//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the SampleProfileLoader transformation. This pass // reads a profile file generated by a sampling profiler (e.g. Linux Perf - // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the // profile information in the given profile. // // This pass generates branch weight annotations on the IR: // // - prof: Represents branch weights. This annotation is added to branches // to indicate the weights of each edge coming out of the branch. // The weight of each edge is the weight of the target block for // that edge. The weight of a block B is computed as the maximum // number of samples found in B. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/SampleProfile.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PriorityQueue.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfoImpl.h" #include "llvm/Analysis/InlineAdvisor.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/ReplayInlineAdvisor.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ProfDataUtils.h" #include "llvm/IR/PseudoProbe.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/ProfileData/SampleProf.h" #include "llvm/ProfileData/SampleProfReader.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/ProfiledCallGraph.h" #include "llvm/Transforms/IPO/SampleContextTracker.h" #include "llvm/Transforms/IPO/SampleProfileProbe.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Utils/CallPromotionUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/MisExpect.h" #include "llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h" #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace sampleprof; using namespace llvm::sampleprofutil; using ProfileCount = Function::ProfileCount; #define DEBUG_TYPE "sample-profile" #define CSINLINE_DEBUG DEBUG_TYPE "-inline" STATISTIC(NumCSInlined, "Number of functions inlined with context sensitive profile"); STATISTIC(NumCSNotInlined, "Number of functions not inlined with context sensitive profile"); STATISTIC(NumMismatchedProfile, "Number of functions with CFG mismatched profile"); STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile"); STATISTIC(NumDuplicatedInlinesite, "Number of inlined callsites with a partial distribution factor"); STATISTIC(NumCSInlinedHitMinLimit, "Number of functions with FDO inline stopped due to min size limit"); STATISTIC(NumCSInlinedHitMaxLimit, "Number of functions with FDO inline stopped due to max size limit"); STATISTIC( NumCSInlinedHitGrowthLimit, "Number of functions with FDO inline stopped due to growth size limit"); // Command line option to specify the file to read samples from. This is // mainly used for debugging. static cl::opt SampleProfileFile( "sample-profile-file", cl::init(""), cl::value_desc("filename"), cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); // The named file contains a set of transformations that may have been applied // to the symbol names between the program from which the sample data was // collected and the current program's symbols. static cl::opt SampleProfileRemappingFile( "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); static cl::opt SalvageStaleProfile( "salvage-stale-profile", cl::Hidden, cl::init(false), cl::desc("Salvage stale profile by fuzzy matching and use the remapped " "location for sample profile query.")); static cl::opt ReportProfileStaleness( "report-profile-staleness", cl::Hidden, cl::init(false), cl::desc("Compute and report stale profile statistical metrics.")); static cl::opt PersistProfileStaleness( "persist-profile-staleness", cl::Hidden, cl::init(false), cl::desc("Compute stale profile statistical metrics and write it into the " "native object file(.llvm_stats section).")); static cl::opt ProfileSampleAccurate( "profile-sample-accurate", cl::Hidden, cl::init(false), cl::desc("If the sample profile is accurate, we will mark all un-sampled " "callsite and function as having 0 samples. Otherwise, treat " "un-sampled callsites and functions conservatively as unknown. ")); static cl::opt ProfileSampleBlockAccurate( "profile-sample-block-accurate", cl::Hidden, cl::init(false), cl::desc("If the sample profile is accurate, we will mark all un-sampled " "branches and calls as having 0 samples. Otherwise, treat " "them conservatively as unknown. ")); static cl::opt ProfileAccurateForSymsInList( "profile-accurate-for-symsinlist", cl::Hidden, cl::init(true), cl::desc("For symbols in profile symbol list, regard their profiles to " "be accurate. It may be overriden by profile-sample-accurate. ")); static cl::opt ProfileMergeInlinee( "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), cl::desc("Merge past inlinee's profile to outline version if sample " "profile loader decided not to inline a call site. It will " "only be enabled when top-down order of profile loading is " "enabled. ")); static cl::opt ProfileTopDownLoad( "sample-profile-top-down-load", cl::Hidden, cl::init(true), cl::desc("Do profile annotation and inlining for functions in top-down " "order of call graph during sample profile loading. It only " "works for new pass manager. ")); static cl::opt UseProfiledCallGraph("use-profiled-call-graph", cl::init(true), cl::Hidden, cl::desc("Process functions in a top-down order " "defined by the profiled call graph when " "-sample-profile-top-down-load is on.")); static cl::opt ProfileSizeInline( "sample-profile-inline-size", cl::Hidden, cl::init(false), cl::desc("Inline cold call sites in profile loader if it's beneficial " "for code size.")); // Since profiles are consumed by many passes, turning on this option has // side effects. For instance, pre-link SCC inliner would see merged profiles // and inline the hot functions (that are skipped in this pass). static cl::opt DisableSampleLoaderInlining( "disable-sample-loader-inlining", cl::Hidden, cl::init(false), cl::desc("If true, artifically skip inline transformation in sample-loader " "pass, and merge (or scale) profiles (as configured by " "--sample-profile-merge-inlinee).")); namespace llvm { cl::opt SortProfiledSCC("sort-profiled-scc-member", cl::init(true), cl::Hidden, cl::desc("Sort profiled recursion by edge weights.")); cl::opt ProfileInlineGrowthLimit( "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12), cl::desc("The size growth ratio limit for proirity-based sample profile " "loader inlining.")); cl::opt ProfileInlineLimitMin( "sample-profile-inline-limit-min", cl::Hidden, cl::init(100), cl::desc("The lower bound of size growth limit for " "proirity-based sample profile loader inlining.")); cl::opt ProfileInlineLimitMax( "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000), cl::desc("The upper bound of size growth limit for " "proirity-based sample profile loader inlining.")); cl::opt SampleHotCallSiteThreshold( "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000), cl::desc("Hot callsite threshold for proirity-based sample profile loader " "inlining.")); cl::opt SampleColdCallSiteThreshold( "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), cl::desc("Threshold for inlining cold callsites")); } // namespace llvm static cl::opt ProfileICPRelativeHotness( "sample-profile-icp-relative-hotness", cl::Hidden, cl::init(25), cl::desc( "Relative hotness percentage threshold for indirect " "call promotion in proirity-based sample profile loader inlining.")); static cl::opt ProfileICPRelativeHotnessSkip( "sample-profile-icp-relative-hotness-skip", cl::Hidden, cl::init(1), cl::desc( "Skip relative hotness check for ICP up to given number of targets.")); static cl::opt CallsitePrioritizedInline( "sample-profile-prioritized-inline", cl::Hidden, cl::desc("Use call site prioritized inlining for sample profile loader." "Currently only CSSPGO is supported.")); static cl::opt UsePreInlinerDecision( "sample-profile-use-preinliner", cl::Hidden, cl::desc("Use the preinliner decisions stored in profile context.")); static cl::opt AllowRecursiveInline( "sample-profile-recursive-inline", cl::Hidden, cl::desc("Allow sample loader inliner to inline recursive calls.")); static cl::opt ProfileInlineReplayFile( "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), cl::desc( "Optimization remarks file containing inline remarks to be replayed " "by inlining from sample profile loader."), cl::Hidden); static cl::opt ProfileInlineReplayScope( "sample-profile-inline-replay-scope", cl::init(ReplayInlinerSettings::Scope::Function), cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function", "Replay on functions that have remarks associated " "with them (default)"), clEnumValN(ReplayInlinerSettings::Scope::Module, "Module", "Replay on the entire module")), cl::desc("Whether inline replay should be applied to the entire " "Module or just the Functions (default) that are present as " "callers in remarks during sample profile inlining."), cl::Hidden); static cl::opt ProfileInlineReplayFallback( "sample-profile-inline-replay-fallback", cl::init(ReplayInlinerSettings::Fallback::Original), cl::values( clEnumValN( ReplayInlinerSettings::Fallback::Original, "Original", "All decisions not in replay send to original advisor (default)"), clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline, "AlwaysInline", "All decisions not in replay are inlined"), clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline", "All decisions not in replay are not inlined")), cl::desc("How sample profile inline replay treats sites that don't come " "from the replay. Original: defers to original advisor, " "AlwaysInline: inline all sites not in replay, NeverInline: " "inline no sites not in replay"), cl::Hidden); static cl::opt ProfileInlineReplayFormat( "sample-profile-inline-replay-format", cl::init(CallSiteFormat::Format::LineColumnDiscriminator), cl::values( clEnumValN(CallSiteFormat::Format::Line, "Line", ""), clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn", ":"), clEnumValN(CallSiteFormat::Format::LineDiscriminator, "LineDiscriminator", "."), clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator, "LineColumnDiscriminator", ":. (default)")), cl::desc("How sample profile inline replay file is formatted"), cl::Hidden); static cl::opt MaxNumPromotions("sample-profile-icp-max-prom", cl::init(3), cl::Hidden, cl::desc("Max number of promotions for a single indirect " "call callsite in sample profile loader")); static cl::opt OverwriteExistingWeights( "overwrite-existing-weights", cl::Hidden, cl::init(false), cl::desc("Ignore existing branch weights on IR and always overwrite.")); static cl::opt AnnotateSampleProfileInlinePhase( "annotate-sample-profile-inline-phase", cl::Hidden, cl::init(false), cl::desc("Annotate LTO phase (prelink / postlink), or main (no LTO) for " "sample-profile inline pass name.")); namespace llvm { extern cl::opt EnableExtTspBlockPlacement; } namespace { using BlockWeightMap = DenseMap; using EquivalenceClassMap = DenseMap; using Edge = std::pair; using EdgeWeightMap = DenseMap; using BlockEdgeMap = DenseMap>; class GUIDToFuncNameMapper { public: GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, DenseMap &GUIDToFuncNameMap) : CurrentReader(Reader), CurrentModule(M), CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { if (!CurrentReader.useMD5()) return; for (const auto &F : CurrentModule) { StringRef OrigName = F.getName(); CurrentGUIDToFuncNameMap.insert( {Function::getGUID(OrigName), OrigName}); // Local to global var promotion used by optimization like thinlto // will rename the var and add suffix like ".llvm.xxx" to the // original local name. In sample profile, the suffixes of function // names are all stripped. Since it is possible that the mapper is // built in post-thin-link phase and var promotion has been done, // we need to add the substring of function name without the suffix // into the GUIDToFuncNameMap. StringRef CanonName = FunctionSamples::getCanonicalFnName(F); if (CanonName != OrigName) CurrentGUIDToFuncNameMap.insert( {Function::getGUID(CanonName), CanonName}); } // Update GUIDToFuncNameMap for each function including inlinees. SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); } ~GUIDToFuncNameMapper() { if (!CurrentReader.useMD5()) return; CurrentGUIDToFuncNameMap.clear(); // Reset GUIDToFuncNameMap for of each function as they're no // longer valid at this point. SetGUIDToFuncNameMapForAll(nullptr); } private: void SetGUIDToFuncNameMapForAll(DenseMap *Map) { std::queue FSToUpdate; for (auto &IFS : CurrentReader.getProfiles()) { FSToUpdate.push(&IFS.second); } while (!FSToUpdate.empty()) { FunctionSamples *FS = FSToUpdate.front(); FSToUpdate.pop(); FS->GUIDToFuncNameMap = Map; for (const auto &ICS : FS->getCallsiteSamples()) { const FunctionSamplesMap &FSMap = ICS.second; for (const auto &IFS : FSMap) { FunctionSamples &FS = const_cast(IFS.second); FSToUpdate.push(&FS); } } } } SampleProfileReader &CurrentReader; Module &CurrentModule; DenseMap &CurrentGUIDToFuncNameMap; }; // Inline candidate used by iterative callsite prioritized inliner struct InlineCandidate { CallBase *CallInstr; const FunctionSamples *CalleeSamples; // Prorated callsite count, which will be used to guide inlining. For example, // if a callsite is duplicated in LTO prelink, then in LTO postlink the two // copies will get their own distribution factors and their prorated counts // will be used to decide if they should be inlined independently. uint64_t CallsiteCount; // Call site distribution factor to prorate the profile samples for a // duplicated callsite. Default value is 1.0. float CallsiteDistribution; }; // Inline candidate comparer using call site weight struct CandidateComparer { bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) { if (LHS.CallsiteCount != RHS.CallsiteCount) return LHS.CallsiteCount < RHS.CallsiteCount; const FunctionSamples *LCS = LHS.CalleeSamples; const FunctionSamples *RCS = RHS.CalleeSamples; assert(LCS && RCS && "Expect non-null FunctionSamples"); // Tie breaker using number of samples try to favor smaller functions first if (LCS->getBodySamples().size() != RCS->getBodySamples().size()) return LCS->getBodySamples().size() > RCS->getBodySamples().size(); // Tie breaker using GUID so we have stable/deterministic inlining order return LCS->getGUID() < RCS->getGUID(); } }; using CandidateQueue = PriorityQueue, CandidateComparer>; // Sample profile matching - fuzzy match. class SampleProfileMatcher { Module &M; SampleProfileReader &Reader; const PseudoProbeManager *ProbeManager; SampleProfileMap FlattenedProfiles; // For each function, the matcher generates a map, of which each entry is a // mapping from the source location of current build to the source location in // the profile. StringMap FuncMappings; // Profile mismatching statstics. uint64_t TotalProfiledCallsites = 0; uint64_t NumMismatchedCallsites = 0; uint64_t MismatchedCallsiteSamples = 0; uint64_t TotalCallsiteSamples = 0; uint64_t TotalProfiledFunc = 0; uint64_t NumMismatchedFuncHash = 0; uint64_t MismatchedFuncHashSamples = 0; uint64_t TotalFuncHashSamples = 0; // A dummy name for unknown indirect callee, used to differentiate from a // non-call instruction that also has an empty callee name. static constexpr const char *UnknownIndirectCallee = "unknown.indirect.callee"; public: SampleProfileMatcher(Module &M, SampleProfileReader &Reader, const PseudoProbeManager *ProbeManager) : M(M), Reader(Reader), ProbeManager(ProbeManager){}; void runOnModule(); private: FunctionSamples *getFlattenedSamplesFor(const Function &F) { StringRef CanonFName = FunctionSamples::getCanonicalFnName(F); auto It = FlattenedProfiles.find(FunctionId(CanonFName)); if (It != FlattenedProfiles.end()) return &It->second; return nullptr; } void runOnFunction(const Function &F); void findIRAnchors(const Function &F, std::map &IRAnchors); void findProfileAnchors( const FunctionSamples &FS, std::map> &ProfileAnchors); void countMismatchedSamples(const FunctionSamples &FS); void countProfileMismatches( const Function &F, const FunctionSamples &FS, const std::map &IRAnchors, const std::map> &ProfileAnchors); void countProfileCallsiteMismatches( const FunctionSamples &FS, const std::map &IRAnchors, const std::map> &ProfileAnchors, uint64_t &FuncMismatchedCallsites, uint64_t &FuncProfiledCallsites); LocToLocMap &getIRToProfileLocationMap(const Function &F) { auto Ret = FuncMappings.try_emplace( FunctionSamples::getCanonicalFnName(F.getName()), LocToLocMap()); return Ret.first->second; } void distributeIRToProfileLocationMap(); void distributeIRToProfileLocationMap(FunctionSamples &FS); void runStaleProfileMatching( const Function &F, const std::map &IRAnchors, const std::map> &ProfileAnchors, LocToLocMap &IRToProfileLocationMap); }; /// Sample profile pass. /// /// This pass reads profile data from the file specified by /// -sample-profile-file and annotates every affected function with the /// profile information found in that file. class SampleProfileLoader final : public SampleProfileLoaderBaseImpl { public: SampleProfileLoader( StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase, IntrusiveRefCntPtr FS, std::function GetAssumptionCache, std::function GetTargetTransformInfo, std::function GetTLI) : SampleProfileLoaderBaseImpl(std::string(Name), std::string(RemapName), std::move(FS)), GetAC(std::move(GetAssumptionCache)), GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), LTOPhase(LTOPhase), AnnotatedPassName(AnnotateSampleProfileInlinePhase ? llvm::AnnotateInlinePassName(InlineContext{ LTOPhase, InlinePass::SampleProfileInliner}) : CSINLINE_DEBUG) {} bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); bool runOnModule(Module &M, ModuleAnalysisManager *AM, ProfileSummaryInfo *_PSI, LazyCallGraph &CG); protected: bool runOnFunction(Function &F, ModuleAnalysisManager *AM); bool emitAnnotations(Function &F); ErrorOr getInstWeight(const Instruction &I) override; const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; const FunctionSamples * findFunctionSamples(const Instruction &I) const override; std::vector findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; void findExternalInlineCandidate(CallBase *CB, const FunctionSamples *Samples, DenseSet &InlinedGUIDs, uint64_t Threshold); // Attempt to promote indirect call and also inline the promoted call bool tryPromoteAndInlineCandidate( Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum, SmallVector *InlinedCallSites = nullptr); bool inlineHotFunctions(Function &F, DenseSet &InlinedGUIDs); std::optional getExternalInlineAdvisorCost(CallBase &CB); bool getExternalInlineAdvisorShouldInline(CallBase &CB); InlineCost shouldInlineCandidate(InlineCandidate &Candidate); bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB); bool tryInlineCandidate(InlineCandidate &Candidate, SmallVector *InlinedCallSites = nullptr); bool inlineHotFunctionsWithPriority(Function &F, DenseSet &InlinedGUIDs); // Inline cold/small functions in addition to hot ones bool shouldInlineColdCallee(CallBase &CallInst); void emitOptimizationRemarksForInlineCandidates( const SmallVectorImpl &Candidates, const Function &F, bool Hot); void promoteMergeNotInlinedContextSamples( MapVector NonInlinedCallSites, const Function &F); std::vector buildFunctionOrder(Module &M, LazyCallGraph &CG); std::unique_ptr buildProfiledCallGraph(Module &M); void generateMDProfMetadata(Function &F); /// Map from function name to Function *. Used to find the function from /// the function name. If the function name contains suffix, additional /// entry is added to map from the stripped name to the function if there /// is one-to-one mapping. HashKeyMap SymbolMap; std::function GetAC; std::function GetTTI; std::function GetTLI; /// Profile tracker for different context. std::unique_ptr ContextTracker; /// Flag indicating which LTO/ThinLTO phase the pass is invoked in. /// /// We need to know the LTO phase because for example in ThinLTOPrelink /// phase, in annotation, we should not promote indirect calls. Instead, /// we will mark GUIDs that needs to be annotated to the function. const ThinOrFullLTOPhase LTOPhase; const std::string AnnotatedPassName; /// Profle Symbol list tells whether a function name appears in the binary /// used to generate the current profile. std::unique_ptr PSL; /// Total number of samples collected in this profile. /// /// This is the sum of all the samples collected in all the functions executed /// at runtime. uint64_t TotalCollectedSamples = 0; // Information recorded when we declined to inline a call site // because we have determined it is too cold is accumulated for // each callee function. Initially this is just the entry count. struct NotInlinedProfileInfo { uint64_t entryCount; }; DenseMap notInlinedCallInfo; // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for // all the function symbols defined or declared in current module. DenseMap GUIDToFuncNameMap; // All the Names used in FunctionSamples including outline function // names, inline instance names and call target names. StringSet<> NamesInProfile; // MD5 version of NamesInProfile. Either NamesInProfile or GUIDsInProfile is // populated, depends on whether the profile uses MD5. Because the name table // generally contains several magnitude more entries than the number of // functions, we do not want to convert all names from one form to another. llvm::DenseSet GUIDsInProfile; // For symbol in profile symbol list, whether to regard their profiles // to be accurate. It is mainly decided by existance of profile symbol // list and -profile-accurate-for-symsinlist flag, but it can be // overriden by -profile-sample-accurate or profile-sample-accurate // attribute. bool ProfAccForSymsInList; // External inline advisor used to replay inline decision from remarks. std::unique_ptr ExternalInlineAdvisor; // A helper to implement the sample profile matching algorithm. std::unique_ptr MatchingManager; private: const char *getAnnotatedRemarkPassName() const { return AnnotatedPassName.c_str(); } }; } // end anonymous namespace namespace llvm { template <> inline bool SampleProfileInference::isExit(const BasicBlock *BB) { return succ_empty(BB); } template <> inline void SampleProfileInference::findUnlikelyJumps( const std::vector &BasicBlocks, BlockEdgeMap &Successors, FlowFunction &Func) { for (auto &Jump : Func.Jumps) { const auto *BB = BasicBlocks[Jump.Source]; const auto *Succ = BasicBlocks[Jump.Target]; const Instruction *TI = BB->getTerminator(); // Check if a block ends with InvokeInst and mark non-taken branch unlikely. // In that case block Succ should be a landing pad if (Successors[BB].size() == 2 && Successors[BB].back() == Succ) { if (isa(TI)) { Jump.IsUnlikely = true; } } const Instruction *SuccTI = Succ->getTerminator(); // Check if the target block contains UnreachableInst and mark it unlikely if (SuccTI->getNumSuccessors() == 0) { if (isa(SuccTI)) { Jump.IsUnlikely = true; } } } } template <> void SampleProfileLoaderBaseImpl::computeDominanceAndLoopInfo( Function &F) { DT.reset(new DominatorTree); DT->recalculate(F); PDT.reset(new PostDominatorTree(F)); LI.reset(new LoopInfo); LI->analyze(*DT); } } // namespace llvm ErrorOr SampleProfileLoader::getInstWeight(const Instruction &Inst) { if (FunctionSamples::ProfileIsProbeBased) return getProbeWeight(Inst); const DebugLoc &DLoc = Inst.getDebugLoc(); if (!DLoc) return std::error_code(); // Ignore all intrinsics, phinodes and branch instructions. // Branch and phinodes instruction usually contains debug info from sources // outside of the residing basic block, thus we ignore them during annotation. if (isa(Inst) || isa(Inst) || isa(Inst)) return std::error_code(); // For non-CS profile, if a direct call/invoke instruction is inlined in // profile (findCalleeFunctionSamples returns non-empty result), but not // inlined here, it means that the inlined callsite has no sample, thus the // call instruction should have 0 count. // For CS profile, the callsite count of previously inlined callees is // populated with the entry count of the callees. if (!FunctionSamples::ProfileIsCS) if (const auto *CB = dyn_cast(&Inst)) if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) return 0; return getInstWeightImpl(Inst); } /// Get the FunctionSamples for a call instruction. /// /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined /// instance in which that call instruction is calling to. It contains /// all samples that resides in the inlined instance. We first find the /// inlined instance in which the call instruction is from, then we /// traverse its children to find the callsite with the matching /// location. /// /// \param Inst Call/Invoke instruction to query. /// /// \returns The FunctionSamples pointer to the inlined instance. const FunctionSamples * SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { const DILocation *DIL = Inst.getDebugLoc(); if (!DIL) { return nullptr; } StringRef CalleeName; if (Function *Callee = Inst.getCalledFunction()) CalleeName = Callee->getName(); if (FunctionSamples::ProfileIsCS) return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); const FunctionSamples *FS = findFunctionSamples(Inst); if (FS == nullptr) return nullptr; return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL), CalleeName, Reader->getRemapper()); } /// Returns a vector of FunctionSamples that are the indirect call targets /// of \p Inst. The vector is sorted by the total number of samples. Stores /// the total call count of the indirect call in \p Sum. std::vector SampleProfileLoader::findIndirectCallFunctionSamples( const Instruction &Inst, uint64_t &Sum) const { const DILocation *DIL = Inst.getDebugLoc(); std::vector R; if (!DIL) { return R; } auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) { assert(L && R && "Expect non-null FunctionSamples"); if (L->getHeadSamplesEstimate() != R->getHeadSamplesEstimate()) return L->getHeadSamplesEstimate() > R->getHeadSamplesEstimate(); return L->getGUID() < R->getGUID(); }; if (FunctionSamples::ProfileIsCS) { auto CalleeSamples = ContextTracker->getIndirectCalleeContextSamplesFor(DIL); if (CalleeSamples.empty()) return R; // For CSSPGO, we only use target context profile's entry count // as that already includes both inlined callee and non-inlined ones.. Sum = 0; for (const auto *const FS : CalleeSamples) { Sum += FS->getHeadSamplesEstimate(); R.push_back(FS); } llvm::sort(R, FSCompare); return R; } const FunctionSamples *FS = findFunctionSamples(Inst); if (FS == nullptr) return R; auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); Sum = 0; if (auto T = FS->findCallTargetMapAt(CallSite)) for (const auto &T_C : *T) Sum += T_C.second; if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { if (M->empty()) return R; for (const auto &NameFS : *M) { Sum += NameFS.second.getHeadSamplesEstimate(); R.push_back(&NameFS.second); } llvm::sort(R, FSCompare); } return R; } const FunctionSamples * SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { if (FunctionSamples::ProfileIsProbeBased) { std::optional Probe = extractProbe(Inst); if (!Probe) return nullptr; } const DILocation *DIL = Inst.getDebugLoc(); if (!DIL) return Samples; auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); if (it.second) { if (FunctionSamples::ProfileIsCS) it.first->second = ContextTracker->getContextSamplesFor(DIL); else it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper()); } return it.first->second; } /// Check whether the indirect call promotion history of \p Inst allows /// the promotion for \p Candidate. /// If the profile count for the promotion candidate \p Candidate is /// NOMORE_ICP_MAGICNUM, it means \p Candidate has already been promoted /// for \p Inst. If we already have at least MaxNumPromotions /// NOMORE_ICP_MAGICNUM count values in the value profile of \p Inst, we /// cannot promote for \p Inst anymore. static bool doesHistoryAllowICP(const Instruction &Inst, StringRef Candidate) { uint32_t NumVals = 0; uint64_t TotalCount = 0; std::unique_ptr ValueData = std::make_unique(MaxNumPromotions); bool Valid = getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, ValueData.get(), NumVals, TotalCount, true); // No valid value profile so no promoted targets have been recorded // before. Ok to do ICP. if (!Valid) return true; unsigned NumPromoted = 0; for (uint32_t I = 0; I < NumVals; I++) { if (ValueData[I].Count != NOMORE_ICP_MAGICNUM) continue; // If the promotion candidate has NOMORE_ICP_MAGICNUM count in the // metadata, it means the candidate has been promoted for this // indirect call. if (ValueData[I].Value == Function::getGUID(Candidate)) return false; NumPromoted++; // If already have MaxNumPromotions promotion, don't do it anymore. if (NumPromoted == MaxNumPromotions) return false; } return true; } /// Update indirect call target profile metadata for \p Inst. /// Usually \p Sum is the sum of counts of all the targets for \p Inst. /// If it is 0, it means updateIDTMetaData is used to mark a /// certain target to be promoted already. If it is not zero, /// we expect to use it to update the total count in the value profile. static void updateIDTMetaData(Instruction &Inst, const SmallVectorImpl &CallTargets, uint64_t Sum) { // Bail out early if MaxNumPromotions is zero. // This prevents allocating an array of zero length below. // // Note `updateIDTMetaData` is called in two places so check // `MaxNumPromotions` inside it. if (MaxNumPromotions == 0) return; uint32_t NumVals = 0; // OldSum is the existing total count in the value profile data. uint64_t OldSum = 0; std::unique_ptr ValueData = std::make_unique(MaxNumPromotions); bool Valid = getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions, ValueData.get(), NumVals, OldSum, true); DenseMap ValueCountMap; if (Sum == 0) { assert((CallTargets.size() == 1 && CallTargets[0].Count == NOMORE_ICP_MAGICNUM) && "If sum is 0, assume only one element in CallTargets " "with count being NOMORE_ICP_MAGICNUM"); // Initialize ValueCountMap with existing value profile data. if (Valid) { for (uint32_t I = 0; I < NumVals; I++) ValueCountMap[ValueData[I].Value] = ValueData[I].Count; } auto Pair = ValueCountMap.try_emplace(CallTargets[0].Value, CallTargets[0].Count); // If the target already exists in value profile, decrease the total // count OldSum and reset the target's count to NOMORE_ICP_MAGICNUM. if (!Pair.second) { OldSum -= Pair.first->second; Pair.first->second = NOMORE_ICP_MAGICNUM; } Sum = OldSum; } else { // Initialize ValueCountMap with existing NOMORE_ICP_MAGICNUM // counts in the value profile. if (Valid) { for (uint32_t I = 0; I < NumVals; I++) { if (ValueData[I].Count == NOMORE_ICP_MAGICNUM) ValueCountMap[ValueData[I].Value] = ValueData[I].Count; } } for (const auto &Data : CallTargets) { auto Pair = ValueCountMap.try_emplace(Data.Value, Data.Count); if (Pair.second) continue; // The target represented by Data.Value has already been promoted. // Keep the count as NOMORE_ICP_MAGICNUM in the profile and decrease // Sum by Data.Count. assert(Sum >= Data.Count && "Sum should never be less than Data.Count"); Sum -= Data.Count; } } SmallVector NewCallTargets; for (const auto &ValueCount : ValueCountMap) { NewCallTargets.emplace_back( InstrProfValueData{ValueCount.first, ValueCount.second}); } llvm::sort(NewCallTargets, [](const InstrProfValueData &L, const InstrProfValueData &R) { if (L.Count != R.Count) return L.Count > R.Count; return L.Value > R.Value; }); uint32_t MaxMDCount = std::min(NewCallTargets.size(), static_cast(MaxNumPromotions)); annotateValueSite(*Inst.getParent()->getParent()->getParent(), Inst, NewCallTargets, Sum, IPVK_IndirectCallTarget, MaxMDCount); } /// Attempt to promote indirect call and also inline the promoted call. /// /// \param F Caller function. /// \param Candidate ICP and inline candidate. /// \param SumOrigin Original sum of target counts for indirect call before /// promoting given candidate. /// \param Sum Prorated sum of remaining target counts for indirect call /// after promoting given candidate. /// \param InlinedCallSite Output vector for new call sites exposed after /// inlining. bool SampleProfileLoader::tryPromoteAndInlineCandidate( Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum, SmallVector *InlinedCallSite) { // Bail out early if sample-loader inliner is disabled. if (DisableSampleLoaderInlining) return false; // Bail out early if MaxNumPromotions is zero. // This prevents allocating an array of zero length in callees below. if (MaxNumPromotions == 0) return false; auto CalleeFunctionName = Candidate.CalleeSamples->getFunction(); auto R = SymbolMap.find(CalleeFunctionName); if (R == SymbolMap.end() || !R->second) return false; auto &CI = *Candidate.CallInstr; if (!doesHistoryAllowICP(CI, R->second->getName())) return false; const char *Reason = "Callee function not available"; // R->getValue() != &F is to prevent promoting a recursive call. // If it is a recursive call, we do not inline it as it could bloat // the code exponentially. There is way to better handle this, e.g. // clone the caller first, and inline the cloned caller if it is // recursive. As llvm does not inline recursive calls, we will // simply ignore it instead of handling it explicitly. if (!R->second->isDeclaration() && R->second->getSubprogram() && R->second->hasFnAttribute("use-sample-profile") && R->second != &F && isLegalToPromote(CI, R->second, &Reason)) { // For promoted target, set its value with NOMORE_ICP_MAGICNUM count // in the value profile metadata so the target won't be promoted again. SmallVector SortedCallTargets = {InstrProfValueData{ Function::getGUID(R->second->getName()), NOMORE_ICP_MAGICNUM}}; updateIDTMetaData(CI, SortedCallTargets, 0); auto *DI = &pgo::promoteIndirectCall( CI, R->second, Candidate.CallsiteCount, Sum, false, ORE); if (DI) { Sum -= Candidate.CallsiteCount; // Do not prorate the indirect callsite distribution since the original // distribution will be used to scale down non-promoted profile target // counts later. By doing this we lose track of the real callsite count // for the leftover indirect callsite as a trade off for accurate call // target counts. // TODO: Ideally we would have two separate factors, one for call site // counts and one is used to prorate call target counts. // Do not update the promoted direct callsite distribution at this // point since the original distribution combined with the callee profile // will be used to prorate callsites from the callee if inlined. Once not // inlined, the direct callsite distribution should be prorated so that // the it will reflect the real callsite counts. Candidate.CallInstr = DI; if (isa(DI) || isa(DI)) { bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite); if (!Inlined) { // Prorate the direct callsite distribution so that it reflects real // callsite counts. setProbeDistributionFactor( *DI, static_cast(Candidate.CallsiteCount) / SumOrigin); } return Inlined; } } } else { LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to " << FunctionSamples::getCanonicalFnName( Candidate.CallInstr->getName())<< " because " << Reason << "\n"); } return false; } bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { if (!ProfileSizeInline) return false; Function *Callee = CallInst.getCalledFunction(); if (Callee == nullptr) return false; InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), GetAC, GetTLI); if (Cost.isNever()) return false; if (Cost.isAlways()) return true; return Cost.getCost() <= SampleColdCallSiteThreshold; } void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( const SmallVectorImpl &Candidates, const Function &F, bool Hot) { for (auto *I : Candidates) { Function *CalledFunction = I->getCalledFunction(); if (CalledFunction) { ORE->emit(OptimizationRemarkAnalysis(getAnnotatedRemarkPassName(), "InlineAttempt", I->getDebugLoc(), I->getParent()) << "previous inlining reattempted for " << (Hot ? "hotness: '" : "size: '") << ore::NV("Callee", CalledFunction) << "' into '" << ore::NV("Caller", &F) << "'"); } } } void SampleProfileLoader::findExternalInlineCandidate( CallBase *CB, const FunctionSamples *Samples, DenseSet &InlinedGUIDs, uint64_t Threshold) { // If ExternalInlineAdvisor(ReplayInlineAdvisor) wants to inline an external // function make sure it's imported if (CB && getExternalInlineAdvisorShouldInline(*CB)) { // Samples may not exist for replayed function, if so // just add the direct GUID and move on if (!Samples) { InlinedGUIDs.insert( Function::getGUID(CB->getCalledFunction()->getName())); return; } // Otherwise, drop the threshold to import everything that we can Threshold = 0; } // In some rare cases, call instruction could be changed after being pushed // into inline candidate queue, this is because earlier inlining may expose // constant propagation which can change indirect call to direct call. When // this happens, we may fail to find matching function samples for the // candidate later, even if a match was found when the candidate was enqueued. if (!Samples) return; // For AutoFDO profile, retrieve candidate profiles by walking over // the nested inlinee profiles. if (!FunctionSamples::ProfileIsCS) { Samples->findInlinedFunctions(InlinedGUIDs, SymbolMap, Threshold); return; } ContextTrieNode *Caller = ContextTracker->getContextNodeForProfile(Samples); std::queue CalleeList; CalleeList.push(Caller); while (!CalleeList.empty()) { ContextTrieNode *Node = CalleeList.front(); CalleeList.pop(); FunctionSamples *CalleeSample = Node->getFunctionSamples(); // For CSSPGO profile, retrieve candidate profile by walking over the // trie built for context profile. Note that also take call targets // even if callee doesn't have a corresponding context profile. if (!CalleeSample) continue; // If pre-inliner decision is used, honor that for importing as well. bool PreInline = UsePreInlinerDecision && CalleeSample->getContext().hasAttribute(ContextShouldBeInlined); if (!PreInline && CalleeSample->getHeadSamplesEstimate() < Threshold) continue; Function *Func = SymbolMap.lookup(CalleeSample->getFunction()); // Add to the import list only when it's defined out of module. if (!Func || Func->isDeclaration()) InlinedGUIDs.insert(CalleeSample->getGUID()); // Import hot CallTargets, which may not be available in IR because full // profile annotation cannot be done until backend compilation in ThinLTO. for (const auto &BS : CalleeSample->getBodySamples()) for (const auto &TS : BS.second.getCallTargets()) if (TS.second > Threshold) { const Function *Callee = SymbolMap.lookup(TS.first); if (!Callee || Callee->isDeclaration()) InlinedGUIDs.insert(TS.first.getHashCode()); } // Import hot child context profile associted with callees. Note that this // may have some overlap with the call target loop above, but doing this // based child context profile again effectively allow us to use the max of // entry count and call target count to determine importing. for (auto &Child : Node->getAllChildContext()) { ContextTrieNode *CalleeNode = &Child.second; CalleeList.push(CalleeNode); } } } /// Iteratively inline hot callsites of a function. /// /// Iteratively traverse all callsites of the function \p F, so as to /// find out callsites with corresponding inline instances. /// /// For such callsites, /// - If it is hot enough, inline the callsites and adds callsites of the callee /// into the caller. If the call is an indirect call, first promote /// it to direct call. Each indirect call is limited with a single target. /// /// - If a callsite is not inlined, merge the its profile to the outline /// version (if --sample-profile-merge-inlinee is true), or scale the /// counters of standalone function based on the profile of inlined /// instances (if --sample-profile-merge-inlinee is false). /// /// Later passes may consume the updated profiles. /// /// \param F function to perform iterative inlining. /// \param InlinedGUIDs a set to be updated to include all GUIDs that are /// inlined in the profiled binary. /// /// \returns True if there is any inline happened. bool SampleProfileLoader::inlineHotFunctions( Function &F, DenseSet &InlinedGUIDs) { // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure // Profile symbol list is ignored when profile-sample-accurate is on. assert((!ProfAccForSymsInList || (!ProfileSampleAccurate && !F.hasFnAttribute("profile-sample-accurate"))) && "ProfAccForSymsInList should be false when profile-sample-accurate " "is enabled"); MapVector LocalNotInlinedCallSites; bool Changed = false; bool LocalChanged = true; while (LocalChanged) { LocalChanged = false; SmallVector CIS; for (auto &BB : F) { bool Hot = false; SmallVector AllCandidates; SmallVector ColdCandidates; for (auto &I : BB) { const FunctionSamples *FS = nullptr; if (auto *CB = dyn_cast(&I)) { if (!isa(I)) { if ((FS = findCalleeFunctionSamples(*CB))) { assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && "GUIDToFuncNameMap has to be populated"); AllCandidates.push_back(CB); if (FS->getHeadSamplesEstimate() > 0 || FunctionSamples::ProfileIsCS) LocalNotInlinedCallSites.insert({CB, FS}); if (callsiteIsHot(FS, PSI, ProfAccForSymsInList)) Hot = true; else if (shouldInlineColdCallee(*CB)) ColdCandidates.push_back(CB); } else if (getExternalInlineAdvisorShouldInline(*CB)) { AllCandidates.push_back(CB); } } } } if (Hot || ExternalInlineAdvisor) { CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); } else { CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); } } for (CallBase *I : CIS) { Function *CalledFunction = I->getCalledFunction(); InlineCandidate Candidate = {I, LocalNotInlinedCallSites.lookup(I), 0 /* dummy count */, 1.0 /* dummy distribution factor */}; // Do not inline recursive calls. if (CalledFunction == &F) continue; if (I->isIndirectCall()) { uint64_t Sum; for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { uint64_t SumOrigin = Sum; if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { findExternalInlineCandidate(I, FS, InlinedGUIDs, PSI->getOrCompHotCountThreshold()); continue; } if (!callsiteIsHot(FS, PSI, ProfAccForSymsInList)) continue; Candidate = {I, FS, FS->getHeadSamplesEstimate(), 1.0}; if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum)) { LocalNotInlinedCallSites.erase(I); LocalChanged = true; } } } else if (CalledFunction && CalledFunction->getSubprogram() && !CalledFunction->isDeclaration()) { if (tryInlineCandidate(Candidate)) { LocalNotInlinedCallSites.erase(I); LocalChanged = true; } } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), InlinedGUIDs, PSI->getOrCompHotCountThreshold()); } } Changed |= LocalChanged; } // For CS profile, profile for not inlined context will be merged when // base profile is being retrieved. if (!FunctionSamples::ProfileIsCS) promoteMergeNotInlinedContextSamples(LocalNotInlinedCallSites, F); return Changed; } bool SampleProfileLoader::tryInlineCandidate( InlineCandidate &Candidate, SmallVector *InlinedCallSites) { // Do not attempt to inline a candidate if // --disable-sample-loader-inlining is true. if (DisableSampleLoaderInlining) return false; CallBase &CB = *Candidate.CallInstr; Function *CalledFunction = CB.getCalledFunction(); assert(CalledFunction && "Expect a callee with definition"); DebugLoc DLoc = CB.getDebugLoc(); BasicBlock *BB = CB.getParent(); InlineCost Cost = shouldInlineCandidate(Candidate); if (Cost.isNever()) { ORE->emit(OptimizationRemarkAnalysis(getAnnotatedRemarkPassName(), "InlineFail", DLoc, BB) << "incompatible inlining"); return false; } if (!Cost) return false; InlineFunctionInfo IFI(GetAC); IFI.UpdateProfile = false; InlineResult IR = InlineFunction(CB, IFI, /*MergeAttributes=*/true); if (!IR.isSuccess()) return false; // The call to InlineFunction erases I, so we can't pass it here. emitInlinedIntoBasedOnCost(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost, true, getAnnotatedRemarkPassName()); // Now populate the list of newly exposed call sites. if (InlinedCallSites) { InlinedCallSites->clear(); for (auto &I : IFI.InlinedCallSites) InlinedCallSites->push_back(I); } if (FunctionSamples::ProfileIsCS) ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples); ++NumCSInlined; // Prorate inlined probes for a duplicated inlining callsite which probably // has a distribution less than 100%. Samples for an inlinee should be // distributed among the copies of the original callsite based on each // callsite's distribution factor for counts accuracy. Note that an inlined // probe may come with its own distribution factor if it has been duplicated // in the inlinee body. The two factor are multiplied to reflect the // aggregation of duplication. if (Candidate.CallsiteDistribution < 1) { for (auto &I : IFI.InlinedCallSites) { if (std::optional Probe = extractProbe(*I)) setProbeDistributionFactor(*I, Probe->Factor * Candidate.CallsiteDistribution); } NumDuplicatedInlinesite++; } return true; } bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB) { assert(CB && "Expect non-null call instruction"); if (isa(CB)) return false; // Find the callee's profile. For indirect call, find hottest target profile. const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB); // If ExternalInlineAdvisor wants to inline this site, do so even // if Samples are not present. if (!CalleeSamples && !getExternalInlineAdvisorShouldInline(*CB)) return false; float Factor = 1.0; if (std::optional Probe = extractProbe(*CB)) Factor = Probe->Factor; uint64_t CallsiteCount = CalleeSamples ? CalleeSamples->getHeadSamplesEstimate() * Factor : 0; *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor}; return true; } std::optional SampleProfileLoader::getExternalInlineAdvisorCost(CallBase &CB) { std::unique_ptr Advice = nullptr; if (ExternalInlineAdvisor) { Advice = ExternalInlineAdvisor->getAdvice(CB); if (Advice) { if (!Advice->isInliningRecommended()) { Advice->recordUnattemptedInlining(); return InlineCost::getNever("not previously inlined"); } Advice->recordInlining(); return InlineCost::getAlways("previously inlined"); } } return {}; } bool SampleProfileLoader::getExternalInlineAdvisorShouldInline(CallBase &CB) { std::optional Cost = getExternalInlineAdvisorCost(CB); return Cost ? !!*Cost : false; } InlineCost SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) { if (std::optional ReplayCost = getExternalInlineAdvisorCost(*Candidate.CallInstr)) return *ReplayCost; // Adjust threshold based on call site hotness, only do this for callsite // prioritized inliner because otherwise cost-benefit check is done earlier. int SampleThreshold = SampleColdCallSiteThreshold; if (CallsitePrioritizedInline) { if (Candidate.CallsiteCount > PSI->getHotCountThreshold()) SampleThreshold = SampleHotCallSiteThreshold; else if (!ProfileSizeInline) return InlineCost::getNever("cold callsite"); } Function *Callee = Candidate.CallInstr->getCalledFunction(); assert(Callee && "Expect a definition for inline candidate of direct call"); InlineParams Params = getInlineParams(); // We will ignore the threshold from inline cost, so always get full cost. Params.ComputeFullInlineCost = true; Params.AllowRecursiveCall = AllowRecursiveInline; // Checks if there is anything in the reachable portion of the callee at // this callsite that makes this inlining potentially illegal. Need to // set ComputeFullInlineCost, otherwise getInlineCost may return early // when cost exceeds threshold without checking all IRs in the callee. // The acutal cost does not matter because we only checks isNever() to // see if it is legal to inline the callsite. InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params, GetTTI(*Callee), GetAC, GetTLI); // Honor always inline and never inline from call analyzer if (Cost.isNever() || Cost.isAlways()) return Cost; // With CSSPGO, the preinliner in llvm-profgen can estimate global inline // decisions based on hotness as well as accurate function byte sizes for // given context using function/inlinee sizes from previous build. It // stores the decision in profile, and also adjust/merge context profile // aiming at better context-sensitive post-inline profile quality, assuming // all inline decision estimates are going to be honored by compiler. Here // we replay that inline decision under `sample-profile-use-preinliner`. // Note that we don't need to handle negative decision from preinliner as // context profile for not inlined calls are merged by preinliner already. if (UsePreInlinerDecision && Candidate.CalleeSamples) { // Once two node are merged due to promotion, we're losing some context // so the original context-sensitive preinliner decision should be ignored // for SyntheticContext. SampleContext &Context = Candidate.CalleeSamples->getContext(); if (!Context.hasState(SyntheticContext) && Context.hasAttribute(ContextShouldBeInlined)) return InlineCost::getAlways("preinliner"); } // For old FDO inliner, we inline the call site as long as cost is not // "Never". The cost-benefit check is done earlier. if (!CallsitePrioritizedInline) { return InlineCost::get(Cost.getCost(), INT_MAX); } // Otherwise only use the cost from call analyzer, but overwite threshold with // Sample PGO threshold. return InlineCost::get(Cost.getCost(), SampleThreshold); } bool SampleProfileLoader::inlineHotFunctionsWithPriority( Function &F, DenseSet &InlinedGUIDs) { // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure // Profile symbol list is ignored when profile-sample-accurate is on. assert((!ProfAccForSymsInList || (!ProfileSampleAccurate && !F.hasFnAttribute("profile-sample-accurate"))) && "ProfAccForSymsInList should be false when profile-sample-accurate " "is enabled"); // Populating worklist with initial call sites from root inliner, along // with call site weights. CandidateQueue CQueue; InlineCandidate NewCandidate; for (auto &BB : F) { for (auto &I : BB) { auto *CB = dyn_cast(&I); if (!CB) continue; if (getInlineCandidate(&NewCandidate, CB)) CQueue.push(NewCandidate); } } // Cap the size growth from profile guided inlining. This is needed even // though cost of each inline candidate already accounts for callee size, // because with top-down inlining, we can grow inliner size significantly // with large number of smaller inlinees each pass the cost check. assert(ProfileInlineLimitMax >= ProfileInlineLimitMin && "Max inline size limit should not be smaller than min inline size " "limit."); unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit; SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax); SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin); if (ExternalInlineAdvisor) SizeLimit = std::numeric_limits::max(); MapVector LocalNotInlinedCallSites; // Perform iterative BFS call site prioritized inlining bool Changed = false; while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) { InlineCandidate Candidate = CQueue.top(); CQueue.pop(); CallBase *I = Candidate.CallInstr; Function *CalledFunction = I->getCalledFunction(); if (CalledFunction == &F) continue; if (I->isIndirectCall()) { uint64_t Sum = 0; auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum); uint64_t SumOrigin = Sum; Sum *= Candidate.CallsiteDistribution; unsigned ICPCount = 0; for (const auto *FS : CalleeSamples) { // TODO: Consider disable pre-lTO ICP for MonoLTO as well if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { findExternalInlineCandidate(I, FS, InlinedGUIDs, PSI->getOrCompHotCountThreshold()); continue; } uint64_t EntryCountDistributed = FS->getHeadSamplesEstimate() * Candidate.CallsiteDistribution; // In addition to regular inline cost check, we also need to make sure // ICP isn't introducing excessive speculative checks even if individual // target looks beneficial to promote and inline. That means we should // only do ICP when there's a small number dominant targets. if (ICPCount >= ProfileICPRelativeHotnessSkip && EntryCountDistributed * 100 < SumOrigin * ProfileICPRelativeHotness) break; // TODO: Fix CallAnalyzer to handle all indirect calls. // For indirect call, we don't run CallAnalyzer to get InlineCost // before actual inlining. This is because we could see two different // types from the same definition, which makes CallAnalyzer choke as // it's expecting matching parameter type on both caller and callee // side. See example from PR18962 for the triggering cases (the bug was // fixed, but we generate different types). if (!PSI->isHotCount(EntryCountDistributed)) break; SmallVector InlinedCallSites; // Attach function profile for promoted indirect callee, and update // call site count for the promoted inline candidate too. Candidate = {I, FS, EntryCountDistributed, Candidate.CallsiteDistribution}; if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum, &InlinedCallSites)) { for (auto *CB : InlinedCallSites) { if (getInlineCandidate(&NewCandidate, CB)) CQueue.emplace(NewCandidate); } ICPCount++; Changed = true; } else if (!ContextTracker) { LocalNotInlinedCallSites.insert({I, FS}); } } } else if (CalledFunction && CalledFunction->getSubprogram() && !CalledFunction->isDeclaration()) { SmallVector InlinedCallSites; if (tryInlineCandidate(Candidate, &InlinedCallSites)) { for (auto *CB : InlinedCallSites) { if (getInlineCandidate(&NewCandidate, CB)) CQueue.emplace(NewCandidate); } Changed = true; } else if (!ContextTracker) { LocalNotInlinedCallSites.insert({I, Candidate.CalleeSamples}); } } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { findExternalInlineCandidate(I, findCalleeFunctionSamples(*I), InlinedGUIDs, PSI->getOrCompHotCountThreshold()); } } if (!CQueue.empty()) { if (SizeLimit == (unsigned)ProfileInlineLimitMax) ++NumCSInlinedHitMaxLimit; else if (SizeLimit == (unsigned)ProfileInlineLimitMin) ++NumCSInlinedHitMinLimit; else ++NumCSInlinedHitGrowthLimit; } // For CS profile, profile for not inlined context will be merged when // base profile is being retrieved. if (!FunctionSamples::ProfileIsCS) promoteMergeNotInlinedContextSamples(LocalNotInlinedCallSites, F); return Changed; } void SampleProfileLoader::promoteMergeNotInlinedContextSamples( MapVector NonInlinedCallSites, const Function &F) { // Accumulate not inlined callsite information into notInlinedSamples for (const auto &Pair : NonInlinedCallSites) { CallBase *I = Pair.first; Function *Callee = I->getCalledFunction(); if (!Callee || Callee->isDeclaration()) continue; ORE->emit( OptimizationRemarkAnalysis(getAnnotatedRemarkPassName(), "NotInline", I->getDebugLoc(), I->getParent()) << "previous inlining not repeated: '" << ore::NV("Callee", Callee) << "' into '" << ore::NV("Caller", &F) << "'"); ++NumCSNotInlined; const FunctionSamples *FS = Pair.second; if (FS->getTotalSamples() == 0 && FS->getHeadSamplesEstimate() == 0) { continue; } // Do not merge a context that is already duplicated into the base profile. if (FS->getContext().hasAttribute(sampleprof::ContextDuplicatedIntoBase)) continue; if (ProfileMergeInlinee) { // A function call can be replicated by optimizations like callsite // splitting or jump threading and the replicates end up sharing the // sample nested callee profile instead of slicing the original // inlinee's profile. We want to do merge exactly once by filtering out // callee profiles with a non-zero head sample count. if (FS->getHeadSamples() == 0) { // Use entry samples as head samples during the merge, as inlinees // don't have head samples. const_cast(FS)->addHeadSamples( FS->getHeadSamplesEstimate()); // Note that we have to do the merge right after processing function. // This allows OutlineFS's profile to be used for annotation during // top-down processing of functions' annotation. FunctionSamples *OutlineFS = Reader->getSamplesFor(*Callee); // If outlined function does not exist in the profile, add it to a // separate map so that it does not rehash the original profile. if (!OutlineFS) OutlineFS = &OutlineFunctionSamples[ FunctionId(FunctionSamples::getCanonicalFnName(Callee->getName()))]; OutlineFS->merge(*FS, 1); // Set outlined profile to be synthetic to not bias the inliner. OutlineFS->SetContextSynthetic(); } } else { auto pair = notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); pair.first->second.entryCount += FS->getHeadSamplesEstimate(); } } } /// Returns the sorted CallTargetMap \p M by count in descending order. static SmallVector GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap &M) { SmallVector R; for (const auto &I : SampleRecord::SortCallTargets(M)) { R.emplace_back( InstrProfValueData{I.first.getHashCode(), I.second}); } return R; } // Generate MD_prof metadata for every branch instruction using the // edge weights computed during propagation. void SampleProfileLoader::generateMDProfMetadata(Function &F) { // Generate MD_prof metadata for every branch instruction using the // edge weights computed during propagation. LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); LLVMContext &Ctx = F.getContext(); MDBuilder MDB(Ctx); for (auto &BI : F) { BasicBlock *BB = &BI; if (BlockWeights[BB]) { for (auto &I : *BB) { if (!isa(I) && !isa(I)) continue; if (!cast(I).getCalledFunction()) { const DebugLoc &DLoc = I.getDebugLoc(); if (!DLoc) continue; const DILocation *DIL = DLoc; const FunctionSamples *FS = findFunctionSamples(I); if (!FS) continue; auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); ErrorOr T = FS->findCallTargetMapAt(CallSite); if (!T || T.get().empty()) continue; if (FunctionSamples::ProfileIsProbeBased) { // Prorate the callsite counts based on the pre-ICP distribution // factor to reflect what is already done to the callsite before // ICP, such as calliste cloning. if (std::optional Probe = extractProbe(I)) { if (Probe->Factor < 1) T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor); } } SmallVector SortedCallTargets = GetSortedValueDataFromCallTargets(T.get()); uint64_t Sum = 0; for (const auto &C : T.get()) Sum += C.second; // With CSSPGO all indirect call targets are counted torwards the // original indirect call site in the profile, including both // inlined and non-inlined targets. if (!FunctionSamples::ProfileIsCS) { if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { for (const auto &NameFS : *M) Sum += NameFS.second.getHeadSamplesEstimate(); } } if (Sum) updateIDTMetaData(I, SortedCallTargets, Sum); else if (OverwriteExistingWeights) I.setMetadata(LLVMContext::MD_prof, nullptr); } else if (!isa(&I)) { setBranchWeights(I, {static_cast(BlockWeights[BB])}); } } } else if (OverwriteExistingWeights || ProfileSampleBlockAccurate) { // Set profile metadata (possibly annotated by LTO prelink) to zero or // clear it for cold code. for (auto &I : *BB) { if (isa(I) || isa(I)) { if (cast(I).isIndirectCall()) { I.setMetadata(LLVMContext::MD_prof, nullptr); } else { setBranchWeights(I, {uint32_t(0)}); } } } } Instruction *TI = BB->getTerminator(); if (TI->getNumSuccessors() == 1) continue; if (!isa(TI) && !isa(TI) && !isa(TI)) continue; DebugLoc BranchLoc = TI->getDebugLoc(); LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " << ((BranchLoc) ? Twine(BranchLoc.getLine()) : Twine("")) << ".\n"); SmallVector Weights; uint32_t MaxWeight = 0; Instruction *MaxDestInst; // Since profi treats multiple edges (multiway branches) as a single edge, // we need to distribute the computed weight among the branches. We do // this by evenly splitting the edge weight among destinations. DenseMap EdgeMultiplicity; std::vector EdgeIndex; if (SampleProfileUseProfi) { EdgeIndex.resize(TI->getNumSuccessors()); for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { const BasicBlock *Succ = TI->getSuccessor(I); EdgeIndex[I] = EdgeMultiplicity[Succ]; EdgeMultiplicity[Succ]++; } } for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { BasicBlock *Succ = TI->getSuccessor(I); Edge E = std::make_pair(BB, Succ); uint64_t Weight = EdgeWeights[E]; LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); // Use uint32_t saturated arithmetic to adjust the incoming weights, // if needed. Sample counts in profiles are 64-bit unsigned values, // but internally branch weights are expressed as 32-bit values. if (Weight > std::numeric_limits::max()) { LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); Weight = std::numeric_limits::max(); } if (!SampleProfileUseProfi) { // Weight is added by one to avoid propagation errors introduced by // 0 weights. Weights.push_back(static_cast(Weight + 1)); } else { // Profi creates proper weights that do not require "+1" adjustments but // we evenly split the weight among branches with the same destination. uint64_t W = Weight / EdgeMultiplicity[Succ]; // Rounding up, if needed, so that first branches are hotter. if (EdgeIndex[I] < Weight % EdgeMultiplicity[Succ]) W++; Weights.push_back(static_cast(W)); } if (Weight != 0) { if (Weight > MaxWeight) { MaxWeight = Weight; MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); } } } misexpect::checkExpectAnnotations(*TI, Weights, /*IsFrontend=*/false); uint64_t TempWeight; // Only set weights if there is at least one non-zero weight. // In any other case, let the analyzer set weights. // Do not set weights if the weights are present unless under // OverwriteExistingWeights. In ThinLTO, the profile annotation is done // twice. If the first annotation already set the weights, the second pass // does not need to set it. With OverwriteExistingWeights, Blocks with zero // weight should have their existing metadata (possibly annotated by LTO // prelink) cleared. if (MaxWeight > 0 && (!TI->extractProfTotalWeight(TempWeight) || OverwriteExistingWeights)) { LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); setBranchWeights(*TI, Weights); ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) << "most popular destination for conditional branches at " << ore::NV("CondBranchesLoc", BranchLoc); }); } else { if (OverwriteExistingWeights) { TI->setMetadata(LLVMContext::MD_prof, nullptr); LLVM_DEBUG(dbgs() << "CLEARED. All branch weights are zero.\n"); } else { LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); } } } } /// Once all the branch weights are computed, we emit the MD_prof /// metadata on BB using the computed values for each of its branches. /// /// \param F The function to query. /// /// \returns true if \p F was modified. Returns false, otherwise. bool SampleProfileLoader::emitAnnotations(Function &F) { bool Changed = false; if (FunctionSamples::ProfileIsProbeBased) { if (!ProbeManager->profileIsValid(F, *Samples)) { LLVM_DEBUG( dbgs() << "Profile is invalid due to CFG mismatch for Function " << F.getName() << "\n"); ++NumMismatchedProfile; if (!SalvageStaleProfile) return false; } ++NumMatchedProfile; } else { if (getFunctionLoc(F) == 0) return false; LLVM_DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() << ": " << getFunctionLoc(F) << "\n"); } DenseSet InlinedGUIDs; if (CallsitePrioritizedInline) Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs); else Changed |= inlineHotFunctions(F, InlinedGUIDs); Changed |= computeAndPropagateWeights(F, InlinedGUIDs); if (Changed) generateMDProfMetadata(F); emitCoverageRemarks(F); return Changed; } std::unique_ptr SampleProfileLoader::buildProfiledCallGraph(Module &M) { std::unique_ptr ProfiledCG; if (FunctionSamples::ProfileIsCS) ProfiledCG = std::make_unique(*ContextTracker); else ProfiledCG = std::make_unique(Reader->getProfiles()); // Add all functions into the profiled call graph even if they are not in // the profile. This makes sure functions missing from the profile still // gets a chance to be processed. for (Function &F : M) { if (F.isDeclaration() || !F.hasFnAttribute("use-sample-profile")) continue; ProfiledCG->addProfiledFunction( getRepInFormat(FunctionSamples::getCanonicalFnName(F))); } return ProfiledCG; } std::vector SampleProfileLoader::buildFunctionOrder(Module &M, LazyCallGraph &CG) { std::vector FunctionOrderList; FunctionOrderList.reserve(M.size()); if (!ProfileTopDownLoad && UseProfiledCallGraph) errs() << "WARNING: -use-profiled-call-graph ignored, should be used " "together with -sample-profile-top-down-load.\n"; if (!ProfileTopDownLoad) { if (ProfileMergeInlinee) { // Disable ProfileMergeInlinee if profile is not loaded in top down order, // because the profile for a function may be used for the profile // annotation of its outline copy before the profile merging of its // non-inlined inline instances, and that is not the way how // ProfileMergeInlinee is supposed to work. ProfileMergeInlinee = false; } for (Function &F : M) if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) FunctionOrderList.push_back(&F); return FunctionOrderList; } if (UseProfiledCallGraph || (FunctionSamples::ProfileIsCS && !UseProfiledCallGraph.getNumOccurrences())) { // Use profiled call edges to augment the top-down order. There are cases // that the top-down order computed based on the static call graph doesn't // reflect real execution order. For example // // 1. Incomplete static call graph due to unknown indirect call targets. // Adjusting the order by considering indirect call edges from the // profile can enable the inlining of indirect call targets by allowing // the caller processed before them. // 2. Mutual call edges in an SCC. The static processing order computed for // an SCC may not reflect the call contexts in the context-sensitive // profile, thus may cause potential inlining to be overlooked. The // function order in one SCC is being adjusted to a top-down order based // on the profile to favor more inlining. This is only a problem with CS // profile. // 3. Transitive indirect call edges due to inlining. When a callee function // (say B) is inlined into a caller function (say A) in LTO prelink, // every call edge originated from the callee B will be transferred to // the caller A. If any transferred edge (say A->C) is indirect, the // original profiled indirect edge B->C, even if considered, would not // enforce a top-down order from the caller A to the potential indirect // call target C in LTO postlink since the inlined callee B is gone from // the static call graph. // 4. #3 can happen even for direct call targets, due to functions defined // in header files. A header function (say A), when included into source // files, is defined multiple times but only one definition survives due // to ODR. Therefore, the LTO prelink inlining done on those dropped // definitions can be useless based on a local file scope. More // importantly, the inlinee (say B), once fully inlined to a // to-be-dropped A, will have no profile to consume when its outlined // version is compiled. This can lead to a profile-less prelink // compilation for the outlined version of B which may be called from // external modules. while this isn't easy to fix, we rely on the // postlink AutoFDO pipeline to optimize B. Since the survived copy of // the A can be inlined in its local scope in prelink, it may not exist // in the merged IR in postlink, and we'll need the profiled call edges // to enforce a top-down order for the rest of the functions. // // Considering those cases, a profiled call graph completely independent of // the static call graph is constructed based on profile data, where // function objects are not even needed to handle case #3 and case 4. // // Note that static callgraph edges are completely ignored since they // can be conflicting with profiled edges for cyclic SCCs and may result in // an SCC order incompatible with profile-defined one. Using strictly // profile order ensures a maximum inlining experience. On the other hand, // static call edges are not so important when they don't correspond to a // context in the profile. std::unique_ptr ProfiledCG = buildProfiledCallGraph(M); scc_iterator CGI = scc_begin(ProfiledCG.get()); while (!CGI.isAtEnd()) { auto Range = *CGI; if (SortProfiledSCC) { // Sort nodes in one SCC based on callsite hotness. scc_member_iterator SI(*CGI); Range = *SI; } for (auto *Node : Range) { Function *F = SymbolMap.lookup(Node->Name); if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) FunctionOrderList.push_back(F); } ++CGI; } } else { CG.buildRefSCCs(); for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) { for (LazyCallGraph::SCC &C : RC) { for (LazyCallGraph::Node &N : C) { Function &F = N.getFunction(); if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) FunctionOrderList.push_back(&F); } } } } std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); LLVM_DEBUG({ dbgs() << "Function processing order:\n"; for (auto F : FunctionOrderList) { dbgs() << F->getName() << "\n"; } }); return FunctionOrderList; } bool SampleProfileLoader::doInitialization(Module &M, FunctionAnalysisManager *FAM) { auto &Ctx = M.getContext(); auto ReaderOrErr = SampleProfileReader::create( Filename, Ctx, *FS, FSDiscriminatorPass::Base, RemappingFilename); if (std::error_code EC = ReaderOrErr.getError()) { std::string Msg = "Could not open profile: " + EC.message(); Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); return false; } Reader = std::move(ReaderOrErr.get()); Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink); // set module before reading the profile so reader may be able to only // read the function profiles which are used by the current module. Reader->setModule(&M); if (std::error_code EC = Reader->read()) { std::string Msg = "profile reading failed: " + EC.message(); Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); return false; } PSL = Reader->getProfileSymbolList(); // While profile-sample-accurate is on, ignore symbol list. ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; if (ProfAccForSymsInList) { NamesInProfile.clear(); GUIDsInProfile.clear(); if (auto NameTable = Reader->getNameTable()) { if (FunctionSamples::UseMD5) { for (auto Name : *NameTable) GUIDsInProfile.insert(Name.getHashCode()); } else { for (auto Name : *NameTable) NamesInProfile.insert(Name.stringRef()); } } CoverageTracker.setProfAccForSymsInList(true); } if (FAM && !ProfileInlineReplayFile.empty()) { ExternalInlineAdvisor = getReplayInlineAdvisor( M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, ReplayInlinerSettings{ProfileInlineReplayFile, ProfileInlineReplayScope, ProfileInlineReplayFallback, {ProfileInlineReplayFormat}}, /*EmitRemarks=*/false, InlineContext{LTOPhase, InlinePass::ReplaySampleProfileInliner}); } // Apply tweaks if context-sensitive or probe-based profile is available. if (Reader->profileIsCS() || Reader->profileIsPreInlined() || Reader->profileIsProbeBased()) { if (!UseIterativeBFIInference.getNumOccurrences()) UseIterativeBFIInference = true; if (!SampleProfileUseProfi.getNumOccurrences()) SampleProfileUseProfi = true; if (!EnableExtTspBlockPlacement.getNumOccurrences()) EnableExtTspBlockPlacement = true; // Enable priority-base inliner and size inline by default for CSSPGO. if (!ProfileSizeInline.getNumOccurrences()) ProfileSizeInline = true; if (!CallsitePrioritizedInline.getNumOccurrences()) CallsitePrioritizedInline = true; // For CSSPGO, we also allow recursive inline to best use context profile. if (!AllowRecursiveInline.getNumOccurrences()) AllowRecursiveInline = true; if (Reader->profileIsPreInlined()) { if (!UsePreInlinerDecision.getNumOccurrences()) UsePreInlinerDecision = true; } // Enable stale profile matching by default for probe-based profile. // Currently the matching relies on if the checksum mismatch is detected, // which is currently only available for pseudo-probe mode. Removing the // checksum check could cause regressions for some cases, so further tuning // might be needed if we want to enable it for all cases. if (Reader->profileIsProbeBased() && !SalvageStaleProfile.getNumOccurrences()) { SalvageStaleProfile = true; } if (!Reader->profileIsCS()) { // Non-CS profile should be fine without a function size budget for the // inliner since the contexts in the profile are either all from inlining // in the prevoius build or pre-computed by the preinliner with a size // cap, thus they are bounded. if (!ProfileInlineLimitMin.getNumOccurrences()) ProfileInlineLimitMin = std::numeric_limits::max(); if (!ProfileInlineLimitMax.getNumOccurrences()) ProfileInlineLimitMax = std::numeric_limits::max(); } } if (Reader->profileIsCS()) { // Tracker for profiles under different context ContextTracker = std::make_unique( Reader->getProfiles(), &GUIDToFuncNameMap); } // Load pseudo probe descriptors for probe-based function samples. if (Reader->profileIsProbeBased()) { ProbeManager = std::make_unique(M); if (!ProbeManager->moduleIsProbed(M)) { const char *Msg = "Pseudo-probe-based profile requires SampleProfileProbePass"; Ctx.diagnose(DiagnosticInfoSampleProfile(M.getModuleIdentifier(), Msg, DS_Warning)); return false; } } if (ReportProfileStaleness || PersistProfileStaleness || SalvageStaleProfile) { MatchingManager = std::make_unique(M, *Reader, ProbeManager.get()); } return true; } void SampleProfileMatcher::findIRAnchors( const Function &F, std::map &IRAnchors) { // For inlined code, recover the original callsite and callee by finding the // top-level inline frame. e.g. For frame stack "main:1 @ foo:2 @ bar:3", the // top-level frame is "main:1", the callsite is "1" and the callee is "foo". auto FindTopLevelInlinedCallsite = [](const DILocation *DIL) { assert((DIL && DIL->getInlinedAt()) && "No inlined callsite"); const DILocation *PrevDIL = nullptr; do { PrevDIL = DIL; DIL = DIL->getInlinedAt(); } while (DIL->getInlinedAt()); LineLocation Callsite = FunctionSamples::getCallSiteIdentifier(DIL); StringRef CalleeName = PrevDIL->getSubprogramLinkageName(); return std::make_pair(Callsite, CalleeName); }; auto GetCanonicalCalleeName = [](const CallBase *CB) { StringRef CalleeName = UnknownIndirectCallee; if (Function *Callee = CB->getCalledFunction()) CalleeName = FunctionSamples::getCanonicalFnName(Callee->getName()); return CalleeName; }; // Extract profile matching anchors in the IR. for (auto &BB : F) { for (auto &I : BB) { DILocation *DIL = I.getDebugLoc(); if (!DIL) continue; if (FunctionSamples::ProfileIsProbeBased) { if (auto Probe = extractProbe(I)) { // Flatten inlined IR for the matching. if (DIL->getInlinedAt()) { IRAnchors.emplace(FindTopLevelInlinedCallsite(DIL)); } else { // Use empty StringRef for basic block probe. StringRef CalleeName; if (const auto *CB = dyn_cast(&I)) { // Skip the probe inst whose callee name is "llvm.pseudoprobe". if (!isa(&I)) CalleeName = GetCanonicalCalleeName(CB); } IRAnchors.emplace(LineLocation(Probe->Id, 0), CalleeName); } } } else { // TODO: For line-number based profile(AutoFDO), currently only support // find callsite anchors. In future, we need to parse all the non-call // instructions to extract the line locations for profile matching. if (!isa(&I) || isa(&I)) continue; if (DIL->getInlinedAt()) { IRAnchors.emplace(FindTopLevelInlinedCallsite(DIL)); } else { LineLocation Callsite = FunctionSamples::getCallSiteIdentifier(DIL); StringRef CalleeName = GetCanonicalCalleeName(dyn_cast(&I)); IRAnchors.emplace(Callsite, CalleeName); } } } } } void SampleProfileMatcher::countMismatchedSamples(const FunctionSamples &FS) { const auto *FuncDesc = ProbeManager->getDesc(FS.getGUID()); // Skip the function that is external or renamed. if (!FuncDesc) return; if (ProbeManager->profileIsHashMismatched(*FuncDesc, FS)) { MismatchedFuncHashSamples += FS.getTotalSamples(); return; } for (const auto &I : FS.getCallsiteSamples()) for (const auto &CS : I.second) countMismatchedSamples(CS.second); } void SampleProfileMatcher::countProfileMismatches( const Function &F, const FunctionSamples &FS, const std::map &IRAnchors, const std::map> &ProfileAnchors) { [[maybe_unused]] bool IsFuncHashMismatch = false; if (FunctionSamples::ProfileIsProbeBased) { TotalFuncHashSamples += FS.getTotalSamples(); TotalProfiledFunc++; const auto *FuncDesc = ProbeManager->getDesc(F); if (FuncDesc) { if (ProbeManager->profileIsHashMismatched(*FuncDesc, FS)) { NumMismatchedFuncHash++; IsFuncHashMismatch = true; } countMismatchedSamples(FS); } } uint64_t FuncMismatchedCallsites = 0; uint64_t FuncProfiledCallsites = 0; countProfileCallsiteMismatches(FS, IRAnchors, ProfileAnchors, FuncMismatchedCallsites, FuncProfiledCallsites); TotalProfiledCallsites += FuncProfiledCallsites; NumMismatchedCallsites += FuncMismatchedCallsites; LLVM_DEBUG({ if (FunctionSamples::ProfileIsProbeBased && !IsFuncHashMismatch && FuncMismatchedCallsites) dbgs() << "Function checksum is matched but there are " << FuncMismatchedCallsites << "/" << FuncProfiledCallsites << " mismatched callsites.\n"; }); } void SampleProfileMatcher::countProfileCallsiteMismatches( const FunctionSamples &FS, const std::map &IRAnchors, const std::map> &ProfileAnchors, uint64_t &FuncMismatchedCallsites, uint64_t &FuncProfiledCallsites) { // Check if there are any callsites in the profile that does not match to any // IR callsites, those callsite samples will be discarded. for (const auto &I : ProfileAnchors) { const auto &Loc = I.first; const auto &Callees = I.second; assert(!Callees.empty() && "Callees should not be empty"); StringRef IRCalleeName; const auto &IR = IRAnchors.find(Loc); if (IR != IRAnchors.end()) IRCalleeName = IR->second; // Compute number of samples in the original profile. uint64_t CallsiteSamples = 0; if (auto CTM = FS.findCallTargetMapAt(Loc)) { for (const auto &I : *CTM) CallsiteSamples += I.second; } const auto *FSMap = FS.findFunctionSamplesMapAt(Loc); if (FSMap) { for (const auto &I : *FSMap) CallsiteSamples += I.second.getTotalSamples(); } bool CallsiteIsMatched = false; // Since indirect call does not have CalleeName, check conservatively if // callsite in the profile is a callsite location. This is to reduce num of // false positive since otherwise all the indirect call samples will be // reported as mismatching. if (IRCalleeName == UnknownIndirectCallee) CallsiteIsMatched = true; else if (Callees.size() == 1 && Callees.count(getRepInFormat(IRCalleeName))) CallsiteIsMatched = true; FuncProfiledCallsites++; TotalCallsiteSamples += CallsiteSamples; if (!CallsiteIsMatched) { FuncMismatchedCallsites++; MismatchedCallsiteSamples += CallsiteSamples; } } } void SampleProfileMatcher::findProfileAnchors(const FunctionSamples &FS, std::map> &ProfileAnchors) { auto isInvalidLineOffset = [](uint32_t LineOffset) { return LineOffset & 0x8000; }; for (const auto &I : FS.getBodySamples()) { const LineLocation &Loc = I.first; if (isInvalidLineOffset(Loc.LineOffset)) continue; for (const auto &I : I.second.getCallTargets()) { auto Ret = ProfileAnchors.try_emplace(Loc, std::unordered_set()); Ret.first->second.insert(I.first); } } for (const auto &I : FS.getCallsiteSamples()) { const LineLocation &Loc = I.first; if (isInvalidLineOffset(Loc.LineOffset)) continue; const auto &CalleeMap = I.second; for (const auto &I : CalleeMap) { auto Ret = ProfileAnchors.try_emplace(Loc, std::unordered_set()); Ret.first->second.insert(I.first); } } } // Call target name anchor based profile fuzzy matching. // Input: // For IR locations, the anchor is the callee name of direct callsite; For // profile locations, it's the call target name for BodySamples or inlinee's // profile name for CallsiteSamples. // Matching heuristic: // First match all the anchors in lexical order, then split the non-anchor // locations between the two anchors evenly, first half are matched based on the // start anchor, second half are matched based on the end anchor. // For example, given: // IR locations: [1, 2(foo), 3, 5, 6(bar), 7] // Profile locations: [1, 2, 3(foo), 4, 7, 8(bar), 9] // The matching gives: // [1, 2(foo), 3, 5, 6(bar), 7] // | | | | | | // [1, 2, 3(foo), 4, 7, 8(bar), 9] // The output mapping: [2->3, 3->4, 5->7, 6->8, 7->9]. void SampleProfileMatcher::runStaleProfileMatching( const Function &F, const std::map &IRAnchors, const std::map> &ProfileAnchors, LocToLocMap &IRToProfileLocationMap) { LLVM_DEBUG(dbgs() << "Run stale profile matching for " << F.getName() << "\n"); assert(IRToProfileLocationMap.empty() && "Run stale profile matching only once per function"); std::unordered_map> CalleeToCallsitesMap; for (const auto &I : ProfileAnchors) { const auto &Loc = I.first; const auto &Callees = I.second; // Filter out possible indirect calls, use direct callee name as anchor. if (Callees.size() == 1) { FunctionId CalleeName = *Callees.begin(); const auto &Candidates = CalleeToCallsitesMap.try_emplace( CalleeName, std::set()); Candidates.first->second.insert(Loc); } } auto InsertMatching = [&](const LineLocation &From, const LineLocation &To) { // Skip the unchanged location mapping to save memory. if (From != To) IRToProfileLocationMap.insert({From, To}); }; // Use function's beginning location as the initial anchor. int32_t LocationDelta = 0; SmallVector LastMatchedNonAnchors; for (const auto &IR : IRAnchors) { const auto &Loc = IR.first; auto CalleeName = IR.second; bool IsMatchedAnchor = false; // Match the anchor location in lexical order. if (!CalleeName.empty()) { auto CandidateAnchors = CalleeToCallsitesMap.find( getRepInFormat(CalleeName)); if (CandidateAnchors != CalleeToCallsitesMap.end() && !CandidateAnchors->second.empty()) { auto CI = CandidateAnchors->second.begin(); const auto Candidate = *CI; CandidateAnchors->second.erase(CI); InsertMatching(Loc, Candidate); LLVM_DEBUG(dbgs() << "Callsite with callee:" << CalleeName << " is matched from " << Loc << " to " << Candidate << "\n"); LocationDelta = Candidate.LineOffset - Loc.LineOffset; // Match backwards for non-anchor locations. // The locations in LastMatchedNonAnchors have been matched forwards // based on the previous anchor, spilt it evenly and overwrite the // second half based on the current anchor. for (size_t I = (LastMatchedNonAnchors.size() + 1) / 2; I < LastMatchedNonAnchors.size(); I++) { const auto &L = LastMatchedNonAnchors[I]; uint32_t CandidateLineOffset = L.LineOffset + LocationDelta; LineLocation Candidate(CandidateLineOffset, L.Discriminator); InsertMatching(L, Candidate); LLVM_DEBUG(dbgs() << "Location is rematched backwards from " << L << " to " << Candidate << "\n"); } IsMatchedAnchor = true; LastMatchedNonAnchors.clear(); } } // Match forwards for non-anchor locations. if (!IsMatchedAnchor) { uint32_t CandidateLineOffset = Loc.LineOffset + LocationDelta; LineLocation Candidate(CandidateLineOffset, Loc.Discriminator); InsertMatching(Loc, Candidate); LLVM_DEBUG(dbgs() << "Location is matched from " << Loc << " to " << Candidate << "\n"); LastMatchedNonAnchors.emplace_back(Loc); } } } void SampleProfileMatcher::runOnFunction(const Function &F) { // We need to use flattened function samples for matching. // Unlike IR, which includes all callsites from the source code, the callsites // in profile only show up when they are hit by samples, i,e. the profile // callsites in one context may differ from those in another context. To get // the maximum number of callsites, we merge the function profiles from all // contexts, aka, the flattened profile to find profile anchors. const auto *FSFlattened = getFlattenedSamplesFor(F); if (!FSFlattened) return; // Anchors for IR. It's a map from IR location to callee name, callee name is // empty for non-call instruction and use a dummy name(UnknownIndirectCallee) // for unknown indrect callee name. std::map IRAnchors; findIRAnchors(F, IRAnchors); // Anchors for profile. It's a map from callsite location to a set of callee // name. std::map> ProfileAnchors; findProfileAnchors(*FSFlattened, ProfileAnchors); // Detect profile mismatch for profile staleness metrics report. // Skip reporting the metrics for imported functions. if (!GlobalValue::isAvailableExternallyLinkage(F.getLinkage()) && (ReportProfileStaleness || PersistProfileStaleness)) { // Use top-level nested FS for counting profile mismatch metrics since // currently once a callsite is mismatched, all its children profiles are // dropped. if (const auto *FS = Reader.getSamplesFor(F)) countProfileMismatches(F, *FS, IRAnchors, ProfileAnchors); } // Run profile matching for checksum mismatched profile, currently only // support for pseudo-probe. if (SalvageStaleProfile && FunctionSamples::ProfileIsProbeBased && !ProbeManager->profileIsValid(F, *FSFlattened)) { // The matching result will be saved to IRToProfileLocationMap, create a new // map for each function. runStaleProfileMatching(F, IRAnchors, ProfileAnchors, getIRToProfileLocationMap(F)); } } void SampleProfileMatcher::runOnModule() { ProfileConverter::flattenProfile(Reader.getProfiles(), FlattenedProfiles, FunctionSamples::ProfileIsCS); for (auto &F : M) { if (F.isDeclaration() || !F.hasFnAttribute("use-sample-profile")) continue; runOnFunction(F); } if (SalvageStaleProfile) distributeIRToProfileLocationMap(); if (ReportProfileStaleness) { if (FunctionSamples::ProfileIsProbeBased) { errs() << "(" << NumMismatchedFuncHash << "/" << TotalProfiledFunc << ")" << " of functions' profile are invalid and " << " (" << MismatchedFuncHashSamples << "/" << TotalFuncHashSamples << ")" << " of samples are discarded due to function hash mismatch.\n"; } errs() << "(" << NumMismatchedCallsites << "/" << TotalProfiledCallsites << ")" << " of callsites' profile are invalid and " << "(" << MismatchedCallsiteSamples << "/" << TotalCallsiteSamples << ")" << " of samples are discarded due to callsite location mismatch.\n"; } if (PersistProfileStaleness) { LLVMContext &Ctx = M.getContext(); MDBuilder MDB(Ctx); SmallVector> ProfStatsVec; if (FunctionSamples::ProfileIsProbeBased) { ProfStatsVec.emplace_back("NumMismatchedFuncHash", NumMismatchedFuncHash); ProfStatsVec.emplace_back("TotalProfiledFunc", TotalProfiledFunc); ProfStatsVec.emplace_back("MismatchedFuncHashSamples", MismatchedFuncHashSamples); ProfStatsVec.emplace_back("TotalFuncHashSamples", TotalFuncHashSamples); } ProfStatsVec.emplace_back("NumMismatchedCallsites", NumMismatchedCallsites); ProfStatsVec.emplace_back("TotalProfiledCallsites", TotalProfiledCallsites); ProfStatsVec.emplace_back("MismatchedCallsiteSamples", MismatchedCallsiteSamples); ProfStatsVec.emplace_back("TotalCallsiteSamples", TotalCallsiteSamples); auto *MD = MDB.createLLVMStats(ProfStatsVec); auto *NMD = M.getOrInsertNamedMetadata("llvm.stats"); NMD->addOperand(MD); } } void SampleProfileMatcher::distributeIRToProfileLocationMap( FunctionSamples &FS) { const auto ProfileMappings = FuncMappings.find(FS.getFuncName()); if (ProfileMappings != FuncMappings.end()) { FS.setIRToProfileLocationMap(&(ProfileMappings->second)); } for (auto &Inlinees : FS.getCallsiteSamples()) { for (auto FS : Inlinees.second) { distributeIRToProfileLocationMap(FS.second); } } } // Use a central place to distribute the matching results. Outlined and inlined // profile with the function name will be set to the same pointer. void SampleProfileMatcher::distributeIRToProfileLocationMap() { for (auto &I : Reader.getProfiles()) { distributeIRToProfileLocationMap(I.second); } } bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, ProfileSummaryInfo *_PSI, LazyCallGraph &CG) { GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); PSI = _PSI; if (M.getProfileSummary(/* IsCS */ false) == nullptr) { M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), ProfileSummary::PSK_Sample); PSI->refresh(); } // Compute the total number of samples collected in this profile. for (const auto &I : Reader->getProfiles()) TotalCollectedSamples += I.second.getTotalSamples(); auto Remapper = Reader->getRemapper(); // Populate the symbol map. for (const auto &N_F : M.getValueSymbolTable()) { StringRef OrigName = N_F.getKey(); Function *F = dyn_cast(N_F.getValue()); if (F == nullptr || OrigName.empty()) continue; SymbolMap[FunctionId(OrigName)] = F; StringRef NewName = FunctionSamples::getCanonicalFnName(*F); if (OrigName != NewName && !NewName.empty()) { auto r = SymbolMap.emplace(FunctionId(NewName), F); // Failiing to insert means there is already an entry in SymbolMap, // thus there are multiple functions that are mapped to the same // stripped name. In this case of name conflicting, set the value // to nullptr to avoid confusion. if (!r.second) r.first->second = nullptr; OrigName = NewName; } // Insert the remapped names into SymbolMap. if (Remapper) { if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { if (*MapName != OrigName && !MapName->empty()) SymbolMap.emplace(FunctionId(*MapName), F); } } } assert(SymbolMap.count(FunctionId()) == 0 && "No empty StringRef should be added in SymbolMap"); if (ReportProfileStaleness || PersistProfileStaleness || SalvageStaleProfile) { MatchingManager->runOnModule(); } bool retval = false; for (auto *F : buildFunctionOrder(M, CG)) { assert(!F->isDeclaration()); clearFunctionData(); retval |= runOnFunction(*F, AM); } // Account for cold calls not inlined.... if (!FunctionSamples::ProfileIsCS) for (const std::pair &pair : notInlinedCallInfo) updateProfileCallee(pair.first, pair.second.entryCount); return retval; } bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n"); DILocation2SampleMap.clear(); // By default the entry count is initialized to -1, which will be treated // conservatively by getEntryCount as the same as unknown (None). This is // to avoid newly added code to be treated as cold. If we have samples // this will be overwritten in emitAnnotations. uint64_t initialEntryCount = -1; ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { // initialize all the function entry counts to 0. It means all the // functions without profile will be regarded as cold. initialEntryCount = 0; // profile-sample-accurate is a user assertion which has a higher precedence // than symbol list. When profile-sample-accurate is on, ignore symbol list. ProfAccForSymsInList = false; } CoverageTracker.setProfAccForSymsInList(ProfAccForSymsInList); // PSL -- profile symbol list include all the symbols in sampled binary. // If ProfileAccurateForSymsInList is enabled, PSL is used to treat // old functions without samples being cold, without having to worry // about new and hot functions being mistakenly treated as cold. if (ProfAccForSymsInList) { // Initialize the entry count to 0 for functions in the list. if (PSL->contains(F.getName())) initialEntryCount = 0; // Function in the symbol list but without sample will be regarded as // cold. To minimize the potential negative performance impact it could // have, we want to be a little conservative here saying if a function // shows up in the profile, no matter as outline function, inline instance // or call targets, treat the function as not being cold. This will handle // the cases such as most callsites of a function are inlined in sampled // binary but not inlined in current build (because of source code drift, // imprecise debug information, or the callsites are all cold individually // but not cold accumulatively...), so the outline function showing up as // cold in sampled binary will actually not be cold after current build. StringRef CanonName = FunctionSamples::getCanonicalFnName(F); if ((FunctionSamples::UseMD5 && GUIDsInProfile.count(Function::getGUID(CanonName))) || (!FunctionSamples::UseMD5 && NamesInProfile.count(CanonName))) initialEntryCount = -1; } // Initialize entry count when the function has no existing entry // count value. if (!F.getEntryCount()) F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); std::unique_ptr OwnedORE; if (AM) { auto &FAM = AM->getResult(*F.getParent()) .getManager(); ORE = &FAM.getResult(F); } else { OwnedORE = std::make_unique(&F); ORE = OwnedORE.get(); } if (FunctionSamples::ProfileIsCS) Samples = ContextTracker->getBaseSamplesFor(F); else { Samples = Reader->getSamplesFor(F); // Try search in previously inlined functions that were split or duplicated // into base. if (!Samples) { StringRef CanonName = FunctionSamples::getCanonicalFnName(F); auto It = OutlineFunctionSamples.find(FunctionId(CanonName)); if (It != OutlineFunctionSamples.end()) { Samples = &It->second; } else if (auto Remapper = Reader->getRemapper()) { if (auto RemppedName = Remapper->lookUpNameInProfile(CanonName)) { It = OutlineFunctionSamples.find(FunctionId(*RemppedName)); if (It != OutlineFunctionSamples.end()) Samples = &It->second; } } } } if (Samples && !Samples->empty()) return emitAnnotations(F); return false; } SampleProfileLoaderPass::SampleProfileLoaderPass( std::string File, std::string RemappingFile, ThinOrFullLTOPhase LTOPhase, IntrusiveRefCntPtr FS) : ProfileFileName(File), ProfileRemappingFileName(RemappingFile), LTOPhase(LTOPhase), FS(std::move(FS)) {} PreservedAnalyses SampleProfileLoaderPass::run(Module &M, ModuleAnalysisManager &AM) { FunctionAnalysisManager &FAM = AM.getResult(M).getManager(); auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { return FAM.getResult(F); }; auto GetTTI = [&](Function &F) -> TargetTransformInfo & { return FAM.getResult(F); }; auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { return FAM.getResult(F); }; if (!FS) FS = vfs::getRealFileSystem(); SampleProfileLoader SampleLoader( ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, ProfileRemappingFileName.empty() ? SampleProfileRemappingFile : ProfileRemappingFileName, LTOPhase, FS, GetAssumptionCache, GetTTI, GetTLI); if (!SampleLoader.doInitialization(M, &FAM)) return PreservedAnalyses::all(); ProfileSummaryInfo *PSI = &AM.getResult(M); LazyCallGraph &CG = AM.getResult(M); if (!SampleLoader.runOnModule(M, &AM, PSI, CG)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); }