//===- Inliner.cpp - Code common to all inliners --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the mechanics required to implement inlining without // missing any calls and updating the call graph. The decisions of which calls // are profitable to inline are implemented elsewhere. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/Inliner.h" #include "llvm/ADT/PriorityWorklist.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/Analysis/InlineAdvisor.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/ReplayInlineAdvisor.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/CallPromotionUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "inline" STATISTIC(NumInlined, "Number of functions inlined"); STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); static cl::opt IntraSCCCostMultiplier( "intra-scc-cost-multiplier", cl::init(2), cl::Hidden, cl::desc( "Cost multiplier to multiply onto inlined call sites where the " "new call was previously an intra-SCC call (not relevant when the " "original call was already intra-SCC). This can accumulate over " "multiple inlinings (e.g. if a call site already had a cost " "multiplier and one of its inlined calls was also subject to " "this, the inlined call would have the original multiplier " "multiplied by intra-scc-cost-multiplier). This is to prevent tons of " "inlining through a child SCC which can cause terrible compile times")); /// A flag for test, so we can print the content of the advisor when running it /// as part of the default (e.g. -O3) pipeline. static cl::opt KeepAdvisorForPrinting("keep-inline-advisor-for-printing", cl::init(false), cl::Hidden); /// Allows printing the contents of the advisor after each SCC inliner pass. static cl::opt EnablePostSCCAdvisorPrinting("enable-scc-inline-advisor-printing", cl::init(false), cl::Hidden); static cl::opt CGSCCInlineReplayFile( "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"), cl::desc( "Optimization remarks file containing inline remarks to be replayed " "by cgscc inlining."), cl::Hidden); static cl::opt CGSCCInlineReplayScope( "cgscc-inline-replay-scope", cl::init(ReplayInlinerSettings::Scope::Function), cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function", "Replay on functions that have remarks associated " "with them (default)"), clEnumValN(ReplayInlinerSettings::Scope::Module, "Module", "Replay on the entire module")), cl::desc("Whether inline replay should be applied to the entire " "Module or just the Functions (default) that are present as " "callers in remarks during cgscc inlining."), cl::Hidden); static cl::opt CGSCCInlineReplayFallback( "cgscc-inline-replay-fallback", cl::init(ReplayInlinerSettings::Fallback::Original), cl::values( clEnumValN( ReplayInlinerSettings::Fallback::Original, "Original", "All decisions not in replay send to original advisor (default)"), clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline, "AlwaysInline", "All decisions not in replay are inlined"), clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline", "All decisions not in replay are not inlined")), cl::desc( "How cgscc inline replay treats sites that don't come from the replay. " "Original: defers to original advisor, AlwaysInline: inline all sites " "not in replay, NeverInline: inline no sites not in replay"), cl::Hidden); static cl::opt CGSCCInlineReplayFormat( "cgscc-inline-replay-format", cl::init(CallSiteFormat::Format::LineColumnDiscriminator), cl::values( clEnumValN(CallSiteFormat::Format::Line, "Line", ""), clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn", ":"), clEnumValN(CallSiteFormat::Format::LineDiscriminator, "LineDiscriminator", "."), clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator, "LineColumnDiscriminator", ":. (default)")), cl::desc("How cgscc inline replay file is formatted"), cl::Hidden); /// Return true if the specified inline history ID /// indicates an inline history that includes the specified function. static bool inlineHistoryIncludes( Function *F, int InlineHistoryID, const SmallVectorImpl> &InlineHistory) { while (InlineHistoryID != -1) { assert(unsigned(InlineHistoryID) < InlineHistory.size() && "Invalid inline history ID"); if (InlineHistory[InlineHistoryID].first == F) return true; InlineHistoryID = InlineHistory[InlineHistoryID].second; } return false; } InlineAdvisor & InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM, FunctionAnalysisManager &FAM, Module &M) { if (OwnedAdvisor) return *OwnedAdvisor; auto *IAA = MAM.getCachedResult(M); if (!IAA) { // It should still be possible to run the inliner as a stand-alone SCC pass, // for test scenarios. In that case, we default to the // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass // runs. It also uses just the default InlineParams. // In this case, we need to use the provided FAM, which is valid for the // duration of the inliner pass, and thus the lifetime of the owned advisor. // The one we would get from the MAM can be invalidated as a result of the // inliner's activity. OwnedAdvisor = std::make_unique( M, FAM, getInlineParams(), InlineContext{LTOPhase, InlinePass::CGSCCInliner}); if (!CGSCCInlineReplayFile.empty()) OwnedAdvisor = getReplayInlineAdvisor( M, FAM, M.getContext(), std::move(OwnedAdvisor), ReplayInlinerSettings{CGSCCInlineReplayFile, CGSCCInlineReplayScope, CGSCCInlineReplayFallback, {CGSCCInlineReplayFormat}}, /*EmitRemarks=*/true, InlineContext{LTOPhase, InlinePass::ReplayCGSCCInliner}); return *OwnedAdvisor; } assert(IAA->getAdvisor() && "Expected a present InlineAdvisorAnalysis also have an " "InlineAdvisor initialized"); return *IAA->getAdvisor(); } PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM, LazyCallGraph &CG, CGSCCUpdateResult &UR) { const auto &MAMProxy = AM.getResult(InitialC, CG); bool Changed = false; assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); Module &M = *InitialC.begin()->getFunction().getParent(); ProfileSummaryInfo *PSI = MAMProxy.getCachedResult(M); FunctionAnalysisManager &FAM = AM.getResult(InitialC, CG) .getManager(); InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M); Advisor.onPassEntry(&InitialC); auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(&InitialC); }); // We use a single common worklist for calls across the entire SCC. We // process these in-order and append new calls introduced during inlining to // the end. The PriorityInlineOrder is optional here, in which the smaller // callee would have a higher priority to inline. // // Note that this particular order of processing is actually critical to // avoid very bad behaviors. Consider *highly connected* call graphs where // each function contains a small amount of code and a couple of calls to // other functions. Because the LLVM inliner is fundamentally a bottom-up // inliner, it can handle gracefully the fact that these all appear to be // reasonable inlining candidates as it will flatten things until they become // too big to inline, and then move on and flatten another batch. // // However, when processing call edges *within* an SCC we cannot rely on this // bottom-up behavior. As a consequence, with heavily connected *SCCs* of // functions we can end up incrementally inlining N calls into each of // N functions because each incremental inlining decision looks good and we // don't have a topological ordering to prevent explosions. // // To compensate for this, we don't process transitive edges made immediate // by inlining until we've done one pass of inlining across the entire SCC. // Large, highly connected SCCs still lead to some amount of code bloat in // this model, but it is uniformly spread across all the functions in the SCC // and eventually they all become too large to inline, rather than // incrementally maknig a single function grow in a super linear fashion. SmallVector, 16> Calls; // Populate the initial list of calls in this SCC. for (auto &N : InitialC) { auto &ORE = FAM.getResult(N.getFunction()); // We want to generally process call sites top-down in order for // simplifications stemming from replacing the call with the returned value // after inlining to be visible to subsequent inlining decisions. // FIXME: Using instructions sequence is a really bad way to do this. // Instead we should do an actual RPO walk of the function body. for (Instruction &I : instructions(N.getFunction())) if (auto *CB = dyn_cast(&I)) if (Function *Callee = CB->getCalledFunction()) { if (!Callee->isDeclaration()) Calls.push_back({CB, -1}); else if (!isa(I)) { using namespace ore; setInlineRemark(*CB, "unavailable definition"); ORE.emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) << NV("Callee", Callee) << " will not be inlined into " << NV("Caller", CB->getCaller()) << " because its definition is unavailable" << setIsVerbose(); }); } } } if (Calls.empty()) return PreservedAnalyses::all(); // Capture updatable variable for the current SCC. auto *C = &InitialC; // When inlining a callee produces new call sites, we want to keep track of // the fact that they were inlined from the callee. This allows us to avoid // infinite inlining in some obscure cases. To represent this, we use an // index into the InlineHistory vector. SmallVector, 16> InlineHistory; // Track a set vector of inlined callees so that we can augment the caller // with all of their edges in the call graph before pruning out the ones that // got simplified away. SmallSetVector InlinedCallees; // Track the dead functions to delete once finished with inlining calls. We // defer deleting these to make it easier to handle the call graph updates. SmallVector DeadFunctions; // Track potentially dead non-local functions with comdats to see if they can // be deleted as a batch after inlining. SmallVector DeadFunctionsInComdats; // Loop forward over all of the calls. Note that we cannot cache the size as // inlining can introduce new calls that need to be processed. for (int I = 0; I < (int)Calls.size(); ++I) { // We expect the calls to typically be batched with sequences of calls that // have the same caller, so we first set up some shared infrastructure for // this caller. We also do any pruning we can at this layer on the caller // alone. Function &F = *Calls[I].first->getCaller(); LazyCallGraph::Node &N = *CG.lookup(F); if (CG.lookupSCC(N) != C) continue; LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n" << " Function size: " << F.getInstructionCount() << "\n"); auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { return FAM.getResult(F); }; // Now process as many calls as we have within this caller in the sequence. // We bail out as soon as the caller has to change so we can update the // call graph and prepare the context of that new caller. bool DidInline = false; for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) { auto &P = Calls[I]; CallBase *CB = P.first; const int InlineHistoryID = P.second; Function &Callee = *CB->getCalledFunction(); if (InlineHistoryID != -1 && inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { LLVM_DEBUG(dbgs() << "Skipping inlining due to history: " << F.getName() << " -> " << Callee.getName() << "\n"); setInlineRemark(*CB, "recursive"); // Set noinline so that we don't forget this decision across CGSCC // iterations. CB->setIsNoInline(); continue; } // Check if this inlining may repeat breaking an SCC apart that has // already been split once before. In that case, inlining here may // trigger infinite inlining, much like is prevented within the inliner // itself by the InlineHistory above, but spread across CGSCC iterations // and thus hidden from the full inline history. LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee)); if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) { LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " "previously split out of this SCC by inlining: " << F.getName() << " -> " << Callee.getName() << "\n"); setInlineRemark(*CB, "recursive SCC split"); continue; } std::unique_ptr Advice = Advisor.getAdvice(*CB, OnlyMandatory); // Check whether we want to inline this callsite. if (!Advice) continue; if (!Advice->isInliningRecommended()) { Advice->recordUnattemptedInlining(); continue; } int CBCostMult = getStringFnAttrAsInt( *CB, InlineConstants::FunctionInlineCostMultiplierAttributeName) .value_or(1); // Setup the data structure used to plumb customization into the // `InlineFunction` routine. InlineFunctionInfo IFI( GetAssumptionCache, PSI, &FAM.getResult(*(CB->getCaller())), &FAM.getResult(Callee)); InlineResult IR = InlineFunction(*CB, IFI, /*MergeAttributes=*/true, &FAM.getResult(*CB->getCaller())); if (!IR.isSuccess()) { Advice->recordUnsuccessfulInlining(IR); continue; } DidInline = true; InlinedCallees.insert(&Callee); ++NumInlined; LLVM_DEBUG(dbgs() << " Size after inlining: " << F.getInstructionCount() << "\n"); // Add any new callsites to defined functions to the worklist. if (!IFI.InlinedCallSites.empty()) { int NewHistoryID = InlineHistory.size(); InlineHistory.push_back({&Callee, InlineHistoryID}); for (CallBase *ICB : reverse(IFI.InlinedCallSites)) { Function *NewCallee = ICB->getCalledFunction(); assert(!(NewCallee && NewCallee->isIntrinsic()) && "Intrinsic calls should not be tracked."); if (!NewCallee) { // Try to promote an indirect (virtual) call without waiting for // the post-inline cleanup and the next DevirtSCCRepeatedPass // iteration because the next iteration may not happen and we may // miss inlining it. if (tryPromoteCall(*ICB)) NewCallee = ICB->getCalledFunction(); } if (NewCallee) { if (!NewCallee->isDeclaration()) { Calls.push_back({ICB, NewHistoryID}); // Continually inlining through an SCC can result in huge compile // times and bloated code since we arbitrarily stop at some point // when the inliner decides it's not profitable to inline anymore. // We attempt to mitigate this by making these calls exponentially // more expensive. // This doesn't apply to calls in the same SCC since if we do // inline through the SCC the function will end up being // self-recursive which the inliner bails out on, and inlining // within an SCC is necessary for performance. if (CalleeSCC != C && CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) { Attribute NewCBCostMult = Attribute::get( M.getContext(), InlineConstants::FunctionInlineCostMultiplierAttributeName, itostr(CBCostMult * IntraSCCCostMultiplier)); ICB->addFnAttr(NewCBCostMult); } } } } } // For local functions or discardable functions without comdats, check // whether this makes the callee trivially dead. In that case, we can drop // the body of the function eagerly which may reduce the number of callers // of other functions to one, changing inline cost thresholds. Non-local // discardable functions with comdats are checked later on. bool CalleeWasDeleted = false; if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() && !CG.isLibFunction(Callee)) { if (Callee.hasLocalLinkage() || !Callee.hasComdat()) { Calls.erase( std::remove_if(Calls.begin() + I + 1, Calls.end(), [&](const std::pair &Call) { return Call.first->getCaller() == &Callee; }), Calls.end()); // Clear the body and queue the function itself for deletion when we // finish inlining and call graph updates. // Note that after this point, it is an error to do anything other // than use the callee's address or delete it. Callee.dropAllReferences(); assert(!is_contained(DeadFunctions, &Callee) && "Cannot put cause a function to become dead twice!"); DeadFunctions.push_back(&Callee); CalleeWasDeleted = true; } else { DeadFunctionsInComdats.push_back(&Callee); } } if (CalleeWasDeleted) Advice->recordInliningWithCalleeDeleted(); else Advice->recordInlining(); } // Back the call index up by one to put us in a good position to go around // the outer loop. --I; if (!DidInline) continue; Changed = true; // At this point, since we have made changes we have at least removed // a call instruction. However, in the process we do some incremental // simplification of the surrounding code. This simplification can // essentially do all of the same things as a function pass and we can // re-use the exact same logic for updating the call graph to reflect the // change. // Inside the update, we also update the FunctionAnalysisManager in the // proxy for this particular SCC. We do this as the SCC may have changed and // as we're going to mutate this particular function we want to make sure // the proxy is in place to forward any invalidation events. LazyCallGraph::SCC *OldC = C; C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM); LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); // If this causes an SCC to split apart into multiple smaller SCCs, there // is a subtle risk we need to prepare for. Other transformations may // expose an "infinite inlining" opportunity later, and because of the SCC // mutation, we will revisit this function and potentially re-inline. If we // do, and that re-inlining also has the potentially to mutate the SCC // structure, the infinite inlining problem can manifest through infinite // SCC splits and merges. To avoid this, we capture the originating caller // node and the SCC containing the call edge. This is a slight over // approximation of the possible inlining decisions that must be avoided, // but is relatively efficient to store. We use C != OldC to know when // a new SCC is generated and the original SCC may be generated via merge // in later iterations. // // It is also possible that even if no new SCC is generated // (i.e., C == OldC), the original SCC could be split and then merged // into the same one as itself. and the original SCC will be added into // UR.CWorklist again, we want to catch such cases too. // // FIXME: This seems like a very heavyweight way of retaining the inline // history, we should look for a more efficient way of tracking it. if ((C != OldC || UR.CWorklist.count(OldC)) && llvm::any_of(InlinedCallees, [&](Function *Callee) { return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; })) { LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " "retaining this to avoid infinite inlining.\n"); UR.InlinedInternalEdges.insert({&N, OldC}); } InlinedCallees.clear(); // Invalidate analyses for this function now so that we don't have to // invalidate analyses for all functions in this SCC later. FAM.invalidate(F, PreservedAnalyses::none()); } // We must ensure that we only delete functions with comdats if every function // in the comdat is going to be deleted. if (!DeadFunctionsInComdats.empty()) { filterDeadComdatFunctions(DeadFunctionsInComdats); for (auto *Callee : DeadFunctionsInComdats) Callee->dropAllReferences(); DeadFunctions.append(DeadFunctionsInComdats); } // Now that we've finished inlining all of the calls across this SCC, delete // all of the trivially dead functions, updating the call graph and the CGSCC // pass manager in the process. // // Note that this walks a pointer set which has non-deterministic order but // that is OK as all we do is delete things and add pointers to unordered // sets. for (Function *DeadF : DeadFunctions) { // Get the necessary information out of the call graph and nuke the // function there. Also, clear out any cached analyses. auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); FAM.clear(*DeadF, DeadF->getName()); AM.clear(DeadC, DeadC.getName()); auto &DeadRC = DeadC.getOuterRefSCC(); CG.removeDeadFunction(*DeadF); // Mark the relevant parts of the call graph as invalid so we don't visit // them. UR.InvalidatedSCCs.insert(&DeadC); UR.InvalidatedRefSCCs.insert(&DeadRC); // If the updated SCC was the one containing the deleted function, clear it. if (&DeadC == UR.UpdatedC) UR.UpdatedC = nullptr; // And delete the actual function from the module. M.getFunctionList().erase(DeadF); ++NumDeleted; } if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; // Even if we change the IR, we update the core CGSCC data structures and so // can preserve the proxy to the function analysis manager. PA.preserve(); // We have already invalidated all analyses on modified functions. PA.preserveSet>(); return PA; } ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params, bool MandatoryFirst, InlineContext IC, InliningAdvisorMode Mode, unsigned MaxDevirtIterations) : Params(Params), IC(IC), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations) { // Run the inliner first. The theory is that we are walking bottom-up and so // the callees have already been fully optimized, and we want to inline them // into the callers so that our optimizations can reflect that. // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO // because it makes profile annotation in the backend inaccurate. if (MandatoryFirst) { PM.addPass(InlinerPass(/*OnlyMandatory*/ true)); if (EnablePostSCCAdvisorPrinting) PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs())); } PM.addPass(InlinerPass()); if (EnablePostSCCAdvisorPrinting) PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs())); } PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M, ModuleAnalysisManager &MAM) { auto &IAA = MAM.getResult(M); if (!IAA.tryCreate(Params, Mode, {CGSCCInlineReplayFile, CGSCCInlineReplayScope, CGSCCInlineReplayFallback, {CGSCCInlineReplayFormat}}, IC)) { M.getContext().emitError( "Could not setup Inlining Advisor for the requested " "mode and/or options"); return PreservedAnalyses::all(); } // We wrap the CGSCC pipeline in a devirtualization repeater. This will try // to detect when we devirtualize indirect calls and iterate the SCC passes // in that case to try and catch knock-on inlining or function attrs // opportunities. Then we add it to the module pipeline by walking the SCCs // in postorder (or bottom-up). // If MaxDevirtIterations is 0, we just don't use the devirtualization // wrapper. if (MaxDevirtIterations == 0) MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM))); else MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor( createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations))); MPM.addPass(std::move(AfterCGMPM)); MPM.run(M, MAM); // Discard the InlineAdvisor, a subsequent inlining session should construct // its own. auto PA = PreservedAnalyses::all(); if (!KeepAdvisorForPrinting) PA.abandon(); return PA; } void InlinerPass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { static_cast *>(this)->printPipeline( OS, MapClassName2PassName); if (OnlyMandatory) OS << ""; } void ModuleInlinerWrapperPass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { // Print some info about passes added to the wrapper. This is however // incomplete as InlineAdvisorAnalysis part isn't included (which also depends // on Params and Mode). if (!MPM.isEmpty()) { MPM.printPipeline(OS, MapClassName2PassName); OS << ','; } OS << "cgscc("; if (MaxDevirtIterations != 0) OS << "devirt<" << MaxDevirtIterations << ">("; PM.printPipeline(OS, MapClassName2PassName); if (MaxDevirtIterations != 0) OS << ')'; OS << ')'; }