//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/ModuleSummaryAnalysis.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TypeMetadataUtils.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/Object/ModuleSymbolTable.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/FunctionAttrs.h" #include "llvm/Transforms/IPO/FunctionImport.h" #include "llvm/Transforms/IPO/LowerTypeTests.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace llvm; namespace { // Determine if a promotion alias should be created for a symbol name. static bool allowPromotionAlias(const std::string &Name) { // Promotion aliases are used only in inline assembly. It's safe to // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar() // and MCAsmInfoXCOFF::isAcceptableChar(). for (const char &C : Name) { if (isAlnum(C) || C == '_' || C == '.') continue; return false; } return true; } // Promote each local-linkage entity defined by ExportM and used by ImportM by // changing visibility and appending the given ModuleId. void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, SetVector &PromoteExtra) { DenseMap RenamedComdats; for (auto &ExportGV : ExportM.global_values()) { if (!ExportGV.hasLocalLinkage()) continue; auto Name = ExportGV.getName(); GlobalValue *ImportGV = nullptr; if (!PromoteExtra.count(&ExportGV)) { ImportGV = ImportM.getNamedValue(Name); if (!ImportGV) continue; ImportGV->removeDeadConstantUsers(); if (ImportGV->use_empty()) { ImportGV->eraseFromParent(); continue; } } std::string OldName = Name.str(); std::string NewName = (Name + ModuleId).str(); if (const auto *C = ExportGV.getComdat()) if (C->getName() == Name) RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); ExportGV.setName(NewName); ExportGV.setLinkage(GlobalValue::ExternalLinkage); ExportGV.setVisibility(GlobalValue::HiddenVisibility); if (ImportGV) { ImportGV->setName(NewName); ImportGV->setVisibility(GlobalValue::HiddenVisibility); } if (isa(&ExportGV) && allowPromotionAlias(OldName)) { // Create a local alias with the original name to avoid breaking // references from inline assembly. std::string Alias = ".lto_set_conditional " + OldName + "," + NewName + "\n"; ExportM.appendModuleInlineAsm(Alias); } } if (!RenamedComdats.empty()) for (auto &GO : ExportM.global_objects()) if (auto *C = GO.getComdat()) { auto Replacement = RenamedComdats.find(C); if (Replacement != RenamedComdats.end()) GO.setComdat(Replacement->second); } } // Promote all internal (i.e. distinct) type ids used by the module by replacing // them with external type ids formed using the module id. // // Note that this needs to be done before we clone the module because each clone // will receive its own set of distinct metadata nodes. void promoteTypeIds(Module &M, StringRef ModuleId) { DenseMap LocalToGlobal; auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { Metadata *MD = cast(CI->getArgOperand(ArgNo))->getMetadata(); if (isa(MD) && cast(MD)->isDistinct()) { Metadata *&GlobalMD = LocalToGlobal[MD]; if (!GlobalMD) { std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); GlobalMD = MDString::get(M.getContext(), NewName); } CI->setArgOperand(ArgNo, MetadataAsValue::get(M.getContext(), GlobalMD)); } }; if (Function *TypeTestFunc = M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { for (const Use &U : TypeTestFunc->uses()) { auto CI = cast(U.getUser()); ExternalizeTypeId(CI, 1); } } if (Function *PublicTypeTestFunc = M.getFunction(Intrinsic::getName(Intrinsic::public_type_test))) { for (const Use &U : PublicTypeTestFunc->uses()) { auto CI = cast(U.getUser()); ExternalizeTypeId(CI, 1); } } if (Function *TypeCheckedLoadFunc = M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { for (const Use &U : TypeCheckedLoadFunc->uses()) { auto CI = cast(U.getUser()); ExternalizeTypeId(CI, 2); } } if (Function *TypeCheckedLoadRelativeFunc = M.getFunction( Intrinsic::getName(Intrinsic::type_checked_load_relative))) { for (const Use &U : TypeCheckedLoadRelativeFunc->uses()) { auto CI = cast(U.getUser()); ExternalizeTypeId(CI, 2); } } for (GlobalObject &GO : M.global_objects()) { SmallVector MDs; GO.getMetadata(LLVMContext::MD_type, MDs); GO.eraseMetadata(LLVMContext::MD_type); for (auto *MD : MDs) { auto I = LocalToGlobal.find(MD->getOperand(1)); if (I == LocalToGlobal.end()) { GO.addMetadata(LLVMContext::MD_type, *MD); continue; } GO.addMetadata( LLVMContext::MD_type, *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); } } } // Drop unused globals, and drop type information from function declarations. // FIXME: If we made functions typeless then there would be no need to do this. void simplifyExternals(Module &M) { FunctionType *EmptyFT = FunctionType::get(Type::getVoidTy(M.getContext()), false); for (Function &F : llvm::make_early_inc_range(M)) { if (F.isDeclaration() && F.use_empty()) { F.eraseFromParent(); continue; } if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || // Changing the type of an intrinsic may invalidate the IR. F.getName().startswith("llvm.")) continue; Function *NewF = Function::Create(EmptyFT, GlobalValue::ExternalLinkage, F.getAddressSpace(), "", &M); NewF->copyAttributesFrom(&F); // Only copy function attribtues. NewF->setAttributes(AttributeList::get(M.getContext(), AttributeList::FunctionIndex, F.getAttributes().getFnAttrs())); NewF->takeName(&F); F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); F.eraseFromParent(); } for (GlobalIFunc &I : llvm::make_early_inc_range(M.ifuncs())) { if (I.use_empty()) I.eraseFromParent(); else assert(I.getResolverFunction() && "ifunc misses its resolver function"); } for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { if (GV.isDeclaration() && GV.use_empty()) { GV.eraseFromParent(); continue; } } } static void filterModule(Module *M, function_ref ShouldKeepDefinition) { std::vector V; for (GlobalValue &GV : M->global_values()) if (!ShouldKeepDefinition(&GV)) V.push_back(&GV); for (GlobalValue *GV : V) if (!convertToDeclaration(*GV)) GV->eraseFromParent(); } void forEachVirtualFunction(Constant *C, function_ref Fn) { if (auto *F = dyn_cast(C)) return Fn(F); if (isa(C)) return; for (Value *Op : C->operands()) forEachVirtualFunction(cast(Op), Fn); } // Clone any @llvm[.compiler].used over to the new module and append // values whose defs were cloned into that module. static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, bool CompilerUsed) { SmallVector Used, NewUsed; // First collect those in the llvm[.compiler].used set. collectUsedGlobalVariables(SrcM, Used, CompilerUsed); // Next build a set of the equivalent values defined in DestM. for (auto *V : Used) { auto *GV = DestM.getNamedValue(V->getName()); if (GV && !GV->isDeclaration()) NewUsed.push_back(GV); } // Finally, add them to a llvm[.compiler].used variable in DestM. if (CompilerUsed) appendToCompilerUsed(DestM, NewUsed); else appendToUsed(DestM, NewUsed); } #ifndef NDEBUG static bool enableUnifiedLTO(Module &M) { bool UnifiedLTO = false; if (auto *MD = mdconst::extract_or_null(M.getModuleFlag("UnifiedLTO"))) UnifiedLTO = MD->getZExtValue(); return UnifiedLTO; } #endif // If it's possible to split M into regular and thin LTO parts, do so and write // a multi-module bitcode file with the two parts to OS. Otherwise, write only a // regular LTO bitcode file to OS. void splitAndWriteThinLTOBitcode( raw_ostream &OS, raw_ostream *ThinLinkOS, function_ref AARGetter, Module &M) { std::string ModuleId = getUniqueModuleId(&M); if (ModuleId.empty()) { assert(!enableUnifiedLTO(M)); // We couldn't generate a module ID for this module, write it out as a // regular LTO module with an index for summary-based dead stripping. ProfileSummaryInfo PSI(M); M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index, /*UnifiedLTO=*/false); if (ThinLinkOS) // We don't have a ThinLTO part, but still write the module to the // ThinLinkOS if requested so that the expected output file is produced. WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, &Index, /*UnifiedLTO=*/false); return; } promoteTypeIds(M, ModuleId); // Returns whether a global or its associated global has attached type // metadata. The former may participate in CFI or whole-program // devirtualization, so they need to appear in the merged module instead of // the thin LTO module. Similarly, globals that are associated with globals // with type metadata need to appear in the merged module because they will // reference the global's section directly. auto HasTypeMetadata = [](const GlobalObject *GO) { if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) if (auto *AssocVM = dyn_cast_or_null(MD->getOperand(0))) if (auto *AssocGO = dyn_cast(AssocVM->getValue())) if (AssocGO->hasMetadata(LLVMContext::MD_type)) return true; return GO->hasMetadata(LLVMContext::MD_type); }; // Collect the set of virtual functions that are eligible for virtual constant // propagation. Each eligible function must not access memory, must return // an integer of width <=64 bits, must take at least one argument, must not // use its first argument (assumed to be "this") and all arguments other than // the first one must be of <=64 bit integer type. // // Note that we test whether this copy of the function is readnone, rather // than testing function attributes, which must hold for any copy of the // function, even a less optimized version substituted at link time. This is // sound because the virtual constant propagation optimizations effectively // inline all implementations of the virtual function into each call site, // rather than using function attributes to perform local optimization. DenseSet EligibleVirtualFns; // If any member of a comdat lives in MergedM, put all members of that // comdat in MergedM to keep the comdat together. DenseSet MergedMComdats; for (GlobalVariable &GV : M.globals()) if (HasTypeMetadata(&GV)) { if (const auto *C = GV.getComdat()) MergedMComdats.insert(C); forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { auto *RT = dyn_cast(F->getReturnType()); if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || !F->arg_begin()->use_empty()) return; for (auto &Arg : drop_begin(F->args())) { auto *ArgT = dyn_cast(Arg.getType()); if (!ArgT || ArgT->getBitWidth() > 64) return; } if (!F->isDeclaration() && computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) .doesNotAccessMemory()) EligibleVirtualFns.insert(F); }); } ValueToValueMapTy VMap; std::unique_ptr MergedM( CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { if (const auto *C = GV->getComdat()) if (MergedMComdats.count(C)) return true; if (auto *F = dyn_cast(GV)) return EligibleVirtualFns.count(F); if (auto *GVar = dyn_cast_or_null(GV->getAliaseeObject())) return HasTypeMetadata(GVar); return false; })); StripDebugInfo(*MergedM); MergedM->setModuleInlineAsm(""); // Clone any llvm.*used globals to ensure the included values are // not deleted. cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); for (Function &F : *MergedM) if (!F.isDeclaration()) { // Reset the linkage of all functions eligible for virtual constant // propagation. The canonical definitions live in the thin LTO module so // that they can be imported. F.setLinkage(GlobalValue::AvailableExternallyLinkage); F.setComdat(nullptr); } SetVector CfiFunctions; for (auto &F : M) if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) CfiFunctions.insert(&F); // Remove all globals with type metadata, globals with comdats that live in // MergedM, and aliases pointing to such globals from the thin LTO module. filterModule(&M, [&](const GlobalValue *GV) { if (auto *GVar = dyn_cast_or_null(GV->getAliaseeObject())) if (HasTypeMetadata(GVar)) return false; if (const auto *C = GV->getComdat()) if (MergedMComdats.count(C)) return false; return true; }); promoteInternals(*MergedM, M, ModuleId, CfiFunctions); promoteInternals(M, *MergedM, ModuleId, CfiFunctions); auto &Ctx = MergedM->getContext(); SmallVector CfiFunctionMDs; for (auto *V : CfiFunctions) { Function &F = *cast(V); SmallVector Types; F.getMetadata(LLVMContext::MD_type, Types); SmallVector Elts; Elts.push_back(MDString::get(Ctx, F.getName())); CfiFunctionLinkage Linkage; if (lowertypetests::isJumpTableCanonical(&F)) Linkage = CFL_Definition; else if (F.hasExternalWeakLinkage()) Linkage = CFL_WeakDeclaration; else Linkage = CFL_Declaration; Elts.push_back(ConstantAsMetadata::get( llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); append_range(Elts, Types); CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); } if(!CfiFunctionMDs.empty()) { NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); for (auto *MD : CfiFunctionMDs) NMD->addOperand(MD); } SmallVector FunctionAliases; for (auto &A : M.aliases()) { if (!isa(A.getAliasee())) continue; auto *F = cast(A.getAliasee()); Metadata *Elts[] = { MDString::get(Ctx, A.getName()), MDString::get(Ctx, F->getName()), ConstantAsMetadata::get( ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), ConstantAsMetadata::get( ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), }; FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); } if (!FunctionAliases.empty()) { NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); for (auto *MD : FunctionAliases) NMD->addOperand(MD); } SmallVector Symvers; ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { Function *F = M.getFunction(Name); if (!F || F->use_empty()) return; Symvers.push_back(MDTuple::get( Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); }); if (!Symvers.empty()) { NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); for (auto *MD : Symvers) NMD->addOperand(MD); } simplifyExternals(*MergedM); // FIXME: Try to re-use BSI and PFI from the original module here. ProfileSummaryInfo PSI(M); ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); // Mark the merged module as requiring full LTO. We still want an index for // it though, so that it can participate in summary-based dead stripping. MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); ModuleSummaryIndex MergedMIndex = buildModuleSummaryIndex(*MergedM, nullptr, &PSI); SmallVector Buffer; BitcodeWriter W(Buffer); // Save the module hash produced for the full bitcode, which will // be used in the backends, and use that in the minimized bitcode // produced for the full link. ModuleHash ModHash = {{0}}; W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, /*GenerateHash=*/true, &ModHash); W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); W.writeSymtab(); W.writeStrtab(); OS << Buffer; // If a minimized bitcode module was requested for the thin link, only // the information that is needed by thin link will be written in the // given OS (the merged module will be written as usual). if (ThinLinkOS) { Buffer.clear(); BitcodeWriter W2(Buffer); StripDebugInfo(M); W2.writeThinLinkBitcode(M, Index, ModHash); W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); W2.writeSymtab(); W2.writeStrtab(); *ThinLinkOS << Buffer; } } // Check if the LTO Unit splitting has been enabled. bool enableSplitLTOUnit(Module &M) { bool EnableSplitLTOUnit = false; if (auto *MD = mdconst::extract_or_null( M.getModuleFlag("EnableSplitLTOUnit"))) EnableSplitLTOUnit = MD->getZExtValue(); return EnableSplitLTOUnit; } // Returns whether this module needs to be split because it uses type metadata. bool hasTypeMetadata(Module &M) { for (auto &GO : M.global_objects()) { if (GO.hasMetadata(LLVMContext::MD_type)) return true; } return false; } bool writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, function_ref AARGetter, Module &M, const ModuleSummaryIndex *Index) { std::unique_ptr NewIndex = nullptr; // See if this module has any type metadata. If so, we try to split it // or at least promote type ids to enable WPD. if (hasTypeMetadata(M)) { if (enableSplitLTOUnit(M)) { splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); return true; } // Promote type ids as needed for index-based WPD. std::string ModuleId = getUniqueModuleId(&M); if (!ModuleId.empty()) { promoteTypeIds(M, ModuleId); // Need to rebuild the index so that it contains type metadata // for the newly promoted type ids. // FIXME: Probably should not bother building the index at all // in the caller of writeThinLTOBitcode (which does so via the // ModuleSummaryIndexAnalysis pass), since we have to rebuild it // anyway whenever there is type metadata (here or in // splitAndWriteThinLTOBitcode). Just always build it once via the // buildModuleSummaryIndex when Module(s) are ready. ProfileSummaryInfo PSI(M); NewIndex = std::make_unique( buildModuleSummaryIndex(M, nullptr, &PSI)); Index = NewIndex.get(); } } // Write it out as an unsplit ThinLTO module. // Save the module hash produced for the full bitcode, which will // be used in the backends, and use that in the minimized bitcode // produced for the full link. ModuleHash ModHash = {{0}}; WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, /*GenerateHash=*/true, &ModHash); // If a minimized bitcode module was requested for the thin link, only // the information that is needed by thin link will be written in the // given OS. if (ThinLinkOS && Index) writeThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); return false; } } // anonymous namespace PreservedAnalyses llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { FunctionAnalysisManager &FAM = AM.getResult(M).getManager(); bool Changed = writeThinLTOBitcode( OS, ThinLinkOS, [&FAM](Function &F) -> AAResults & { return FAM.getResult(F); }, M, &AM.getResult(M)); return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); }