1), II->getName()); // Simplify to target-generic cast op. if (Action.CastOp) return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(), II->getName()); // All that's left are the special cases. if (!Action.Special) return nullptr; switch (*Action.Special) { case SPC_Reciprocal: // Simplify reciprocal. return BinaryOperator::Create( Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1), II->getArgOperand(0), II->getName()); } llvm_unreachable("All SpecialCase enumerators should be handled in switch."); } Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) { removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this); return nullptr; } Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) { removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this); return nullptr; } static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) { assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap"); Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); if (isa(Arg0) && !isa(Arg1)) { Call.setArgOperand(0, Arg1); Call.setArgOperand(1, Arg0); return &Call; } return nullptr; } Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { WithOverflowInst *WO = cast(II); Value *OperationResult = nullptr; Constant *OverflowResult = nullptr; if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), WO->getRHS(), *WO, OperationResult, OverflowResult)) return CreateOverflowTuple(WO, OperationResult, OverflowResult); return nullptr; } /// CallInst simplification. This mostly only handles folding of intrinsic /// instructions. For normal calls, it allows visitCallBase to do the heavy /// lifting. Instruction *InstCombiner::visitCallInst(CallInst &CI) { if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI))) return replaceInstUsesWith(CI, V); if (isFreeCall(&CI, &TLI)) return visitFree(CI); // If the caller function is nounwind, mark the call as nounwind, even if the // callee isn't. if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { CI.setDoesNotThrow(); return &CI; } IntrinsicInst *II = dyn_cast(&CI); if (!II) return visitCallBase(CI); // Intrinsics cannot occur in an invoke or a callbr, so handle them here // instead of in visitCallBase. if (auto *MI = dyn_cast(II)) { bool Changed = false; // memmove/cpy/set of zero bytes is a noop. if (Constant *NumBytes = dyn_cast(MI->getLength())) { if (NumBytes->isNullValue()) return eraseInstFromFunction(CI); if (ConstantInt *CI = dyn_cast(NumBytes)) if (CI->getZExtValue() == 1) { // Replace the instruction with just byte operations. We would // transform other cases to loads/stores, but we don't know if // alignment is sufficient. } } // No other transformations apply to volatile transfers. if (auto *M = dyn_cast(MI)) if (M->isVolatile()) return nullptr; // If we have a memmove and the source operation is a constant global, // then the source and dest pointers can't alias, so we can change this // into a call to memcpy. if (auto *MMI = dyn_cast(MI)) { if (GlobalVariable *GVSrc = dyn_cast(MMI->getSource())) if (GVSrc->isConstant()) { Module *M = CI.getModule(); Intrinsic::ID MemCpyID = isa(MMI) ? Intrinsic::memcpy_element_unordered_atomic : Intrinsic::memcpy; Type *Tys[3] = { CI.getArgOperand(0)->getType(), CI.getArgOperand(1)->getType(), CI.getArgOperand(2)->getType() }; CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); Changed = true; } } if (AnyMemTransferInst *MTI = dyn_cast(MI)) { // memmove(x,x,size) -> noop. if (MTI->getSource() == MTI->getDest()) return eraseInstFromFunction(CI); } // If we can determine a pointer alignment that is bigger than currently // set, update the alignment. if (auto *MTI = dyn_cast(MI)) { if (Instruction *I = SimplifyAnyMemTransfer(MTI)) return I; } else if (auto *MSI = dyn_cast(MI)) { if (Instruction *I = SimplifyAnyMemSet(MSI)) return I; } if (Changed) return II; } // For vector result intrinsics, use the generic demanded vector support. if (II->getType()->isVectorTy()) { auto VWidth = II->getType()->getVectorNumElements(); APInt UndefElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { if (V != II) return replaceInstUsesWith(*II, V); return II; } } if (Instruction *I = SimplifyNVVMIntrinsic(II, *this)) return I; auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, unsigned DemandedWidth) { APInt UndefElts(Width, 0); APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth); return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); }; Intrinsic::ID IID = II->getIntrinsicID(); switch (IID) { default: break; case Intrinsic::objectsize: if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) return replaceInstUsesWith(CI, V); return nullptr; case Intrinsic::bswap: { Value *IIOperand = II->getArgOperand(0); Value *X = nullptr; // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { unsigned C = X->getType()->getPrimitiveSizeInBits() - IIOperand->getType()->getPrimitiveSizeInBits(); Value *CV = ConstantInt::get(X->getType(), C); Value *V = Builder.CreateLShr(X, CV); return new TruncInst(V, IIOperand->getType()); } break; } case Intrinsic::masked_load: if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) return replaceInstUsesWith(CI, SimplifiedMaskedOp); break; case Intrinsic::masked_store: return simplifyMaskedStore(*II); case Intrinsic::masked_gather: return simplifyMaskedGather(*II); case Intrinsic::masked_scatter: return simplifyMaskedScatter(*II); case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) return replaceInstUsesWith(*II, SkippedBarrier); break; case Intrinsic::powi: if (ConstantInt *Power = dyn_cast(II->getArgOperand(1))) { // 0 and 1 are handled in instsimplify // powi(x, -1) -> 1/x if (Power->isMinusOne()) return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), II->getArgOperand(0)); // powi(x, 2) -> x*x if (Power->equalsInt(2)) return BinaryOperator::CreateFMul(II->getArgOperand(0), II->getArgOperand(0)); } break; case Intrinsic::cttz: case Intrinsic::ctlz: if (auto *I = foldCttzCtlz(*II, *this)) return I; break; case Intrinsic::ctpop: if (auto *I = foldCtpop(*II, *this)) return I; break; case Intrinsic::fshl: case Intrinsic::fshr: { Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); Type *Ty = II->getType(); unsigned BitWidth = Ty->getScalarSizeInBits(); Constant *ShAmtC; if (match(II->getArgOperand(2), m_Constant(ShAmtC)) && !isa(ShAmtC) && !ShAmtC->containsConstantExpression()) { // Canonicalize a shift amount constant operand to modulo the bit-width. Constant *WidthC = ConstantInt::get(Ty, BitWidth); Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC); if (ModuloC != ShAmtC) { II->setArgOperand(2, ModuloC); return II; } assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && "Shift amount expected to be modulo bitwidth"); // Canonicalize funnel shift right by constant to funnel shift left. This // is not entirely arbitrary. For historical reasons, the backend may // recognize rotate left patterns but miss rotate right patterns. if (IID == Intrinsic::fshr) { // fshr X, Y, C --> fshl X, Y, (BitWidth - C) Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); Module *Mod = II->getModule(); Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); } assert(IID == Intrinsic::fshl && "All funnel shifts by simple constants should go left"); // fshl(X, 0, C) --> shl X, C // fshl(X, undef, C) --> shl X, C if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) return BinaryOperator::CreateShl(Op0, ShAmtC); // fshl(0, X, C) --> lshr X, (BW-C) // fshl(undef, X, C) --> lshr X, (BW-C) if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) return BinaryOperator::CreateLShr(Op1, ConstantExpr::getSub(WidthC, ShAmtC)); // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { Module *Mod = II->getModule(); Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); return CallInst::Create(Bswap, { Op0 }); } } // Left or right might be masked. if (SimplifyDemandedInstructionBits(*II)) return &CI; // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, // so only the low bits of the shift amount are demanded if the bitwidth is // a power-of-2. if (!isPowerOf2_32(BitWidth)) break; APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); KnownBits Op2Known(BitWidth); if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) return &CI; break; } case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: { if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) return I; if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) return I; // Given 2 constant operands whose sum does not overflow: // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 Value *X; const APInt *C0, *C1; Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); bool IsSigned = IID == Intrinsic::sadd_with_overflow; bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); if (HasNWAdd && match(Arg1, m_APInt(C1))) { bool Overflow; APInt NewC = IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); if (!Overflow) return replaceInstUsesWith( *II, Builder.CreateBinaryIntrinsic( IID, X, ConstantInt::get(Arg1->getType(), NewC))); } break; } case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) return I; LLVM_FALLTHROUGH; case Intrinsic::usub_with_overflow: if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) return I; break; case Intrinsic::ssub_with_overflow: { if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) return I; Constant *C; Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); // Given a constant C that is not the minimum signed value // for an integer of a given bit width: // // ssubo X, C -> saddo X, -C if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { Value *NegVal = ConstantExpr::getNeg(C); // Build a saddo call that is equivalent to the discovered // ssubo call. return replaceInstUsesWith( *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, Arg0, NegVal)); } break; } case Intrinsic::uadd_sat: case Intrinsic::sadd_sat: if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) return I; LLVM_FALLTHROUGH; case Intrinsic::usub_sat: case Intrinsic::ssub_sat: { SaturatingInst *SI = cast(II); Type *Ty = SI->getType(); Value *Arg0 = SI->getLHS(); Value *Arg1 = SI->getRHS(); // Make use of known overflow information. OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), Arg0, Arg1, SI); switch (OR) { case OverflowResult::MayOverflow: break; case OverflowResult::NeverOverflows: if (SI->isSigned()) return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); else return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); case OverflowResult::AlwaysOverflowsLow: { unsigned BitWidth = Ty->getScalarSizeInBits(); APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); } case OverflowResult::AlwaysOverflowsHigh: { unsigned BitWidth = Ty->getScalarSizeInBits(); APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); } } // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN Constant *C; if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { Value *NegVal = ConstantExpr::getNeg(C); return replaceInstUsesWith( *II, Builder.CreateBinaryIntrinsic( Intrinsic::sadd_sat, Arg0, NegVal)); } // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) // if Val and Val2 have the same sign if (auto *Other = dyn_cast(Arg0)) { Value *X; const APInt *Val, *Val2; APInt NewVal; bool IsUnsigned = IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; if (Other->getIntrinsicID() == IID && match(Arg1, m_APInt(Val)) && match(Other->getArgOperand(0), m_Value(X)) && match(Other->getArgOperand(1), m_APInt(Val2))) { if (IsUnsigned) NewVal = Val->uadd_sat(*Val2); else if (Val->isNonNegative() == Val2->isNonNegative()) { bool Overflow; NewVal = Val->sadd_ov(*Val2, Overflow); if (Overflow) { // Both adds together may add more than SignedMaxValue // without saturating the final result. break; } } else { // Cannot fold saturated addition with different signs. break; } return replaceInstUsesWith( *II, Builder.CreateBinaryIntrinsic( IID, X, ConstantInt::get(II->getType(), NewVal))); } } break; } case Intrinsic::minnum: case Intrinsic::maxnum: case Intrinsic::minimum: case Intrinsic::maximum: { if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) return I; Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); Value *X, *Y; if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && (Arg0->hasOneUse() || Arg1->hasOneUse())) { // If both operands are negated, invert the call and negate the result: // min(-X, -Y) --> -(max(X, Y)) // max(-X, -Y) --> -(min(X, Y)) Intrinsic::ID NewIID; switch (IID) { case Intrinsic::maxnum: NewIID = Intrinsic::minnum; break; case Intrinsic::minnum: NewIID = Intrinsic::maxnum; break; case Intrinsic::maximum: NewIID = Intrinsic::minimum; break; case Intrinsic::minimum: NewIID = Intrinsic::maximum; break; default: llvm_unreachable("unexpected intrinsic ID"); } Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall); FNeg->copyIRFlags(II); return FNeg; } // m(m(X, C2), C1) -> m(X, C) const APFloat *C1, *C2; if (auto *M = dyn_cast(Arg0)) { if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && ((match(M->getArgOperand(0), m_Value(X)) && match(M->getArgOperand(1), m_APFloat(C2))) || (match(M->getArgOperand(1), m_Value(X)) && match(M->getArgOperand(0), m_APFloat(C2))))) { APFloat Res(0.0); switch (IID) { case Intrinsic::maxnum: Res = maxnum(*C1, *C2); break; case Intrinsic::minnum: Res = minnum(*C1, *C2); break; case Intrinsic::maximum: Res = maximum(*C1, *C2); break; case Intrinsic::minimum: Res = minimum(*C1, *C2); break; default: llvm_unreachable("unexpected intrinsic ID"); } Instruction *NewCall = Builder.CreateBinaryIntrinsic( IID, X, ConstantFP::get(Arg0->getType(), Res)); NewCall->copyIRFlags(II); return replaceInstUsesWith(*II, NewCall); } } break; } case Intrinsic::fmuladd: { // Canonicalize fast fmuladd to the separate fmul + fadd. if (II->isFast()) { BuilderTy::FastMathFlagGuard Guard(Builder); Builder.setFastMathFlags(II->getFastMathFlags()); Value *Mul = Builder.CreateFMul(II->getArgOperand(0), II->getArgOperand(1)); Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); Add->takeName(II); return replaceInstUsesWith(*II, Add); } // Try to simplify the underlying FMul. if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), II->getFastMathFlags(), SQ.getWithInstruction(II))) { auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); FAdd->copyFastMathFlags(II); return FAdd; } LLVM_FALLTHROUGH; } case Intrinsic::fma: { if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) return I; // fma fneg(x), fneg(y), z -> fma x, y, z Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); Value *X, *Y; if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { II->setArgOperand(0, X); II->setArgOperand(1, Y); return II; } // fma fabs(x), fabs(x), z -> fma x, x, z if (match(Src0, m_FAbs(m_Value(X))) && match(Src1, m_FAbs(m_Specific(X)))) { II->setArgOperand(0, X); II->setArgOperand(1, X); return II; } // Try to simplify the underlying FMul. We can only apply simplifications // that do not require rounding. if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1), II->getFastMathFlags(), SQ.getWithInstruction(II))) { auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); FAdd->copyFastMathFlags(II); return FAdd; } break; } case Intrinsic::fabs: { Value *Cond; Constant *LHS, *RHS; if (match(II->getArgOperand(0), m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) { CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS}); CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS}); return SelectInst::Create(Cond, Call0, Call1); } LLVM_FALLTHROUGH; } case Intrinsic::ceil: case Intrinsic::floor: case Intrinsic::round: case Intrinsic::nearbyint: case Intrinsic::rint: case Intrinsic::trunc: { Value *ExtSrc; if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); return new FPExtInst(NarrowII, II->getType()); } break; } case Intrinsic::cos: case Intrinsic::amdgcn_cos: { Value *X; Value *Src = II->getArgOperand(0); if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { // cos(-x) -> cos(x) // cos(fabs(x)) -> cos(x) II->setArgOperand(0, X); return II; } break; } case Intrinsic::sin: { Value *X; if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { // sin(-x) --> -sin(x) Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin); FNeg->copyFastMathFlags(II); return FNeg; } break; } case Intrinsic::ppc_altivec_lvx: case Intrinsic::ppc_altivec_lvxl: // Turn PPC lvx -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, &DT) >= 16) { Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(II->getType(), Ptr); } break; case Intrinsic::ppc_vsx_lxvw4x: case Intrinsic::ppc_vsx_lxvd2x: { // Turn PPC VSX loads into normal loads. Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(II->getType(), Ptr, Twine(""), false, Align::None()); } case Intrinsic::ppc_altivec_stvx: case Intrinsic::ppc_altivec_stvxl: // Turn stvx -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, &DT) >= 16) { Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr); } break; case Intrinsic::ppc_vsx_stxvw4x: case Intrinsic::ppc_vsx_stxvd2x: { // Turn PPC VSX stores into normal stores. Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr, false, Align::None()); } case Intrinsic::ppc_qpx_qvlfs: // Turn PPC QPX qvlfs -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, &DT) >= 16) { Type *VTy = VectorType::get(Builder.getFloatTy(), II->getType()->getVectorNumElements()); Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(VTy)); Value *Load = Builder.CreateLoad(VTy, Ptr); return new FPExtInst(Load, II->getType()); } break; case Intrinsic::ppc_qpx_qvlfd: // Turn PPC QPX qvlfd -> load if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC, &DT) >= 32) { Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), PointerType::getUnqual(II->getType())); return new LoadInst(II->getType(), Ptr); } break; case Intrinsic::ppc_qpx_qvstfs: // Turn PPC QPX qvstfs -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, &DT) >= 16) { Type *VTy = VectorType::get(Builder.getFloatTy(), II->getArgOperand(0)->getType()->getVectorNumElements()); Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy); Type *OpPtrTy = PointerType::getUnqual(VTy); Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(TOp, Ptr); } break; case Intrinsic::ppc_qpx_qvstfd: // Turn PPC QPX qvstfd -> store if the pointer is known aligned. if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC, &DT) >= 32) { Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); return new StoreInst(II->getArgOperand(0), Ptr); } break; case Intrinsic::x86_bmi_bextr_32: case Intrinsic::x86_bmi_bextr_64: case Intrinsic::x86_tbm_bextri_u32: case Intrinsic::x86_tbm_bextri_u64: // If the RHS is a constant we can try some simplifications. if (auto *C = dyn_cast(II->getArgOperand(1))) { uint64_t Shift = C->getZExtValue(); uint64_t Length = (Shift >> 8) & 0xff; Shift &= 0xff; unsigned BitWidth = II->getType()->getIntegerBitWidth(); // If the length is 0 or the shift is out of range, replace with zero. if (Length == 0 || Shift >= BitWidth) return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0)); // If the LHS is also a constant, we can completely constant fold this. if (auto *InC = dyn_cast(II->getArgOperand(0))) { uint64_t Result = InC->getZExtValue() >> Shift; if (Length > BitWidth) Length = BitWidth; Result &= maskTrailingOnes(Length); return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result)); } // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we // are only masking bits that a shift already cleared? } break; case Intrinsic::x86_bmi_bzhi_32: case Intrinsic::x86_bmi_bzhi_64: // If the RHS is a constant we can try some simplifications. if (auto *C = dyn_cast(II->getArgOperand(1))) { uint64_t Index = C->getZExtValue() & 0xff; unsigned BitWidth = II->getType()->getIntegerBitWidth(); if (Index >= BitWidth) return replaceInstUsesWith(CI, II->getArgOperand(0)); if (Index == 0) return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0)); // If the LHS is also a constant, we can completely constant fold this. if (auto *InC = dyn_cast(II->getArgOperand(0))) { uint64_t Result = InC->getZExtValue(); Result &= maskTrailingOnes(Index); return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result)); } // TODO should we convert this to an AND if the RHS is constant? } break; case Intrinsic::x86_vcvtph2ps_128: case Intrinsic::x86_vcvtph2ps_256: { auto Arg = II->getArgOperand(0); auto ArgType = cast(Arg->getType()); auto RetType = cast(II->getType()); unsigned ArgWidth = ArgType->getNumElements(); unsigned RetWidth = RetType->getNumElements(); assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths"); assert(ArgType->isIntOrIntVectorTy() && ArgType->getScalarSizeInBits() == 16 && "CVTPH2PS input type should be 16-bit integer vector"); assert(RetType->getScalarType()->isFloatTy() && "CVTPH2PS output type should be 32-bit float vector"); // Constant folding: Convert to generic half to single conversion. if (isa(Arg)) return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType)); if (isa(Arg)) { auto VectorHalfAsShorts = Arg; if (RetWidth < ArgWidth) { SmallVector SubVecMask; for (unsigned i = 0; i != RetWidth; ++i) SubVecMask.push_back((int)i); VectorHalfAsShorts = Builder.CreateShuffleVector( Arg, UndefValue::get(ArgType), SubVecMask); } auto VectorHalfType = VectorType::get(Type::getHalfTy(II->getContext()), RetWidth); auto VectorHalfs = Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType); auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType); return replaceInstUsesWith(*II, VectorFloats); } // We only use the lowest lanes of the argument. if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvtsd2si: case Intrinsic::x86_sse2_cvtsd2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: case Intrinsic::x86_avx512_vcvtss2si32: case Intrinsic::x86_avx512_vcvtss2si64: case Intrinsic::x86_avx512_vcvtss2usi32: case Intrinsic::x86_avx512_vcvtss2usi64: case Intrinsic::x86_avx512_vcvtsd2si32: case Intrinsic::x86_avx512_vcvtsd2si64: case Intrinsic::x86_avx512_vcvtsd2usi32: case Intrinsic::x86_avx512_vcvtsd2usi64: case Intrinsic::x86_avx512_cvttss2si: case Intrinsic::x86_avx512_cvttss2si64: case Intrinsic::x86_avx512_cvttss2usi: case Intrinsic::x86_avx512_cvttss2usi64: case Intrinsic::x86_avx512_cvttsd2si: case Intrinsic::x86_avx512_cvttsd2si64: case Intrinsic::x86_avx512_cvttsd2usi: case Intrinsic::x86_avx512_cvttsd2usi64: { // These intrinsics only demand the 0th element of their input vectors. If // we can simplify the input based on that, do so now. Value *Arg = II->getArgOperand(0); unsigned VWidth = Arg->getType()->getVectorNumElements(); if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_mmx_pmovmskb: case Intrinsic::x86_sse_movmsk_ps: case Intrinsic::x86_sse2_movmsk_pd: case Intrinsic::x86_sse2_pmovmskb_128: case Intrinsic::x86_avx_movmsk_pd_256: case Intrinsic::x86_avx_movmsk_ps_256: case Intrinsic::x86_avx2_pmovmskb: if (Value *V = simplifyX86movmsk(*II, Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_comieq_sd: case Intrinsic::x86_sse2_comige_sd: case Intrinsic::x86_sse2_comigt_sd: case Intrinsic::x86_sse2_comile_sd: case Intrinsic::x86_sse2_comilt_sd: case Intrinsic::x86_sse2_comineq_sd: case Intrinsic::x86_sse2_ucomieq_sd: case Intrinsic::x86_sse2_ucomige_sd: case Intrinsic::x86_sse2_ucomigt_sd: case Intrinsic::x86_sse2_ucomile_sd: case Intrinsic::x86_sse2_ucomilt_sd: case Intrinsic::x86_sse2_ucomineq_sd: case Intrinsic::x86_avx512_vcomi_ss: case Intrinsic::x86_avx512_vcomi_sd: case Intrinsic::x86_avx512_mask_cmp_ss: case Intrinsic::x86_avx512_mask_cmp_sd: { // These intrinsics only demand the 0th element of their input vectors. If // we can simplify the input based on that, do so now. bool MadeChange = false; Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); unsigned VWidth = Arg0->getType()->getVectorNumElements(); if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) { II->setArgOperand(0, V); MadeChange = true; } if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { II->setArgOperand(1, V); MadeChange = true; } if (MadeChange) return II; break; } case Intrinsic::x86_avx512_cmp_pd_128: case Intrinsic::x86_avx512_cmp_pd_256: case Intrinsic::x86_avx512_cmp_pd_512: case Intrinsic::x86_avx512_cmp_ps_128: case Intrinsic::x86_avx512_cmp_ps_256: case Intrinsic::x86_avx512_cmp_ps_512: { // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a) Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); bool Arg0IsZero = match(Arg0, m_PosZeroFP()); if (Arg0IsZero) std::swap(Arg0, Arg1); Value *A, *B; // This fold requires only the NINF(not +/- inf) since inf minus // inf is nan. // NSZ(No Signed Zeros) is not needed because zeros of any sign are // equal for both compares. // NNAN is not needed because nans compare the same for both compares. // The compare intrinsic uses the above assumptions and therefore // doesn't require additional flags. if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) && match(Arg1, m_PosZeroFP()) && isa(Arg0) && cast(Arg0)->getFastMathFlags().noInfs())) { if (Arg0IsZero) std::swap(A, B); II->setArgOperand(0, A); II->setArgOperand(1, B); return II; } break; } case Intrinsic::x86_avx512_add_ps_512: case Intrinsic::x86_avx512_div_ps_512: case Intrinsic::x86_avx512_mul_ps_512: case Intrinsic::x86_avx512_sub_ps_512: case Intrinsic::x86_avx512_add_pd_512: case Intrinsic::x86_avx512_div_pd_512: case Intrinsic::x86_avx512_mul_pd_512: case Intrinsic::x86_avx512_sub_pd_512: // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular // IR operations. if (auto *R = dyn_cast(II->getArgOperand(2))) { if (R->getValue() == 4) { Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); Value *V; switch (IID) { default: llvm_unreachable("Case stmts out of sync!"); case Intrinsic::x86_avx512_add_ps_512: case Intrinsic::x86_avx512_add_pd_512: V = Builder.CreateFAdd(Arg0, Arg1); break; case Intrinsic::x86_avx512_sub_ps_512: case Intrinsic::x86_avx512_sub_pd_512: V = Builder.CreateFSub(Arg0, Arg1); break; case Intrinsic::x86_avx512_mul_ps_512: case Intrinsic::x86_avx512_mul_pd_512: V = Builder.CreateFMul(Arg0, Arg1); break; case Intrinsic::x86_avx512_div_ps_512: case Intrinsic::x86_avx512_div_pd_512: V = Builder.CreateFDiv(Arg0, Arg1); break; } return replaceInstUsesWith(*II, V); } } break; case Intrinsic::x86_avx512_mask_add_ss_round: case Intrinsic::x86_avx512_mask_div_ss_round: case Intrinsic::x86_avx512_mask_mul_ss_round: case Intrinsic::x86_avx512_mask_sub_ss_round: case Intrinsic::x86_avx512_mask_add_sd_round: case Intrinsic::x86_avx512_mask_div_sd_round: case Intrinsic::x86_avx512_mask_mul_sd_round: case Intrinsic::x86_avx512_mask_sub_sd_round: // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular // IR operations. if (auto *R = dyn_cast(II->getArgOperand(4))) { if (R->getValue() == 4) { // Extract the element as scalars. Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0); Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0); Value *V; switch (IID) { default: llvm_unreachable("Case stmts out of sync!"); case Intrinsic::x86_avx512_mask_add_ss_round: case Intrinsic::x86_avx512_mask_add_sd_round: V = Builder.CreateFAdd(LHS, RHS); break; case Intrinsic::x86_avx512_mask_sub_ss_round: case Intrinsic::x86_avx512_mask_sub_sd_round: V = Builder.CreateFSub(LHS, RHS); break; case Intrinsic::x86_avx512_mask_mul_ss_round: case Intrinsic::x86_avx512_mask_mul_sd_round: V = Builder.CreateFMul(LHS, RHS); break; case Intrinsic::x86_avx512_mask_div_ss_round: case Intrinsic::x86_avx512_mask_div_sd_round: V = Builder.CreateFDiv(LHS, RHS); break; } // Handle the masking aspect of the intrinsic. Value *Mask = II->getArgOperand(3); auto *C = dyn_cast(Mask); // We don't need a select if we know the mask bit is a 1. if (!C || !C->getValue()[0]) { // Cast the mask to an i1 vector and then extract the lowest element. auto *MaskTy = VectorType::get(Builder.getInt1Ty(), cast(Mask->getType())->getBitWidth()); Mask = Builder.CreateBitCast(Mask, MaskTy); Mask = Builder.CreateExtractElement(Mask, (uint64_t)0); // Extract the lowest element from the passthru operand. Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2), (uint64_t)0); V = Builder.CreateSelect(Mask, V, Passthru); } // Insert the result back into the original argument 0. V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0); return replaceInstUsesWith(*II, V); } } break; // Constant fold ashr( , Ci ). // Constant fold lshr( , Ci ). // Constant fold shl( , Ci ). case Intrinsic::x86_sse2_psrai_d: case Intrinsic::x86_sse2_psrai_w: case Intrinsic::x86_avx2_psrai_d: case Intrinsic::x86_avx2_psrai_w: case Intrinsic::x86_avx512_psrai_q_128: case Intrinsic::x86_avx512_psrai_q_256: case Intrinsic::x86_avx512_psrai_d_512: case Intrinsic::x86_avx512_psrai_q_512: case Intrinsic::x86_avx512_psrai_w_512: case Intrinsic::x86_sse2_psrli_d: case Intrinsic::x86_sse2_psrli_q: case Intrinsic::x86_sse2_psrli_w: case Intrinsic::x86_avx2_psrli_d: case Intrinsic::x86_avx2_psrli_q: case Intrinsic::x86_avx2_psrli_w: case Intrinsic::x86_avx512_psrli_d_512: case Intrinsic::x86_avx512_psrli_q_512: case Intrinsic::x86_avx512_psrli_w_512: case Intrinsic::x86_sse2_pslli_d: case Intrinsic::x86_sse2_pslli_q: case Intrinsic::x86_sse2_pslli_w: case Intrinsic::x86_avx2_pslli_d: case Intrinsic::x86_avx2_pslli_q: case Intrinsic::x86_avx2_pslli_w: case Intrinsic::x86_avx512_pslli_d_512: case Intrinsic::x86_avx512_pslli_q_512: case Intrinsic::x86_avx512_pslli_w_512: if (Value *V = simplifyX86immShift(*II, Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse2_psra_d: case Intrinsic::x86_sse2_psra_w: case Intrinsic::x86_avx2_psra_d: case Intrinsic::x86_avx2_psra_w: case Intrinsic::x86_avx512_psra_q_128: case Intrinsic::x86_avx512_psra_q_256: case Intrinsic::x86_avx512_psra_d_512: case Intrinsic::x86_avx512_psra_q_512: case Intrinsic::x86_avx512_psra_w_512: case Intrinsic::x86_sse2_psrl_d: case Intrinsic::x86_sse2_psrl_q: case Intrinsic::x86_sse2_psrl_w: case Intrinsic::x86_avx2_psrl_d: case Intrinsic::x86_avx2_psrl_q: case Intrinsic::x86_avx2_psrl_w: case Intrinsic::x86_avx512_psrl_d_512: case Intrinsic::x86_avx512_psrl_q_512: case Intrinsic::x86_avx512_psrl_w_512: case Intrinsic::x86_sse2_psll_d: case Intrinsic::x86_sse2_psll_q: case Intrinsic::x86_sse2_psll_w: case Intrinsic::x86_avx2_psll_d: case Intrinsic::x86_avx2_psll_q: case Intrinsic::x86_avx2_psll_w: case Intrinsic::x86_avx512_psll_d_512: case Intrinsic::x86_avx512_psll_q_512: case Intrinsic::x86_avx512_psll_w_512: { if (Value *V = simplifyX86immShift(*II, Builder)) return replaceInstUsesWith(*II, V); // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector // operand to compute the shift amount. Value *Arg1 = II->getArgOperand(1); assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && "Unexpected packed shift size"); unsigned VWidth = Arg1->getType()->getVectorNumElements(); if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { II->setArgOperand(1, V); return II; } break; } case Intrinsic::x86_avx2_psllv_d: case Intrinsic::x86_avx2_psllv_d_256: case Intrinsic::x86_avx2_psllv_q: case Intrinsic::x86_avx2_psllv_q_256: case Intrinsic::x86_avx512_psllv_d_512: case Intrinsic::x86_avx512_psllv_q_512: case Intrinsic::x86_avx512_psllv_w_128: case Intrinsic::x86_avx512_psllv_w_256: case Intrinsic::x86_avx512_psllv_w_512: case Intrinsic::x86_avx2_psrav_d: case Intrinsic::x86_avx2_psrav_d_256: case Intrinsic::x86_avx512_psrav_q_128: case Intrinsic::x86_avx512_psrav_q_256: case Intrinsic::x86_avx512_psrav_d_512: case Intrinsic::x86_avx512_psrav_q_512: case Intrinsic::x86_avx512_psrav_w_128: case Intrinsic::x86_avx512_psrav_w_256: case Intrinsic::x86_avx512_psrav_w_512: case Intrinsic::x86_avx2_psrlv_d: case Intrinsic::x86_avx2_psrlv_d_256: case Intrinsic::x86_avx2_psrlv_q: case Intrinsic::x86_avx2_psrlv_q_256: case Intrinsic::x86_avx512_psrlv_d_512: case Intrinsic::x86_avx512_psrlv_q_512: case Intrinsic::x86_avx512_psrlv_w_128: case Intrinsic::x86_avx512_psrlv_w_256: case Intrinsic::x86_avx512_psrlv_w_512: if (Value *V = simplifyX86varShift(*II, Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse2_packssdw_128: case Intrinsic::x86_sse2_packsswb_128: case Intrinsic::x86_avx2_packssdw: case Intrinsic::x86_avx2_packsswb: case Intrinsic::x86_avx512_packssdw_512: case Intrinsic::x86_avx512_packsswb_512: if (Value *V = simplifyX86pack(*II, Builder, true)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse2_packuswb_128: case Intrinsic::x86_sse41_packusdw: case Intrinsic::x86_avx2_packusdw: case Intrinsic::x86_avx2_packuswb: case Intrinsic::x86_avx512_packusdw_512: case Intrinsic::x86_avx512_packuswb_512: if (Value *V = simplifyX86pack(*II, Builder, false)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_pclmulqdq: case Intrinsic::x86_pclmulqdq_256: case Intrinsic::x86_pclmulqdq_512: { if (auto *C = dyn_cast(II->getArgOperand(2))) { unsigned Imm = C->getZExtValue(); bool MadeChange = false; Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); unsigned VWidth = Arg0->getType()->getVectorNumElements(); APInt UndefElts1(VWidth, 0); APInt DemandedElts1 = APInt::getSplat(VWidth, APInt(2, (Imm & 0x01) ? 2 : 1)); if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1, UndefElts1)) { II->setArgOperand(0, V); MadeChange = true; } APInt UndefElts2(VWidth, 0); APInt DemandedElts2 = APInt::getSplat(VWidth, APInt(2, (Imm & 0x10) ? 2 : 1)); if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2, UndefElts2)) { II->setArgOperand(1, V); MadeChange = true; } // If either input elements are undef, the result is zero. if (DemandedElts1.isSubsetOf(UndefElts1) || DemandedElts2.isSubsetOf(UndefElts2)) return replaceInstUsesWith(*II, ConstantAggregateZero::get(II->getType())); if (MadeChange) return II; } break; } case Intrinsic::x86_sse41_insertps: if (Value *V = simplifyX86insertps(*II, Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_sse4a_extrq: { Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned VWidth0 = Op0->getType()->getVectorNumElements(); unsigned VWidth1 = Op1->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && VWidth1 == 16 && "Unexpected operand sizes"); // See if we're dealing with constant values. Constant *C1 = dyn_cast(Op1); ConstantInt *CILength = C1 ? dyn_cast_or_null(C1->getAggregateElement((unsigned)0)) : nullptr; ConstantInt *CIIndex = C1 ? dyn_cast_or_null(C1->getAggregateElement((unsigned)1)) : nullptr; // Attempt to simplify to a constant, shuffle vector or EXTRQI call. if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder)) return replaceInstUsesWith(*II, V); // EXTRQ only uses the lowest 64-bits of the first 128-bit vector // operands and the lowest 16-bits of the second. bool MadeChange = false; if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { II->setArgOperand(0, V); MadeChange = true; } if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { II->setArgOperand(1, V); MadeChange = true; } if (MadeChange) return II; break; } case Intrinsic::x86_sse4a_extrqi: { // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining // bits of the lower 64-bits. The upper 64-bits are undefined. Value *Op0 = II->getArgOperand(0); unsigned VWidth = Op0->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && "Unexpected operand size"); // See if we're dealing with constant values. ConstantInt *CILength = dyn_cast(II->getArgOperand(1)); ConstantInt *CIIndex = dyn_cast(II->getArgOperand(2)); // Attempt to simplify to a constant or shuffle vector. if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder)) return replaceInstUsesWith(*II, V); // EXTRQI only uses the lowest 64-bits of the first 128-bit vector // operand. if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse4a_insertq: { Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned VWidth = Op0->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && Op1->getType()->getVectorNumElements() == 2 && "Unexpected operand size"); // See if we're dealing with constant values. Constant *C1 = dyn_cast(Op1); ConstantInt *CI11 = C1 ? dyn_cast_or_null(C1->getAggregateElement((unsigned)1)) : nullptr; // Attempt to simplify to a constant, shuffle vector or INSERTQI call. if (CI11) { const APInt &V11 = CI11->getValue(); APInt Len = V11.zextOrTrunc(6); APInt Idx = V11.lshr(8).zextOrTrunc(6); if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder)) return replaceInstUsesWith(*II, V); } // INSERTQ only uses the lowest 64-bits of the first 128-bit vector // operand. if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { II->setArgOperand(0, V); return II; } break; } case Intrinsic::x86_sse4a_insertqi: { // INSERTQI: Extract lowest Length bits from lower half of second source and // insert over first source starting at Index bit. The upper 64-bits are // undefined. Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); unsigned VWidth0 = Op0->getType()->getVectorNumElements(); unsigned VWidth1 = Op1->getType()->getVectorNumElements(); assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && VWidth1 == 2 && "Unexpected operand sizes"); // See if we're dealing with constant values. ConstantInt *CILength = dyn_cast(II->getArgOperand(2)); ConstantInt *CIIndex = dyn_cast(II->getArgOperand(3)); // Attempt to simplify to a constant or shuffle vector. if (CILength && CIIndex) { APInt Len = CILength->getValue().zextOrTrunc(6); APInt Idx = CIIndex->getValue().zextOrTrunc(6); if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder)) return replaceInstUsesWith(*II, V); } // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector // operands. bool MadeChange = false; if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { II->setArgOperand(0, V); MadeChange = true; } if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { II->setArgOperand(1, V); MadeChange = true; } if (MadeChange) return II; break; } case Intrinsic::x86_sse41_pblendvb: case Intrinsic::x86_sse41_blendvps: case Intrinsic::x86_sse41_blendvpd: case Intrinsic::x86_avx_blendv_ps_256: case Intrinsic::x86_avx_blendv_pd_256: case Intrinsic::x86_avx2_pblendvb: { // fold (blend A, A, Mask) -> A Value *Op0 = II->getArgOperand(0); Value *Op1 = II->getArgOperand(1); Value *Mask = II->getArgOperand(2); if (Op0 == Op1) return replaceInstUsesWith(CI, Op0); // Zero Mask - select 1st argument. if (isa(Mask)) return replaceInstUsesWith(CI, Op0); // Constant Mask - select 1st/2nd argument lane based on top bit of mask. if (auto *ConstantMask = dyn_cast(Mask)) { Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask); return SelectInst::Create(NewSelector, Op1, Op0, "blendv"); } // Convert to a vector select if we can bypass casts and find a boolean // vector condition value. Value *BoolVec; Mask = peekThroughBitcast(Mask); if (match(Mask, m_SExt(m_Value(BoolVec))) && BoolVec->getType()->isVectorTy() && BoolVec->getType()->getScalarSizeInBits() == 1) { assert(Mask->getType()->getPrimitiveSizeInBits() == II->getType()->getPrimitiveSizeInBits() && "Not expecting mask and operands with different sizes"); unsigned NumMaskElts = Mask->getType()->getVectorNumElements(); unsigned NumOperandElts = II->getType()->getVectorNumElements(); if (NumMaskElts == NumOperandElts) return SelectInst::Create(BoolVec, Op1, Op0); // If the mask has less elements than the operands, each mask bit maps to // multiple elements of the operands. Bitcast back and forth. if (NumMaskElts < NumOperandElts) { Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType()); Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType()); Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0); return new BitCastInst(Sel, II->getType()); } } break; } case Intrinsic::x86_ssse3_pshuf_b_128: case Intrinsic::x86_avx2_pshuf_b: case Intrinsic::x86_avx512_pshuf_b_512: if (Value *V = simplifyX86pshufb(*II, Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_avx_vpermilvar_ps: case Intrinsic::x86_avx_vpermilvar_ps_256: case Intrinsic::x86_avx512_vpermilvar_ps_512: case Intrinsic::x86_avx_vpermilvar_pd: case Intrinsic::x86_avx_vpermilvar_pd_256: case Intrinsic::x86_avx512_vpermilvar_pd_512: if (Value *V = simplifyX86vpermilvar(*II, Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_avx2_permd: case Intrinsic::x86_avx2_permps: case Intrinsic::x86_avx512_permvar_df_256: case Intrinsic::x86_avx512_permvar_df_512: case Intrinsic::x86_avx512_permvar_di_256: case Intrinsic::x86_avx512_permvar_di_512: case Intrinsic::x86_avx512_permvar_hi_128: case Intrinsic::x86_avx512_permvar_hi_256: case Intrinsic::x86_avx512_permvar_hi_512: case Intrinsic::x86_avx512_permvar_qi_128: case Intrinsic::x86_avx512_permvar_qi_256: case Intrinsic::x86_avx512_permvar_qi_512: case Intrinsic::x86_avx512_permvar_sf_512: case Intrinsic::x86_avx512_permvar_si_512: if (Value *V = simplifyX86vpermv(*II, Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::x86_avx_maskload_ps: case Intrinsic::x86_avx_maskload_pd: case Intrinsic::x86_avx_maskload_ps_256: case Intrinsic::x86_avx_maskload_pd_256: case Intrinsic::x86_avx2_maskload_d: case Intrinsic::x86_avx2_maskload_q: case Intrinsic::x86_avx2_maskload_d_256: case Intrinsic::x86_avx2_maskload_q_256: if (Instruction *I = simplifyX86MaskedLoad(*II, *this)) return I; break; case Intrinsic::x86_sse2_maskmov_dqu: case Intrinsic::x86_avx_maskstore_ps: case Intrinsic::x86_avx_maskstore_pd: case Intrinsic::x86_avx_maskstore_ps_256: case Intrinsic::x86_avx_maskstore_pd_256: case Intrinsic::x86_avx2_maskstore_d: case Intrinsic::x86_avx2_maskstore_q: case Intrinsic::x86_avx2_maskstore_d_256: case Intrinsic::x86_avx2_maskstore_q_256: if (simplifyX86MaskedStore(*II, *this)) return nullptr; break; case Intrinsic::x86_addcarry_32: case Intrinsic::x86_addcarry_64: if (Value *V = simplifyX86addcarry(*II, Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::ppc_altivec_vperm: // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. // Note that ppc_altivec_vperm has a big-endian bias, so when creating // a vectorshuffle for little endian, we must undo the transformation // performed on vec_perm in altivec.h. That is, we must complement // the permutation mask with respect to 31 and reverse the order of // V1 and V2. if (Constant *Mask = dyn_cast(II->getArgOperand(2))) { assert(Mask->getType()->getVectorNumElements() == 16 && "Bad type for intrinsic!"); // Check that all of the elements are integer constants or undefs. bool AllEltsOk = true; for (unsigned i = 0; i != 16; ++i) { Constant *Elt = Mask->getAggregateElement(i); if (!Elt || !(isa(Elt) || isa(Elt))) { AllEltsOk = false; break; } } if (AllEltsOk) { // Cast the input vectors to byte vectors. Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0), Mask->getType()); Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1), Mask->getType()); Value *Result = UndefValue::get(Op0->getType()); // Only extract each element once. Value *ExtractedElts[32]; memset(ExtractedElts, 0, sizeof(ExtractedElts)); for (unsigned i = 0; i != 16; ++i) { if (isa(Mask->getAggregateElement(i))) continue; unsigned Idx = cast(Mask->getAggregateElement(i))->getZExtValue(); Idx &= 31; // Match the hardware behavior. if (DL.isLittleEndian()) Idx = 31 - Idx; if (!ExtractedElts[Idx]) { Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; ExtractedElts[Idx] = Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse, Builder.getInt32(Idx&15)); } // Insert this value into the result vector. Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx], Builder.getInt32(i)); } return CastInst::Create(Instruction::BitCast, Result, CI.getType()); } } break; case Intrinsic::arm_neon_vld1: { unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT); if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder)) return replaceInstUsesWith(*II, V); break; } case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT); unsigned AlignArg = II->getNumArgOperands() - 1; ConstantInt *IntrAlign = dyn_cast(II->getArgOperand(AlignArg)); if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) { II->setArgOperand(AlignArg, ConstantInt::get(Type::getInt32Ty(II->getContext()), MemAlign, false)); return II; } break; } case Intrinsic::arm_neon_vtbl1: case Intrinsic::aarch64_neon_tbl1: if (Value *V = simplifyNeonTbl1(*II, Builder)) return replaceInstUsesWith(*II, V); break; case Intrinsic::arm_neon_vmulls: case Intrinsic::arm_neon_vmullu: case Intrinsic::aarch64_neon_smull: case Intrinsic::aarch64_neon_umull: { Value *Arg0 = II->getArgOperand(0); Value *Arg1 = II->getArgOperand(1); // Handle mul by zero first: if (isa(Arg0) || isa(Arg1)) { return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); } // Check for constant LHS & RHS - in this case we just simplify. bool Zext = (IID == Intrinsic::arm_neon_vmullu || IID == Intrinsic::aarch64_neon_umull); VectorType *NewVT = cast(II->getType()); if (Constant *CV0 = dyn_cast(Arg0)) { if (Constant *CV1 = dyn_cast(Arg1)) { CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); } // Couldn't simplify - canonicalize constant to the RHS. std::swap(Arg0, Arg1); } // Handle mul by one: if (Constant *CV1 = dyn_cast(Arg1)) if (ConstantInt *Splat = dyn_cast_or_null(CV1->getSplatValue())) if (Splat->isOne()) return CastInst::CreateIntegerCast(Arg0, II->getType(), /*isSigned=*/!Zext); break; } case Intrinsic::arm_neon_aesd: case Intrinsic::arm_neon_aese: case Intrinsic::aarch64_crypto_aesd: case Intrinsic::aarch64_crypto_aese: { Value *DataArg = II->getArgOperand(0); Value *KeyArg = II->getArgOperand(1); // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR Value *Data, *Key; if (match(KeyArg, m_ZeroInt()) && match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { II->setArgOperand(0, Data); II->setArgOperand(1, Key); return II; } break; } case Intrinsic::amdgcn_rcp: { Value *Src = II->getArgOperand(0); // TODO: Move to ConstantFolding/InstSimplify? if (isa(Src)) return replaceInstUsesWith(CI, Src); if (const ConstantFP *C = dyn_cast(Src)) { const APFloat &ArgVal = C->getValueAPF(); APFloat Val(ArgVal.getSemantics(), 1.0); APFloat::opStatus Status = Val.divide(ArgVal, APFloat::rmNearestTiesToEven); // Only do this if it was exact and therefore not dependent on the // rounding mode. if (Status == APFloat::opOK) return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val)); } break; } case Intrinsic::amdgcn_rsq: { Value *Src = II->getArgOperand(0); // TODO: Move to ConstantFolding/InstSimplify? if (isa(Src)) return replaceInstUsesWith(CI, Src); break; } case Intrinsic::amdgcn_frexp_mant: case Intrinsic::amdgcn_frexp_exp: { Value *Src = II->getArgOperand(0); if (const ConstantFP *C = dyn_cast(Src)) { int Exp; APFloat Significand = frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); if (IID == Intrinsic::amdgcn_frexp_mant) { return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Significand)); } // Match instruction special case behavior. if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) Exp = 0; return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp)); } if (isa(Src)) return replaceInstUsesWith(CI, UndefValue::get(II->getType())); break; } case Intrinsic::amdgcn_class: { enum { S_NAN = 1 << 0, // Signaling NaN Q_NAN = 1 << 1, // Quiet NaN N_INFINITY = 1 << 2, // Negative infinity N_NORMAL = 1 << 3, // Negative normal N_SUBNORMAL = 1 << 4, // Negative subnormal N_ZERO = 1 << 5, // Negative zero P_ZERO = 1 << 6, // Positive zero P_SUBNORMAL = 1 << 7, // Positive subnormal P_NORMAL = 1 << 8, // Positive normal P_INFINITY = 1 << 9 // Positive infinity }; const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL | N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY; Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); const ConstantInt *CMask = dyn_cast(Src1); if (!CMask) { if (isa(Src0)) return replaceInstUsesWith(*II, UndefValue::get(II->getType())); if (isa(Src1)) return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); break; } uint32_t Mask = CMask->getZExtValue(); // If all tests are made, it doesn't matter what the value is. if ((Mask & FullMask) == FullMask) return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true)); if ((Mask & FullMask) == 0) return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); if (Mask == (S_NAN | Q_NAN)) { // Equivalent of isnan. Replace with standard fcmp. Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0); FCmp->takeName(II); return replaceInstUsesWith(*II, FCmp); } if (Mask == (N_ZERO | P_ZERO)) { // Equivalent of == 0. Value *FCmp = Builder.CreateFCmpOEQ( Src0, ConstantFP::get(Src0->getType(), 0.0)); FCmp->takeName(II); return replaceInstUsesWith(*II, FCmp); } // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) { II->setArgOperand(1, ConstantInt::get(Src1->getType(), Mask & ~(S_NAN | Q_NAN))); return II; } const ConstantFP *CVal = dyn_cast(Src0); if (!CVal) { if (isa(Src0)) return replaceInstUsesWith(*II, UndefValue::get(II->getType())); // Clamp mask to used bits if ((Mask & FullMask) != Mask) { CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(), { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) } ); NewCall->takeName(II); return replaceInstUsesWith(*II, NewCall); } break; } const APFloat &Val = CVal->getValueAPF(); bool Result = ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) || ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) || ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) || ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) || ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) || ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) || ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) || ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) || ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) || ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative()); return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result)); } case Intrinsic::amdgcn_cvt_pkrtz: { Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); if (const ConstantFP *C0 = dyn_cast(Src0)) { if (const ConstantFP *C1 = dyn_cast(Src1)) { const fltSemantics &HalfSem = II->getType()->getScalarType()->getFltSemantics(); bool LosesInfo; APFloat Val0 = C0->getValueAPF(); APFloat Val1 = C1->getValueAPF(); Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); Constant *Folded = ConstantVector::get({ ConstantFP::get(II->getContext(), Val0), ConstantFP::get(II->getContext(), Val1) }); return replaceInstUsesWith(*II, Folded); } } if (isa(Src0) && isa(Src1)) return replaceInstUsesWith(*II, UndefValue::get(II->getType())); break; } case Intrinsic::amdgcn_cvt_pknorm_i16: case Intrinsic::amdgcn_cvt_pknorm_u16: case Intrinsic::amdgcn_cvt_pk_i16: case Intrinsic::amdgcn_cvt_pk_u16: { Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); if (isa(Src0) && isa(Src1)) return replaceInstUsesWith(*II, UndefValue::get(II->getType())); break; } case Intrinsic::amdgcn_ubfe: case Intrinsic::amdgcn_sbfe: { // Decompose simple cases into standard shifts. Value *Src = II->getArgOperand(0); if (isa(Src)) return replaceInstUsesWith(*II, Src); unsigned Width; Type *Ty = II->getType(); unsigned IntSize = Ty->getIntegerBitWidth(); ConstantInt *CWidth = dyn_cast(II->getArgOperand(2)); if (CWidth) { Width = CWidth->getZExtValue(); if ((Width & (IntSize - 1)) == 0) return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty)); if (Width >= IntSize) { // Hardware ignores high bits, so remove those. II->setArgOperand(2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); return II; } } unsigned Offset; ConstantInt *COffset = dyn_cast(II->getArgOperand(1)); if (COffset) { Offset = COffset->getZExtValue(); if (Offset >= IntSize) { II->setArgOperand(1, ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); return II; } } bool Signed = IID == Intrinsic::amdgcn_sbfe; if (!CWidth || !COffset) break; // The case of Width == 0 is handled above, which makes this tranformation // safe. If Width == 0, then the ashr and lshr instructions become poison // value since the shift amount would be equal to the bit size. assert(Width != 0); // TODO: This allows folding to undef when the hardware has specific // behavior? if (Offset + Width < IntSize) { Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width); Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width) : Builder.CreateLShr(Shl, IntSize - Width); RightShift->takeName(II); return replaceInstUsesWith(*II, RightShift); } Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset) : Builder.CreateLShr(Src, Offset); RightShift->takeName(II); return replaceInstUsesWith(*II, RightShift); } case Intrinsic::amdgcn_exp: case Intrinsic::amdgcn_exp_compr: { ConstantInt *En = cast(II->getArgOperand(1)); unsigned EnBits = En->getZExtValue(); if (EnBits == 0xf) break; // All inputs enabled. bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; bool Changed = false; for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { if ((!IsCompr && (EnBits & (1 << I)) == 0) || (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { Value *Src = II->getArgOperand(I + 2); if (!isa(Src)) { II->setArgOperand(I + 2, UndefValue::get(Src->getType())); Changed = true; } } } if (Changed) return II; break; } case Intrinsic::amdgcn_fmed3: { // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled // for the shader. Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); Value *Src2 = II->getArgOperand(2); // Checking for NaN before canonicalization provides better fidelity when // mapping other operations onto fmed3 since the order of operands is // unchanged. CallInst *NewCall = nullptr; if (match(Src0, m_NaN()) || isa(Src0)) { NewCall = Builder.CreateMinNum(Src1, Src2); } else if (match(Src1, m_NaN()) || isa(Src1)) { NewCall = Builder.CreateMinNum(Src0, Src2); } else if (match(Src2, m_NaN()) || isa(Src2)) { NewCall = Builder.CreateMaxNum(Src0, Src1); } if (NewCall) { NewCall->copyFastMathFlags(II); NewCall->takeName(II); return replaceInstUsesWith(*II, NewCall); } bool Swap = false; // Canonicalize constants to RHS operands. // // fmed3(c0, x, c1) -> fmed3(x, c0, c1) if (isa(Src0) && !isa(Src1)) { std::swap(Src0, Src1); Swap = true; } if (isa(Src1) && !isa(Src2)) { std::swap(Src1, Src2); Swap = true; } if (isa(Src0) && !isa(Src1)) { std::swap(Src0, Src1); Swap = true; } if (Swap) { II->setArgOperand(0, Src0); II->setArgOperand(1, Src1); II->setArgOperand(2, Src2); return II; } if (const ConstantFP *C0 = dyn_cast(Src0)) { if (const ConstantFP *C1 = dyn_cast(Src1)) { if (const ConstantFP *C2 = dyn_cast(Src2)) { APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), C2->getValueAPF()); return replaceInstUsesWith(*II, ConstantFP::get(Builder.getContext(), Result)); } } } break; } case Intrinsic::amdgcn_icmp: case Intrinsic::amdgcn_fcmp: { const ConstantInt *CC = cast(II->getArgOperand(2)); // Guard against invalid arguments. int64_t CCVal = CC->getZExtValue(); bool IsInteger = IID == Intrinsic::amdgcn_icmp; if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || CCVal > CmpInst::LAST_ICMP_PREDICATE)) || (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || CCVal > CmpInst::LAST_FCMP_PREDICATE))) break; Value *Src0 = II->getArgOperand(0); Value *Src1 = II->getArgOperand(1); if (auto *CSrc0 = dyn_cast(Src0)) { if (auto *CSrc1 = dyn_cast(Src1)) { Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); if (CCmp->isNullValue()) { return replaceInstUsesWith( *II, ConstantExpr::getSExt(CCmp, II->getType())); } // The result of V_ICMP/V_FCMP assembly instructions (which this // intrinsic exposes) is one bit per thread, masked with the EXEC // register (which contains the bitmask of live threads). So a // comparison that always returns true is the same as a read of the // EXEC register. Function *NewF = Intrinsic::getDeclaration( II->getModule(), Intrinsic::read_register, II->getType()); Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")}; MDNode *MD = MDNode::get(II->getContext(), MDArgs); Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)}; CallInst *NewCall = Builder.CreateCall(NewF, Args); NewCall->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent); NewCall->takeName(II); return replaceInstUsesWith(*II, NewCall); } // Canonicalize constants to RHS. CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(static_cast(CCVal)); II->setArgOperand(0, Src1); II->setArgOperand(1, Src0); II->setArgOperand(2, ConstantInt::get(CC->getType(), static_cast(SwapPred))); return II; } if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) break; // Canonicalize compare eq with true value to compare != 0 // llvm.amdgcn.icmp(zext (i1 x), 1, eq) // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) // llvm.amdgcn.icmp(sext (i1 x), -1, eq) // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) Value *ExtSrc; if (CCVal == CmpInst::ICMP_EQ && ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) || (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) && ExtSrc->getType()->isIntegerTy(1)) { II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType())); II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); return II; } CmpInst::Predicate SrcPred; Value *SrcLHS; Value *SrcRHS; // Fold compare eq/ne with 0 from a compare result as the predicate to the // intrinsic. The typical use is a wave vote function in the library, which // will be fed from a user code condition compared with 0. Fold in the // redundant compare. // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) // -> llvm.amdgcn.[if]cmp(a, b, pred) // // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) // -> llvm.amdgcn.[if]cmp(a, b, inv pred) if (match(Src1, m_Zero()) && match(Src0, m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) { if (CCVal == CmpInst::ICMP_EQ) SrcPred = CmpInst::getInversePredicate(SrcPred); Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ? Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp; Type *Ty = SrcLHS->getType(); if (auto *CmpType = dyn_cast(Ty)) { // Promote to next legal integer type. unsigned Width = CmpType->getBitWidth(); unsigned NewWidth = Width; // Don't do anything for i1 comparisons. if (Width == 1) break; if (Width <= 16) NewWidth = 16; else if (Width <= 32) NewWidth = 32; else if (Width <= 64) NewWidth = 64; else if (Width > 64) break; // Can't handle this. if (Width != NewWidth) { IntegerType *CmpTy = Builder.getIntNTy(NewWidth); if (CmpInst::isSigned(SrcPred)) { SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy); SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy); } else { SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy); SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy); } } } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) break; Function *NewF = Intrinsic::getDeclaration(II->getModule(), NewIID, { II->getType(), SrcLHS->getType() }); Value *Args[] = { SrcLHS, SrcRHS, ConstantInt::get(CC->getType(), SrcPred) }; CallInst *NewCall = Builder.CreateCall(NewF, Args); NewCall->takeName(II); return replaceInstUsesWith(*II, NewCall); } break; } case Intrinsic::amdgcn_wqm_vote: { // wqm_vote is identity when the argument is constant. if (!isa(II->getArgOperand(0))) break; return replaceInstUsesWith(*II, II->getArgOperand(0)); } case Intrinsic::amdgcn_kill: { const ConstantInt *C = dyn_cast(II->getArgOperand(0)); if (!C || !C->getZExtValue()) break; // amdgcn.kill(i1 1) is a no-op return eraseInstFromFunction(CI); } case Intrinsic::amdgcn_update_dpp: { Value *Old = II->getArgOperand(0); auto BC = cast(II->getArgOperand(5)); auto RM = cast(II->getArgOperand(3)); auto BM = cast(II->getArgOperand(4)); if (BC->isZeroValue() || RM->getZExtValue() != 0xF || BM->getZExtValue() != 0xF || isa(Old)) break; // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. II->setOperand(0, UndefValue::get(Old->getType())); return II; } case Intrinsic::amdgcn_readfirstlane: case Intrinsic::amdgcn_readlane: { // A constant value is trivially uniform. if (Constant *C = dyn_cast(II->getArgOperand(0))) return replaceInstUsesWith(*II, C); // The rest of these may not be safe if the exec may not be the same between // the def and use. Value *Src = II->getArgOperand(0); Instruction *SrcInst = dyn_cast(Src); if (SrcInst && SrcInst->getParent() != II->getParent()) break; // readfirstlane (readfirstlane x) -> readfirstlane x // readlane (readfirstlane x), y -> readfirstlane x if (match(Src, m_Intrinsic())) return replaceInstUsesWith(*II, Src); if (IID == Intrinsic::amdgcn_readfirstlane) { // readfirstlane (readlane x, y) -> readlane x, y if (match(Src, m_Intrinsic())) return replaceInstUsesWith(*II, Src); } else { // readlane (readlane x, y), y -> readlane x, y if (match(Src, m_Intrinsic( m_Value(), m_Specific(II->getArgOperand(1))))) return replaceInstUsesWith(*II, Src); } break; } case Intrinsic::stackrestore: { // If the save is right next to the restore, remove the restore. This can // happen when variable allocas are DCE'd. if (IntrinsicInst *SS = dyn_cast(II->getArgOperand(0))) { if (SS->getIntrinsicID() == Intrinsic::stacksave) { // Skip over debug info. if (SS->getNextNonDebugInstruction() == II) { return eraseInstFromFunction(CI); } } } // Scan down this block to see if there is another stack restore in the // same block without an intervening call/alloca. BasicBlock::iterator BI(II); Instruction *TI = II->getParent()->getTerminator(); bool CannotRemove = false; for (++BI; &*BI != TI; ++BI) { if (isa(BI)) { CannotRemove = true; break; } if (CallInst *BCI = dyn_cast(BI)) { if (auto *II2 = dyn_cast(BCI)) { // If there is a stackrestore below this one, remove this one. if (II2->getIntrinsicID() == Intrinsic::stackrestore) return eraseInstFromFunction(CI); // Bail if we cross over an intrinsic with side effects, such as // llvm.stacksave, llvm.read_register, or llvm.setjmp. if (II2->mayHaveSideEffects()) { CannotRemove = true; break; } } else { // If we found a non-intrinsic call, we can't remove the stack // restore. CannotRemove = true; break; } } } // If the stack restore is in a return, resume, or unwind block and if there // are no allocas or calls between the restore and the return, nuke the // restore. if (!CannotRemove && (isa(TI) || isa(TI))) return eraseInstFromFunction(CI); break; } case Intrinsic::lifetime_start: // Asan needs to poison memory to detect invalid access which is possible // even for empty lifetime range. if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) break; if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start, Intrinsic::lifetime_end, *this)) return nullptr; break; case Intrinsic::assume: { Value *IIOperand = II->getArgOperand(0); // Remove an assume if it is followed by an identical assume. // TODO: Do we need this? Unless there are conflicting assumptions, the // computeKnownBits(IIOperand) below here eliminates redundant assumes. Instruction *Next = II->getNextNonDebugInstruction(); if (match(Next, m_Intrinsic(m_Specific(IIOperand)))) return eraseInstFromFunction(CI); // Canonicalize assume(a && b) -> assume(a); assume(b); // Note: New assumption intrinsics created here are registered by // the InstCombineIRInserter object. FunctionType *AssumeIntrinsicTy = II->getFunctionType(); Value *AssumeIntrinsic = II->getCalledValue(); Value *A, *B; if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) { Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName()); Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); return eraseInstFromFunction(*II); } // assume(!(a || b)) -> assume(!a); assume(!b); if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) { Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, Builder.CreateNot(A), II->getName()); Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, Builder.CreateNot(B), II->getName()); return eraseInstFromFunction(*II); } // assume( (load addr) != null ) -> add 'nonnull' metadata to load // (if assume is valid at the load) CmpInst::Predicate Pred; Instruction *LHS; if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && LHS->getType()->isPointerTy() && isValidAssumeForContext(II, LHS, &DT)) { MDNode *MD = MDNode::get(II->getContext(), None); LHS->setMetadata(LLVMContext::MD_nonnull, MD); return eraseInstFromFunction(*II); // TODO: apply nonnull return attributes to calls and invokes // TODO: apply range metadata for range check patterns? } // If there is a dominating assume with the same condition as this one, // then this one is redundant, and should be removed. KnownBits Known(1); computeKnownBits(IIOperand, Known, 0, II); if (Known.isAllOnes()) return eraseInstFromFunction(*II); // Update the cache of affected values for this assumption (we might be // here because we just simplified the condition). AC.updateAffectedValues(II); break; } case Intrinsic::experimental_gc_relocate: { auto &GCR = *cast(II); // If we have two copies of the same pointer in the statepoint argument // list, canonicalize to one. This may let us common gc.relocates. if (GCR.getBasePtr() == GCR.getDerivedPtr() && GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) { auto *OpIntTy = GCR.getOperand(2)->getType(); II->setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex())); return II; } // Translate facts known about a pointer before relocating into // facts about the relocate value, while being careful to // preserve relocation semantics. Value *DerivedPtr = GCR.getDerivedPtr(); // Remove the relocation if unused, note that this check is required // to prevent the cases below from looping forever. if (II->use_empty()) return eraseInstFromFunction(*II); // Undef is undef, even after relocation. // TODO: provide a hook for this in GCStrategy. This is clearly legal for // most practical collectors, but there was discussion in the review thread // about whether it was legal for all possible collectors. if (isa(DerivedPtr)) // Use undef of gc_relocate's type to replace it. return replaceInstUsesWith(*II, UndefValue::get(II->getType())); if (auto *PT = dyn_cast(II->getType())) { // The relocation of null will be null for most any collector. // TODO: provide a hook for this in GCStrategy. There might be some // weird collector this property does not hold for. if (isa(DerivedPtr)) // Use null-pointer of gc_relocate's type to replace it. return replaceInstUsesWith(*II, ConstantPointerNull::get(PT)); // isKnownNonNull -> nonnull attribute if (!II->hasRetAttr(Attribute::NonNull) && isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) { II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); return II; } } // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) // Canonicalize on the type from the uses to the defs // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) break; } case Intrinsic::experimental_guard: { // Is this guard followed by another guard? We scan forward over a small // fixed window of instructions to handle common cases with conditions // computed between guards. Instruction *NextInst = II->getNextNode(); for (unsigned i = 0; i < GuardWideningWindow; i++) { // Note: Using context-free form to avoid compile time blow up if (!isSafeToSpeculativelyExecute(NextInst)) break; NextInst = NextInst->getNextNode(); } Value *NextCond = nullptr; if (match(NextInst, m_Intrinsic(m_Value(NextCond)))) { Value *CurrCond = II->getArgOperand(0); // Remove a guard that it is immediately preceded by an identical guard. if (CurrCond == NextCond) return eraseInstFromFunction(*NextInst); // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). Instruction* MoveI = II->getNextNode(); while (MoveI != NextInst) { auto *Temp = MoveI; MoveI = MoveI->getNextNode(); Temp->moveBefore(II); } II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond)); return eraseInstFromFunction(*NextInst); } break; } } return visitCallBase(*II); } // Fence instruction simplification Instruction *InstCombiner::visitFenceInst(FenceInst &FI) { // Remove identical consecutive fences. Instruction *Next = FI.getNextNonDebugInstruction(); if (auto *NFI = dyn_cast(Next)) if (FI.isIdenticalTo(NFI)) return eraseInstFromFunction(FI); return nullptr; } // InvokeInst simplification Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { return visitCallBase(II); } // CallBrInst simplification Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) { return visitCallBase(CBI); } /// If this cast does not affect the value passed through the varargs area, we /// can eliminate the use of the cast. static bool isSafeToEliminateVarargsCast(const CallBase &Call, const DataLayout &DL, const CastInst *const CI, const int ix) { if (!CI->isLosslessCast()) return false; // If this is a GC intrinsic, avoid munging types. We need types for // statepoint reconstruction in SelectionDAG. // TODO: This is probably something which should be expanded to all // intrinsics since the entire point of intrinsics is that // they are understandable by the optimizer. if (isStatepoint(&Call) || isGCRelocate(&Call) || isGCResult(&Call)) return false; // The size of ByVal or InAlloca arguments is derived from the type, so we // can't change to a type with a different size. If the size were // passed explicitly we could avoid this check. if (!Call.isByValOrInAllocaArgument(ix)) return true; Type* SrcTy = cast(CI->getOperand(0)->getType())->getElementType(); Type *DstTy = Call.isByValArgument(ix) ? Call.getParamByValType(ix) : cast(CI->getType())->getElementType(); if (!SrcTy->isSized() || !DstTy->isSized()) return false; if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy)) return false; return true; } Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) { if (!CI->getCalledFunction()) return nullptr; auto InstCombineRAUW = [this](Instruction *From, Value *With) { replaceInstUsesWith(*From, With); }; auto InstCombineErase = [this](Instruction *I) { eraseInstFromFunction(*I); }; LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW, InstCombineErase); if (Value *With = Simplifier.optimizeCall(CI)) { ++NumSimplified; return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); } return nullptr; } static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { // Strip off at most one level of pointer casts, looking for an alloca. This // is good enough in practice and simpler than handling any number of casts. Value *Underlying = TrampMem->stripPointerCasts(); if (Underlying != TrampMem && (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) return nullptr; if (!isa(Underlying)) return nullptr; IntrinsicInst *InitTrampoline = nullptr; for (User *U : TrampMem->users()) { IntrinsicInst *II = dyn_cast(U); if (!II) return nullptr; if (II->getIntrinsicID() == Intrinsic::init_trampoline) { if (InitTrampoline) // More than one init_trampoline writes to this value. Give up. return nullptr; InitTrampoline = II; continue; } if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) // Allow any number of calls to adjust.trampoline. continue; return nullptr; } // No call to init.trampoline found. if (!InitTrampoline) return nullptr; // Check that the alloca is being used in the expected way. if (InitTrampoline->getOperand(0) != TrampMem) return nullptr; return InitTrampoline; } static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem) { // Visit all the previous instructions in the basic block, and try to find a // init.trampoline which has a direct path to the adjust.trampoline. for (BasicBlock::iterator I = AdjustTramp->getIterator(), E = AdjustTramp->getParent()->begin(); I != E;) { Instruction *Inst = &*--I; if (IntrinsicInst *II = dyn_cast(I)) if (II->getIntrinsicID() == Intrinsic::init_trampoline && II->getOperand(0) == TrampMem) return II; if (Inst->mayWriteToMemory()) return nullptr; } return nullptr; } // Given a call to llvm.adjust.trampoline, find and return the corresponding // call to llvm.init.trampoline if the call to the trampoline can be optimized // to a direct call to a function. Otherwise return NULL. static IntrinsicInst *findInitTrampoline(Value *Callee) { Callee = Callee->stripPointerCasts(); IntrinsicInst *AdjustTramp = dyn_cast(Callee); if (!AdjustTramp || AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) return nullptr; Value *TrampMem = AdjustTramp->getOperand(0); if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) return IT; if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) return IT; return nullptr; } static void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) { unsigned NumArgs = Call.getNumArgOperands(); ConstantInt *Op0C = dyn_cast(Call.getOperand(0)); ConstantInt *Op1C = (NumArgs == 1) ? nullptr : dyn_cast(Call.getOperand(1)); // Bail out if the allocation size is zero. if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue())) return; if (isMallocLikeFn(&Call, TLI) && Op0C) { if (isOpNewLikeFn(&Call, TLI)) Call.addAttribute(AttributeList::ReturnIndex, Attribute::getWithDereferenceableBytes( Call.getContext(), Op0C->getZExtValue())); else Call.addAttribute(AttributeList::ReturnIndex, Attribute::getWithDereferenceableOrNullBytes( Call.getContext(), Op0C->getZExtValue())); } else if (isReallocLikeFn(&Call, TLI) && Op1C) { Call.addAttribute(AttributeList::ReturnIndex, Attribute::getWithDereferenceableOrNullBytes( Call.getContext(), Op1C->getZExtValue())); } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) { bool Overflow; const APInt &N = Op0C->getValue(); APInt Size = N.umul_ov(Op1C->getValue(), Overflow); if (!Overflow) Call.addAttribute(AttributeList::ReturnIndex, Attribute::getWithDereferenceableOrNullBytes( Call.getContext(), Size.getZExtValue())); } else if (isStrdupLikeFn(&Call, TLI)) { uint64_t Len = GetStringLength(Call.getOperand(0)); if (Len) { // strdup if (NumArgs == 1) Call.addAttribute(AttributeList::ReturnIndex, Attribute::getWithDereferenceableOrNullBytes( Call.getContext(), Len)); // strndup else if (NumArgs == 2 && Op1C) Call.addAttribute( AttributeList::ReturnIndex, Attribute::getWithDereferenceableOrNullBytes( Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1))); } } } /// Improvements for call, callbr and invoke instructions. Instruction *InstCombiner::visitCallBase(CallBase &Call) { if (isAllocationFn(&Call, &TLI)) annotateAnyAllocSite(Call, &TLI); bool Changed = false; // Mark any parameters that are known to be non-null with the nonnull // attribute. This is helpful for inlining calls to functions with null // checks on their arguments. SmallVector ArgNos; unsigned ArgNo = 0; for (Value *V : Call.args()) { if (V->getType()->isPointerTy() && !Call.paramHasAttr(ArgNo, Attribute::NonNull) && isKnownNonZero(V, DL, 0, &AC, &Call, &DT)) ArgNos.push_back(ArgNo); ArgNo++; } assert(ArgNo == Call.arg_size() && "sanity check"); if (!ArgNos.empty()) { AttributeList AS = Call.getAttributes(); LLVMContext &Ctx = Call.getContext(); AS = AS.addParamAttribute(Ctx, ArgNos, Attribute::get(Ctx, Attribute::NonNull)); Call.setAttributes(AS); Changed = true; } // If the callee is a pointer to a function, attempt to move any casts to the // arguments of the call/callbr/invoke. Value *Callee = Call.getCalledValue(); if (!isa(Callee) && transformConstExprCastCall(Call)) return nullptr; if (Function *CalleeF = dyn_cast(Callee)) { // Remove the convergent attr on calls when the callee is not convergent. if (Call.isConvergent() && !CalleeF->isConvergent() && !CalleeF->isIntrinsic()) { LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call << "\n"); Call.setNotConvergent(); return &Call; } // If the call and callee calling conventions don't match, this call must // be unreachable, as the call is undefined. if (CalleeF->getCallingConv() != Call.getCallingConv() && // Only do this for calls to a function with a body. A prototype may // not actually end up matching the implementation's calling conv for a // variety of reasons (e.g. it may be written in assembly). !CalleeF->isDeclaration()) { Instruction *OldCall = &Call; CreateNonTerminatorUnreachable(OldCall); // If OldCall does not return void then replaceAllUsesWith undef. // This allows ValueHandlers and custom metadata to adjust itself. if (!OldCall->getType()->isVoidTy()) replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); if (isa(OldCall)) return eraseInstFromFunction(*OldCall); // We cannot remove an invoke or a callbr, because it would change thexi // CFG, just change the callee to a null pointer. cast(OldCall)->setCalledFunction( CalleeF->getFunctionType(), Constant::getNullValue(CalleeF->getType())); return nullptr; } } if ((isa(Callee) && !NullPointerIsDefined(Call.getFunction())) || isa(Callee)) { // If Call does not return void then replaceAllUsesWith undef. // This allows ValueHandlers and custom metadata to adjust itself. if (!Call.getType()->isVoidTy()) replaceInstUsesWith(Call, UndefValue::get(Call.getType())); if (Call.isTerminator()) { // Can't remove an invoke or callbr because we cannot change the CFG. return nullptr; } // This instruction is not reachable, just remove it. CreateNonTerminatorUnreachable(&Call); return eraseInstFromFunction(Call); } if (IntrinsicInst *II = findInitTrampoline(Callee)) return transformCallThroughTrampoline(Call, *II); PointerType *PTy = cast(Callee->getType()); FunctionType *FTy = cast(PTy->getElementType()); if (FTy->isVarArg()) { int ix = FTy->getNumParams(); // See if we can optimize any arguments passed through the varargs area of // the call. for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end(); I != E; ++I, ++ix) { CastInst *CI = dyn_cast(*I); if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) { *I = CI->getOperand(0); // Update the byval type to match the argument type. if (Call.isByValArgument(ix)) { Call.removeParamAttr(ix, Attribute::ByVal); Call.addParamAttr( ix, Attribute::getWithByValType( Call.getContext(), CI->getOperand(0)->getType()->getPointerElementType())); } Changed = true; } } } if (isa(Callee) && !Call.doesNotThrow()) { // Inline asm calls cannot throw - mark them 'nounwind'. Call.setDoesNotThrow(); Changed = true; } // Try to optimize the call if possible, we require DataLayout for most of // this. None of these calls are seen as possibly dead so go ahead and // delete the instruction now. if (CallInst *CI = dyn_cast(&Call)) { Instruction *I = tryOptimizeCall(CI); // If we changed something return the result, etc. Otherwise let // the fallthrough check. if (I) return eraseInstFromFunction(*I); } if (isAllocLikeFn(&Call, &TLI)) return visitAllocSite(Call); return Changed ? &Call : nullptr; } /// If the callee is a constexpr cast of a function, attempt to move the cast to /// the arguments of the call/callbr/invoke. bool InstCombiner::transformConstExprCastCall(CallBase &Call) { auto *Callee = dyn_cast(Call.getCalledValue()->stripPointerCasts()); if (!Callee) return false; // If this is a call to a thunk function, don't remove the cast. Thunks are // used to transparently forward all incoming parameters and outgoing return // values, so it's important to leave the cast in place. if (Callee->hasFnAttribute("thunk")) return false; // If this is a musttail call, the callee's prototype must match the caller's // prototype with the exception of pointee types. The code below doesn't // implement that, so we can't do this transform. // TODO: Do the transform if it only requires adding pointer casts. if (Call.isMustTailCall()) return false; Instruction *Caller = &Call; const AttributeList &CallerPAL = Call.getAttributes(); // Okay, this is a cast from a function to a different type. Unless doing so // would cause a type conversion of one of our arguments, change this call to // be a direct call with arguments casted to the appropriate types. FunctionType *FT = Callee->getFunctionType(); Type *OldRetTy = Caller->getType(); Type *NewRetTy = FT->getReturnType(); // Check to see if we are changing the return type... if (OldRetTy != NewRetTy) { if (NewRetTy->isStructTy()) return false; // TODO: Handle multiple return values. if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { if (Callee->isDeclaration()) return false; // Cannot transform this return value. if (!Caller->use_empty() && // void -> non-void is handled specially !NewRetTy->isVoidTy()) return false; // Cannot transform this return value. } if (!CallerPAL.isEmpty() && !Caller->use_empty()) { AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) return false; // Attribute not compatible with transformed value. } // If the callbase is an invoke/callbr instruction, and the return value is // used by a PHI node in a successor, we cannot change the return type of // the call because there is no place to put the cast instruction (without // breaking the critical edge). Bail out in this case. if (!Caller->use_empty()) { if (InvokeInst *II = dyn_cast(Caller)) for (User *U : II->users()) if (PHINode *PN = dyn_cast(U)) if (PN->getParent() == II->getNormalDest() || PN->getParent() == II->getUnwindDest()) return false; // FIXME: Be conservative for callbr to avoid a quadratic search. if (isa(Caller)) return false; } } unsigned NumActualArgs = Call.arg_size(); unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); // Prevent us turning: // declare void @takes_i32_inalloca(i32* inalloca) // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) // // into: // call void @takes_i32_inalloca(i32* null) // // Similarly, avoid folding away bitcasts of byval calls. if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) return false; auto AI = Call.arg_begin(); for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { Type *ParamTy = FT->getParamType(i); Type *ActTy = (*AI)->getType(); if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) return false; // Cannot transform this parameter value. if (AttrBuilder(CallerPAL.getParamAttributes(i)) .overlaps(AttributeFuncs::typeIncompatible(ParamTy))) return false; // Attribute not compatible with transformed value. if (Call.isInAllocaArgument(i)) return false; // Cannot transform to and from inalloca. // If the parameter is passed as a byval argument, then we have to have a // sized type and the sized type has to have the same size as the old type. if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { PointerType *ParamPTy = dyn_cast(ParamTy); if (!ParamPTy || !ParamPTy->getElementType()->isSized()) return false; Type *CurElTy = Call.getParamByValType(i); if (DL.getTypeAllocSize(CurElTy) != DL.getTypeAllocSize(ParamPTy->getElementType())) return false; } } if (Callee->isDeclaration()) { // Do not delete arguments unless we have a function body. if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) return false; // If the callee is just a declaration, don't change the varargsness of the // call. We don't want to introduce a varargs call where one doesn't // already exist. PointerType *APTy = cast(Call.getCalledValue()->getType()); if (FT->isVarArg()!=cast(APTy->getElementType())->isVarArg()) return false; // If both the callee and the cast type are varargs, we still have to make // sure the number of fixed parameters are the same or we have the same // ABI issues as if we introduce a varargs call. if (FT->isVarArg() && cast(APTy->getElementType())->isVarArg() && FT->getNumParams() != cast(APTy->getElementType())->getNumParams()) return false; } if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && !CallerPAL.isEmpty()) { // In this case we have more arguments than the new function type, but we // won't be dropping them. Check that these extra arguments have attributes // that are compatible with being a vararg call argument. unsigned SRetIdx; if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && SRetIdx > FT->getNumParams()) return false; } // Okay, we decided that this is a safe thing to do: go ahead and start // inserting cast instructions as necessary. SmallVector Args; SmallVector ArgAttrs; Args.reserve(NumActualArgs); ArgAttrs.reserve(NumActualArgs); // Get any return attributes. AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); // If the return value is not being used, the type may not be compatible // with the existing attributes. Wipe out any problematic attributes. RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); LLVMContext &Ctx = Call.getContext(); AI = Call.arg_begin(); for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { Type *ParamTy = FT->getParamType(i); Value *NewArg = *AI; if ((*AI)->getType() != ParamTy) NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); Args.push_back(NewArg); // Add any parameter attributes. if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { AttrBuilder AB(CallerPAL.getParamAttributes(i)); AB.addByValAttr(NewArg->getType()->getPointerElementType()); ArgAttrs.push_back(AttributeSet::get(Ctx, AB)); } else ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); } // If the function takes more arguments than the call was taking, add them // now. for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { Args.push_back(Constant::getNullValue(FT->getParamType(i))); ArgAttrs.push_back(AttributeSet()); } // If we are removing arguments to the function, emit an obnoxious warning. if (FT->getNumParams() < NumActualArgs) { // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 if (FT->isVarArg()) { // Add all of the arguments in their promoted form to the arg list. for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { Type *PTy = getPromotedType((*AI)->getType()); Value *NewArg = *AI; if (PTy != (*AI)->getType()) { // Must promote to pass through va_arg area! Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, PTy, false); NewArg = Builder.CreateCast(opcode, *AI, PTy); } Args.push_back(NewArg); // Add any parameter attributes. ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); } } } AttributeSet FnAttrs = CallerPAL.getFnAttributes(); if (NewRetTy->isVoidTy()) Caller->setName(""); // Void type should not have a name. assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && "missing argument attributes"); AttributeList NewCallerPAL = AttributeList::get( Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); SmallVector OpBundles; Call.getOperandBundlesAsDefs(OpBundles); CallBase *NewCall; if (InvokeInst *II = dyn_cast(Caller)) { NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(), Args, OpBundles); } else if (CallBrInst *CBI = dyn_cast(Caller)) { NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(), CBI->getIndirectDests(), Args, OpBundles); } else { NewCall = Builder.CreateCall(Callee, Args, OpBundles); cast(NewCall)->setTailCallKind( cast(Caller)->getTailCallKind()); } NewCall->takeName(Caller); NewCall->setCallingConv(Call.getCallingConv()); NewCall->setAttributes(NewCallerPAL); // Preserve the weight metadata for the new call instruction. The metadata // is used by SamplePGO to check callsite's hotness. uint64_t W; if (Caller->extractProfTotalWeight(W)) NewCall->setProfWeight(W); // Insert a cast of the return type as necessary. Instruction *NC = NewCall; Value *NV = NC; if (OldRetTy != NV->getType() && !Caller->use_empty()) { if (!NV->getType()->isVoidTy()) { NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); NC->setDebugLoc(Caller->getDebugLoc()); // If this is an invoke/callbr instruction, we should insert it after the // first non-phi instruction in the normal successor block. if (InvokeInst *II = dyn_cast(Caller)) { BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); InsertNewInstBefore(NC, *I); } else if (CallBrInst *CBI = dyn_cast(Caller)) { BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt(); InsertNewInstBefore(NC, *I); } else { // Otherwise, it's a call, just insert cast right after the call. InsertNewInstBefore(NC, *Caller); } Worklist.AddUsersToWorkList(*Caller); } else { NV = UndefValue::get(Caller->getType()); } } if (!Caller->use_empty()) replaceInstUsesWith(*Caller, NV); else if (Caller->hasValueHandle()) { if (OldRetTy == NV->getType()) ValueHandleBase::ValueIsRAUWd(Caller, NV); else // We cannot call ValueIsRAUWd with a different type, and the // actual tracked value will disappear. ValueHandleBase::ValueIsDeleted(Caller); } eraseInstFromFunction(*Caller); return true; } /// Turn a call to a function created by init_trampoline / adjust_trampoline /// intrinsic pair into a direct call to the underlying function. Instruction * InstCombiner::transformCallThroughTrampoline(CallBase &Call, IntrinsicInst &Tramp) { Value *Callee = Call.getCalledValue(); Type *CalleeTy = Callee->getType(); FunctionType *FTy = Call.getFunctionType(); AttributeList Attrs = Call.getAttributes(); // If the call already has the 'nest' attribute somewhere then give up - // otherwise 'nest' would occur twice after splicing in the chain. if (Attrs.hasAttrSomewhere(Attribute::Nest)) return nullptr; Function *NestF = cast(Tramp.getArgOperand(1)->stripPointerCasts()); FunctionType *NestFTy = NestF->getFunctionType(); AttributeList NestAttrs = NestF->getAttributes(); if (!NestAttrs.isEmpty()) { unsigned NestArgNo = 0; Type *NestTy = nullptr; AttributeSet NestAttr; // Look for a parameter marked with the 'nest' attribute. for (FunctionType::param_iterator I = NestFTy->param_begin(), E = NestFTy->param_end(); I != E; ++NestArgNo, ++I) { AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo); if (AS.hasAttribute(Attribute::Nest)) { // Record the parameter type and any other attributes. NestTy = *I; NestAttr = AS; break; } } if (NestTy) { std::vector NewArgs; std::vector NewArgAttrs; NewArgs.reserve(Call.arg_size() + 1); NewArgAttrs.reserve(Call.arg_size()); // Insert the nest argument into the call argument list, which may // mean appending it. Likewise for attributes. { unsigned ArgNo = 0; auto I = Call.arg_begin(), E = Call.arg_end(); do { if (ArgNo == NestArgNo) { // Add the chain argument and attributes. Value *NestVal = Tramp.getArgOperand(2); if (NestVal->getType() != NestTy) NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); NewArgs.push_back(NestVal); NewArgAttrs.push_back(NestAttr); } if (I == E) break; // Add the original argument and attributes. NewArgs.push_back(*I); NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); ++ArgNo; ++I; } while (true); } // The trampoline may have been bitcast to a bogus type (FTy). // Handle this by synthesizing a new function type, equal to FTy // with the chain parameter inserted. std::vector NewTypes; NewTypes.reserve(FTy->getNumParams()+1); // Insert the chain's type into the list of parameter types, which may // mean appending it. { unsigned ArgNo = 0; FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); do { if (ArgNo == NestArgNo) // Add the chain's type. NewTypes.push_back(NestTy); if (I == E) break; // Add the original type. NewTypes.push_back(*I); ++ArgNo; ++I; } while (true); } // Replace the trampoline call with a direct call. Let the generic // code sort out any function type mismatches. FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg()); Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ? NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy)); AttributeList NewPAL = AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(), Attrs.getRetAttributes(), NewArgAttrs); SmallVector OpBundles; Call.getOperandBundlesAsDefs(OpBundles); Instruction *NewCaller; if (InvokeInst *II = dyn_cast(&Call)) { NewCaller = InvokeInst::Create(NewFTy, NewCallee, II->getNormalDest(), II->getUnwindDest(), NewArgs, OpBundles); cast(NewCaller)->setCallingConv(II->getCallingConv()); cast(NewCaller)->setAttributes(NewPAL); } else if (CallBrInst *CBI = dyn_cast(&Call)) { NewCaller = CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(), CBI->getIndirectDests(), NewArgs, OpBundles); cast(NewCaller)->setCallingConv(CBI->getCallingConv()); cast(NewCaller)->setAttributes(NewPAL); } else { NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles); cast(NewCaller)->setTailCallKind( cast(Call).getTailCallKind()); cast(NewCaller)->setCallingConv( cast(Call).getCallingConv()); cast(NewCaller)->setAttributes(NewPAL); } NewCaller->setDebugLoc(Call.getDebugLoc()); return NewCaller; } } // Replace the trampoline call with a direct call. Since there is no 'nest' // parameter, there is no need to adjust the argument list. Let the generic // code sort out any function type mismatches. Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy); Call.setCalledFunction(FTy, NewCallee); return &Call; }