//===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // OpenMP specific optimizations: // // - Deduplication of runtime calls, e.g., omp_get_thread_num. // - Replacing globalized device memory with stack memory. // - Replacing globalized device memory with shared memory. // - Parallel region merging. // - Transforming generic-mode device kernels to SPMD mode. // - Specializing the state machine for generic-mode device kernels. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/OpenMPOpt.h" #include "llvm/ADT/EnumeratedArray.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/CallGraphSCCPass.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Frontend/OpenMP/OMPConstants.h" #include "llvm/Frontend/OpenMP/OMPDeviceConstants.h" #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" #include "llvm/IR/Assumptions.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/IPO/Attributor.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/CallGraphUpdater.h" #include #include #include using namespace llvm; using namespace omp; #define DEBUG_TYPE "openmp-opt" static cl::opt DisableOpenMPOptimizations( "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, cl::init(false)); static cl::opt EnableParallelRegionMerging( "openmp-opt-enable-merging", cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, cl::init(false)); static cl::opt DisableInternalization("openmp-opt-disable-internalization", cl::desc("Disable function internalization."), cl::Hidden, cl::init(false)); static cl::opt DeduceICVValues("openmp-deduce-icv-values", cl::init(false), cl::Hidden); static cl::opt PrintICVValues("openmp-print-icv-values", cl::init(false), cl::Hidden); static cl::opt PrintOpenMPKernels("openmp-print-gpu-kernels", cl::init(false), cl::Hidden); static cl::opt HideMemoryTransferLatency( "openmp-hide-memory-transfer-latency", cl::desc("[WIP] Tries to hide the latency of host to device memory" " transfers"), cl::Hidden, cl::init(false)); static cl::opt DisableOpenMPOptDeglobalization( "openmp-opt-disable-deglobalization", cl::desc("Disable OpenMP optimizations involving deglobalization."), cl::Hidden, cl::init(false)); static cl::opt DisableOpenMPOptSPMDization( "openmp-opt-disable-spmdization", cl::desc("Disable OpenMP optimizations involving SPMD-ization."), cl::Hidden, cl::init(false)); static cl::opt DisableOpenMPOptFolding( "openmp-opt-disable-folding", cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, cl::init(false)); static cl::opt DisableOpenMPOptStateMachineRewrite( "openmp-opt-disable-state-machine-rewrite", cl::desc("Disable OpenMP optimizations that replace the state machine."), cl::Hidden, cl::init(false)); static cl::opt DisableOpenMPOptBarrierElimination( "openmp-opt-disable-barrier-elimination", cl::desc("Disable OpenMP optimizations that eliminate barriers."), cl::Hidden, cl::init(false)); static cl::opt PrintModuleAfterOptimizations( "openmp-opt-print-module-after", cl::desc("Print the current module after OpenMP optimizations."), cl::Hidden, cl::init(false)); static cl::opt PrintModuleBeforeOptimizations( "openmp-opt-print-module-before", cl::desc("Print the current module before OpenMP optimizations."), cl::Hidden, cl::init(false)); static cl::opt AlwaysInlineDeviceFunctions( "openmp-opt-inline-device", cl::desc("Inline all applicible functions on the device."), cl::Hidden, cl::init(false)); static cl::opt EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::desc("Enables more verbose remarks."), cl::Hidden, cl::init(false)); static cl::opt SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, cl::desc("Maximal number of attributor iterations."), cl::init(256)); static cl::opt SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden, cl::desc("Maximum amount of shared memory to use."), cl::init(std::numeric_limits::max())); STATISTIC(NumOpenMPRuntimeCallsDeduplicated, "Number of OpenMP runtime calls deduplicated"); STATISTIC(NumOpenMPParallelRegionsDeleted, "Number of OpenMP parallel regions deleted"); STATISTIC(NumOpenMPRuntimeFunctionsIdentified, "Number of OpenMP runtime functions identified"); STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, "Number of OpenMP runtime function uses identified"); STATISTIC(NumOpenMPTargetRegionKernels, "Number of OpenMP target region entry points (=kernels) identified"); STATISTIC(NumNonOpenMPTargetRegionKernels, "Number of non-OpenMP target region kernels identified"); STATISTIC(NumOpenMPTargetRegionKernelsSPMD, "Number of OpenMP target region entry points (=kernels) executed in " "SPMD-mode instead of generic-mode"); STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, "Number of OpenMP target region entry points (=kernels) executed in " "generic-mode without a state machines"); STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, "Number of OpenMP target region entry points (=kernels) executed in " "generic-mode with customized state machines with fallback"); STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, "Number of OpenMP target region entry points (=kernels) executed in " "generic-mode with customized state machines without fallback"); STATISTIC( NumOpenMPParallelRegionsReplacedInGPUStateMachine, "Number of OpenMP parallel regions replaced with ID in GPU state machines"); STATISTIC(NumOpenMPParallelRegionsMerged, "Number of OpenMP parallel regions merged"); STATISTIC(NumBytesMovedToSharedMemory, "Amount of memory pushed to shared memory"); STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated"); #if !defined(NDEBUG) static constexpr auto TAG = "[" DEBUG_TYPE "]"; #endif namespace KernelInfo { // struct ConfigurationEnvironmentTy { // uint8_t UseGenericStateMachine; // uint8_t MayUseNestedParallelism; // llvm::omp::OMPTgtExecModeFlags ExecMode; // int32_t MinThreads; // int32_t MaxThreads; // int32_t MinTeams; // int32_t MaxTeams; // }; // struct DynamicEnvironmentTy { // uint16_t DebugIndentionLevel; // }; // struct KernelEnvironmentTy { // ConfigurationEnvironmentTy Configuration; // IdentTy *Ident; // DynamicEnvironmentTy *DynamicEnv; // }; #define KERNEL_ENVIRONMENT_IDX(MEMBER, IDX) \ constexpr const unsigned MEMBER##Idx = IDX; KERNEL_ENVIRONMENT_IDX(Configuration, 0) KERNEL_ENVIRONMENT_IDX(Ident, 1) #undef KERNEL_ENVIRONMENT_IDX #define KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MEMBER, IDX) \ constexpr const unsigned MEMBER##Idx = IDX; KERNEL_ENVIRONMENT_CONFIGURATION_IDX(UseGenericStateMachine, 0) KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MayUseNestedParallelism, 1) KERNEL_ENVIRONMENT_CONFIGURATION_IDX(ExecMode, 2) KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinThreads, 3) KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxThreads, 4) KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinTeams, 5) KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxTeams, 6) #undef KERNEL_ENVIRONMENT_CONFIGURATION_IDX #define KERNEL_ENVIRONMENT_GETTER(MEMBER, RETURNTYPE) \ RETURNTYPE *get##MEMBER##FromKernelEnvironment(ConstantStruct *KernelEnvC) { \ return cast(KernelEnvC->getAggregateElement(MEMBER##Idx)); \ } KERNEL_ENVIRONMENT_GETTER(Ident, Constant) KERNEL_ENVIRONMENT_GETTER(Configuration, ConstantStruct) #undef KERNEL_ENVIRONMENT_GETTER #define KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MEMBER) \ ConstantInt *get##MEMBER##FromKernelEnvironment( \ ConstantStruct *KernelEnvC) { \ ConstantStruct *ConfigC = \ getConfigurationFromKernelEnvironment(KernelEnvC); \ return dyn_cast(ConfigC->getAggregateElement(MEMBER##Idx)); \ } KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(UseGenericStateMachine) KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MayUseNestedParallelism) KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(ExecMode) KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinThreads) KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxThreads) KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinTeams) KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxTeams) #undef KERNEL_ENVIRONMENT_CONFIGURATION_GETTER GlobalVariable * getKernelEnvironementGVFromKernelInitCB(CallBase *KernelInitCB) { constexpr const int InitKernelEnvironmentArgNo = 0; return cast( KernelInitCB->getArgOperand(InitKernelEnvironmentArgNo) ->stripPointerCasts()); } ConstantStruct *getKernelEnvironementFromKernelInitCB(CallBase *KernelInitCB) { GlobalVariable *KernelEnvGV = getKernelEnvironementGVFromKernelInitCB(KernelInitCB); return cast(KernelEnvGV->getInitializer()); } } // namespace KernelInfo namespace { struct AAHeapToShared; struct AAICVTracker; /// OpenMP specific information. For now, stores RFIs and ICVs also needed for /// Attributor runs. struct OMPInformationCache : public InformationCache { OMPInformationCache(Module &M, AnalysisGetter &AG, BumpPtrAllocator &Allocator, SetVector *CGSCC, bool OpenMPPostLink) : InformationCache(M, AG, Allocator, CGSCC), OMPBuilder(M), OpenMPPostLink(OpenMPPostLink) { OMPBuilder.Config.IsTargetDevice = isOpenMPDevice(OMPBuilder.M); OMPBuilder.initialize(); initializeRuntimeFunctions(M); initializeInternalControlVars(); } /// Generic information that describes an internal control variable. struct InternalControlVarInfo { /// The kind, as described by InternalControlVar enum. InternalControlVar Kind; /// The name of the ICV. StringRef Name; /// Environment variable associated with this ICV. StringRef EnvVarName; /// Initial value kind. ICVInitValue InitKind; /// Initial value. ConstantInt *InitValue; /// Setter RTL function associated with this ICV. RuntimeFunction Setter; /// Getter RTL function associated with this ICV. RuntimeFunction Getter; /// RTL Function corresponding to the override clause of this ICV RuntimeFunction Clause; }; /// Generic information that describes a runtime function struct RuntimeFunctionInfo { /// The kind, as described by the RuntimeFunction enum. RuntimeFunction Kind; /// The name of the function. StringRef Name; /// Flag to indicate a variadic function. bool IsVarArg; /// The return type of the function. Type *ReturnType; /// The argument types of the function. SmallVector ArgumentTypes; /// The declaration if available. Function *Declaration = nullptr; /// Uses of this runtime function per function containing the use. using UseVector = SmallVector; /// Clear UsesMap for runtime function. void clearUsesMap() { UsesMap.clear(); } /// Boolean conversion that is true if the runtime function was found. operator bool() const { return Declaration; } /// Return the vector of uses in function \p F. UseVector &getOrCreateUseVector(Function *F) { std::shared_ptr &UV = UsesMap[F]; if (!UV) UV = std::make_shared(); return *UV; } /// Return the vector of uses in function \p F or `nullptr` if there are /// none. const UseVector *getUseVector(Function &F) const { auto I = UsesMap.find(&F); if (I != UsesMap.end()) return I->second.get(); return nullptr; } /// Return how many functions contain uses of this runtime function. size_t getNumFunctionsWithUses() const { return UsesMap.size(); } /// Return the number of arguments (or the minimal number for variadic /// functions). size_t getNumArgs() const { return ArgumentTypes.size(); } /// Run the callback \p CB on each use and forget the use if the result is /// true. The callback will be fed the function in which the use was /// encountered as second argument. void foreachUse(SmallVectorImpl &SCC, function_ref CB) { for (Function *F : SCC) foreachUse(CB, F); } /// Run the callback \p CB on each use within the function \p F and forget /// the use if the result is true. void foreachUse(function_ref CB, Function *F) { SmallVector ToBeDeleted; ToBeDeleted.clear(); unsigned Idx = 0; UseVector &UV = getOrCreateUseVector(F); for (Use *U : UV) { if (CB(*U, *F)) ToBeDeleted.push_back(Idx); ++Idx; } // Remove the to-be-deleted indices in reverse order as prior // modifications will not modify the smaller indices. while (!ToBeDeleted.empty()) { unsigned Idx = ToBeDeleted.pop_back_val(); UV[Idx] = UV.back(); UV.pop_back(); } } private: /// Map from functions to all uses of this runtime function contained in /// them. DenseMap> UsesMap; public: /// Iterators for the uses of this runtime function. decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } decltype(UsesMap)::iterator end() { return UsesMap.end(); } }; /// An OpenMP-IR-Builder instance OpenMPIRBuilder OMPBuilder; /// Map from runtime function kind to the runtime function description. EnumeratedArray RFIs; /// Map from function declarations/definitions to their runtime enum type. DenseMap RuntimeFunctionIDMap; /// Map from ICV kind to the ICV description. EnumeratedArray ICVs; /// Helper to initialize all internal control variable information for those /// defined in OMPKinds.def. void initializeInternalControlVars() { #define ICV_RT_SET(_Name, RTL) \ { \ auto &ICV = ICVs[_Name]; \ ICV.Setter = RTL; \ } #define ICV_RT_GET(Name, RTL) \ { \ auto &ICV = ICVs[Name]; \ ICV.Getter = RTL; \ } #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ { \ auto &ICV = ICVs[Enum]; \ ICV.Name = _Name; \ ICV.Kind = Enum; \ ICV.InitKind = Init; \ ICV.EnvVarName = _EnvVarName; \ switch (ICV.InitKind) { \ case ICV_IMPLEMENTATION_DEFINED: \ ICV.InitValue = nullptr; \ break; \ case ICV_ZERO: \ ICV.InitValue = ConstantInt::get( \ Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ break; \ case ICV_FALSE: \ ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ break; \ case ICV_LAST: \ break; \ } \ } #include "llvm/Frontend/OpenMP/OMPKinds.def" } /// Returns true if the function declaration \p F matches the runtime /// function types, that is, return type \p RTFRetType, and argument types /// \p RTFArgTypes. static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, SmallVector &RTFArgTypes) { // TODO: We should output information to the user (under debug output // and via remarks). if (!F) return false; if (F->getReturnType() != RTFRetType) return false; if (F->arg_size() != RTFArgTypes.size()) return false; auto *RTFTyIt = RTFArgTypes.begin(); for (Argument &Arg : F->args()) { if (Arg.getType() != *RTFTyIt) return false; ++RTFTyIt; } return true; } // Helper to collect all uses of the declaration in the UsesMap. unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { unsigned NumUses = 0; if (!RFI.Declaration) return NumUses; OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); if (CollectStats) { NumOpenMPRuntimeFunctionsIdentified += 1; NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); } // TODO: We directly convert uses into proper calls and unknown uses. for (Use &U : RFI.Declaration->uses()) { if (Instruction *UserI = dyn_cast(U.getUser())) { if (!CGSCC || CGSCC->empty() || CGSCC->contains(UserI->getFunction())) { RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); ++NumUses; } } else { RFI.getOrCreateUseVector(nullptr).push_back(&U); ++NumUses; } } return NumUses; } // Helper function to recollect uses of a runtime function. void recollectUsesForFunction(RuntimeFunction RTF) { auto &RFI = RFIs[RTF]; RFI.clearUsesMap(); collectUses(RFI, /*CollectStats*/ false); } // Helper function to recollect uses of all runtime functions. void recollectUses() { for (int Idx = 0; Idx < RFIs.size(); ++Idx) recollectUsesForFunction(static_cast(Idx)); } // Helper function to inherit the calling convention of the function callee. void setCallingConvention(FunctionCallee Callee, CallInst *CI) { if (Function *Fn = dyn_cast(Callee.getCallee())) CI->setCallingConv(Fn->getCallingConv()); } // Helper function to determine if it's legal to create a call to the runtime // functions. bool runtimeFnsAvailable(ArrayRef Fns) { // We can always emit calls if we haven't yet linked in the runtime. if (!OpenMPPostLink) return true; // Once the runtime has been already been linked in we cannot emit calls to // any undefined functions. for (RuntimeFunction Fn : Fns) { RuntimeFunctionInfo &RFI = RFIs[Fn]; if (RFI.Declaration && RFI.Declaration->isDeclaration()) return false; } return true; } /// Helper to initialize all runtime function information for those defined /// in OpenMPKinds.def. void initializeRuntimeFunctions(Module &M) { // Helper macros for handling __VA_ARGS__ in OMP_RTL #define OMP_TYPE(VarName, ...) \ Type *VarName = OMPBuilder.VarName; \ (void)VarName; #define OMP_ARRAY_TYPE(VarName, ...) \ ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ (void)VarName##Ty; \ PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ (void)VarName##PtrTy; #define OMP_FUNCTION_TYPE(VarName, ...) \ FunctionType *VarName = OMPBuilder.VarName; \ (void)VarName; \ PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ (void)VarName##Ptr; #define OMP_STRUCT_TYPE(VarName, ...) \ StructType *VarName = OMPBuilder.VarName; \ (void)VarName; \ PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ (void)VarName##Ptr; #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ { \ SmallVector ArgsTypes({__VA_ARGS__}); \ Function *F = M.getFunction(_Name); \ RTLFunctions.insert(F); \ if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ RuntimeFunctionIDMap[F] = _Enum; \ auto &RFI = RFIs[_Enum]; \ RFI.Kind = _Enum; \ RFI.Name = _Name; \ RFI.IsVarArg = _IsVarArg; \ RFI.ReturnType = OMPBuilder._ReturnType; \ RFI.ArgumentTypes = std::move(ArgsTypes); \ RFI.Declaration = F; \ unsigned NumUses = collectUses(RFI); \ (void)NumUses; \ LLVM_DEBUG({ \ dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ << " found\n"; \ if (RFI.Declaration) \ dbgs() << TAG << "-> got " << NumUses << " uses in " \ << RFI.getNumFunctionsWithUses() \ << " different functions.\n"; \ }); \ } \ } #include "llvm/Frontend/OpenMP/OMPKinds.def" // Remove the `noinline` attribute from `__kmpc`, `ompx::` and `omp_` // functions, except if `optnone` is present. if (isOpenMPDevice(M)) { for (Function &F : M) { for (StringRef Prefix : {"__kmpc", "_ZN4ompx", "omp_"}) if (F.hasFnAttribute(Attribute::NoInline) && F.getName().starts_with(Prefix) && !F.hasFnAttribute(Attribute::OptimizeNone)) F.removeFnAttr(Attribute::NoInline); } } // TODO: We should attach the attributes defined in OMPKinds.def. } /// Collection of known OpenMP runtime functions.. DenseSet RTLFunctions; /// Indicates if we have already linked in the OpenMP device library. bool OpenMPPostLink = false; }; template struct BooleanStateWithSetVector : public BooleanState { bool contains(const Ty &Elem) const { return Set.contains(Elem); } bool insert(const Ty &Elem) { if (InsertInvalidates) BooleanState::indicatePessimisticFixpoint(); return Set.insert(Elem); } const Ty &operator[](int Idx) const { return Set[Idx]; } bool operator==(const BooleanStateWithSetVector &RHS) const { return BooleanState::operator==(RHS) && Set == RHS.Set; } bool operator!=(const BooleanStateWithSetVector &RHS) const { return !(*this == RHS); } bool empty() const { return Set.empty(); } size_t size() const { return Set.size(); } /// "Clamp" this state with \p RHS. BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { BooleanState::operator^=(RHS); Set.insert(RHS.Set.begin(), RHS.Set.end()); return *this; } private: /// A set to keep track of elements. SetVector Set; public: typename decltype(Set)::iterator begin() { return Set.begin(); } typename decltype(Set)::iterator end() { return Set.end(); } typename decltype(Set)::const_iterator begin() const { return Set.begin(); } typename decltype(Set)::const_iterator end() const { return Set.end(); } }; template using BooleanStateWithPtrSetVector = BooleanStateWithSetVector; struct KernelInfoState : AbstractState { /// Flag to track if we reached a fixpoint. bool IsAtFixpoint = false; /// The parallel regions (identified by the outlined parallel functions) that /// can be reached from the associated function. BooleanStateWithPtrSetVector ReachedKnownParallelRegions; /// State to track what parallel region we might reach. BooleanStateWithPtrSetVector ReachedUnknownParallelRegions; /// State to track if we are in SPMD-mode, assumed or know, and why we decided /// we cannot be. If it is assumed, then RequiresFullRuntime should also be /// false. BooleanStateWithPtrSetVector SPMDCompatibilityTracker; /// The __kmpc_target_init call in this kernel, if any. If we find more than /// one we abort as the kernel is malformed. CallBase *KernelInitCB = nullptr; /// The constant kernel environement as taken from and passed to /// __kmpc_target_init. ConstantStruct *KernelEnvC = nullptr; /// The __kmpc_target_deinit call in this kernel, if any. If we find more than /// one we abort as the kernel is malformed. CallBase *KernelDeinitCB = nullptr; /// Flag to indicate if the associated function is a kernel entry. bool IsKernelEntry = false; /// State to track what kernel entries can reach the associated function. BooleanStateWithPtrSetVector ReachingKernelEntries; /// State to indicate if we can track parallel level of the associated /// function. We will give up tracking if we encounter unknown caller or the /// caller is __kmpc_parallel_51. BooleanStateWithSetVector ParallelLevels; /// Flag that indicates if the kernel has nested Parallelism bool NestedParallelism = false; /// Abstract State interface ///{ KernelInfoState() = default; KernelInfoState(bool BestState) { if (!BestState) indicatePessimisticFixpoint(); } /// See AbstractState::isValidState(...) bool isValidState() const override { return true; } /// See AbstractState::isAtFixpoint(...) bool isAtFixpoint() const override { return IsAtFixpoint; } /// See AbstractState::indicatePessimisticFixpoint(...) ChangeStatus indicatePessimisticFixpoint() override { IsAtFixpoint = true; ParallelLevels.indicatePessimisticFixpoint(); ReachingKernelEntries.indicatePessimisticFixpoint(); SPMDCompatibilityTracker.indicatePessimisticFixpoint(); ReachedKnownParallelRegions.indicatePessimisticFixpoint(); ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); NestedParallelism = true; return ChangeStatus::CHANGED; } /// See AbstractState::indicateOptimisticFixpoint(...) ChangeStatus indicateOptimisticFixpoint() override { IsAtFixpoint = true; ParallelLevels.indicateOptimisticFixpoint(); ReachingKernelEntries.indicateOptimisticFixpoint(); SPMDCompatibilityTracker.indicateOptimisticFixpoint(); ReachedKnownParallelRegions.indicateOptimisticFixpoint(); ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); return ChangeStatus::UNCHANGED; } /// Return the assumed state KernelInfoState &getAssumed() { return *this; } const KernelInfoState &getAssumed() const { return *this; } bool operator==(const KernelInfoState &RHS) const { if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) return false; if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) return false; if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) return false; if (ReachingKernelEntries != RHS.ReachingKernelEntries) return false; if (ParallelLevels != RHS.ParallelLevels) return false; if (NestedParallelism != RHS.NestedParallelism) return false; return true; } /// Returns true if this kernel contains any OpenMP parallel regions. bool mayContainParallelRegion() { return !ReachedKnownParallelRegions.empty() || !ReachedUnknownParallelRegions.empty(); } /// Return empty set as the best state of potential values. static KernelInfoState getBestState() { return KernelInfoState(true); } static KernelInfoState getBestState(KernelInfoState &KIS) { return getBestState(); } /// Return full set as the worst state of potential values. static KernelInfoState getWorstState() { return KernelInfoState(false); } /// "Clamp" this state with \p KIS. KernelInfoState operator^=(const KernelInfoState &KIS) { // Do not merge two different _init and _deinit call sites. if (KIS.KernelInitCB) { if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " "assumptions."); KernelInitCB = KIS.KernelInitCB; } if (KIS.KernelDeinitCB) { if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " "assumptions."); KernelDeinitCB = KIS.KernelDeinitCB; } if (KIS.KernelEnvC) { if (KernelEnvC && KernelEnvC != KIS.KernelEnvC) llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " "assumptions."); KernelEnvC = KIS.KernelEnvC; } SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; NestedParallelism |= KIS.NestedParallelism; return *this; } KernelInfoState operator&=(const KernelInfoState &KIS) { return (*this ^= KIS); } ///} }; /// Used to map the values physically (in the IR) stored in an offload /// array, to a vector in memory. struct OffloadArray { /// Physical array (in the IR). AllocaInst *Array = nullptr; /// Mapped values. SmallVector StoredValues; /// Last stores made in the offload array. SmallVector LastAccesses; OffloadArray() = default; /// Initializes the OffloadArray with the values stored in \p Array before /// instruction \p Before is reached. Returns false if the initialization /// fails. /// This MUST be used immediately after the construction of the object. bool initialize(AllocaInst &Array, Instruction &Before) { if (!Array.getAllocatedType()->isArrayTy()) return false; if (!getValues(Array, Before)) return false; this->Array = &Array; return true; } static const unsigned DeviceIDArgNum = 1; static const unsigned BasePtrsArgNum = 3; static const unsigned PtrsArgNum = 4; static const unsigned SizesArgNum = 5; private: /// Traverses the BasicBlock where \p Array is, collecting the stores made to /// \p Array, leaving StoredValues with the values stored before the /// instruction \p Before is reached. bool getValues(AllocaInst &Array, Instruction &Before) { // Initialize container. const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); StoredValues.assign(NumValues, nullptr); LastAccesses.assign(NumValues, nullptr); // TODO: This assumes the instruction \p Before is in the same // BasicBlock as Array. Make it general, for any control flow graph. BasicBlock *BB = Array.getParent(); if (BB != Before.getParent()) return false; const DataLayout &DL = Array.getDataLayout(); const unsigned int PointerSize = DL.getPointerSize(); for (Instruction &I : *BB) { if (&I == &Before) break; if (!isa(&I)) continue; auto *S = cast(&I); int64_t Offset = -1; auto *Dst = GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); if (Dst == &Array) { int64_t Idx = Offset / PointerSize; StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); LastAccesses[Idx] = S; } } return isFilled(); } /// Returns true if all values in StoredValues and /// LastAccesses are not nullptrs. bool isFilled() { const unsigned NumValues = StoredValues.size(); for (unsigned I = 0; I < NumValues; ++I) { if (!StoredValues[I] || !LastAccesses[I]) return false; } return true; } }; struct OpenMPOpt { using OptimizationRemarkGetter = function_ref; OpenMPOpt(SmallVectorImpl &SCC, CallGraphUpdater &CGUpdater, OptimizationRemarkGetter OREGetter, OMPInformationCache &OMPInfoCache, Attributor &A) : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} /// Check if any remarks are enabled for openmp-opt bool remarksEnabled() { auto &Ctx = M.getContext(); return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); } /// Run all OpenMP optimizations on the underlying SCC. bool run(bool IsModulePass) { if (SCC.empty()) return false; bool Changed = false; LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() << " functions\n"); if (IsModulePass) { Changed |= runAttributor(IsModulePass); // Recollect uses, in case Attributor deleted any. OMPInfoCache.recollectUses(); // TODO: This should be folded into buildCustomStateMachine. Changed |= rewriteDeviceCodeStateMachine(); if (remarksEnabled()) analysisGlobalization(); } else { if (PrintICVValues) printICVs(); if (PrintOpenMPKernels) printKernels(); Changed |= runAttributor(IsModulePass); // Recollect uses, in case Attributor deleted any. OMPInfoCache.recollectUses(); Changed |= deleteParallelRegions(); if (HideMemoryTransferLatency) Changed |= hideMemTransfersLatency(); Changed |= deduplicateRuntimeCalls(); if (EnableParallelRegionMerging) { if (mergeParallelRegions()) { deduplicateRuntimeCalls(); Changed = true; } } } if (OMPInfoCache.OpenMPPostLink) Changed |= removeRuntimeSymbols(); return Changed; } /// Print initial ICV values for testing. /// FIXME: This should be done from the Attributor once it is added. void printICVs() const { InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, ICV_proc_bind}; for (Function *F : SCC) { for (auto ICV : ICVs) { auto ICVInfo = OMPInfoCache.ICVs[ICV]; auto Remark = [&](OptimizationRemarkAnalysis ORA) { return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) << " Value: " << (ICVInfo.InitValue ? toString(ICVInfo.InitValue->getValue(), 10, true) : "IMPLEMENTATION_DEFINED"); }; emitRemark(F, "OpenMPICVTracker", Remark); } } } /// Print OpenMP GPU kernels for testing. void printKernels() const { for (Function *F : SCC) { if (!omp::isOpenMPKernel(*F)) continue; auto Remark = [&](OptimizationRemarkAnalysis ORA) { return ORA << "OpenMP GPU kernel " << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; }; emitRemark(F, "OpenMPGPU", Remark); } } /// Return the call if \p U is a callee use in a regular call. If \p RFI is /// given it has to be the callee or a nullptr is returned. static CallInst *getCallIfRegularCall( Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { CallInst *CI = dyn_cast(U.getUser()); if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && (!RFI || (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) return CI; return nullptr; } /// Return the call if \p V is a regular call. If \p RFI is given it has to be /// the callee or a nullptr is returned. static CallInst *getCallIfRegularCall( Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { CallInst *CI = dyn_cast(&V); if (CI && !CI->hasOperandBundles() && (!RFI || (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) return CI; return nullptr; } private: /// Merge parallel regions when it is safe. bool mergeParallelRegions() { const unsigned CallbackCalleeOperand = 2; const unsigned CallbackFirstArgOperand = 3; using InsertPointTy = OpenMPIRBuilder::InsertPointTy; // Check if there are any __kmpc_fork_call calls to merge. OMPInformationCache::RuntimeFunctionInfo &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; if (!RFI.Declaration) return false; // Unmergable calls that prevent merging a parallel region. OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], }; bool Changed = false; LoopInfo *LI = nullptr; DominatorTree *DT = nullptr; SmallDenseMap> BB2PRMap; BasicBlock *StartBB = nullptr, *EndBB = nullptr; auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { BasicBlock *CGStartBB = CodeGenIP.getBlock(); BasicBlock *CGEndBB = SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); assert(StartBB != nullptr && "StartBB should not be null"); CGStartBB->getTerminator()->setSuccessor(0, StartBB); assert(EndBB != nullptr && "EndBB should not be null"); EndBB->getTerminator()->setSuccessor(0, CGEndBB); }; auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, Value &Inner, Value *&ReplacementValue) -> InsertPointTy { ReplacementValue = &Inner; return CodeGenIP; }; auto FiniCB = [&](InsertPointTy CodeGenIP) {}; /// Create a sequential execution region within a merged parallel region, /// encapsulated in a master construct with a barrier for synchronization. auto CreateSequentialRegion = [&](Function *OuterFn, BasicBlock *OuterPredBB, Instruction *SeqStartI, Instruction *SeqEndI) { // Isolate the instructions of the sequential region to a separate // block. BasicBlock *ParentBB = SeqStartI->getParent(); BasicBlock *SeqEndBB = SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); BasicBlock *SeqAfterBB = SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); BasicBlock *SeqStartBB = SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); assert(ParentBB->getUniqueSuccessor() == SeqStartBB && "Expected a different CFG"); const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); ParentBB->getTerminator()->eraseFromParent(); auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { BasicBlock *CGStartBB = CodeGenIP.getBlock(); BasicBlock *CGEndBB = SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); }; auto FiniCB = [&](InsertPointTy CodeGenIP) {}; // Find outputs from the sequential region to outside users and // broadcast their values to them. for (Instruction &I : *SeqStartBB) { SmallPtrSet OutsideUsers; for (User *Usr : I.users()) { Instruction &UsrI = *cast(Usr); // Ignore outputs to LT intrinsics, code extraction for the merged // parallel region will fix them. if (UsrI.isLifetimeStartOrEnd()) continue; if (UsrI.getParent() != SeqStartBB) OutsideUsers.insert(&UsrI); } if (OutsideUsers.empty()) continue; // Emit an alloca in the outer region to store the broadcasted // value. const DataLayout &DL = M.getDataLayout(); AllocaInst *AllocaI = new AllocaInst( I.getType(), DL.getAllocaAddrSpace(), nullptr, I.getName() + ".seq.output.alloc", OuterFn->front().begin()); // Emit a store instruction in the sequential BB to update the // value. new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()->getIterator()); // Emit a load instruction and replace the use of the output value // with it. for (Instruction *UsrI : OutsideUsers) { LoadInst *LoadI = new LoadInst(I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI->getIterator()); UsrI->replaceUsesOfWith(&I, LoadI); } } OpenMPIRBuilder::LocationDescription Loc( InsertPointTy(ParentBB, ParentBB->end()), DL); InsertPointTy SeqAfterIP = OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn << "\n"); }; // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all // contained in BB and only separated by instructions that can be // redundantly executed in parallel. The block BB is split before the first // call (in MergableCIs) and after the last so the entire region we merge // into a single parallel region is contained in a single basic block // without any other instructions. We use the OpenMPIRBuilder to outline // that block and call the resulting function via __kmpc_fork_call. auto Merge = [&](const SmallVectorImpl &MergableCIs, BasicBlock *BB) { // TODO: Change the interface to allow single CIs expanded, e.g, to // include an outer loop. assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); auto Remark = [&](OptimizationRemark OR) { OR << "Parallel region merged with parallel region" << (MergableCIs.size() > 2 ? "s" : "") << " at "; for (auto *CI : llvm::drop_begin(MergableCIs)) { OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); if (CI != MergableCIs.back()) OR << ", "; } return OR << "."; }; emitRemark(MergableCIs.front(), "OMP150", Remark); Function *OriginalFn = BB->getParent(); LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() << " parallel regions in " << OriginalFn->getName() << "\n"); // Isolate the calls to merge in a separate block. EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); BasicBlock *AfterBB = SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, "omp.par.merged"); assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); const DebugLoc DL = BB->getTerminator()->getDebugLoc(); BB->getTerminator()->eraseFromParent(); // Create sequential regions for sequential instructions that are // in-between mergable parallel regions. for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; It != End; ++It) { Instruction *ForkCI = *It; Instruction *NextForkCI = *(It + 1); // Continue if there are not in-between instructions. if (ForkCI->getNextNode() == NextForkCI) continue; CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), NextForkCI->getPrevNode()); } OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), DL); IRBuilder<>::InsertPoint AllocaIP( &OriginalFn->getEntryBlock(), OriginalFn->getEntryBlock().getFirstInsertionPt()); // Create the merged parallel region with default proc binding, to // avoid overriding binding settings, and without explicit cancellation. InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, OMP_PROC_BIND_default, /* IsCancellable */ false); BranchInst::Create(AfterBB, AfterIP.getBlock()); // Perform the actual outlining. OMPInfoCache.OMPBuilder.finalize(OriginalFn); Function *OutlinedFn = MergableCIs.front()->getCaller(); // Replace the __kmpc_fork_call calls with direct calls to the outlined // callbacks. SmallVector Args; for (auto *CI : MergableCIs) { Value *Callee = CI->getArgOperand(CallbackCalleeOperand); FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask; Args.clear(); Args.push_back(OutlinedFn->getArg(0)); Args.push_back(OutlinedFn->getArg(1)); for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; ++U) Args.push_back(CI->getArgOperand(U)); CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI->getIterator()); if (CI->getDebugLoc()) NewCI->setDebugLoc(CI->getDebugLoc()); // Forward parameter attributes from the callback to the callee. for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; ++U) for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) NewCI->addParamAttr( U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); // Emit an explicit barrier to replace the implicit fork-join barrier. if (CI != MergableCIs.back()) { // TODO: Remove barrier if the merged parallel region includes the // 'nowait' clause. OMPInfoCache.OMPBuilder.createBarrier( InsertPointTy(NewCI->getParent(), NewCI->getNextNode()->getIterator()), OMPD_parallel); } CI->eraseFromParent(); } assert(OutlinedFn != OriginalFn && "Outlining failed"); CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); CGUpdater.reanalyzeFunction(*OriginalFn); NumOpenMPParallelRegionsMerged += MergableCIs.size(); return true; }; // Helper function that identifes sequences of // __kmpc_fork_call uses in a basic block. auto DetectPRsCB = [&](Use &U, Function &F) { CallInst *CI = getCallIfRegularCall(U, &RFI); BB2PRMap[CI->getParent()].insert(CI); return false; }; BB2PRMap.clear(); RFI.foreachUse(SCC, DetectPRsCB); SmallVector, 4> MergableCIsVector; // Find mergable parallel regions within a basic block that are // safe to merge, that is any in-between instructions can safely // execute in parallel after merging. // TODO: support merging across basic-blocks. for (auto &It : BB2PRMap) { auto &CIs = It.getSecond(); if (CIs.size() < 2) continue; BasicBlock *BB = It.getFirst(); SmallVector MergableCIs; /// Returns true if the instruction is mergable, false otherwise. /// A terminator instruction is unmergable by definition since merging /// works within a BB. Instructions before the mergable region are /// mergable if they are not calls to OpenMP runtime functions that may /// set different execution parameters for subsequent parallel regions. /// Instructions in-between parallel regions are mergable if they are not /// calls to any non-intrinsic function since that may call a non-mergable /// OpenMP runtime function. auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { // We do not merge across BBs, hence return false (unmergable) if the // instruction is a terminator. if (I.isTerminator()) return false; if (!isa(&I)) return true; CallInst *CI = cast(&I); if (IsBeforeMergableRegion) { Function *CalledFunction = CI->getCalledFunction(); if (!CalledFunction) return false; // Return false (unmergable) if the call before the parallel // region calls an explicit affinity (proc_bind) or number of // threads (num_threads) compiler-generated function. Those settings // may be incompatible with following parallel regions. // TODO: ICV tracking to detect compatibility. for (const auto &RFI : UnmergableCallsInfo) { if (CalledFunction == RFI.Declaration) return false; } } else { // Return false (unmergable) if there is a call instruction // in-between parallel regions when it is not an intrinsic. It // may call an unmergable OpenMP runtime function in its callpath. // TODO: Keep track of possible OpenMP calls in the callpath. if (!isa(CI)) return false; } return true; }; // Find maximal number of parallel region CIs that are safe to merge. for (auto It = BB->begin(), End = BB->end(); It != End;) { Instruction &I = *It; ++It; if (CIs.count(&I)) { MergableCIs.push_back(cast(&I)); continue; } // Continue expanding if the instruction is mergable. if (IsMergable(I, MergableCIs.empty())) continue; // Forward the instruction iterator to skip the next parallel region // since there is an unmergable instruction which can affect it. for (; It != End; ++It) { Instruction &SkipI = *It; if (CIs.count(&SkipI)) { LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI << " due to " << I << "\n"); ++It; break; } } // Store mergable regions found. if (MergableCIs.size() > 1) { MergableCIsVector.push_back(MergableCIs); LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() << " parallel regions in block " << BB->getName() << " of function " << BB->getParent()->getName() << "\n";); } MergableCIs.clear(); } if (!MergableCIsVector.empty()) { Changed = true; for (auto &MergableCIs : MergableCIsVector) Merge(MergableCIs, BB); MergableCIsVector.clear(); } } if (Changed) { /// Re-collect use for fork calls, emitted barrier calls, and /// any emitted master/end_master calls. OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); } return Changed; } /// Try to delete parallel regions if possible. bool deleteParallelRegions() { const unsigned CallbackCalleeOperand = 2; OMPInformationCache::RuntimeFunctionInfo &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; if (!RFI.Declaration) return false; bool Changed = false; auto DeleteCallCB = [&](Use &U, Function &) { CallInst *CI = getCallIfRegularCall(U); if (!CI) return false; auto *Fn = dyn_cast( CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); if (!Fn) return false; if (!Fn->onlyReadsMemory()) return false; if (!Fn->hasFnAttribute(Attribute::WillReturn)) return false; LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " << CI->getCaller()->getName() << "\n"); auto Remark = [&](OptimizationRemark OR) { return OR << "Removing parallel region with no side-effects."; }; emitRemark(CI, "OMP160", Remark); CI->eraseFromParent(); Changed = true; ++NumOpenMPParallelRegionsDeleted; return true; }; RFI.foreachUse(SCC, DeleteCallCB); return Changed; } /// Try to eliminate runtime calls by reusing existing ones. bool deduplicateRuntimeCalls() { bool Changed = false; RuntimeFunction DeduplicableRuntimeCallIDs[] = { OMPRTL_omp_get_num_threads, OMPRTL_omp_in_parallel, OMPRTL_omp_get_cancellation, OMPRTL_omp_get_supported_active_levels, OMPRTL_omp_get_level, OMPRTL_omp_get_ancestor_thread_num, OMPRTL_omp_get_team_size, OMPRTL_omp_get_active_level, OMPRTL_omp_in_final, OMPRTL_omp_get_proc_bind, OMPRTL_omp_get_num_places, OMPRTL_omp_get_num_procs, OMPRTL_omp_get_place_num, OMPRTL_omp_get_partition_num_places, OMPRTL_omp_get_partition_place_nums}; // Global-tid is handled separately. SmallSetVector GTIdArgs; collectGlobalThreadIdArguments(GTIdArgs); LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() << " global thread ID arguments\n"); for (Function *F : SCC) { for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) Changed |= deduplicateRuntimeCalls( *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); // __kmpc_global_thread_num is special as we can replace it with an // argument in enough cases to make it worth trying. Value *GTIdArg = nullptr; for (Argument &Arg : F->args()) if (GTIdArgs.count(&Arg)) { GTIdArg = &Arg; break; } Changed |= deduplicateRuntimeCalls( *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); } return Changed; } /// Tries to remove known runtime symbols that are optional from the module. bool removeRuntimeSymbols() { // The RPC client symbol is defined in `libc` and indicates that something // required an RPC server. If its users were all optimized out then we can // safely remove it. // TODO: This should be somewhere more common in the future. if (GlobalVariable *GV = M.getNamedGlobal("__llvm_libc_rpc_client")) { if (!GV->getType()->isPointerTy()) return false; Constant *C = GV->getInitializer(); if (!C) return false; // Check to see if the only user of the RPC client is the external handle. GlobalVariable *Client = dyn_cast(C->stripPointerCasts()); if (!Client || Client->getNumUses() > 1 || Client->user_back() != GV->getInitializer()) return false; Client->replaceAllUsesWith(PoisonValue::get(Client->getType())); Client->eraseFromParent(); GV->replaceAllUsesWith(PoisonValue::get(GV->getType())); GV->eraseFromParent(); return true; } return false; } /// Tries to hide the latency of runtime calls that involve host to /// device memory transfers by splitting them into their "issue" and "wait" /// versions. The "issue" is moved upwards as much as possible. The "wait" is /// moved downards as much as possible. The "issue" issues the memory transfer /// asynchronously, returning a handle. The "wait" waits in the returned /// handle for the memory transfer to finish. bool hideMemTransfersLatency() { auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; bool Changed = false; auto SplitMemTransfers = [&](Use &U, Function &Decl) { auto *RTCall = getCallIfRegularCall(U, &RFI); if (!RTCall) return false; OffloadArray OffloadArrays[3]; if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) return false; LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); // TODO: Check if can be moved upwards. bool WasSplit = false; Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); if (WaitMovementPoint) WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); Changed |= WasSplit; return WasSplit; }; if (OMPInfoCache.runtimeFnsAvailable( {OMPRTL___tgt_target_data_begin_mapper_issue, OMPRTL___tgt_target_data_begin_mapper_wait})) RFI.foreachUse(SCC, SplitMemTransfers); return Changed; } void analysisGlobalization() { auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; auto CheckGlobalization = [&](Use &U, Function &Decl) { if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { auto Remark = [&](OptimizationRemarkMissed ORM) { return ORM << "Found thread data sharing on the GPU. " << "Expect degraded performance due to data globalization."; }; emitRemark(CI, "OMP112", Remark); } return false; }; RFI.foreachUse(SCC, CheckGlobalization); } /// Maps the values stored in the offload arrays passed as arguments to /// \p RuntimeCall into the offload arrays in \p OAs. bool getValuesInOffloadArrays(CallInst &RuntimeCall, MutableArrayRef OAs) { assert(OAs.size() == 3 && "Need space for three offload arrays!"); // A runtime call that involves memory offloading looks something like: // call void @__tgt_target_data_begin_mapper(arg0, arg1, // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, // ...) // So, the idea is to access the allocas that allocate space for these // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. // Therefore: // i8** %offload_baseptrs. Value *BasePtrsArg = RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); // i8** %offload_ptrs. Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); // i8** %offload_sizes. Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); // Get values stored in **offload_baseptrs. auto *V = getUnderlyingObject(BasePtrsArg); if (!isa(V)) return false; auto *BasePtrsArray = cast(V); if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) return false; // Get values stored in **offload_baseptrs. V = getUnderlyingObject(PtrsArg); if (!isa(V)) return false; auto *PtrsArray = cast(V); if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) return false; // Get values stored in **offload_sizes. V = getUnderlyingObject(SizesArg); // If it's a [constant] global array don't analyze it. if (isa(V)) return isa(V); if (!isa(V)) return false; auto *SizesArray = cast(V); if (!OAs[2].initialize(*SizesArray, RuntimeCall)) return false; return true; } /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. /// For now this is a way to test that the function getValuesInOffloadArrays /// is working properly. /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. void dumpValuesInOffloadArrays(ArrayRef OAs) { assert(OAs.size() == 3 && "There are three offload arrays to debug!"); LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); std::string ValuesStr; raw_string_ostream Printer(ValuesStr); std::string Separator = " --- "; for (auto *BP : OAs[0].StoredValues) { BP->print(Printer); Printer << Separator; } LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << ValuesStr << "\n"); ValuesStr.clear(); for (auto *P : OAs[1].StoredValues) { P->print(Printer); Printer << Separator; } LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << ValuesStr << "\n"); ValuesStr.clear(); for (auto *S : OAs[2].StoredValues) { S->print(Printer); Printer << Separator; } LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << ValuesStr << "\n"); } /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be /// moved. Returns nullptr if the movement is not possible, or not worth it. Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { // FIXME: This traverses only the BasicBlock where RuntimeCall is. // Make it traverse the CFG. Instruction *CurrentI = &RuntimeCall; bool IsWorthIt = false; while ((CurrentI = CurrentI->getNextNode())) { // TODO: Once we detect the regions to be offloaded we should use the // alias analysis manager to check if CurrentI may modify one of // the offloaded regions. if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { if (IsWorthIt) return CurrentI; return nullptr; } // FIXME: For now if we move it over anything without side effect // is worth it. IsWorthIt = true; } // Return end of BasicBlock. return RuntimeCall.getParent()->getTerminator(); } /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. bool splitTargetDataBeginRTC(CallInst &RuntimeCall, Instruction &WaitMovementPoint) { // Create stack allocated handle (__tgt_async_info) at the beginning of the // function. Used for storing information of the async transfer, allowing to // wait on it later. auto &IRBuilder = OMPInfoCache.OMPBuilder; Function *F = RuntimeCall.getCaller(); BasicBlock &Entry = F->getEntryBlock(); IRBuilder.Builder.SetInsertPoint(&Entry, Entry.getFirstNonPHIOrDbgOrAlloca()); Value *Handle = IRBuilder.Builder.CreateAlloca( IRBuilder.AsyncInfo, /*ArraySize=*/nullptr, "handle"); Handle = IRBuilder.Builder.CreateAddrSpaceCast(Handle, IRBuilder.AsyncInfoPtr); // Add "issue" runtime call declaration: // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, // i8**, i8**, i64*, i64*) FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( M, OMPRTL___tgt_target_data_begin_mapper_issue); // Change RuntimeCall call site for its asynchronous version. SmallVector Args; for (auto &Arg : RuntimeCall.args()) Args.push_back(Arg.get()); Args.push_back(Handle); CallInst *IssueCallsite = CallInst::Create(IssueDecl, Args, /*NameStr=*/"", RuntimeCall.getIterator()); OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); RuntimeCall.eraseFromParent(); // Add "wait" runtime call declaration: // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( M, OMPRTL___tgt_target_data_begin_mapper_wait); Value *WaitParams[2] = { IssueCallsite->getArgOperand( OffloadArray::DeviceIDArgNum), // device_id. Handle // handle to wait on. }; CallInst *WaitCallsite = CallInst::Create( WaitDecl, WaitParams, /*NameStr=*/"", WaitMovementPoint.getIterator()); OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); return true; } static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, bool GlobalOnly, bool &SingleChoice) { if (CurrentIdent == NextIdent) return CurrentIdent; // TODO: Figure out how to actually combine multiple debug locations. For // now we just keep an existing one if there is a single choice. if (!GlobalOnly || isa(NextIdent)) { SingleChoice = !CurrentIdent; return NextIdent; } return nullptr; } /// Return an `struct ident_t*` value that represents the ones used in the /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not /// return a local `struct ident_t*`. For now, if we cannot find a suitable /// return value we create one from scratch. We also do not yet combine /// information, e.g., the source locations, see combinedIdentStruct. Value * getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, Function &F, bool GlobalOnly) { bool SingleChoice = true; Value *Ident = nullptr; auto CombineIdentStruct = [&](Use &U, Function &Caller) { CallInst *CI = getCallIfRegularCall(U, &RFI); if (!CI || &F != &Caller) return false; Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), /* GlobalOnly */ true, SingleChoice); return false; }; RFI.foreachUse(SCC, CombineIdentStruct); if (!Ident || !SingleChoice) { // The IRBuilder uses the insertion block to get to the module, this is // unfortunate but we work around it for now. if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( &F.getEntryBlock(), F.getEntryBlock().begin())); // Create a fallback location if non was found. // TODO: Use the debug locations of the calls instead. uint32_t SrcLocStrSize; Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); } return Ident; } /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or /// \p ReplVal if given. bool deduplicateRuntimeCalls(Function &F, OMPInformationCache::RuntimeFunctionInfo &RFI, Value *ReplVal = nullptr) { auto *UV = RFI.getUseVector(F); if (!UV || UV->size() + (ReplVal != nullptr) < 2) return false; LLVM_DEBUG( dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name << (ReplVal ? " with an existing value\n" : "\n") << "\n"); assert((!ReplVal || (isa(ReplVal) && cast(ReplVal)->getParent() == &F)) && "Unexpected replacement value!"); // TODO: Use dominance to find a good position instead. auto CanBeMoved = [this](CallBase &CB) { unsigned NumArgs = CB.arg_size(); if (NumArgs == 0) return true; if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) return false; for (unsigned U = 1; U < NumArgs; ++U) if (isa(CB.getArgOperand(U))) return false; return true; }; if (!ReplVal) { auto *DT = OMPInfoCache.getAnalysisResultForFunction(F); if (!DT) return false; Instruction *IP = nullptr; for (Use *U : *UV) { if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { if (IP) IP = DT->findNearestCommonDominator(IP, CI); else IP = CI; if (!CanBeMoved(*CI)) continue; if (!ReplVal) ReplVal = CI; } } if (!ReplVal) return false; assert(IP && "Expected insertion point!"); cast(ReplVal)->moveBefore(IP); } // If we use a call as a replacement value we need to make sure the ident is // valid at the new location. For now we just pick a global one, either // existing and used by one of the calls, or created from scratch. if (CallBase *CI = dyn_cast(ReplVal)) { if (!CI->arg_empty() && CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, /* GlobalOnly */ true); CI->setArgOperand(0, Ident); } } bool Changed = false; auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { CallInst *CI = getCallIfRegularCall(U, &RFI); if (!CI || CI == ReplVal || &F != &Caller) return false; assert(CI->getCaller() == &F && "Unexpected call!"); auto Remark = [&](OptimizationRemark OR) { return OR << "OpenMP runtime call " << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; }; if (CI->getDebugLoc()) emitRemark(CI, "OMP170", Remark); else emitRemark(&F, "OMP170", Remark); CI->replaceAllUsesWith(ReplVal); CI->eraseFromParent(); ++NumOpenMPRuntimeCallsDeduplicated; Changed = true; return true; }; RFI.foreachUse(SCC, ReplaceAndDeleteCB); return Changed; } /// Collect arguments that represent the global thread id in \p GTIdArgs. void collectGlobalThreadIdArguments(SmallSetVector >IdArgs) { // TODO: Below we basically perform a fixpoint iteration with a pessimistic // initialization. We could define an AbstractAttribute instead and // run the Attributor here once it can be run as an SCC pass. // Helper to check the argument \p ArgNo at all call sites of \p F for // a GTId. auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { if (!F.hasLocalLinkage()) return false; for (Use &U : F.uses()) { if (CallInst *CI = getCallIfRegularCall(U)) { Value *ArgOp = CI->getArgOperand(ArgNo); if (CI == &RefCI || GTIdArgs.count(ArgOp) || getCallIfRegularCall( *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) continue; } return false; } return true; }; // Helper to identify uses of a GTId as GTId arguments. auto AddUserArgs = [&](Value >Id) { for (Use &U : GTId.uses()) if (CallInst *CI = dyn_cast(U.getUser())) if (CI->isArgOperand(&U)) if (Function *Callee = CI->getCalledFunction()) if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) GTIdArgs.insert(Callee->getArg(U.getOperandNo())); }; // The argument users of __kmpc_global_thread_num calls are GTIds. OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) AddUserArgs(*CI); return false; }); // Transitively search for more arguments by looking at the users of the // ones we know already. During the search the GTIdArgs vector is extended // so we cannot cache the size nor can we use a range based for. for (unsigned U = 0; U < GTIdArgs.size(); ++U) AddUserArgs(*GTIdArgs[U]); } /// Kernel (=GPU) optimizations and utility functions /// ///{{ /// Cache to remember the unique kernel for a function. DenseMap> UniqueKernelMap; /// Find the unique kernel that will execute \p F, if any. Kernel getUniqueKernelFor(Function &F); /// Find the unique kernel that will execute \p I, if any. Kernel getUniqueKernelFor(Instruction &I) { return getUniqueKernelFor(*I.getFunction()); } /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in /// the cases we can avoid taking the address of a function. bool rewriteDeviceCodeStateMachine(); /// ///}} /// Emit a remark generically /// /// This template function can be used to generically emit a remark. The /// RemarkKind should be one of the following: /// - OptimizationRemark to indicate a successful optimization attempt /// - OptimizationRemarkMissed to report a failed optimization attempt /// - OptimizationRemarkAnalysis to provide additional information about an /// optimization attempt /// /// The remark is built using a callback function provided by the caller that /// takes a RemarkKind as input and returns a RemarkKind. template void emitRemark(Instruction *I, StringRef RemarkName, RemarkCallBack &&RemarkCB) const { Function *F = I->getParent()->getParent(); auto &ORE = OREGetter(F); if (RemarkName.starts_with("OMP")) ORE.emit([&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) << " [" << RemarkName << "]"; }); else ORE.emit( [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); } /// Emit a remark on a function. template void emitRemark(Function *F, StringRef RemarkName, RemarkCallBack &&RemarkCB) const { auto &ORE = OREGetter(F); if (RemarkName.starts_with("OMP")) ORE.emit([&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) << " [" << RemarkName << "]"; }); else ORE.emit( [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); } /// The underlying module. Module &M; /// The SCC we are operating on. SmallVectorImpl &SCC; /// Callback to update the call graph, the first argument is a removed call, /// the second an optional replacement call. CallGraphUpdater &CGUpdater; /// Callback to get an OptimizationRemarkEmitter from a Function * OptimizationRemarkGetter OREGetter; /// OpenMP-specific information cache. Also Used for Attributor runs. OMPInformationCache &OMPInfoCache; /// Attributor instance. Attributor &A; /// Helper function to run Attributor on SCC. bool runAttributor(bool IsModulePass) { if (SCC.empty()) return false; registerAAs(IsModulePass); ChangeStatus Changed = A.run(); LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() << " functions, result: " << Changed << ".\n"); if (Changed == ChangeStatus::CHANGED) OMPInfoCache.invalidateAnalyses(); return Changed == ChangeStatus::CHANGED; } void registerFoldRuntimeCall(RuntimeFunction RF); /// Populate the Attributor with abstract attribute opportunities in the /// functions. void registerAAs(bool IsModulePass); public: /// Callback to register AAs for live functions, including internal functions /// marked live during the traversal. static void registerAAsForFunction(Attributor &A, const Function &F); }; Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { if (OMPInfoCache.CGSCC && !OMPInfoCache.CGSCC->empty() && !OMPInfoCache.CGSCC->contains(&F)) return nullptr; // Use a scope to keep the lifetime of the CachedKernel short. { std::optional &CachedKernel = UniqueKernelMap[&F]; if (CachedKernel) return *CachedKernel; // TODO: We should use an AA to create an (optimistic and callback // call-aware) call graph. For now we stick to simple patterns that // are less powerful, basically the worst fixpoint. if (isOpenMPKernel(F)) { CachedKernel = Kernel(&F); return *CachedKernel; } CachedKernel = nullptr; if (!F.hasLocalLinkage()) { // See https://openmp.llvm.org/remarks/OptimizationRemarks.html auto Remark = [&](OptimizationRemarkAnalysis ORA) { return ORA << "Potentially unknown OpenMP target region caller."; }; emitRemark(&F, "OMP100", Remark); return nullptr; } } auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { if (auto *Cmp = dyn_cast(U.getUser())) { // Allow use in equality comparisons. if (Cmp->isEquality()) return getUniqueKernelFor(*Cmp); return nullptr; } if (auto *CB = dyn_cast(U.getUser())) { // Allow direct calls. if (CB->isCallee(&U)) return getUniqueKernelFor(*CB); OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; // Allow the use in __kmpc_parallel_51 calls. if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) return getUniqueKernelFor(*CB); return nullptr; } // Disallow every other use. return nullptr; }; // TODO: In the future we want to track more than just a unique kernel. SmallPtrSet PotentialKernels; OMPInformationCache::foreachUse(F, [&](const Use &U) { PotentialKernels.insert(GetUniqueKernelForUse(U)); }); Kernel K = nullptr; if (PotentialKernels.size() == 1) K = *PotentialKernels.begin(); // Cache the result. UniqueKernelMap[&F] = K; return K; } bool OpenMPOpt::rewriteDeviceCodeStateMachine() { OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; bool Changed = false; if (!KernelParallelRFI) return Changed; // If we have disabled state machine changes, exit if (DisableOpenMPOptStateMachineRewrite) return Changed; for (Function *F : SCC) { // Check if the function is a use in a __kmpc_parallel_51 call at // all. bool UnknownUse = false; bool KernelParallelUse = false; unsigned NumDirectCalls = 0; SmallVector ToBeReplacedStateMachineUses; OMPInformationCache::foreachUse(*F, [&](Use &U) { if (auto *CB = dyn_cast(U.getUser())) if (CB->isCallee(&U)) { ++NumDirectCalls; return; } if (isa(U.getUser())) { ToBeReplacedStateMachineUses.push_back(&U); return; } // Find wrapper functions that represent parallel kernels. CallInst *CI = OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); const unsigned int WrapperFunctionArgNo = 6; if (!KernelParallelUse && CI && CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { KernelParallelUse = true; ToBeReplacedStateMachineUses.push_back(&U); return; } UnknownUse = true; }); // Do not emit a remark if we haven't seen a __kmpc_parallel_51 // use. if (!KernelParallelUse) continue; // If this ever hits, we should investigate. // TODO: Checking the number of uses is not a necessary restriction and // should be lifted. if (UnknownUse || NumDirectCalls != 1 || ToBeReplacedStateMachineUses.size() > 2) { auto Remark = [&](OptimizationRemarkAnalysis ORA) { return ORA << "Parallel region is used in " << (UnknownUse ? "unknown" : "unexpected") << " ways. Will not attempt to rewrite the state machine."; }; emitRemark(F, "OMP101", Remark); continue; } // Even if we have __kmpc_parallel_51 calls, we (for now) give // up if the function is not called from a unique kernel. Kernel K = getUniqueKernelFor(*F); if (!K) { auto Remark = [&](OptimizationRemarkAnalysis ORA) { return ORA << "Parallel region is not called from a unique kernel. " "Will not attempt to rewrite the state machine."; }; emitRemark(F, "OMP102", Remark); continue; } // We now know F is a parallel body function called only from the kernel K. // We also identified the state machine uses in which we replace the // function pointer by a new global symbol for identification purposes. This // ensures only direct calls to the function are left. Module &M = *F->getParent(); Type *Int8Ty = Type::getInt8Ty(M.getContext()); auto *ID = new GlobalVariable( M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, UndefValue::get(Int8Ty), F->getName() + ".ID"); for (Use *U : ToBeReplacedStateMachineUses) U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( ID, U->get()->getType())); ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; Changed = true; } return Changed; } /// Abstract Attribute for tracking ICV values. struct AAICVTracker : public StateWrapper { using Base = StateWrapper; AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Returns true if value is assumed to be tracked. bool isAssumedTracked() const { return getAssumed(); } /// Returns true if value is known to be tracked. bool isKnownTracked() const { return getAssumed(); } /// Create an abstract attribute biew for the position \p IRP. static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); /// Return the value with which \p I can be replaced for specific \p ICV. virtual std::optional getReplacementValue(InternalControlVar ICV, const Instruction *I, Attributor &A) const { return std::nullopt; } /// Return an assumed unique ICV value if a single candidate is found. If /// there cannot be one, return a nullptr. If it is not clear yet, return /// std::nullopt. virtual std::optional getUniqueReplacementValue(InternalControlVar ICV) const = 0; // Currently only nthreads is being tracked. // this array will only grow with time. InternalControlVar TrackableICVs[1] = {ICV_nthreads}; /// See AbstractAttribute::getName() const std::string getName() const override { return "AAICVTracker"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AAICVTracker static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } static const char ID; }; struct AAICVTrackerFunction : public AAICVTracker { AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) : AAICVTracker(IRP, A) {} // FIXME: come up with better string. const std::string getAsStr(Attributor *) const override { return "ICVTrackerFunction"; } // FIXME: come up with some stats. void trackStatistics() const override {} /// We don't manifest anything for this AA. ChangeStatus manifest(Attributor &A) override { return ChangeStatus::UNCHANGED; } // Map of ICV to their values at specific program point. EnumeratedArray, InternalControlVar, InternalControlVar::ICV___last> ICVReplacementValuesMap; ChangeStatus updateImpl(Attributor &A) override { ChangeStatus HasChanged = ChangeStatus::UNCHANGED; Function *F = getAnchorScope(); auto &OMPInfoCache = static_cast(A.getInfoCache()); for (InternalControlVar ICV : TrackableICVs) { auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; auto &ValuesMap = ICVReplacementValuesMap[ICV]; auto TrackValues = [&](Use &U, Function &) { CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); if (!CI) return false; // FIXME: handle setters with more that 1 arguments. /// Track new value. if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) HasChanged = ChangeStatus::CHANGED; return false; }; auto CallCheck = [&](Instruction &I) { std::optional ReplVal = getValueForCall(A, I, ICV); if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) HasChanged = ChangeStatus::CHANGED; return true; }; // Track all changes of an ICV. SetterRFI.foreachUse(TrackValues, F); bool UsedAssumedInformation = false; A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, UsedAssumedInformation, /* CheckBBLivenessOnly */ true); /// TODO: Figure out a way to avoid adding entry in /// ICVReplacementValuesMap Instruction *Entry = &F->getEntryBlock().front(); if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) ValuesMap.insert(std::make_pair(Entry, nullptr)); } return HasChanged; } /// Helper to check if \p I is a call and get the value for it if it is /// unique. std::optional getValueForCall(Attributor &A, const Instruction &I, InternalControlVar &ICV) const { const auto *CB = dyn_cast(&I); if (!CB || CB->hasFnAttr("no_openmp") || CB->hasFnAttr("no_openmp_routines")) return std::nullopt; auto &OMPInfoCache = static_cast(A.getInfoCache()); auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; Function *CalledFunction = CB->getCalledFunction(); // Indirect call, assume ICV changes. if (CalledFunction == nullptr) return nullptr; if (CalledFunction == GetterRFI.Declaration) return std::nullopt; if (CalledFunction == SetterRFI.Declaration) { if (ICVReplacementValuesMap[ICV].count(&I)) return ICVReplacementValuesMap[ICV].lookup(&I); return nullptr; } // Since we don't know, assume it changes the ICV. if (CalledFunction->isDeclaration()) return nullptr; const auto *ICVTrackingAA = A.getAAFor( *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); if (ICVTrackingAA->isAssumedTracked()) { std::optional URV = ICVTrackingAA->getUniqueReplacementValue(ICV); if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I), OMPInfoCache))) return URV; } // If we don't know, assume it changes. return nullptr; } // We don't check unique value for a function, so return std::nullopt. std::optional getUniqueReplacementValue(InternalControlVar ICV) const override { return std::nullopt; } /// Return the value with which \p I can be replaced for specific \p ICV. std::optional getReplacementValue(InternalControlVar ICV, const Instruction *I, Attributor &A) const override { const auto &ValuesMap = ICVReplacementValuesMap[ICV]; if (ValuesMap.count(I)) return ValuesMap.lookup(I); SmallVector Worklist; SmallPtrSet Visited; Worklist.push_back(I); std::optional ReplVal; while (!Worklist.empty()) { const Instruction *CurrInst = Worklist.pop_back_val(); if (!Visited.insert(CurrInst).second) continue; const BasicBlock *CurrBB = CurrInst->getParent(); // Go up and look for all potential setters/calls that might change the // ICV. while ((CurrInst = CurrInst->getPrevNode())) { if (ValuesMap.count(CurrInst)) { std::optional NewReplVal = ValuesMap.lookup(CurrInst); // Unknown value, track new. if (!ReplVal) { ReplVal = NewReplVal; break; } // If we found a new value, we can't know the icv value anymore. if (NewReplVal) if (ReplVal != NewReplVal) return nullptr; break; } std::optional NewReplVal = getValueForCall(A, *CurrInst, ICV); if (!NewReplVal) continue; // Unknown value, track new. if (!ReplVal) { ReplVal = NewReplVal; break; } // if (NewReplVal.hasValue()) // We found a new value, we can't know the icv value anymore. if (ReplVal != NewReplVal) return nullptr; } // If we are in the same BB and we have a value, we are done. if (CurrBB == I->getParent() && ReplVal) return ReplVal; // Go through all predecessors and add terminators for analysis. for (const BasicBlock *Pred : predecessors(CurrBB)) if (const Instruction *Terminator = Pred->getTerminator()) Worklist.push_back(Terminator); } return ReplVal; } }; struct AAICVTrackerFunctionReturned : AAICVTracker { AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) : AAICVTracker(IRP, A) {} // FIXME: come up with better string. const std::string getAsStr(Attributor *) const override { return "ICVTrackerFunctionReturned"; } // FIXME: come up with some stats. void trackStatistics() const override {} /// We don't manifest anything for this AA. ChangeStatus manifest(Attributor &A) override { return ChangeStatus::UNCHANGED; } // Map of ICV to their values at specific program point. EnumeratedArray, InternalControlVar, InternalControlVar::ICV___last> ICVReplacementValuesMap; /// Return the value with which \p I can be replaced for specific \p ICV. std::optional getUniqueReplacementValue(InternalControlVar ICV) const override { return ICVReplacementValuesMap[ICV]; } ChangeStatus updateImpl(Attributor &A) override { ChangeStatus Changed = ChangeStatus::UNCHANGED; const auto *ICVTrackingAA = A.getAAFor( *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); if (!ICVTrackingAA->isAssumedTracked()) return indicatePessimisticFixpoint(); for (InternalControlVar ICV : TrackableICVs) { std::optional &ReplVal = ICVReplacementValuesMap[ICV]; std::optional UniqueICVValue; auto CheckReturnInst = [&](Instruction &I) { std::optional NewReplVal = ICVTrackingAA->getReplacementValue(ICV, &I, A); // If we found a second ICV value there is no unique returned value. if (UniqueICVValue && UniqueICVValue != NewReplVal) return false; UniqueICVValue = NewReplVal; return true; }; bool UsedAssumedInformation = false; if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, UsedAssumedInformation, /* CheckBBLivenessOnly */ true)) UniqueICVValue = nullptr; if (UniqueICVValue == ReplVal) continue; ReplVal = UniqueICVValue; Changed = ChangeStatus::CHANGED; } return Changed; } }; struct AAICVTrackerCallSite : AAICVTracker { AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) : AAICVTracker(IRP, A) {} void initialize(Attributor &A) override { assert(getAnchorScope() && "Expected anchor function"); // We only initialize this AA for getters, so we need to know which ICV it // gets. auto &OMPInfoCache = static_cast(A.getInfoCache()); for (InternalControlVar ICV : TrackableICVs) { auto ICVInfo = OMPInfoCache.ICVs[ICV]; auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; if (Getter.Declaration == getAssociatedFunction()) { AssociatedICV = ICVInfo.Kind; return; } } /// Unknown ICV. indicatePessimisticFixpoint(); } ChangeStatus manifest(Attributor &A) override { if (!ReplVal || !*ReplVal) return ChangeStatus::UNCHANGED; A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal); A.deleteAfterManifest(*getCtxI()); return ChangeStatus::CHANGED; } // FIXME: come up with better string. const std::string getAsStr(Attributor *) const override { return "ICVTrackerCallSite"; } // FIXME: come up with some stats. void trackStatistics() const override {} InternalControlVar AssociatedICV; std::optional ReplVal; ChangeStatus updateImpl(Attributor &A) override { const auto *ICVTrackingAA = A.getAAFor( *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); // We don't have any information, so we assume it changes the ICV. if (!ICVTrackingAA->isAssumedTracked()) return indicatePessimisticFixpoint(); std::optional NewReplVal = ICVTrackingAA->getReplacementValue(AssociatedICV, getCtxI(), A); if (ReplVal == NewReplVal) return ChangeStatus::UNCHANGED; ReplVal = NewReplVal; return ChangeStatus::CHANGED; } // Return the value with which associated value can be replaced for specific // \p ICV. std::optional getUniqueReplacementValue(InternalControlVar ICV) const override { return ReplVal; } }; struct AAICVTrackerCallSiteReturned : AAICVTracker { AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) : AAICVTracker(IRP, A) {} // FIXME: come up with better string. const std::string getAsStr(Attributor *) const override { return "ICVTrackerCallSiteReturned"; } // FIXME: come up with some stats. void trackStatistics() const override {} /// We don't manifest anything for this AA. ChangeStatus manifest(Attributor &A) override { return ChangeStatus::UNCHANGED; } // Map of ICV to their values at specific program point. EnumeratedArray, InternalControlVar, InternalControlVar::ICV___last> ICVReplacementValuesMap; /// Return the value with which associated value can be replaced for specific /// \p ICV. std::optional getUniqueReplacementValue(InternalControlVar ICV) const override { return ICVReplacementValuesMap[ICV]; } ChangeStatus updateImpl(Attributor &A) override { ChangeStatus Changed = ChangeStatus::UNCHANGED; const auto *ICVTrackingAA = A.getAAFor( *this, IRPosition::returned(*getAssociatedFunction()), DepClassTy::REQUIRED); // We don't have any information, so we assume it changes the ICV. if (!ICVTrackingAA->isAssumedTracked()) return indicatePessimisticFixpoint(); for (InternalControlVar ICV : TrackableICVs) { std::optional &ReplVal = ICVReplacementValuesMap[ICV]; std::optional NewReplVal = ICVTrackingAA->getUniqueReplacementValue(ICV); if (ReplVal == NewReplVal) continue; ReplVal = NewReplVal; Changed = ChangeStatus::CHANGED; } return Changed; } }; /// Determines if \p BB exits the function unconditionally itself or reaches a /// block that does through only unique successors. static bool hasFunctionEndAsUniqueSuccessor(const BasicBlock *BB) { if (succ_empty(BB)) return true; const BasicBlock *const Successor = BB->getUniqueSuccessor(); if (!Successor) return false; return hasFunctionEndAsUniqueSuccessor(Successor); } struct AAExecutionDomainFunction : public AAExecutionDomain { AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) : AAExecutionDomain(IRP, A) {} ~AAExecutionDomainFunction() { delete RPOT; } void initialize(Attributor &A) override { Function *F = getAnchorScope(); assert(F && "Expected anchor function"); RPOT = new ReversePostOrderTraversal(F); } const std::string getAsStr(Attributor *) const override { unsigned TotalBlocks = 0, InitialThreadBlocks = 0, AlignedBlocks = 0; for (auto &It : BEDMap) { if (!It.getFirst()) continue; TotalBlocks++; InitialThreadBlocks += It.getSecond().IsExecutedByInitialThreadOnly; AlignedBlocks += It.getSecond().IsReachedFromAlignedBarrierOnly && It.getSecond().IsReachingAlignedBarrierOnly; } return "[AAExecutionDomain] " + std::to_string(InitialThreadBlocks) + "/" + std::to_string(AlignedBlocks) + " of " + std::to_string(TotalBlocks) + " executed by initial thread / aligned"; } /// See AbstractAttribute::trackStatistics(). void trackStatistics() const override {} ChangeStatus manifest(Attributor &A) override { LLVM_DEBUG({ for (const BasicBlock &BB : *getAnchorScope()) { if (!isExecutedByInitialThreadOnly(BB)) continue; dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " << BB.getName() << " is executed by a single thread.\n"; } }); ChangeStatus Changed = ChangeStatus::UNCHANGED; if (DisableOpenMPOptBarrierElimination) return Changed; SmallPtrSet DeletedBarriers; auto HandleAlignedBarrier = [&](CallBase *CB) { const ExecutionDomainTy &ED = CB ? CEDMap[{CB, PRE}] : BEDMap[nullptr]; if (!ED.IsReachedFromAlignedBarrierOnly || ED.EncounteredNonLocalSideEffect) return; if (!ED.EncounteredAssumes.empty() && !A.isModulePass()) return; // We can remove this barrier, if it is one, or aligned barriers reaching // the kernel end (if CB is nullptr). Aligned barriers reaching the kernel // end should only be removed if the kernel end is their unique successor; // otherwise, they may have side-effects that aren't accounted for in the // kernel end in their other successors. If those barriers have other // barriers reaching them, those can be transitively removed as well as // long as the kernel end is also their unique successor. if (CB) { DeletedBarriers.insert(CB); A.deleteAfterManifest(*CB); ++NumBarriersEliminated; Changed = ChangeStatus::CHANGED; } else if (!ED.AlignedBarriers.empty()) { Changed = ChangeStatus::CHANGED; SmallVector Worklist(ED.AlignedBarriers.begin(), ED.AlignedBarriers.end()); SmallSetVector Visited; while (!Worklist.empty()) { CallBase *LastCB = Worklist.pop_back_val(); if (!Visited.insert(LastCB)) continue; if (LastCB->getFunction() != getAnchorScope()) continue; if (!hasFunctionEndAsUniqueSuccessor(LastCB->getParent())) continue; if (!DeletedBarriers.count(LastCB)) { ++NumBarriersEliminated; A.deleteAfterManifest(*LastCB); continue; } // The final aligned barrier (LastCB) reaching the kernel end was // removed already. This means we can go one step further and remove // the barriers encoutered last before (LastCB). const ExecutionDomainTy &LastED = CEDMap[{LastCB, PRE}]; Worklist.append(LastED.AlignedBarriers.begin(), LastED.AlignedBarriers.end()); } } // If we actually eliminated a barrier we need to eliminate the associated // llvm.assumes as well to avoid creating UB. if (!ED.EncounteredAssumes.empty() && (CB || !ED.AlignedBarriers.empty())) for (auto *AssumeCB : ED.EncounteredAssumes) A.deleteAfterManifest(*AssumeCB); }; for (auto *CB : AlignedBarriers) HandleAlignedBarrier(CB); // Handle the "kernel end barrier" for kernels too. if (omp::isOpenMPKernel(*getAnchorScope())) HandleAlignedBarrier(nullptr); return Changed; } bool isNoOpFence(const FenceInst &FI) const override { return getState().isValidState() && !NonNoOpFences.count(&FI); } /// Merge barrier and assumption information from \p PredED into the successor /// \p ED. void mergeInPredecessorBarriersAndAssumptions(Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED); /// Merge all information from \p PredED into the successor \p ED. If /// \p InitialEdgeOnly is set, only the initial edge will enter the block /// represented by \p ED from this predecessor. bool mergeInPredecessor(Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED, bool InitialEdgeOnly = false); /// Accumulate information for the entry block in \p EntryBBED. bool handleCallees(Attributor &A, ExecutionDomainTy &EntryBBED); /// See AbstractAttribute::updateImpl. ChangeStatus updateImpl(Attributor &A) override; /// Query interface, see AAExecutionDomain ///{ bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { if (!isValidState()) return false; assert(BB.getParent() == getAnchorScope() && "Block is out of scope!"); return BEDMap.lookup(&BB).IsExecutedByInitialThreadOnly; } bool isExecutedInAlignedRegion(Attributor &A, const Instruction &I) const override { assert(I.getFunction() == getAnchorScope() && "Instruction is out of scope!"); if (!isValidState()) return false; bool ForwardIsOk = true; const Instruction *CurI; // Check forward until a call or the block end is reached. CurI = &I; do { auto *CB = dyn_cast(CurI); if (!CB) continue; if (CB != &I && AlignedBarriers.contains(const_cast(CB))) return true; const auto &It = CEDMap.find({CB, PRE}); if (It == CEDMap.end()) continue; if (!It->getSecond().IsReachingAlignedBarrierOnly) ForwardIsOk = false; break; } while ((CurI = CurI->getNextNonDebugInstruction())); if (!CurI && !BEDMap.lookup(I.getParent()).IsReachingAlignedBarrierOnly) ForwardIsOk = false; // Check backward until a call or the block beginning is reached. CurI = &I; do { auto *CB = dyn_cast(CurI); if (!CB) continue; if (CB != &I && AlignedBarriers.contains(const_cast(CB))) return true; const auto &It = CEDMap.find({CB, POST}); if (It == CEDMap.end()) continue; if (It->getSecond().IsReachedFromAlignedBarrierOnly) break; return false; } while ((CurI = CurI->getPrevNonDebugInstruction())); // Delayed decision on the forward pass to allow aligned barrier detection // in the backwards traversal. if (!ForwardIsOk) return false; if (!CurI) { const BasicBlock *BB = I.getParent(); if (BB == &BB->getParent()->getEntryBlock()) return BEDMap.lookup(nullptr).IsReachedFromAlignedBarrierOnly; if (!llvm::all_of(predecessors(BB), [&](const BasicBlock *PredBB) { return BEDMap.lookup(PredBB).IsReachedFromAlignedBarrierOnly; })) { return false; } } // On neither traversal we found a anything but aligned barriers. return true; } ExecutionDomainTy getExecutionDomain(const BasicBlock &BB) const override { assert(isValidState() && "No request should be made against an invalid state!"); return BEDMap.lookup(&BB); } std::pair getExecutionDomain(const CallBase &CB) const override { assert(isValidState() && "No request should be made against an invalid state!"); return {CEDMap.lookup({&CB, PRE}), CEDMap.lookup({&CB, POST})}; } ExecutionDomainTy getFunctionExecutionDomain() const override { assert(isValidState() && "No request should be made against an invalid state!"); return InterProceduralED; } ///} // Check if the edge into the successor block contains a condition that only // lets the main thread execute it. static bool isInitialThreadOnlyEdge(Attributor &A, BranchInst *Edge, BasicBlock &SuccessorBB) { if (!Edge || !Edge->isConditional()) return false; if (Edge->getSuccessor(0) != &SuccessorBB) return false; auto *Cmp = dyn_cast(Edge->getCondition()); if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) return false; ConstantInt *C = dyn_cast(Cmp->getOperand(1)); if (!C) return false; // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) if (C->isAllOnesValue()) { auto *CB = dyn_cast(Cmp->getOperand(0)); auto &OMPInfoCache = static_cast(A.getInfoCache()); auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; if (!CB) return false; ConstantStruct *KernelEnvC = KernelInfo::getKernelEnvironementFromKernelInitCB(CB); ConstantInt *ExecModeC = KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC); return ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC; } if (C->isZero()) { // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() if (auto *II = dyn_cast(Cmp->getOperand(0))) if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) return true; // Match: 0 == llvm.amdgcn.workitem.id.x() if (auto *II = dyn_cast(Cmp->getOperand(0))) if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) return true; } return false; }; /// Mapping containing information about the function for other AAs. ExecutionDomainTy InterProceduralED; enum Direction { PRE = 0, POST = 1 }; /// Mapping containing information per block. DenseMap BEDMap; DenseMap, ExecutionDomainTy> CEDMap; SmallSetVector AlignedBarriers; ReversePostOrderTraversal *RPOT = nullptr; /// Set \p R to \V and report true if that changed \p R. static bool setAndRecord(bool &R, bool V) { bool Eq = (R == V); R = V; return !Eq; } /// Collection of fences known to be non-no-opt. All fences not in this set /// can be assumed no-opt. SmallPtrSet NonNoOpFences; }; void AAExecutionDomainFunction::mergeInPredecessorBarriersAndAssumptions( Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED) { for (auto *EA : PredED.EncounteredAssumes) ED.addAssumeInst(A, *EA); for (auto *AB : PredED.AlignedBarriers) ED.addAlignedBarrier(A, *AB); } bool AAExecutionDomainFunction::mergeInPredecessor( Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED, bool InitialEdgeOnly) { bool Changed = false; Changed |= setAndRecord(ED.IsExecutedByInitialThreadOnly, InitialEdgeOnly || (PredED.IsExecutedByInitialThreadOnly && ED.IsExecutedByInitialThreadOnly)); Changed |= setAndRecord(ED.IsReachedFromAlignedBarrierOnly, ED.IsReachedFromAlignedBarrierOnly && PredED.IsReachedFromAlignedBarrierOnly); Changed |= setAndRecord(ED.EncounteredNonLocalSideEffect, ED.EncounteredNonLocalSideEffect | PredED.EncounteredNonLocalSideEffect); // Do not track assumptions and barriers as part of Changed. if (ED.IsReachedFromAlignedBarrierOnly) mergeInPredecessorBarriersAndAssumptions(A, ED, PredED); else ED.clearAssumeInstAndAlignedBarriers(); return Changed; } bool AAExecutionDomainFunction::handleCallees(Attributor &A, ExecutionDomainTy &EntryBBED) { SmallVector, 4> CallSiteEDs; auto PredForCallSite = [&](AbstractCallSite ACS) { const auto *EDAA = A.getAAFor( *this, IRPosition::function(*ACS.getInstruction()->getFunction()), DepClassTy::OPTIONAL); if (!EDAA || !EDAA->getState().isValidState()) return false; CallSiteEDs.emplace_back( EDAA->getExecutionDomain(*cast(ACS.getInstruction()))); return true; }; ExecutionDomainTy ExitED; bool AllCallSitesKnown; if (A.checkForAllCallSites(PredForCallSite, *this, /* RequiresAllCallSites */ true, AllCallSitesKnown)) { for (const auto &[CSInED, CSOutED] : CallSiteEDs) { mergeInPredecessor(A, EntryBBED, CSInED); ExitED.IsReachingAlignedBarrierOnly &= CSOutED.IsReachingAlignedBarrierOnly; } } else { // We could not find all predecessors, so this is either a kernel or a // function with external linkage (or with some other weird uses). if (omp::isOpenMPKernel(*getAnchorScope())) { EntryBBED.IsExecutedByInitialThreadOnly = false; EntryBBED.IsReachedFromAlignedBarrierOnly = true; EntryBBED.EncounteredNonLocalSideEffect = false; ExitED.IsReachingAlignedBarrierOnly = false; } else { EntryBBED.IsExecutedByInitialThreadOnly = false; EntryBBED.IsReachedFromAlignedBarrierOnly = false; EntryBBED.EncounteredNonLocalSideEffect = true; ExitED.IsReachingAlignedBarrierOnly = false; } } bool Changed = false; auto &FnED = BEDMap[nullptr]; Changed |= setAndRecord(FnED.IsReachedFromAlignedBarrierOnly, FnED.IsReachedFromAlignedBarrierOnly & EntryBBED.IsReachedFromAlignedBarrierOnly); Changed |= setAndRecord(FnED.IsReachingAlignedBarrierOnly, FnED.IsReachingAlignedBarrierOnly & ExitED.IsReachingAlignedBarrierOnly); Changed |= setAndRecord(FnED.IsExecutedByInitialThreadOnly, EntryBBED.IsExecutedByInitialThreadOnly); return Changed; } ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { bool Changed = false; // Helper to deal with an aligned barrier encountered during the forward // traversal. \p CB is the aligned barrier, \p ED is the execution domain when // it was encountered. auto HandleAlignedBarrier = [&](CallBase &CB, ExecutionDomainTy &ED) { Changed |= AlignedBarriers.insert(&CB); // First, update the barrier ED kept in the separate CEDMap. auto &CallInED = CEDMap[{&CB, PRE}]; Changed |= mergeInPredecessor(A, CallInED, ED); CallInED.IsReachingAlignedBarrierOnly = true; // Next adjust the ED we use for the traversal. ED.EncounteredNonLocalSideEffect = false; ED.IsReachedFromAlignedBarrierOnly = true; // Aligned barrier collection has to come last. ED.clearAssumeInstAndAlignedBarriers(); ED.addAlignedBarrier(A, CB); auto &CallOutED = CEDMap[{&CB, POST}]; Changed |= mergeInPredecessor(A, CallOutED, ED); }; auto *LivenessAA = A.getAAFor(*this, getIRPosition(), DepClassTy::OPTIONAL); Function *F = getAnchorScope(); BasicBlock &EntryBB = F->getEntryBlock(); bool IsKernel = omp::isOpenMPKernel(*F); SmallVector SyncInstWorklist; for (auto &RIt : *RPOT) { BasicBlock &BB = *RIt; bool IsEntryBB = &BB == &EntryBB; // TODO: We use local reasoning since we don't have a divergence analysis // running as well. We could basically allow uniform branches here. bool AlignedBarrierLastInBlock = IsEntryBB && IsKernel; bool IsExplicitlyAligned = IsEntryBB && IsKernel; ExecutionDomainTy ED; // Propagate "incoming edges" into information about this block. if (IsEntryBB) { Changed |= handleCallees(A, ED); } else { // For live non-entry blocks we only propagate // information via live edges. if (LivenessAA && LivenessAA->isAssumedDead(&BB)) continue; for (auto *PredBB : predecessors(&BB)) { if (LivenessAA && LivenessAA->isEdgeDead(PredBB, &BB)) continue; bool InitialEdgeOnly = isInitialThreadOnlyEdge( A, dyn_cast(PredBB->getTerminator()), BB); mergeInPredecessor(A, ED, BEDMap[PredBB], InitialEdgeOnly); } } // Now we traverse the block, accumulate effects in ED and attach // information to calls. for (Instruction &I : BB) { bool UsedAssumedInformation; if (A.isAssumedDead(I, *this, LivenessAA, UsedAssumedInformation, /* CheckBBLivenessOnly */ false, DepClassTy::OPTIONAL, /* CheckForDeadStore */ true)) continue; // Asummes and "assume-like" (dbg, lifetime, ...) are handled first, the // former is collected the latter is ignored. if (auto *II = dyn_cast(&I)) { if (auto *AI = dyn_cast_or_null(II)) { ED.addAssumeInst(A, *AI); continue; } // TODO: Should we also collect and delete lifetime markers? if (II->isAssumeLikeIntrinsic()) continue; } if (auto *FI = dyn_cast(&I)) { if (!ED.EncounteredNonLocalSideEffect) { // An aligned fence without non-local side-effects is a no-op. if (ED.IsReachedFromAlignedBarrierOnly) continue; // A non-aligned fence without non-local side-effects is a no-op // if the ordering only publishes non-local side-effects (or less). switch (FI->getOrdering()) { case AtomicOrdering::NotAtomic: continue; case AtomicOrdering::Unordered: continue; case AtomicOrdering::Monotonic: continue; case AtomicOrdering::Acquire: break; case AtomicOrdering::Release: continue; case AtomicOrdering::AcquireRelease: break; case AtomicOrdering::SequentiallyConsistent: break; }; } NonNoOpFences.insert(FI); } auto *CB = dyn_cast(&I); bool IsNoSync = AA::isNoSyncInst(A, I, *this); bool IsAlignedBarrier = !IsNoSync && CB && AANoSync::isAlignedBarrier(*CB, AlignedBarrierLastInBlock); AlignedBarrierLastInBlock &= IsNoSync; IsExplicitlyAligned &= IsNoSync; // Next we check for calls. Aligned barriers are handled // explicitly, everything else is kept for the backward traversal and will // also affect our state. if (CB) { if (IsAlignedBarrier) { HandleAlignedBarrier(*CB, ED); AlignedBarrierLastInBlock = true; IsExplicitlyAligned = true; continue; } // Check the pointer(s) of a memory intrinsic explicitly. if (isa(&I)) { if (!ED.EncounteredNonLocalSideEffect && AA::isPotentiallyAffectedByBarrier(A, I, *this)) ED.EncounteredNonLocalSideEffect = true; if (!IsNoSync) { ED.IsReachedFromAlignedBarrierOnly = false; SyncInstWorklist.push_back(&I); } continue; } // Record how we entered the call, then accumulate the effect of the // call in ED for potential use by the callee. auto &CallInED = CEDMap[{CB, PRE}]; Changed |= mergeInPredecessor(A, CallInED, ED); // If we have a sync-definition we can check if it starts/ends in an // aligned barrier. If we are unsure we assume any sync breaks // alignment. Function *Callee = CB->getCalledFunction(); if (!IsNoSync && Callee && !Callee->isDeclaration()) { const auto *EDAA = A.getAAFor( *this, IRPosition::function(*Callee), DepClassTy::OPTIONAL); if (EDAA && EDAA->getState().isValidState()) { const auto &CalleeED = EDAA->getFunctionExecutionDomain(); ED.IsReachedFromAlignedBarrierOnly = CalleeED.IsReachedFromAlignedBarrierOnly; AlignedBarrierLastInBlock = ED.IsReachedFromAlignedBarrierOnly; if (IsNoSync || !CalleeED.IsReachedFromAlignedBarrierOnly) ED.EncounteredNonLocalSideEffect |= CalleeED.EncounteredNonLocalSideEffect; else ED.EncounteredNonLocalSideEffect = CalleeED.EncounteredNonLocalSideEffect; if (!CalleeED.IsReachingAlignedBarrierOnly) { Changed |= setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false); SyncInstWorklist.push_back(&I); } if (CalleeED.IsReachedFromAlignedBarrierOnly) mergeInPredecessorBarriersAndAssumptions(A, ED, CalleeED); auto &CallOutED = CEDMap[{CB, POST}]; Changed |= mergeInPredecessor(A, CallOutED, ED); continue; } } if (!IsNoSync) { ED.IsReachedFromAlignedBarrierOnly = false; Changed |= setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false); SyncInstWorklist.push_back(&I); } AlignedBarrierLastInBlock &= ED.IsReachedFromAlignedBarrierOnly; ED.EncounteredNonLocalSideEffect |= !CB->doesNotAccessMemory(); auto &CallOutED = CEDMap[{CB, POST}]; Changed |= mergeInPredecessor(A, CallOutED, ED); } if (!I.mayHaveSideEffects() && !I.mayReadFromMemory()) continue; // If we have a callee we try to use fine-grained information to // determine local side-effects. if (CB) { const auto *MemAA = A.getAAFor( *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL); auto AccessPred = [&](const Instruction *I, const Value *Ptr, AAMemoryLocation::AccessKind, AAMemoryLocation::MemoryLocationsKind) { return !AA::isPotentiallyAffectedByBarrier(A, {Ptr}, *this, I); }; if (MemAA && MemAA->getState().isValidState() && MemAA->checkForAllAccessesToMemoryKind( AccessPred, AAMemoryLocation::ALL_LOCATIONS)) continue; } auto &InfoCache = A.getInfoCache(); if (!I.mayHaveSideEffects() && InfoCache.isOnlyUsedByAssume(I)) continue; if (auto *LI = dyn_cast(&I)) if (LI->hasMetadata(LLVMContext::MD_invariant_load)) continue; if (!ED.EncounteredNonLocalSideEffect && AA::isPotentiallyAffectedByBarrier(A, I, *this)) ED.EncounteredNonLocalSideEffect = true; } bool IsEndAndNotReachingAlignedBarriersOnly = false; if (!isa(BB.getTerminator()) && !BB.getTerminator()->getNumSuccessors()) { Changed |= mergeInPredecessor(A, InterProceduralED, ED); auto &FnED = BEDMap[nullptr]; if (IsKernel && !IsExplicitlyAligned) FnED.IsReachingAlignedBarrierOnly = false; Changed |= mergeInPredecessor(A, FnED, ED); if (!FnED.IsReachingAlignedBarrierOnly) { IsEndAndNotReachingAlignedBarriersOnly = true; SyncInstWorklist.push_back(BB.getTerminator()); auto &BBED = BEDMap[&BB]; Changed |= setAndRecord(BBED.IsReachingAlignedBarrierOnly, false); } } ExecutionDomainTy &StoredED = BEDMap[&BB]; ED.IsReachingAlignedBarrierOnly = StoredED.IsReachingAlignedBarrierOnly & !IsEndAndNotReachingAlignedBarriersOnly; // Check if we computed anything different as part of the forward // traversal. We do not take assumptions and aligned barriers into account // as they do not influence the state we iterate. Backward traversal values // are handled later on. if (ED.IsExecutedByInitialThreadOnly != StoredED.IsExecutedByInitialThreadOnly || ED.IsReachedFromAlignedBarrierOnly != StoredED.IsReachedFromAlignedBarrierOnly || ED.EncounteredNonLocalSideEffect != StoredED.EncounteredNonLocalSideEffect) Changed = true; // Update the state with the new value. StoredED = std::move(ED); } // Propagate (non-aligned) sync instruction effects backwards until the // entry is hit or an aligned barrier. SmallSetVector Visited; while (!SyncInstWorklist.empty()) { Instruction *SyncInst = SyncInstWorklist.pop_back_val(); Instruction *CurInst = SyncInst; bool HitAlignedBarrierOrKnownEnd = false; while ((CurInst = CurInst->getPrevNode())) { auto *CB = dyn_cast(CurInst); if (!CB) continue; auto &CallOutED = CEDMap[{CB, POST}]; Changed |= setAndRecord(CallOutED.IsReachingAlignedBarrierOnly, false); auto &CallInED = CEDMap[{CB, PRE}]; HitAlignedBarrierOrKnownEnd = AlignedBarriers.count(CB) || !CallInED.IsReachingAlignedBarrierOnly; if (HitAlignedBarrierOrKnownEnd) break; Changed |= setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false); } if (HitAlignedBarrierOrKnownEnd) continue; BasicBlock *SyncBB = SyncInst->getParent(); for (auto *PredBB : predecessors(SyncBB)) { if (LivenessAA && LivenessAA->isEdgeDead(PredBB, SyncBB)) continue; if (!Visited.insert(PredBB)) continue; auto &PredED = BEDMap[PredBB]; if (setAndRecord(PredED.IsReachingAlignedBarrierOnly, false)) { Changed = true; SyncInstWorklist.push_back(PredBB->getTerminator()); } } if (SyncBB != &EntryBB) continue; Changed |= setAndRecord(InterProceduralED.IsReachingAlignedBarrierOnly, false); } return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; } /// Try to replace memory allocation calls called by a single thread with a /// static buffer of shared memory. struct AAHeapToShared : public StateWrapper { using Base = StateWrapper; AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Create an abstract attribute view for the position \p IRP. static AAHeapToShared &createForPosition(const IRPosition &IRP, Attributor &A); /// Returns true if HeapToShared conversion is assumed to be possible. virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; /// Returns true if HeapToShared conversion is assumed and the CB is a /// callsite to a free operation to be removed. virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; /// See AbstractAttribute::getName(). const std::string getName() const override { return "AAHeapToShared"; } /// See AbstractAttribute::getIdAddr(). const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAHeapToShared. static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; struct AAHeapToSharedFunction : public AAHeapToShared { AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) : AAHeapToShared(IRP, A) {} const std::string getAsStr(Attributor *) const override { return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + " malloc calls eligible."; } /// See AbstractAttribute::trackStatistics(). void trackStatistics() const override {} /// This functions finds free calls that will be removed by the /// HeapToShared transformation. void findPotentialRemovedFreeCalls(Attributor &A) { auto &OMPInfoCache = static_cast(A.getInfoCache()); auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; PotentialRemovedFreeCalls.clear(); // Update free call users of found malloc calls. for (CallBase *CB : MallocCalls) { SmallVector FreeCalls; for (auto *U : CB->users()) { CallBase *C = dyn_cast(U); if (C && C->getCalledFunction() == FreeRFI.Declaration) FreeCalls.push_back(C); } if (FreeCalls.size() != 1) continue; PotentialRemovedFreeCalls.insert(FreeCalls.front()); } } void initialize(Attributor &A) override { if (DisableOpenMPOptDeglobalization) { indicatePessimisticFixpoint(); return; } auto &OMPInfoCache = static_cast(A.getInfoCache()); auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; if (!RFI.Declaration) return; Attributor::SimplifictionCallbackTy SCB = [](const IRPosition &, const AbstractAttribute *, bool &) -> std::optional { return nullptr; }; Function *F = getAnchorScope(); for (User *U : RFI.Declaration->users()) if (CallBase *CB = dyn_cast(U)) { if (CB->getFunction() != F) continue; MallocCalls.insert(CB); A.registerSimplificationCallback(IRPosition::callsite_returned(*CB), SCB); } findPotentialRemovedFreeCalls(A); } bool isAssumedHeapToShared(CallBase &CB) const override { return isValidState() && MallocCalls.count(&CB); } bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { return isValidState() && PotentialRemovedFreeCalls.count(&CB); } ChangeStatus manifest(Attributor &A) override { if (MallocCalls.empty()) return ChangeStatus::UNCHANGED; auto &OMPInfoCache = static_cast(A.getInfoCache()); auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; Function *F = getAnchorScope(); auto *HS = A.lookupAAFor(IRPosition::function(*F), this, DepClassTy::OPTIONAL); ChangeStatus Changed = ChangeStatus::UNCHANGED; for (CallBase *CB : MallocCalls) { // Skip replacing this if HeapToStack has already claimed it. if (HS && HS->isAssumedHeapToStack(*CB)) continue; // Find the unique free call to remove it. SmallVector FreeCalls; for (auto *U : CB->users()) { CallBase *C = dyn_cast(U); if (C && C->getCalledFunction() == FreeCall.Declaration) FreeCalls.push_back(C); } if (FreeCalls.size() != 1) continue; auto *AllocSize = cast(CB->getArgOperand(0)); if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB << " with shared memory." << " Shared memory usage is limited to " << SharedMemoryLimit << " bytes\n"); continue; } LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB << " with " << AllocSize->getZExtValue() << " bytes of shared memory\n"); // Create a new shared memory buffer of the same size as the allocation // and replace all the uses of the original allocation with it. Module *M = CB->getModule(); Type *Int8Ty = Type::getInt8Ty(M->getContext()); Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); auto *SharedMem = new GlobalVariable( *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, PoisonValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, GlobalValue::NotThreadLocal, static_cast(AddressSpace::Shared)); auto *NewBuffer = ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); auto Remark = [&](OptimizationRemark OR) { return OR << "Replaced globalized variable with " << ore::NV("SharedMemory", AllocSize->getZExtValue()) << (AllocSize->isOne() ? " byte " : " bytes ") << "of shared memory."; }; A.emitRemark(CB, "OMP111", Remark); MaybeAlign Alignment = CB->getRetAlign(); assert(Alignment && "HeapToShared on allocation without alignment attribute"); SharedMem->setAlignment(*Alignment); A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer); A.deleteAfterManifest(*CB); A.deleteAfterManifest(*FreeCalls.front()); SharedMemoryUsed += AllocSize->getZExtValue(); NumBytesMovedToSharedMemory = SharedMemoryUsed; Changed = ChangeStatus::CHANGED; } return Changed; } ChangeStatus updateImpl(Attributor &A) override { if (MallocCalls.empty()) return indicatePessimisticFixpoint(); auto &OMPInfoCache = static_cast(A.getInfoCache()); auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; if (!RFI.Declaration) return ChangeStatus::UNCHANGED; Function *F = getAnchorScope(); auto NumMallocCalls = MallocCalls.size(); // Only consider malloc calls executed by a single thread with a constant. for (User *U : RFI.Declaration->users()) { if (CallBase *CB = dyn_cast(U)) { if (CB->getCaller() != F) continue; if (!MallocCalls.count(CB)) continue; if (!isa(CB->getArgOperand(0))) { MallocCalls.remove(CB); continue; } const auto *ED = A.getAAFor( *this, IRPosition::function(*F), DepClassTy::REQUIRED); if (!ED || !ED->isExecutedByInitialThreadOnly(*CB)) MallocCalls.remove(CB); } } findPotentialRemovedFreeCalls(A); if (NumMallocCalls != MallocCalls.size()) return ChangeStatus::CHANGED; return ChangeStatus::UNCHANGED; } /// Collection of all malloc calls in a function. SmallSetVector MallocCalls; /// Collection of potentially removed free calls in a function. SmallPtrSet PotentialRemovedFreeCalls; /// The total amount of shared memory that has been used for HeapToShared. unsigned SharedMemoryUsed = 0; }; struct AAKernelInfo : public StateWrapper { using Base = StateWrapper; AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// The callee value is tracked beyond a simple stripPointerCasts, so we allow /// unknown callees. static bool requiresCalleeForCallBase() { return false; } /// Statistics are tracked as part of manifest for now. void trackStatistics() const override {} /// See AbstractAttribute::getAsStr() const std::string getAsStr(Attributor *) const override { if (!isValidState()) return ""; return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" : "generic") + std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" : "") + std::string(" #PRs: ") + (ReachedKnownParallelRegions.isValidState() ? std::to_string(ReachedKnownParallelRegions.size()) : "") + ", #Unknown PRs: " + (ReachedUnknownParallelRegions.isValidState() ? std::to_string(ReachedUnknownParallelRegions.size()) : "") + ", #Reaching Kernels: " + (ReachingKernelEntries.isValidState() ? std::to_string(ReachingKernelEntries.size()) : "") + ", #ParLevels: " + (ParallelLevels.isValidState() ? std::to_string(ParallelLevels.size()) : "") + ", NestedPar: " + (NestedParallelism ? "yes" : "no"); } /// Create an abstract attribute biew for the position \p IRP. static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAKernelInfo"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AAKernelInfo static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } static const char ID; }; /// The function kernel info abstract attribute, basically, what can we say /// about a function with regards to the KernelInfoState. struct AAKernelInfoFunction : AAKernelInfo { AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) : AAKernelInfo(IRP, A) {} SmallPtrSet GuardedInstructions; SmallPtrSetImpl &getGuardedInstructions() { return GuardedInstructions; } void setConfigurationOfKernelEnvironment(ConstantStruct *ConfigC) { Constant *NewKernelEnvC = ConstantFoldInsertValueInstruction( KernelEnvC, ConfigC, {KernelInfo::ConfigurationIdx}); assert(NewKernelEnvC && "Failed to create new kernel environment"); KernelEnvC = cast(NewKernelEnvC); } #define KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MEMBER) \ void set##MEMBER##OfKernelEnvironment(ConstantInt *NewVal) { \ ConstantStruct *ConfigC = \ KernelInfo::getConfigurationFromKernelEnvironment(KernelEnvC); \ Constant *NewConfigC = ConstantFoldInsertValueInstruction( \ ConfigC, NewVal, {KernelInfo::MEMBER##Idx}); \ assert(NewConfigC && "Failed to create new configuration environment"); \ setConfigurationOfKernelEnvironment(cast(NewConfigC)); \ } KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(UseGenericStateMachine) KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MayUseNestedParallelism) KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(ExecMode) KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinThreads) KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxThreads) KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinTeams) KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxTeams) #undef KERNEL_ENVIRONMENT_CONFIGURATION_SETTER /// See AbstractAttribute::initialize(...). void initialize(Attributor &A) override { // This is a high-level transform that might change the constant arguments // of the init and dinit calls. We need to tell the Attributor about this // to avoid other parts using the current constant value for simpliication. auto &OMPInfoCache = static_cast(A.getInfoCache()); Function *Fn = getAnchorScope(); OMPInformationCache::RuntimeFunctionInfo &InitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; // For kernels we perform more initialization work, first we find the init // and deinit calls. auto StoreCallBase = [](Use &U, OMPInformationCache::RuntimeFunctionInfo &RFI, CallBase *&Storage) { CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); assert(CB && "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); assert(!Storage && "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); Storage = CB; return false; }; InitRFI.foreachUse( [&](Use &U, Function &) { StoreCallBase(U, InitRFI, KernelInitCB); return false; }, Fn); DeinitRFI.foreachUse( [&](Use &U, Function &) { StoreCallBase(U, DeinitRFI, KernelDeinitCB); return false; }, Fn); // Ignore kernels without initializers such as global constructors. if (!KernelInitCB || !KernelDeinitCB) return; // Add itself to the reaching kernel and set IsKernelEntry. ReachingKernelEntries.insert(Fn); IsKernelEntry = true; KernelEnvC = KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); GlobalVariable *KernelEnvGV = KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB); Attributor::GlobalVariableSimplifictionCallbackTy KernelConfigurationSimplifyCB = [&](const GlobalVariable &GV, const AbstractAttribute *AA, bool &UsedAssumedInformation) -> std::optional { if (!isAtFixpoint()) { if (!AA) return nullptr; UsedAssumedInformation = true; A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); } return KernelEnvC; }; A.registerGlobalVariableSimplificationCallback( *KernelEnvGV, KernelConfigurationSimplifyCB); // Check if we know we are in SPMD-mode already. ConstantInt *ExecModeC = KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC); ConstantInt *AssumedExecModeC = ConstantInt::get( ExecModeC->getIntegerType(), ExecModeC->getSExtValue() | OMP_TGT_EXEC_MODE_GENERIC_SPMD); if (ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD) SPMDCompatibilityTracker.indicateOptimisticFixpoint(); else if (DisableOpenMPOptSPMDization) // This is a generic region but SPMDization is disabled so stop // tracking. SPMDCompatibilityTracker.indicatePessimisticFixpoint(); else setExecModeOfKernelEnvironment(AssumedExecModeC); const Triple T(Fn->getParent()->getTargetTriple()); auto *Int32Ty = Type::getInt32Ty(Fn->getContext()); auto [MinThreads, MaxThreads] = OpenMPIRBuilder::readThreadBoundsForKernel(T, *Fn); if (MinThreads) setMinThreadsOfKernelEnvironment(ConstantInt::get(Int32Ty, MinThreads)); if (MaxThreads) setMaxThreadsOfKernelEnvironment(ConstantInt::get(Int32Ty, MaxThreads)); auto [MinTeams, MaxTeams] = OpenMPIRBuilder::readTeamBoundsForKernel(T, *Fn); if (MinTeams) setMinTeamsOfKernelEnvironment(ConstantInt::get(Int32Ty, MinTeams)); if (MaxTeams) setMaxTeamsOfKernelEnvironment(ConstantInt::get(Int32Ty, MaxTeams)); ConstantInt *MayUseNestedParallelismC = KernelInfo::getMayUseNestedParallelismFromKernelEnvironment(KernelEnvC); ConstantInt *AssumedMayUseNestedParallelismC = ConstantInt::get( MayUseNestedParallelismC->getIntegerType(), NestedParallelism); setMayUseNestedParallelismOfKernelEnvironment( AssumedMayUseNestedParallelismC); if (!DisableOpenMPOptStateMachineRewrite) { ConstantInt *UseGenericStateMachineC = KernelInfo::getUseGenericStateMachineFromKernelEnvironment( KernelEnvC); ConstantInt *AssumedUseGenericStateMachineC = ConstantInt::get(UseGenericStateMachineC->getIntegerType(), false); setUseGenericStateMachineOfKernelEnvironment( AssumedUseGenericStateMachineC); } // Register virtual uses of functions we might need to preserve. auto RegisterVirtualUse = [&](RuntimeFunction RFKind, Attributor::VirtualUseCallbackTy &CB) { if (!OMPInfoCache.RFIs[RFKind].Declaration) return; A.registerVirtualUseCallback(*OMPInfoCache.RFIs[RFKind].Declaration, CB); }; // Add a dependence to ensure updates if the state changes. auto AddDependence = [](Attributor &A, const AAKernelInfo *KI, const AbstractAttribute *QueryingAA) { if (QueryingAA) { A.recordDependence(*KI, *QueryingAA, DepClassTy::OPTIONAL); } return true; }; Attributor::VirtualUseCallbackTy CustomStateMachineUseCB = [&](Attributor &A, const AbstractAttribute *QueryingAA) { // Whenever we create a custom state machine we will insert calls to // __kmpc_get_hardware_num_threads_in_block, // __kmpc_get_warp_size, // __kmpc_barrier_simple_generic, // __kmpc_kernel_parallel, and // __kmpc_kernel_end_parallel. // Not needed if we are on track for SPMDzation. if (SPMDCompatibilityTracker.isValidState()) return AddDependence(A, this, QueryingAA); // Not needed if we can't rewrite due to an invalid state. if (!ReachedKnownParallelRegions.isValidState()) return AddDependence(A, this, QueryingAA); return false; }; // Not needed if we are pre-runtime merge. if (!KernelInitCB->getCalledFunction()->isDeclaration()) { RegisterVirtualUse(OMPRTL___kmpc_get_hardware_num_threads_in_block, CustomStateMachineUseCB); RegisterVirtualUse(OMPRTL___kmpc_get_warp_size, CustomStateMachineUseCB); RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_generic, CustomStateMachineUseCB); RegisterVirtualUse(OMPRTL___kmpc_kernel_parallel, CustomStateMachineUseCB); RegisterVirtualUse(OMPRTL___kmpc_kernel_end_parallel, CustomStateMachineUseCB); } // If we do not perform SPMDzation we do not need the virtual uses below. if (SPMDCompatibilityTracker.isAtFixpoint()) return; Attributor::VirtualUseCallbackTy HWThreadIdUseCB = [&](Attributor &A, const AbstractAttribute *QueryingAA) { // Whenever we perform SPMDzation we will insert // __kmpc_get_hardware_thread_id_in_block calls. if (!SPMDCompatibilityTracker.isValidState()) return AddDependence(A, this, QueryingAA); return false; }; RegisterVirtualUse(OMPRTL___kmpc_get_hardware_thread_id_in_block, HWThreadIdUseCB); Attributor::VirtualUseCallbackTy SPMDBarrierUseCB = [&](Attributor &A, const AbstractAttribute *QueryingAA) { // Whenever we perform SPMDzation with guarding we will insert // __kmpc_simple_barrier_spmd calls. If SPMDzation failed, there is // nothing to guard, or there are no parallel regions, we don't need // the calls. if (!SPMDCompatibilityTracker.isValidState()) return AddDependence(A, this, QueryingAA); if (SPMDCompatibilityTracker.empty()) return AddDependence(A, this, QueryingAA); if (!mayContainParallelRegion()) return AddDependence(A, this, QueryingAA); return false; }; RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_spmd, SPMDBarrierUseCB); } /// Sanitize the string \p S such that it is a suitable global symbol name. static std::string sanitizeForGlobalName(std::string S) { std::replace_if( S.begin(), S.end(), [](const char C) { return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || (C >= '0' && C <= '9') || C == '_'); }, '.'); return S; } /// Modify the IR based on the KernelInfoState as the fixpoint iteration is /// finished now. ChangeStatus manifest(Attributor &A) override { // If we are not looking at a kernel with __kmpc_target_init and // __kmpc_target_deinit call we cannot actually manifest the information. if (!KernelInitCB || !KernelDeinitCB) return ChangeStatus::UNCHANGED; ChangeStatus Changed = ChangeStatus::UNCHANGED; bool HasBuiltStateMachine = true; if (!changeToSPMDMode(A, Changed)) { if (!KernelInitCB->getCalledFunction()->isDeclaration()) HasBuiltStateMachine = buildCustomStateMachine(A, Changed); else HasBuiltStateMachine = false; } // We need to reset KernelEnvC if specific rewriting is not done. ConstantStruct *ExistingKernelEnvC = KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); ConstantInt *OldUseGenericStateMachineVal = KernelInfo::getUseGenericStateMachineFromKernelEnvironment( ExistingKernelEnvC); if (!HasBuiltStateMachine) setUseGenericStateMachineOfKernelEnvironment( OldUseGenericStateMachineVal); // At last, update the KernelEnvc GlobalVariable *KernelEnvGV = KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB); if (KernelEnvGV->getInitializer() != KernelEnvC) { KernelEnvGV->setInitializer(KernelEnvC); Changed = ChangeStatus::CHANGED; } return Changed; } void insertInstructionGuardsHelper(Attributor &A) { auto &OMPInfoCache = static_cast(A.getInfoCache()); auto CreateGuardedRegion = [&](Instruction *RegionStartI, Instruction *RegionEndI) { LoopInfo *LI = nullptr; DominatorTree *DT = nullptr; MemorySSAUpdater *MSU = nullptr; using InsertPointTy = OpenMPIRBuilder::InsertPointTy; BasicBlock *ParentBB = RegionStartI->getParent(); Function *Fn = ParentBB->getParent(); Module &M = *Fn->getParent(); // Create all the blocks and logic. // ParentBB: // goto RegionCheckTidBB // RegionCheckTidBB: // Tid = __kmpc_hardware_thread_id() // if (Tid != 0) // goto RegionBarrierBB // RegionStartBB: // // goto RegionEndBB // RegionEndBB: // // goto RegionBarrierBB // RegionBarrierBB: // __kmpc_simple_barrier_spmd() // // second barrier is omitted if lacking escaping values. // // __kmpc_simple_barrier_spmd() // goto RegionExitBB // RegionExitBB: // BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), DT, LI, MSU, "region.guarded.end"); BasicBlock *RegionBarrierBB = SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, MSU, "region.barrier"); BasicBlock *RegionExitBB = SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), DT, LI, MSU, "region.exit"); BasicBlock *RegionStartBB = SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); assert(ParentBB->getUniqueSuccessor() == RegionStartBB && "Expected a different CFG"); BasicBlock *RegionCheckTidBB = SplitBlock( ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); // Register basic blocks with the Attributor. A.registerManifestAddedBasicBlock(*RegionEndBB); A.registerManifestAddedBasicBlock(*RegionBarrierBB); A.registerManifestAddedBasicBlock(*RegionExitBB); A.registerManifestAddedBasicBlock(*RegionStartBB); A.registerManifestAddedBasicBlock(*RegionCheckTidBB); bool HasBroadcastValues = false; // Find escaping outputs from the guarded region to outside users and // broadcast their values to them. for (Instruction &I : *RegionStartBB) { SmallVector OutsideUses; for (Use &U : I.uses()) { Instruction &UsrI = *cast(U.getUser()); if (UsrI.getParent() != RegionStartBB) OutsideUses.push_back(&U); } if (OutsideUses.empty()) continue; HasBroadcastValues = true; // Emit a global variable in shared memory to store the broadcasted // value. auto *SharedMem = new GlobalVariable( M, I.getType(), /* IsConstant */ false, GlobalValue::InternalLinkage, UndefValue::get(I.getType()), sanitizeForGlobalName( (I.getName() + ".guarded.output.alloc").str()), nullptr, GlobalValue::NotThreadLocal, static_cast(AddressSpace::Shared)); // Emit a store instruction to update the value. new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()->getIterator()); LoadInst *LoadI = new LoadInst( I.getType(), SharedMem, I.getName() + ".guarded.output.load", RegionBarrierBB->getTerminator()->getIterator()); // Emit a load instruction and replace uses of the output value. for (Use *U : OutsideUses) A.changeUseAfterManifest(*U, *LoadI); } auto &OMPInfoCache = static_cast(A.getInfoCache()); // Go to tid check BB in ParentBB. const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); ParentBB->getTerminator()->eraseFromParent(); OpenMPIRBuilder::LocationDescription Loc( InsertPointTy(ParentBB, ParentBB->end()), DL); OMPInfoCache.OMPBuilder.updateToLocation(Loc); uint32_t SrcLocStrSize; auto *SrcLocStr = OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); // Add check for Tid in RegionCheckTidBB RegionCheckTidBB->getTerminator()->eraseFromParent(); OpenMPIRBuilder::LocationDescription LocRegionCheckTid( InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); FunctionCallee HardwareTidFn = OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_get_hardware_thread_id_in_block); CallInst *Tid = OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); Tid->setDebugLoc(DL); OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); OMPInfoCache.OMPBuilder.Builder .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) ->setDebugLoc(DL); // First barrier for synchronization, ensures main thread has updated // values. FunctionCallee BarrierFn = OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_barrier_simple_spmd); OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); CallInst *Barrier = OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); Barrier->setDebugLoc(DL); OMPInfoCache.setCallingConvention(BarrierFn, Barrier); // Second barrier ensures workers have read broadcast values. if (HasBroadcastValues) { CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", RegionBarrierBB->getTerminator()->getIterator()); Barrier->setDebugLoc(DL); OMPInfoCache.setCallingConvention(BarrierFn, Barrier); } }; auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; SmallPtrSet Visited; for (Instruction *GuardedI : SPMDCompatibilityTracker) { BasicBlock *BB = GuardedI->getParent(); if (!Visited.insert(BB).second) continue; SmallVector> Reorders; Instruction *LastEffect = nullptr; BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); while (++IP != IPEnd) { if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) continue; Instruction *I = &*IP; if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) continue; if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { LastEffect = nullptr; continue; } if (LastEffect) Reorders.push_back({I, LastEffect}); LastEffect = &*IP; } for (auto &Reorder : Reorders) Reorder.first->moveBefore(Reorder.second); } SmallVector, 4> GuardedRegions; for (Instruction *GuardedI : SPMDCompatibilityTracker) { BasicBlock *BB = GuardedI->getParent(); auto *CalleeAA = A.lookupAAFor( IRPosition::function(*GuardedI->getFunction()), nullptr, DepClassTy::NONE); assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); auto &CalleeAAFunction = *cast(CalleeAA); // Continue if instruction is already guarded. if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) continue; Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; for (Instruction &I : *BB) { // If instruction I needs to be guarded update the guarded region // bounds. if (SPMDCompatibilityTracker.contains(&I)) { CalleeAAFunction.getGuardedInstructions().insert(&I); if (GuardedRegionStart) GuardedRegionEnd = &I; else GuardedRegionStart = GuardedRegionEnd = &I; continue; } // Instruction I does not need guarding, store // any region found and reset bounds. if (GuardedRegionStart) { GuardedRegions.push_back( std::make_pair(GuardedRegionStart, GuardedRegionEnd)); GuardedRegionStart = nullptr; GuardedRegionEnd = nullptr; } } } for (auto &GR : GuardedRegions) CreateGuardedRegion(GR.first, GR.second); } void forceSingleThreadPerWorkgroupHelper(Attributor &A) { // Only allow 1 thread per workgroup to continue executing the user code. // // InitCB = __kmpc_target_init(...) // ThreadIdInBlock = __kmpc_get_hardware_thread_id_in_block(); // if (ThreadIdInBlock != 0) return; // UserCode: // // user code // auto &Ctx = getAnchorValue().getContext(); Function *Kernel = getAssociatedFunction(); assert(Kernel && "Expected an associated function!"); // Create block for user code to branch to from initial block. BasicBlock *InitBB = KernelInitCB->getParent(); BasicBlock *UserCodeBB = InitBB->splitBasicBlock( KernelInitCB->getNextNode(), "main.thread.user_code"); BasicBlock *ReturnBB = BasicBlock::Create(Ctx, "exit.threads", Kernel, UserCodeBB); // Register blocks with attributor: A.registerManifestAddedBasicBlock(*InitBB); A.registerManifestAddedBasicBlock(*UserCodeBB); A.registerManifestAddedBasicBlock(*ReturnBB); // Debug location: const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); ReturnInst::Create(Ctx, ReturnBB)->setDebugLoc(DLoc); InitBB->getTerminator()->eraseFromParent(); // Prepare call to OMPRTL___kmpc_get_hardware_thread_id_in_block. Module &M = *Kernel->getParent(); auto &OMPInfoCache = static_cast(A.getInfoCache()); FunctionCallee ThreadIdInBlockFn = OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_get_hardware_thread_id_in_block); // Get thread ID in block. CallInst *ThreadIdInBlock = CallInst::Create(ThreadIdInBlockFn, "thread_id.in.block", InitBB); OMPInfoCache.setCallingConvention(ThreadIdInBlockFn, ThreadIdInBlock); ThreadIdInBlock->setDebugLoc(DLoc); // Eliminate all threads in the block with ID not equal to 0: Instruction *IsMainThread = ICmpInst::Create(ICmpInst::ICmp, CmpInst::ICMP_NE, ThreadIdInBlock, ConstantInt::get(ThreadIdInBlock->getType(), 0), "thread.is_main", InitBB); IsMainThread->setDebugLoc(DLoc); BranchInst::Create(ReturnBB, UserCodeBB, IsMainThread, InitBB); } bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { auto &OMPInfoCache = static_cast(A.getInfoCache()); // We cannot change to SPMD mode if the runtime functions aren't availible. if (!OMPInfoCache.runtimeFnsAvailable( {OMPRTL___kmpc_get_hardware_thread_id_in_block, OMPRTL___kmpc_barrier_simple_spmd})) return false; if (!SPMDCompatibilityTracker.isAssumed()) { for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { if (!NonCompatibleI) continue; // Skip diagnostics on calls to known OpenMP runtime functions for now. if (auto *CB = dyn_cast(NonCompatibleI)) if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) continue; auto Remark = [&](OptimizationRemarkAnalysis ORA) { ORA << "Value has potential side effects preventing SPMD-mode " "execution"; if (isa(NonCompatibleI)) { ORA << ". Add `[[omp::assume(\"ompx_spmd_amenable\")]]` to " "the called function to override"; } return ORA << "."; }; A.emitRemark(NonCompatibleI, "OMP121", Remark); LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " << *NonCompatibleI << "\n"); } return false; } // Get the actual kernel, could be the caller of the anchor scope if we have // a debug wrapper. Function *Kernel = getAnchorScope(); if (Kernel->hasLocalLinkage()) { assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper."); auto *CB = cast(Kernel->user_back()); Kernel = CB->getCaller(); } assert(omp::isOpenMPKernel(*Kernel) && "Expected kernel function!"); // Check if the kernel is already in SPMD mode, if so, return success. ConstantStruct *ExistingKernelEnvC = KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); auto *ExecModeC = KernelInfo::getExecModeFromKernelEnvironment(ExistingKernelEnvC); const int8_t ExecModeVal = ExecModeC->getSExtValue(); if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) return true; // We will now unconditionally modify the IR, indicate a change. Changed = ChangeStatus::CHANGED; // Do not use instruction guards when no parallel is present inside // the target region. if (mayContainParallelRegion()) insertInstructionGuardsHelper(A); else forceSingleThreadPerWorkgroupHelper(A); // Adjust the global exec mode flag that tells the runtime what mode this // kernel is executed in. assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && "Initially non-SPMD kernel has SPMD exec mode!"); setExecModeOfKernelEnvironment( ConstantInt::get(ExecModeC->getIntegerType(), ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); ++NumOpenMPTargetRegionKernelsSPMD; auto Remark = [&](OptimizationRemark OR) { return OR << "Transformed generic-mode kernel to SPMD-mode."; }; A.emitRemark(KernelInitCB, "OMP120", Remark); return true; }; bool buildCustomStateMachine(Attributor &A, ChangeStatus &Changed) { // If we have disabled state machine rewrites, don't make a custom one if (DisableOpenMPOptStateMachineRewrite) return false; // Don't rewrite the state machine if we are not in a valid state. if (!ReachedKnownParallelRegions.isValidState()) return false; auto &OMPInfoCache = static_cast(A.getInfoCache()); if (!OMPInfoCache.runtimeFnsAvailable( {OMPRTL___kmpc_get_hardware_num_threads_in_block, OMPRTL___kmpc_get_warp_size, OMPRTL___kmpc_barrier_simple_generic, OMPRTL___kmpc_kernel_parallel, OMPRTL___kmpc_kernel_end_parallel})) return false; ConstantStruct *ExistingKernelEnvC = KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); // Check if the current configuration is non-SPMD and generic state machine. // If we already have SPMD mode or a custom state machine we do not need to // go any further. If it is anything but a constant something is weird and // we give up. ConstantInt *UseStateMachineC = KernelInfo::getUseGenericStateMachineFromKernelEnvironment( ExistingKernelEnvC); ConstantInt *ModeC = KernelInfo::getExecModeFromKernelEnvironment(ExistingKernelEnvC); // If we are stuck with generic mode, try to create a custom device (=GPU) // state machine which is specialized for the parallel regions that are // reachable by the kernel. if (UseStateMachineC->isZero() || (ModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) return false; Changed = ChangeStatus::CHANGED; // If not SPMD mode, indicate we use a custom state machine now. setUseGenericStateMachineOfKernelEnvironment( ConstantInt::get(UseStateMachineC->getIntegerType(), false)); // If we don't actually need a state machine we are done here. This can // happen if there simply are no parallel regions. In the resulting kernel // all worker threads will simply exit right away, leaving the main thread // to do the work alone. if (!mayContainParallelRegion()) { ++NumOpenMPTargetRegionKernelsWithoutStateMachine; auto Remark = [&](OptimizationRemark OR) { return OR << "Removing unused state machine from generic-mode kernel."; }; A.emitRemark(KernelInitCB, "OMP130", Remark); return true; } // Keep track in the statistics of our new shiny custom state machine. if (ReachedUnknownParallelRegions.empty()) { ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; auto Remark = [&](OptimizationRemark OR) { return OR << "Rewriting generic-mode kernel with a customized state " "machine."; }; A.emitRemark(KernelInitCB, "OMP131", Remark); } else { ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; auto Remark = [&](OptimizationRemarkAnalysis OR) { return OR << "Generic-mode kernel is executed with a customized state " "machine that requires a fallback."; }; A.emitRemark(KernelInitCB, "OMP132", Remark); // Tell the user why we ended up with a fallback. for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { if (!UnknownParallelRegionCB) continue; auto Remark = [&](OptimizationRemarkAnalysis ORA) { return ORA << "Call may contain unknown parallel regions. Use " << "`[[omp::assume(\"omp_no_parallelism\")]]` to " "override."; }; A.emitRemark(UnknownParallelRegionCB, "OMP133", Remark); } } // Create all the blocks: // // InitCB = __kmpc_target_init(...) // BlockHwSize = // __kmpc_get_hardware_num_threads_in_block(); // WarpSize = __kmpc_get_warp_size(); // BlockSize = BlockHwSize - WarpSize; // IsWorkerCheckBB: bool IsWorker = InitCB != -1; // if (IsWorker) { // if (InitCB >= BlockSize) return; // SMBeginBB: __kmpc_barrier_simple_generic(...); // void *WorkFn; // bool Active = __kmpc_kernel_parallel(&WorkFn); // if (!WorkFn) return; // SMIsActiveCheckBB: if (Active) { // SMIfCascadeCurrentBB: if (WorkFn == ) // ParFn0(...); // SMIfCascadeCurrentBB: else if (WorkFn == ) // ParFn1(...); // ... // SMIfCascadeCurrentBB: else // ((WorkFnTy*)WorkFn)(...); // SMEndParallelBB: __kmpc_kernel_end_parallel(...); // } // SMDoneBB: __kmpc_barrier_simple_generic(...); // goto SMBeginBB; // } // UserCodeEntryBB: // user code // __kmpc_target_deinit(...) // auto &Ctx = getAnchorValue().getContext(); Function *Kernel = getAssociatedFunction(); assert(Kernel && "Expected an associated function!"); BasicBlock *InitBB = KernelInitCB->getParent(); BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( KernelInitCB->getNextNode(), "thread.user_code.check"); BasicBlock *IsWorkerCheckBB = BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); BasicBlock *StateMachineBeginBB = BasicBlock::Create( Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); BasicBlock *StateMachineFinishedBB = BasicBlock::Create( Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); BasicBlock *StateMachineIfCascadeCurrentBB = BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", Kernel, UserCodeEntryBB); BasicBlock *StateMachineEndParallelBB = BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", Kernel, UserCodeEntryBB); BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); A.registerManifestAddedBasicBlock(*InitBB); A.registerManifestAddedBasicBlock(*UserCodeEntryBB); A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); A.registerManifestAddedBasicBlock(*StateMachineBeginBB); A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); InitBB->getTerminator()->eraseFromParent(); Instruction *IsWorker = ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, ConstantInt::get(KernelInitCB->getType(), -1), "thread.is_worker", InitBB); IsWorker->setDebugLoc(DLoc); BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB); Module &M = *Kernel->getParent(); FunctionCallee BlockHwSizeFn = OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_get_hardware_num_threads_in_block); FunctionCallee WarpSizeFn = OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_get_warp_size); CallInst *BlockHwSize = CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB); OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); BlockHwSize->setDebugLoc(DLoc); CallInst *WarpSize = CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB); OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); WarpSize->setDebugLoc(DLoc); Instruction *BlockSize = BinaryOperator::CreateSub( BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB); BlockSize->setDebugLoc(DLoc); Instruction *IsMainOrWorker = ICmpInst::Create( ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize, "thread.is_main_or_worker", IsWorkerCheckBB); IsMainOrWorker->setDebugLoc(DLoc); BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB, IsMainOrWorker, IsWorkerCheckBB); // Create local storage for the work function pointer. const DataLayout &DL = M.getDataLayout(); Type *VoidPtrTy = PointerType::getUnqual(Ctx); Instruction *WorkFnAI = new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, "worker.work_fn.addr", Kernel->getEntryBlock().begin()); WorkFnAI->setDebugLoc(DLoc); OMPInfoCache.OMPBuilder.updateToLocation( OpenMPIRBuilder::LocationDescription( IRBuilder<>::InsertPoint(StateMachineBeginBB, StateMachineBeginBB->end()), DLoc)); Value *Ident = KernelInfo::getIdentFromKernelEnvironment(KernelEnvC); Value *GTid = KernelInitCB; FunctionCallee BarrierFn = OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_barrier_simple_generic); CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); OMPInfoCache.setCallingConvention(BarrierFn, Barrier); Barrier->setDebugLoc(DLoc); if (WorkFnAI->getType()->getPointerAddressSpace() != (unsigned int)AddressSpace::Generic) { WorkFnAI = new AddrSpaceCastInst( WorkFnAI, PointerType::get(Ctx, (unsigned int)AddressSpace::Generic), WorkFnAI->getName() + ".generic", StateMachineBeginBB); WorkFnAI->setDebugLoc(DLoc); } FunctionCallee KernelParallelFn = OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_kernel_parallel); CallInst *IsActiveWorker = CallInst::Create( KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); IsActiveWorker->setDebugLoc(DLoc); Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", StateMachineBeginBB); WorkFn->setDebugLoc(DLoc); FunctionType *ParallelRegionFnTy = FunctionType::get( Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, false); Instruction *IsDone = ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, Constant::getNullValue(VoidPtrTy), "worker.is_done", StateMachineBeginBB); IsDone->setDebugLoc(DLoc); BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, IsDone, StateMachineBeginBB) ->setDebugLoc(DLoc); BranchInst::Create(StateMachineIfCascadeCurrentBB, StateMachineDoneBarrierBB, IsActiveWorker, StateMachineIsActiveCheckBB) ->setDebugLoc(DLoc); Value *ZeroArg = Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); const unsigned int WrapperFunctionArgNo = 6; // Now that we have most of the CFG skeleton it is time for the if-cascade // that checks the function pointer we got from the runtime against the // parallel regions we expect, if there are any. for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { auto *CB = ReachedKnownParallelRegions[I]; auto *ParallelRegion = dyn_cast( CB->getArgOperand(WrapperFunctionArgNo)->stripPointerCasts()); BasicBlock *PRExecuteBB = BasicBlock::Create( Ctx, "worker_state_machine.parallel_region.execute", Kernel, StateMachineEndParallelBB); CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) ->setDebugLoc(DLoc); BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) ->setDebugLoc(DLoc); BasicBlock *PRNextBB = BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", Kernel, StateMachineEndParallelBB); A.registerManifestAddedBasicBlock(*PRExecuteBB); A.registerManifestAddedBasicBlock(*PRNextBB); // Check if we need to compare the pointer at all or if we can just // call the parallel region function. Value *IsPR; if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { Instruction *CmpI = ICmpInst::Create( ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, ParallelRegion, "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); CmpI->setDebugLoc(DLoc); IsPR = CmpI; } else { IsPR = ConstantInt::getTrue(Ctx); } BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, StateMachineIfCascadeCurrentBB) ->setDebugLoc(DLoc); StateMachineIfCascadeCurrentBB = PRNextBB; } // At the end of the if-cascade we place the indirect function pointer call // in case we might need it, that is if there can be parallel regions we // have not handled in the if-cascade above. if (!ReachedUnknownParallelRegions.empty()) { StateMachineIfCascadeCurrentBB->setName( "worker_state_machine.parallel_region.fallback.execute"); CallInst::Create(ParallelRegionFnTy, WorkFn, {ZeroArg, GTid}, "", StateMachineIfCascadeCurrentBB) ->setDebugLoc(DLoc); } BranchInst::Create(StateMachineEndParallelBB, StateMachineIfCascadeCurrentBB) ->setDebugLoc(DLoc); FunctionCallee EndParallelFn = OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_kernel_end_parallel); CallInst *EndParallel = CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); EndParallel->setDebugLoc(DLoc); BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) ->setDebugLoc(DLoc); CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) ->setDebugLoc(DLoc); BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) ->setDebugLoc(DLoc); return true; } /// Fixpoint iteration update function. Will be called every time a dependence /// changed its state (and in the beginning). ChangeStatus updateImpl(Attributor &A) override { KernelInfoState StateBefore = getState(); // When we leave this function this RAII will make sure the member // KernelEnvC is updated properly depending on the state. That member is // used for simplification of values and needs to be up to date at all // times. struct UpdateKernelEnvCRAII { AAKernelInfoFunction &AA; UpdateKernelEnvCRAII(AAKernelInfoFunction &AA) : AA(AA) {} ~UpdateKernelEnvCRAII() { if (!AA.KernelEnvC) return; ConstantStruct *ExistingKernelEnvC = KernelInfo::getKernelEnvironementFromKernelInitCB(AA.KernelInitCB); if (!AA.isValidState()) { AA.KernelEnvC = ExistingKernelEnvC; return; } if (!AA.ReachedKnownParallelRegions.isValidState()) AA.setUseGenericStateMachineOfKernelEnvironment( KernelInfo::getUseGenericStateMachineFromKernelEnvironment( ExistingKernelEnvC)); if (!AA.SPMDCompatibilityTracker.isValidState()) AA.setExecModeOfKernelEnvironment( KernelInfo::getExecModeFromKernelEnvironment(ExistingKernelEnvC)); ConstantInt *MayUseNestedParallelismC = KernelInfo::getMayUseNestedParallelismFromKernelEnvironment( AA.KernelEnvC); ConstantInt *NewMayUseNestedParallelismC = ConstantInt::get( MayUseNestedParallelismC->getIntegerType(), AA.NestedParallelism); AA.setMayUseNestedParallelismOfKernelEnvironment( NewMayUseNestedParallelismC); } } RAII(*this); // Callback to check a read/write instruction. auto CheckRWInst = [&](Instruction &I) { // We handle calls later. if (isa(I)) return true; // We only care about write effects. if (!I.mayWriteToMemory()) return true; if (auto *SI = dyn_cast(&I)) { const auto *UnderlyingObjsAA = A.getAAFor( *this, IRPosition::value(*SI->getPointerOperand()), DepClassTy::OPTIONAL); auto *HS = A.getAAFor( *this, IRPosition::function(*I.getFunction()), DepClassTy::OPTIONAL); if (UnderlyingObjsAA && UnderlyingObjsAA->forallUnderlyingObjects([&](Value &Obj) { if (AA::isAssumedThreadLocalObject(A, Obj, *this)) return true; // Check for AAHeapToStack moved objects which must not be // guarded. auto *CB = dyn_cast(&Obj); return CB && HS && HS->isAssumedHeapToStack(*CB); })) return true; } // Insert instruction that needs guarding. SPMDCompatibilityTracker.insert(&I); return true; }; bool UsedAssumedInformationInCheckRWInst = false; if (!SPMDCompatibilityTracker.isAtFixpoint()) if (!A.checkForAllReadWriteInstructions( CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) SPMDCompatibilityTracker.indicatePessimisticFixpoint(); bool UsedAssumedInformationFromReachingKernels = false; if (!IsKernelEntry) { updateParallelLevels(A); bool AllReachingKernelsKnown = true; updateReachingKernelEntries(A, AllReachingKernelsKnown); UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; if (!SPMDCompatibilityTracker.empty()) { if (!ParallelLevels.isValidState()) SPMDCompatibilityTracker.indicatePessimisticFixpoint(); else if (!ReachingKernelEntries.isValidState()) SPMDCompatibilityTracker.indicatePessimisticFixpoint(); else { // Check if all reaching kernels agree on the mode as we can otherwise // not guard instructions. We might not be sure about the mode so we // we cannot fix the internal spmd-zation state either. int SPMD = 0, Generic = 0; for (auto *Kernel : ReachingKernelEntries) { auto *CBAA = A.getAAFor( *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); if (CBAA && CBAA->SPMDCompatibilityTracker.isValidState() && CBAA->SPMDCompatibilityTracker.isAssumed()) ++SPMD; else ++Generic; if (!CBAA || !CBAA->SPMDCompatibilityTracker.isAtFixpoint()) UsedAssumedInformationFromReachingKernels = true; } if (SPMD != 0 && Generic != 0) SPMDCompatibilityTracker.indicatePessimisticFixpoint(); } } } // Callback to check a call instruction. bool AllParallelRegionStatesWereFixed = true; bool AllSPMDStatesWereFixed = true; auto CheckCallInst = [&](Instruction &I) { auto &CB = cast(I); auto *CBAA = A.getAAFor( *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); if (!CBAA) return false; getState() ^= CBAA->getState(); AllSPMDStatesWereFixed &= CBAA->SPMDCompatibilityTracker.isAtFixpoint(); AllParallelRegionStatesWereFixed &= CBAA->ReachedKnownParallelRegions.isAtFixpoint(); AllParallelRegionStatesWereFixed &= CBAA->ReachedUnknownParallelRegions.isAtFixpoint(); return true; }; bool UsedAssumedInformationInCheckCallInst = false; if (!A.checkForAllCallLikeInstructions( CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { LLVM_DEBUG(dbgs() << TAG << "Failed to visit all call-like instructions!\n";); return indicatePessimisticFixpoint(); } // If we haven't used any assumed information for the reached parallel // region states we can fix it. if (!UsedAssumedInformationInCheckCallInst && AllParallelRegionStatesWereFixed) { ReachedKnownParallelRegions.indicateOptimisticFixpoint(); ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); } // If we haven't used any assumed information for the SPMD state we can fix // it. if (!UsedAssumedInformationInCheckRWInst && !UsedAssumedInformationInCheckCallInst && !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) SPMDCompatibilityTracker.indicateOptimisticFixpoint(); return StateBefore == getState() ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED; } private: /// Update info regarding reaching kernels. void updateReachingKernelEntries(Attributor &A, bool &AllReachingKernelsKnown) { auto PredCallSite = [&](AbstractCallSite ACS) { Function *Caller = ACS.getInstruction()->getFunction(); assert(Caller && "Caller is nullptr"); auto *CAA = A.getOrCreateAAFor( IRPosition::function(*Caller), this, DepClassTy::REQUIRED); if (CAA && CAA->ReachingKernelEntries.isValidState()) { ReachingKernelEntries ^= CAA->ReachingKernelEntries; return true; } // We lost track of the caller of the associated function, any kernel // could reach now. ReachingKernelEntries.indicatePessimisticFixpoint(); return true; }; if (!A.checkForAllCallSites(PredCallSite, *this, true /* RequireAllCallSites */, AllReachingKernelsKnown)) ReachingKernelEntries.indicatePessimisticFixpoint(); } /// Update info regarding parallel levels. void updateParallelLevels(Attributor &A) { auto &OMPInfoCache = static_cast(A.getInfoCache()); OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; auto PredCallSite = [&](AbstractCallSite ACS) { Function *Caller = ACS.getInstruction()->getFunction(); assert(Caller && "Caller is nullptr"); auto *CAA = A.getOrCreateAAFor(IRPosition::function(*Caller)); if (CAA && CAA->ParallelLevels.isValidState()) { // Any function that is called by `__kmpc_parallel_51` will not be // folded as the parallel level in the function is updated. In order to // get it right, all the analysis would depend on the implentation. That // said, if in the future any change to the implementation, the analysis // could be wrong. As a consequence, we are just conservative here. if (Caller == Parallel51RFI.Declaration) { ParallelLevels.indicatePessimisticFixpoint(); return true; } ParallelLevels ^= CAA->ParallelLevels; return true; } // We lost track of the caller of the associated function, any kernel // could reach now. ParallelLevels.indicatePessimisticFixpoint(); return true; }; bool AllCallSitesKnown = true; if (!A.checkForAllCallSites(PredCallSite, *this, true /* RequireAllCallSites */, AllCallSitesKnown)) ParallelLevels.indicatePessimisticFixpoint(); } }; /// The call site kernel info abstract attribute, basically, what can we say /// about a call site with regards to the KernelInfoState. For now this simply /// forwards the information from the callee. struct AAKernelInfoCallSite : AAKernelInfo { AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) : AAKernelInfo(IRP, A) {} /// See AbstractAttribute::initialize(...). void initialize(Attributor &A) override { AAKernelInfo::initialize(A); CallBase &CB = cast(getAssociatedValue()); auto *AssumptionAA = A.getAAFor( *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); // Check for SPMD-mode assumptions. if (AssumptionAA && AssumptionAA->hasAssumption("ompx_spmd_amenable")) { indicateOptimisticFixpoint(); return; } // First weed out calls we do not care about, that is readonly/readnone // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a // parallel region or anything else we are looking for. if (!CB.mayWriteToMemory() || isa(CB)) { indicateOptimisticFixpoint(); return; } // Next we check if we know the callee. If it is a known OpenMP function // we will handle them explicitly in the switch below. If it is not, we // will use an AAKernelInfo object on the callee to gather information and // merge that into the current state. The latter happens in the updateImpl. auto CheckCallee = [&](Function *Callee, unsigned NumCallees) { auto &OMPInfoCache = static_cast(A.getInfoCache()); const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { // Unknown caller or declarations are not analyzable, we give up. if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { // Unknown callees might contain parallel regions, except if they have // an appropriate assumption attached. if (!AssumptionAA || !(AssumptionAA->hasAssumption("omp_no_openmp") || AssumptionAA->hasAssumption("omp_no_parallelism"))) ReachedUnknownParallelRegions.insert(&CB); // If SPMDCompatibilityTracker is not fixed, we need to give up on the // idea we can run something unknown in SPMD-mode. if (!SPMDCompatibilityTracker.isAtFixpoint()) { SPMDCompatibilityTracker.indicatePessimisticFixpoint(); SPMDCompatibilityTracker.insert(&CB); } // We have updated the state for this unknown call properly, there // won't be any change so we indicate a fixpoint. indicateOptimisticFixpoint(); } // If the callee is known and can be used in IPO, we will update the // state based on the callee state in updateImpl. return; } if (NumCallees > 1) { indicatePessimisticFixpoint(); return; } RuntimeFunction RF = It->getSecond(); switch (RF) { // All the functions we know are compatible with SPMD mode. case OMPRTL___kmpc_is_spmd_exec_mode: case OMPRTL___kmpc_distribute_static_fini: case OMPRTL___kmpc_for_static_fini: case OMPRTL___kmpc_global_thread_num: case OMPRTL___kmpc_get_hardware_num_threads_in_block: case OMPRTL___kmpc_get_hardware_num_blocks: case OMPRTL___kmpc_single: case OMPRTL___kmpc_end_single: case OMPRTL___kmpc_master: case OMPRTL___kmpc_end_master: case OMPRTL___kmpc_barrier: case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: case OMPRTL___kmpc_error: case OMPRTL___kmpc_flush: case OMPRTL___kmpc_get_hardware_thread_id_in_block: case OMPRTL___kmpc_get_warp_size: case OMPRTL_omp_get_thread_num: case OMPRTL_omp_get_num_threads: case OMPRTL_omp_get_max_threads: case OMPRTL_omp_in_parallel: case OMPRTL_omp_get_dynamic: case OMPRTL_omp_get_cancellation: case OMPRTL_omp_get_nested: case OMPRTL_omp_get_schedule: case OMPRTL_omp_get_thread_limit: case OMPRTL_omp_get_supported_active_levels: case OMPRTL_omp_get_max_active_levels: case OMPRTL_omp_get_level: case OMPRTL_omp_get_ancestor_thread_num: case OMPRTL_omp_get_team_size: case OMPRTL_omp_get_active_level: case OMPRTL_omp_in_final: case OMPRTL_omp_get_proc_bind: case OMPRTL_omp_get_num_places: case OMPRTL_omp_get_num_procs: case OMPRTL_omp_get_place_proc_ids: case OMPRTL_omp_get_place_num: case OMPRTL_omp_get_partition_num_places: case OMPRTL_omp_get_partition_place_nums: case OMPRTL_omp_get_wtime: break; case OMPRTL___kmpc_distribute_static_init_4: case OMPRTL___kmpc_distribute_static_init_4u: case OMPRTL___kmpc_distribute_static_init_8: case OMPRTL___kmpc_distribute_static_init_8u: case OMPRTL___kmpc_for_static_init_4: case OMPRTL___kmpc_for_static_init_4u: case OMPRTL___kmpc_for_static_init_8: case OMPRTL___kmpc_for_static_init_8u: { // Check the schedule and allow static schedule in SPMD mode. unsigned ScheduleArgOpNo = 2; auto *ScheduleTypeCI = dyn_cast(CB.getArgOperand(ScheduleArgOpNo)); unsigned ScheduleTypeVal = ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; switch (OMPScheduleType(ScheduleTypeVal)) { case OMPScheduleType::UnorderedStatic: case OMPScheduleType::UnorderedStaticChunked: case OMPScheduleType::OrderedDistribute: case OMPScheduleType::OrderedDistributeChunked: break; default: SPMDCompatibilityTracker.indicatePessimisticFixpoint(); SPMDCompatibilityTracker.insert(&CB); break; }; } break; case OMPRTL___kmpc_target_init: KernelInitCB = &CB; break; case OMPRTL___kmpc_target_deinit: KernelDeinitCB = &CB; break; case OMPRTL___kmpc_parallel_51: if (!handleParallel51(A, CB)) indicatePessimisticFixpoint(); return; case OMPRTL___kmpc_omp_task: // We do not look into tasks right now, just give up. SPMDCompatibilityTracker.indicatePessimisticFixpoint(); SPMDCompatibilityTracker.insert(&CB); ReachedUnknownParallelRegions.insert(&CB); break; case OMPRTL___kmpc_alloc_shared: case OMPRTL___kmpc_free_shared: // Return without setting a fixpoint, to be resolved in updateImpl. return; default: // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, // generally. However, they do not hide parallel regions. SPMDCompatibilityTracker.indicatePessimisticFixpoint(); SPMDCompatibilityTracker.insert(&CB); break; } // All other OpenMP runtime calls will not reach parallel regions so they // can be safely ignored for now. Since it is a known OpenMP runtime call // we have now modeled all effects and there is no need for any update. indicateOptimisticFixpoint(); }; const auto *AACE = A.getAAFor(*this, getIRPosition(), DepClassTy::OPTIONAL); if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) { CheckCallee(getAssociatedFunction(), 1); return; } const auto &OptimisticEdges = AACE->getOptimisticEdges(); for (auto *Callee : OptimisticEdges) { CheckCallee(Callee, OptimisticEdges.size()); if (isAtFixpoint()) break; } } ChangeStatus updateImpl(Attributor &A) override { // TODO: Once we have call site specific value information we can provide // call site specific liveness information and then it makes // sense to specialize attributes for call sites arguments instead of // redirecting requests to the callee argument. auto &OMPInfoCache = static_cast(A.getInfoCache()); KernelInfoState StateBefore = getState(); auto CheckCallee = [&](Function *F, int NumCallees) { const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); // If F is not a runtime function, propagate the AAKernelInfo of the // callee. if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { const IRPosition &FnPos = IRPosition::function(*F); auto *FnAA = A.getAAFor(*this, FnPos, DepClassTy::REQUIRED); if (!FnAA) return indicatePessimisticFixpoint(); if (getState() == FnAA->getState()) return ChangeStatus::UNCHANGED; getState() = FnAA->getState(); return ChangeStatus::CHANGED; } if (NumCallees > 1) return indicatePessimisticFixpoint(); CallBase &CB = cast(getAssociatedValue()); if (It->getSecond() == OMPRTL___kmpc_parallel_51) { if (!handleParallel51(A, CB)) return indicatePessimisticFixpoint(); return StateBefore == getState() ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED; } // F is a runtime function that allocates or frees memory, check // AAHeapToStack and AAHeapToShared. assert( (It->getSecond() == OMPRTL___kmpc_alloc_shared || It->getSecond() == OMPRTL___kmpc_free_shared) && "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); auto *HeapToStackAA = A.getAAFor( *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); auto *HeapToSharedAA = A.getAAFor( *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); RuntimeFunction RF = It->getSecond(); switch (RF) { // If neither HeapToStack nor HeapToShared assume the call is removed, // assume SPMD incompatibility. case OMPRTL___kmpc_alloc_shared: if ((!HeapToStackAA || !HeapToStackAA->isAssumedHeapToStack(CB)) && (!HeapToSharedAA || !HeapToSharedAA->isAssumedHeapToShared(CB))) SPMDCompatibilityTracker.insert(&CB); break; case OMPRTL___kmpc_free_shared: if ((!HeapToStackAA || !HeapToStackAA->isAssumedHeapToStackRemovedFree(CB)) && (!HeapToSharedAA || !HeapToSharedAA->isAssumedHeapToSharedRemovedFree(CB))) SPMDCompatibilityTracker.insert(&CB); break; default: SPMDCompatibilityTracker.indicatePessimisticFixpoint(); SPMDCompatibilityTracker.insert(&CB); } return ChangeStatus::CHANGED; }; const auto *AACE = A.getAAFor(*this, getIRPosition(), DepClassTy::OPTIONAL); if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) { if (Function *F = getAssociatedFunction()) CheckCallee(F, /*NumCallees=*/1); } else { const auto &OptimisticEdges = AACE->getOptimisticEdges(); for (auto *Callee : OptimisticEdges) { CheckCallee(Callee, OptimisticEdges.size()); if (isAtFixpoint()) break; } } return StateBefore == getState() ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED; } /// Deal with a __kmpc_parallel_51 call (\p CB). Returns true if the call was /// handled, if a problem occurred, false is returned. bool handleParallel51(Attributor &A, CallBase &CB) { const unsigned int NonWrapperFunctionArgNo = 5; const unsigned int WrapperFunctionArgNo = 6; auto ParallelRegionOpArgNo = SPMDCompatibilityTracker.isAssumed() ? NonWrapperFunctionArgNo : WrapperFunctionArgNo; auto *ParallelRegion = dyn_cast( CB.getArgOperand(ParallelRegionOpArgNo)->stripPointerCasts()); if (!ParallelRegion) return false; ReachedKnownParallelRegions.insert(&CB); /// Check nested parallelism auto *FnAA = A.getAAFor( *this, IRPosition::function(*ParallelRegion), DepClassTy::OPTIONAL); NestedParallelism |= !FnAA || !FnAA->getState().isValidState() || !FnAA->ReachedKnownParallelRegions.empty() || !FnAA->ReachedKnownParallelRegions.isValidState() || !FnAA->ReachedUnknownParallelRegions.isValidState() || !FnAA->ReachedUnknownParallelRegions.empty(); return true; } }; struct AAFoldRuntimeCall : public StateWrapper { using Base = StateWrapper; AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Statistics are tracked as part of manifest for now. void trackStatistics() const override {} /// Create an abstract attribute biew for the position \p IRP. static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAFoldRuntimeCall"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAFoldRuntimeCall static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } static const char ID; }; struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) : AAFoldRuntimeCall(IRP, A) {} /// See AbstractAttribute::getAsStr() const std::string getAsStr(Attributor *) const override { if (!isValidState()) return ""; std::string Str("simplified value: "); if (!SimplifiedValue) return Str + std::string("none"); if (!*SimplifiedValue) return Str + std::string("nullptr"); if (ConstantInt *CI = dyn_cast(*SimplifiedValue)) return Str + std::to_string(CI->getSExtValue()); return Str + std::string("unknown"); } void initialize(Attributor &A) override { if (DisableOpenMPOptFolding) indicatePessimisticFixpoint(); Function *Callee = getAssociatedFunction(); auto &OMPInfoCache = static_cast(A.getInfoCache()); const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && "Expected a known OpenMP runtime function"); RFKind = It->getSecond(); CallBase &CB = cast(getAssociatedValue()); A.registerSimplificationCallback( IRPosition::callsite_returned(CB), [&](const IRPosition &IRP, const AbstractAttribute *AA, bool &UsedAssumedInformation) -> std::optional { assert((isValidState() || (SimplifiedValue && *SimplifiedValue == nullptr)) && "Unexpected invalid state!"); if (!isAtFixpoint()) { UsedAssumedInformation = true; if (AA) A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); } return SimplifiedValue; }); } ChangeStatus updateImpl(Attributor &A) override { ChangeStatus Changed = ChangeStatus::UNCHANGED; switch (RFKind) { case OMPRTL___kmpc_is_spmd_exec_mode: Changed |= foldIsSPMDExecMode(A); break; case OMPRTL___kmpc_parallel_level: Changed |= foldParallelLevel(A); break; case OMPRTL___kmpc_get_hardware_num_threads_in_block: Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); break; case OMPRTL___kmpc_get_hardware_num_blocks: Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); break; default: llvm_unreachable("Unhandled OpenMP runtime function!"); } return Changed; } ChangeStatus manifest(Attributor &A) override { ChangeStatus Changed = ChangeStatus::UNCHANGED; if (SimplifiedValue && *SimplifiedValue) { Instruction &I = *getCtxI(); A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue); A.deleteAfterManifest(I); CallBase *CB = dyn_cast(&I); auto Remark = [&](OptimizationRemark OR) { if (auto *C = dyn_cast(*SimplifiedValue)) return OR << "Replacing OpenMP runtime call " << CB->getCalledFunction()->getName() << " with " << ore::NV("FoldedValue", C->getZExtValue()) << "."; return OR << "Replacing OpenMP runtime call " << CB->getCalledFunction()->getName() << "."; }; if (CB && EnableVerboseRemarks) A.emitRemark(CB, "OMP180", Remark); LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " << **SimplifiedValue << "\n"); Changed = ChangeStatus::CHANGED; } return Changed; } ChangeStatus indicatePessimisticFixpoint() override { SimplifiedValue = nullptr; return AAFoldRuntimeCall::indicatePessimisticFixpoint(); } private: /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. ChangeStatus foldIsSPMDExecMode(Attributor &A) { std::optional SimplifiedValueBefore = SimplifiedValue; unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; auto *CallerKernelInfoAA = A.getAAFor( *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); if (!CallerKernelInfoAA || !CallerKernelInfoAA->ReachingKernelEntries.isValidState()) return indicatePessimisticFixpoint(); for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { auto *AA = A.getAAFor(*this, IRPosition::function(*K), DepClassTy::REQUIRED); if (!AA || !AA->isValidState()) { SimplifiedValue = nullptr; return indicatePessimisticFixpoint(); } if (AA->SPMDCompatibilityTracker.isAssumed()) { if (AA->SPMDCompatibilityTracker.isAtFixpoint()) ++KnownSPMDCount; else ++AssumedSPMDCount; } else { if (AA->SPMDCompatibilityTracker.isAtFixpoint()) ++KnownNonSPMDCount; else ++AssumedNonSPMDCount; } } if ((AssumedSPMDCount + KnownSPMDCount) && (AssumedNonSPMDCount + KnownNonSPMDCount)) return indicatePessimisticFixpoint(); auto &Ctx = getAnchorValue().getContext(); if (KnownSPMDCount || AssumedSPMDCount) { assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && "Expected only SPMD kernels!"); // All reaching kernels are in SPMD mode. Update all function calls to // __kmpc_is_spmd_exec_mode to 1. SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && "Expected only non-SPMD kernels!"); // All reaching kernels are in non-SPMD mode. Update all function // calls to __kmpc_is_spmd_exec_mode to 0. SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); } else { // We have empty reaching kernels, therefore we cannot tell if the // associated call site can be folded. At this moment, SimplifiedValue // must be none. assert(!SimplifiedValue && "SimplifiedValue should be none"); } return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED; } /// Fold __kmpc_parallel_level into a constant if possible. ChangeStatus foldParallelLevel(Attributor &A) { std::optional SimplifiedValueBefore = SimplifiedValue; auto *CallerKernelInfoAA = A.getAAFor( *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); if (!CallerKernelInfoAA || !CallerKernelInfoAA->ParallelLevels.isValidState()) return indicatePessimisticFixpoint(); if (!CallerKernelInfoAA->ReachingKernelEntries.isValidState()) return indicatePessimisticFixpoint(); if (CallerKernelInfoAA->ReachingKernelEntries.empty()) { assert(!SimplifiedValue && "SimplifiedValue should keep none at this point"); return ChangeStatus::UNCHANGED; } unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { auto *AA = A.getAAFor(*this, IRPosition::function(*K), DepClassTy::REQUIRED); if (!AA || !AA->SPMDCompatibilityTracker.isValidState()) return indicatePessimisticFixpoint(); if (AA->SPMDCompatibilityTracker.isAssumed()) { if (AA->SPMDCompatibilityTracker.isAtFixpoint()) ++KnownSPMDCount; else ++AssumedSPMDCount; } else { if (AA->SPMDCompatibilityTracker.isAtFixpoint()) ++KnownNonSPMDCount; else ++AssumedNonSPMDCount; } } if ((AssumedSPMDCount + KnownSPMDCount) && (AssumedNonSPMDCount + KnownNonSPMDCount)) return indicatePessimisticFixpoint(); auto &Ctx = getAnchorValue().getContext(); // If the caller can only be reached by SPMD kernel entries, the parallel // level is 1. Similarly, if the caller can only be reached by non-SPMD // kernel entries, it is 0. if (AssumedSPMDCount || KnownSPMDCount) { assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && "Expected only SPMD kernels!"); SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); } else { assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && "Expected only non-SPMD kernels!"); SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); } return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED; } ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { // Specialize only if all the calls agree with the attribute constant value int32_t CurrentAttrValue = -1; std::optional SimplifiedValueBefore = SimplifiedValue; auto *CallerKernelInfoAA = A.getAAFor( *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); if (!CallerKernelInfoAA || !CallerKernelInfoAA->ReachingKernelEntries.isValidState()) return indicatePessimisticFixpoint(); // Iterate over the kernels that reach this function for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { int32_t NextAttrVal = K->getFnAttributeAsParsedInteger(Attr, -1); if (NextAttrVal == -1 || (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) return indicatePessimisticFixpoint(); CurrentAttrValue = NextAttrVal; } if (CurrentAttrValue != -1) { auto &Ctx = getAnchorValue().getContext(); SimplifiedValue = ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); } return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED; } /// An optional value the associated value is assumed to fold to. That is, we /// assume the associated value (which is a call) can be replaced by this /// simplified value. std::optional SimplifiedValue; /// The runtime function kind of the callee of the associated call site. RuntimeFunction RFKind; }; } // namespace /// Register folding callsite void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { auto &RFI = OMPInfoCache.RFIs[RF]; RFI.foreachUse(SCC, [&](Use &U, Function &F) { CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); if (!CI) return false; A.getOrCreateAAFor( IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, DepClassTy::NONE, /* ForceUpdate */ false, /* UpdateAfterInit */ false); return false; }); } void OpenMPOpt::registerAAs(bool IsModulePass) { if (SCC.empty()) return; if (IsModulePass) { // Ensure we create the AAKernelInfo AAs first and without triggering an // update. This will make sure we register all value simplification // callbacks before any other AA has the chance to create an AAValueSimplify // or similar. auto CreateKernelInfoCB = [&](Use &, Function &Kernel) { A.getOrCreateAAFor( IRPosition::function(Kernel), /* QueryingAA */ nullptr, DepClassTy::NONE, /* ForceUpdate */ false, /* UpdateAfterInit */ false); return false; }; OMPInformationCache::RuntimeFunctionInfo &InitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; InitRFI.foreachUse(SCC, CreateKernelInfoCB); registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); } // Create CallSite AA for all Getters. if (DeduceICVValues) { for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { auto ICVInfo = OMPInfoCache.ICVs[static_cast(Idx)]; auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; auto CreateAA = [&](Use &U, Function &Caller) { CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); if (!CI) return false; auto &CB = cast(*CI); IRPosition CBPos = IRPosition::callsite_function(CB); A.getOrCreateAAFor(CBPos); return false; }; GetterRFI.foreachUse(SCC, CreateAA); } } // Create an ExecutionDomain AA for every function and a HeapToStack AA for // every function if there is a device kernel. if (!isOpenMPDevice(M)) return; for (auto *F : SCC) { if (F->isDeclaration()) continue; // We look at internal functions only on-demand but if any use is not a // direct call or outside the current set of analyzed functions, we have // to do it eagerly. if (F->hasLocalLinkage()) { if (llvm::all_of(F->uses(), [this](const Use &U) { const auto *CB = dyn_cast(U.getUser()); return CB && CB->isCallee(&U) && A.isRunOn(const_cast(CB->getCaller())); })) continue; } registerAAsForFunction(A, *F); } } void OpenMPOpt::registerAAsForFunction(Attributor &A, const Function &F) { if (!DisableOpenMPOptDeglobalization) A.getOrCreateAAFor(IRPosition::function(F)); A.getOrCreateAAFor(IRPosition::function(F)); if (!DisableOpenMPOptDeglobalization) A.getOrCreateAAFor(IRPosition::function(F)); if (F.hasFnAttribute(Attribute::Convergent)) A.getOrCreateAAFor(IRPosition::function(F)); for (auto &I : instructions(F)) { if (auto *LI = dyn_cast(&I)) { bool UsedAssumedInformation = false; A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, UsedAssumedInformation, AA::Interprocedural); continue; } if (auto *CI = dyn_cast(&I)) { if (CI->isIndirectCall()) A.getOrCreateAAFor( IRPosition::callsite_function(*CI)); } if (auto *SI = dyn_cast(&I)) { A.getOrCreateAAFor(IRPosition::value(*SI)); continue; } if (auto *FI = dyn_cast(&I)) { A.getOrCreateAAFor(IRPosition::value(*FI)); continue; } if (auto *II = dyn_cast(&I)) { if (II->getIntrinsicID() == Intrinsic::assume) { A.getOrCreateAAFor( IRPosition::value(*II->getArgOperand(0))); continue; } } } } const char AAICVTracker::ID = 0; const char AAKernelInfo::ID = 0; const char AAExecutionDomain::ID = 0; const char AAHeapToShared::ID = 0; const char AAFoldRuntimeCall::ID = 0; AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, Attributor &A) { AAICVTracker *AA = nullptr; switch (IRP.getPositionKind()) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_CALL_SITE_ARGUMENT: llvm_unreachable("ICVTracker can only be created for function position!"); case IRPosition::IRP_RETURNED: AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); break; case IRPosition::IRP_CALL_SITE_RETURNED: AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); break; case IRPosition::IRP_CALL_SITE: AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); break; case IRPosition::IRP_FUNCTION: AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); break; } return *AA; } AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, Attributor &A) { AAExecutionDomainFunction *AA = nullptr; switch (IRP.getPositionKind()) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_CALL_SITE_ARGUMENT: case IRPosition::IRP_RETURNED: case IRPosition::IRP_CALL_SITE_RETURNED: case IRPosition::IRP_CALL_SITE: llvm_unreachable( "AAExecutionDomain can only be created for function position!"); case IRPosition::IRP_FUNCTION: AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); break; } return *AA; } AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, Attributor &A) { AAHeapToSharedFunction *AA = nullptr; switch (IRP.getPositionKind()) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_CALL_SITE_ARGUMENT: case IRPosition::IRP_RETURNED: case IRPosition::IRP_CALL_SITE_RETURNED: case IRPosition::IRP_CALL_SITE: llvm_unreachable( "AAHeapToShared can only be created for function position!"); case IRPosition::IRP_FUNCTION: AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); break; } return *AA; } AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, Attributor &A) { AAKernelInfo *AA = nullptr; switch (IRP.getPositionKind()) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_RETURNED: case IRPosition::IRP_CALL_SITE_RETURNED: case IRPosition::IRP_CALL_SITE_ARGUMENT: llvm_unreachable("KernelInfo can only be created for function position!"); case IRPosition::IRP_CALL_SITE: AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); break; case IRPosition::IRP_FUNCTION: AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); break; } return *AA; } AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, Attributor &A) { AAFoldRuntimeCall *AA = nullptr; switch (IRP.getPositionKind()) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_RETURNED: case IRPosition::IRP_FUNCTION: case IRPosition::IRP_CALL_SITE: case IRPosition::IRP_CALL_SITE_ARGUMENT: llvm_unreachable("KernelInfo can only be created for call site position!"); case IRPosition::IRP_CALL_SITE_RETURNED: AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); break; } return *AA; } PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { if (!containsOpenMP(M)) return PreservedAnalyses::all(); if (DisableOpenMPOptimizations) return PreservedAnalyses::all(); FunctionAnalysisManager &FAM = AM.getResult(M).getManager(); KernelSet Kernels = getDeviceKernels(M); if (PrintModuleBeforeOptimizations) LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M); auto IsCalled = [&](Function &F) { if (Kernels.contains(&F)) return true; for (const User *U : F.users()) if (!isa(U)) return true; return false; }; auto EmitRemark = [&](Function &F) { auto &ORE = FAM.getResult(F); ORE.emit([&]() { OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); return ORA << "Could not internalize function. " << "Some optimizations may not be possible. [OMP140]"; }); }; bool Changed = false; // Create internal copies of each function if this is a kernel Module. This // allows iterprocedural passes to see every call edge. DenseMap InternalizedMap; if (isOpenMPDevice(M)) { SmallPtrSet InternalizeFns; for (Function &F : M) if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && !DisableInternalization) { if (Attributor::isInternalizable(F)) { InternalizeFns.insert(&F); } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { EmitRemark(F); } } Changed |= Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); } // Look at every function in the Module unless it was internalized. SetVector Functions; SmallVector SCC; for (Function &F : M) if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) { SCC.push_back(&F); Functions.insert(&F); } if (SCC.empty()) return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); AnalysisGetter AG(FAM); auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { return FAM.getResult(*F); }; BumpPtrAllocator Allocator; CallGraphUpdater CGUpdater; bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink || LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink; OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ nullptr, PostLink); unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? SetFixpointIterations : 32; AttributorConfig AC(CGUpdater); AC.DefaultInitializeLiveInternals = false; AC.IsModulePass = true; AC.RewriteSignatures = false; AC.MaxFixpointIterations = MaxFixpointIterations; AC.OREGetter = OREGetter; AC.PassName = DEBUG_TYPE; AC.InitializationCallback = OpenMPOpt::registerAAsForFunction; AC.IPOAmendableCB = [](const Function &F) { return F.hasFnAttribute("kernel"); }; Attributor A(Functions, InfoCache, AC); OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); Changed |= OMPOpt.run(true); // Optionally inline device functions for potentially better performance. if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) for (Function &F : M) if (!F.isDeclaration() && !Kernels.contains(&F) && !F.hasFnAttribute(Attribute::NoInline)) F.addFnAttr(Attribute::AlwaysInline); if (PrintModuleAfterOptimizations) LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); if (Changed) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG, CGSCCUpdateResult &UR) { if (!containsOpenMP(*C.begin()->getFunction().getParent())) return PreservedAnalyses::all(); if (DisableOpenMPOptimizations) return PreservedAnalyses::all(); SmallVector SCC; // If there are kernels in the module, we have to run on all SCC's. for (LazyCallGraph::Node &N : C) { Function *Fn = &N.getFunction(); SCC.push_back(Fn); } if (SCC.empty()) return PreservedAnalyses::all(); Module &M = *C.begin()->getFunction().getParent(); if (PrintModuleBeforeOptimizations) LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M); KernelSet Kernels = getDeviceKernels(M); FunctionAnalysisManager &FAM = AM.getResult(C, CG).getManager(); AnalysisGetter AG(FAM); auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { return FAM.getResult(*F); }; BumpPtrAllocator Allocator; CallGraphUpdater CGUpdater; CGUpdater.initialize(CG, C, AM, UR); bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink || LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink; SetVector Functions(SCC.begin(), SCC.end()); OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, /*CGSCC*/ &Functions, PostLink); unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? SetFixpointIterations : 32; AttributorConfig AC(CGUpdater); AC.DefaultInitializeLiveInternals = false; AC.IsModulePass = false; AC.RewriteSignatures = false; AC.MaxFixpointIterations = MaxFixpointIterations; AC.OREGetter = OREGetter; AC.PassName = DEBUG_TYPE; AC.InitializationCallback = OpenMPOpt::registerAAsForFunction; Attributor A(Functions, InfoCache, AC); OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); bool Changed = OMPOpt.run(false); if (PrintModuleAfterOptimizations) LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); if (Changed) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } bool llvm::omp::isOpenMPKernel(Function &Fn) { return Fn.hasFnAttribute("kernel"); } KernelSet llvm::omp::getDeviceKernels(Module &M) { // TODO: Create a more cross-platform way of determining device kernels. NamedMDNode *MD = M.getNamedMetadata("nvvm.annotations"); KernelSet Kernels; if (!MD) return Kernels; for (auto *Op : MD->operands()) { if (Op->getNumOperands() < 2) continue; MDString *KindID = dyn_cast(Op->getOperand(1)); if (!KindID || KindID->getString() != "kernel") continue; Function *KernelFn = mdconst::dyn_extract_or_null(Op->getOperand(0)); if (!KernelFn) continue; // We are only interested in OpenMP target regions. Others, such as kernels // generated by CUDA but linked together, are not interesting to this pass. if (isOpenMPKernel(*KernelFn)) { ++NumOpenMPTargetRegionKernels; Kernels.insert(KernelFn); } else ++NumNonOpenMPTargetRegionKernels; } return Kernels; } bool llvm::omp::containsOpenMP(Module &M) { Metadata *MD = M.getModuleFlag("openmp"); if (!MD) return false; return true; } bool llvm::omp::isOpenMPDevice(Module &M) { Metadata *MD = M.getModuleFlag("openmp-device"); if (!MD) return false; return true; }