//===- ModuleInliner.cpp - Code related to module inliner -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the mechanics required to implement inlining without // missing any calls in the module level. It doesn't need any infromation about // SCC or call graph, which is different from the SCC inliner. The decisions of // which calls are profitable to inline are implemented elsewhere. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/ModuleInliner.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/InlineAdvisor.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/InlineOrder.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/ReplayInlineAdvisor.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/CallPromotionUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include using namespace llvm; #define DEBUG_TYPE "module-inline" STATISTIC(NumInlined, "Number of functions inlined"); STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); static cl::opt InlineEnablePriorityOrder( "module-inline-enable-priority-order", cl::Hidden, cl::init(true), cl::desc("Enable the priority inline order for the module inliner")); /// Return true if the specified inline history ID /// indicates an inline history that includes the specified function. static bool inlineHistoryIncludes( Function *F, int InlineHistoryID, const SmallVectorImpl> &InlineHistory) { while (InlineHistoryID != -1) { assert(unsigned(InlineHistoryID) < InlineHistory.size() && "Invalid inline history ID"); if (InlineHistory[InlineHistoryID].first == F) return true; InlineHistoryID = InlineHistory[InlineHistoryID].second; } return false; } InlineAdvisor &ModuleInlinerPass::getAdvisor(const ModuleAnalysisManager &MAM, FunctionAnalysisManager &FAM, Module &M) { if (OwnedAdvisor) return *OwnedAdvisor; auto *IAA = MAM.getCachedResult(M); if (!IAA) { // It should still be possible to run the inliner as a stand-alone module // pass, for test scenarios. In that case, we default to the // DefaultInlineAdvisor, which doesn't need to keep state between module // pass runs. It also uses just the default InlineParams. In this case, we // need to use the provided FAM, which is valid for the duration of the // inliner pass, and thus the lifetime of the owned advisor. The one we // would get from the MAM can be invalidated as a result of the inliner's // activity. OwnedAdvisor = std::make_unique( M, FAM, Params, InlineContext{LTOPhase, InlinePass::ModuleInliner}); return *OwnedAdvisor; } assert(IAA->getAdvisor() && "Expected a present InlineAdvisorAnalysis also have an " "InlineAdvisor initialized"); return *IAA->getAdvisor(); } static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { LibFunc LF; // Either this is a normal library function or a "vectorizable" // function. Not using the VFDatabase here because this query // is related only to libraries handled via the TLI. return TLI.getLibFunc(F, LF) || TLI.isKnownVectorFunctionInLibrary(F.getName()); } PreservedAnalyses ModuleInlinerPass::run(Module &M, ModuleAnalysisManager &MAM) { LLVM_DEBUG(dbgs() << "---- Module Inliner is Running ---- \n"); auto &IAA = MAM.getResult(M); if (!IAA.tryCreate( Params, Mode, {}, InlineContext{LTOPhase, InlinePass::ModuleInliner})) { M.getContext().emitError( "Could not setup Inlining Advisor for the requested " "mode and/or options"); return PreservedAnalyses::all(); } bool Changed = false; ProfileSummaryInfo *PSI = MAM.getCachedResult(M); FunctionAnalysisManager &FAM = MAM.getResult(M).getManager(); auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { return FAM.getResult(F); }; InlineAdvisor &Advisor = getAdvisor(MAM, FAM, M); Advisor.onPassEntry(); auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); }); // In the module inliner, a priority-based worklist is used for calls across // the entire Module. With this module inliner, the inline order is not // limited to bottom-up order. More globally scope inline order is enabled. // Also, the inline deferral logic become unnecessary in this module inliner. // It is possible to use other priority heuristics, e.g. profile-based // heuristic. // // TODO: Here is a huge amount duplicate code between the module inliner and // the SCC inliner, which need some refactoring. std::unique_ptr>> Calls; if (InlineEnablePriorityOrder) Calls = std::make_unique( std::make_unique()); else Calls = std::make_unique>>(); assert(Calls != nullptr && "Expected an initialized InlineOrder"); // Populate the initial list of calls in this module. for (Function &F : M) { auto &ORE = FAM.getResult(F); // We want to generally process call sites top-down in order for // simplifications stemming from replacing the call with the returned value // after inlining to be visible to subsequent inlining decisions. // FIXME: Using instructions sequence is a really bad way to do this. // Instead we should do an actual RPO walk of the function body. for (Instruction &I : instructions(F)) if (auto *CB = dyn_cast(&I)) if (Function *Callee = CB->getCalledFunction()) { if (!Callee->isDeclaration()) Calls->push({CB, -1}); else if (!isa(I)) { using namespace ore; setInlineRemark(*CB, "unavailable definition"); ORE.emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) << NV("Callee", Callee) << " will not be inlined into " << NV("Caller", CB->getCaller()) << " because its definition is unavailable" << setIsVerbose(); }); } } } if (Calls->empty()) return PreservedAnalyses::all(); // When inlining a callee produces new call sites, we want to keep track of // the fact that they were inlined from the callee. This allows us to avoid // infinite inlining in some obscure cases. To represent this, we use an // index into the InlineHistory vector. SmallVector, 16> InlineHistory; // Track a set vector of inlined callees so that we can augment the caller // with all of their edges in the call graph before pruning out the ones that // got simplified away. SmallSetVector InlinedCallees; // Track the dead functions to delete once finished with inlining calls. We // defer deleting these to make it easier to handle the call graph updates. SmallVector DeadFunctions; // Loop forward over all of the calls. while (!Calls->empty()) { // We expect the calls to typically be batched with sequences of calls that // have the same caller, so we first set up some shared infrastructure for // this caller. We also do any pruning we can at this layer on the caller // alone. Function &F = *Calls->front().first->getCaller(); LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n" << " Function size: " << F.getInstructionCount() << "\n"); auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { return FAM.getResult(F); }; // Now process as many calls as we have within this caller in the sequence. // We bail out as soon as the caller has to change so we can // prepare the context of that new caller. bool DidInline = false; while (!Calls->empty() && Calls->front().first->getCaller() == &F) { auto P = Calls->pop(); CallBase *CB = P.first; const int InlineHistoryID = P.second; Function &Callee = *CB->getCalledFunction(); if (InlineHistoryID != -1 && inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { setInlineRemark(*CB, "recursive"); continue; } auto Advice = Advisor.getAdvice(*CB, /*OnlyMandatory*/ false); // Check whether we want to inline this callsite. if (!Advice->isInliningRecommended()) { Advice->recordUnattemptedInlining(); continue; } // Setup the data structure used to plumb customization into the // `InlineFunction` routine. InlineFunctionInfo IFI( /*cg=*/nullptr, GetAssumptionCache, PSI, &FAM.getResult(*(CB->getCaller())), &FAM.getResult(Callee)); InlineResult IR = InlineFunction(*CB, IFI, &FAM.getResult(*CB->getCaller())); if (!IR.isSuccess()) { Advice->recordUnsuccessfulInlining(IR); continue; } DidInline = true; InlinedCallees.insert(&Callee); ++NumInlined; LLVM_DEBUG(dbgs() << " Size after inlining: " << F.getInstructionCount() << "\n"); // Add any new callsites to defined functions to the worklist. if (!IFI.InlinedCallSites.empty()) { int NewHistoryID = InlineHistory.size(); InlineHistory.push_back({&Callee, InlineHistoryID}); for (CallBase *ICB : reverse(IFI.InlinedCallSites)) { Function *NewCallee = ICB->getCalledFunction(); if (!NewCallee) { // Try to promote an indirect (virtual) call without waiting for // the post-inline cleanup and the next DevirtSCCRepeatedPass // iteration because the next iteration may not happen and we may // miss inlining it. if (tryPromoteCall(*ICB)) NewCallee = ICB->getCalledFunction(); } if (NewCallee) if (!NewCallee->isDeclaration()) Calls->push({ICB, NewHistoryID}); } } // Merge the attributes based on the inlining. AttributeFuncs::mergeAttributesForInlining(F, Callee); // For local functions, check whether this makes the callee trivially // dead. In that case, we can drop the body of the function eagerly // which may reduce the number of callers of other functions to one, // changing inline cost thresholds. bool CalleeWasDeleted = false; if (Callee.hasLocalLinkage()) { // To check this we also need to nuke any dead constant uses (perhaps // made dead by this operation on other functions). Callee.removeDeadConstantUsers(); // if (Callee.use_empty() && !CG.isLibFunction(Callee)) { if (Callee.use_empty() && !isKnownLibFunction(Callee, GetTLI(Callee))) { Calls->erase_if([&](const std::pair &Call) { return Call.first->getCaller() == &Callee; }); // Clear the body and queue the function itself for deletion when we // finish inlining. // Note that after this point, it is an error to do anything other // than use the callee's address or delete it. Callee.dropAllReferences(); assert(!is_contained(DeadFunctions, &Callee) && "Cannot put cause a function to become dead twice!"); DeadFunctions.push_back(&Callee); CalleeWasDeleted = true; } } if (CalleeWasDeleted) Advice->recordInliningWithCalleeDeleted(); else Advice->recordInlining(); } if (!DidInline) continue; Changed = true; InlinedCallees.clear(); } // Now that we've finished inlining all of the calls across this module, // delete all of the trivially dead functions. // // Note that this walks a pointer set which has non-deterministic order but // that is OK as all we do is delete things and add pointers to unordered // sets. for (Function *DeadF : DeadFunctions) { // Clear out any cached analyses. FAM.clear(*DeadF, DeadF->getName()); // And delete the actual function from the module. M.getFunctionList().erase(DeadF); ++NumDeleted; } if (!Changed) return PreservedAnalyses::all(); return PreservedAnalyses::none(); }