//===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass deletes dead arguments from internal functions. Dead argument // elimination removes arguments which are directly dead, as well as arguments // only passed into function calls as dead arguments of other functions. This // pass also deletes dead return values in a similar way. // // This pass is often useful as a cleanup pass to run after aggressive // interprocedural passes, which add possibly-dead arguments or return values. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/DeadArgumentElimination.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "deadargelim" STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); STATISTIC(NumRetValsEliminated, "Number of unused return values removed"); STATISTIC(NumArgumentsReplacedWithPoison, "Number of unread args replaced with poison"); namespace { /// The dead argument elimination pass. class DAE : public ModulePass { protected: // DAH uses this to specify a different ID. explicit DAE(char &ID) : ModulePass(ID) {} public: static char ID; // Pass identification, replacement for typeid DAE() : ModulePass(ID) { initializeDAEPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { if (skipModule(M)) return false; DeadArgumentEliminationPass DAEP(shouldHackArguments()); ModuleAnalysisManager DummyMAM; PreservedAnalyses PA = DAEP.run(M, DummyMAM); return !PA.areAllPreserved(); } virtual bool shouldHackArguments() const { return false; } }; } // end anonymous namespace char DAE::ID = 0; INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) namespace { /// The DeadArgumentHacking pass, same as dead argument elimination, but deletes /// arguments to functions which are external. This is only for use by bugpoint. struct DAH : public DAE { static char ID; DAH() : DAE(ID) {} bool shouldHackArguments() const override { return true; } }; } // end anonymous namespace char DAH::ID = 0; INITIALIZE_PASS(DAH, "deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false, false) /// This pass removes arguments from functions which are not used by the body of /// the function. ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } /// If this is an function that takes a ... list, and if llvm.vastart is never /// called, the varargs list is dead for the function. bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) { assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!"); if (F.isDeclaration() || !F.hasLocalLinkage()) return false; // Ensure that the function is only directly called. if (F.hasAddressTaken()) return false; // Don't touch naked functions. The assembly might be using an argument, or // otherwise rely on the frame layout in a way that this analysis will not // see. if (F.hasFnAttribute(Attribute::Naked)) { return false; } // Okay, we know we can transform this function if safe. Scan its body // looking for calls marked musttail or calls to llvm.vastart. for (BasicBlock &BB : F) { for (Instruction &I : BB) { CallInst *CI = dyn_cast(&I); if (!CI) continue; if (CI->isMustTailCall()) return false; if (IntrinsicInst *II = dyn_cast(CI)) { if (II->getIntrinsicID() == Intrinsic::vastart) return false; } } } // If we get here, there are no calls to llvm.vastart in the function body, // remove the "..." and adjust all the calls. // Start by computing a new prototype for the function, which is the same as // the old function, but doesn't have isVarArg set. FunctionType *FTy = F.getFunctionType(); std::vector Params(FTy->param_begin(), FTy->param_end()); FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false); unsigned NumArgs = Params.size(); // Create the new function body and insert it into the module... Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace()); NF->copyAttributesFrom(&F); NF->setComdat(F.getComdat()); F.getParent()->getFunctionList().insert(F.getIterator(), NF); NF->takeName(&F); // Loop over all the callers of the function, transforming the call sites // to pass in a smaller number of arguments into the new function. // std::vector Args; for (User *U : llvm::make_early_inc_range(F.users())) { CallBase *CB = dyn_cast(U); if (!CB) continue; // Pass all the same arguments. Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs); // Drop any attributes that were on the vararg arguments. AttributeList PAL = CB->getAttributes(); if (!PAL.isEmpty()) { SmallVector ArgAttrs; for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) ArgAttrs.push_back(PAL.getParamAttrs(ArgNo)); PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(), PAL.getRetAttrs(), ArgAttrs); } SmallVector OpBundles; CB->getOperandBundlesAsDefs(OpBundles); CallBase *NewCB = nullptr; if (InvokeInst *II = dyn_cast(CB)) { NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), Args, OpBundles, "", CB); } else { NewCB = CallInst::Create(NF, Args, OpBundles, "", CB); cast(NewCB)->setTailCallKind( cast(CB)->getTailCallKind()); } NewCB->setCallingConv(CB->getCallingConv()); NewCB->setAttributes(PAL); NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); Args.clear(); if (!CB->use_empty()) CB->replaceAllUsesWith(NewCB); NewCB->takeName(CB); // Finally, remove the old call from the program, reducing the use-count of // F. CB->eraseFromParent(); } // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NF->getBasicBlockList().splice(NF->begin(), F.getBasicBlockList()); // Loop over the argument list, transferring uses of the old arguments over to // the new arguments, also transferring over the names as well. While we're // at it, remove the dead arguments from the DeadArguments list. for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(), I2 = NF->arg_begin(); I != E; ++I, ++I2) { // Move the name and users over to the new version. I->replaceAllUsesWith(&*I2); I2->takeName(&*I); } // Clone metadata from the old function, including debug info descriptor. SmallVector, 1> MDs; F.getAllMetadata(MDs); for (auto MD : MDs) NF->addMetadata(MD.first, *MD.second); // Fix up any BlockAddresses that refer to the function. F.replaceAllUsesWith(ConstantExpr::getBitCast(NF, F.getType())); // Delete the bitcast that we just created, so that NF does not // appear to be address-taken. NF->removeDeadConstantUsers(); // Finally, nuke the old function. F.eraseFromParent(); return true; } /// Checks if the given function has any arguments that are unused, and changes /// the caller parameters to be poison instead. bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) { // We cannot change the arguments if this TU does not define the function or // if the linker may choose a function body from another TU, even if the // nominal linkage indicates that other copies of the function have the same // semantics. In the below example, the dead load from %p may not have been // eliminated from the linker-chosen copy of f, so replacing %p with poison // in callers may introduce undefined behavior. // // define linkonce_odr void @f(i32* %p) { // %v = load i32 %p // ret void // } if (!F.hasExactDefinition()) return false; // Functions with local linkage should already have been handled, except if // they are fully alive (e.g., called indirectly) and except for the fragile // (variadic) ones. In these cases, we may still be able to improve their // statically known call sites. if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) && !F.getFunctionType()->isVarArg()) return false; // Don't touch naked functions. The assembly might be using an argument, or // otherwise rely on the frame layout in a way that this analysis will not // see. if (F.hasFnAttribute(Attribute::Naked)) return false; if (F.use_empty()) return false; SmallVector UnusedArgs; bool Changed = false; AttributeMask UBImplyingAttributes = AttributeFuncs::getUBImplyingAttributes(); for (Argument &Arg : F.args()) { if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && !Arg.hasPassPointeeByValueCopyAttr()) { if (Arg.isUsedByMetadata()) { Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType())); Changed = true; } UnusedArgs.push_back(Arg.getArgNo()); F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes); } } if (UnusedArgs.empty()) return false; for (Use &U : F.uses()) { CallBase *CB = dyn_cast(U.getUser()); if (!CB || !CB->isCallee(&U) || CB->getFunctionType() != F.getFunctionType()) continue; // Now go through all unused args and replace them with poison. for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { unsigned ArgNo = UnusedArgs[I]; Value *Arg = CB->getArgOperand(ArgNo); CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType())); CB->removeParamAttrs(ArgNo, UBImplyingAttributes); ++NumArgumentsReplacedWithPoison; Changed = true; } } return Changed; } /// Convenience function that returns the number of return values. It returns 0 /// for void functions and 1 for functions not returning a struct. It returns /// the number of struct elements for functions returning a struct. static unsigned numRetVals(const Function *F) { Type *RetTy = F->getReturnType(); if (RetTy->isVoidTy()) return 0; if (StructType *STy = dyn_cast(RetTy)) return STy->getNumElements(); if (ArrayType *ATy = dyn_cast(RetTy)) return ATy->getNumElements(); return 1; } /// Returns the sub-type a function will return at a given Idx. Should /// correspond to the result type of an ExtractValue instruction executed with /// just that one Idx (i.e. only top-level structure is considered). static Type *getRetComponentType(const Function *F, unsigned Idx) { Type *RetTy = F->getReturnType(); assert(!RetTy->isVoidTy() && "void type has no subtype"); if (StructType *STy = dyn_cast(RetTy)) return STy->getElementType(Idx); if (ArrayType *ATy = dyn_cast(RetTy)) return ATy->getElementType(); return RetTy; } /// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to /// the MaybeLiveUses argument. Returns the determined liveness of Use. DeadArgumentEliminationPass::Liveness DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) { // We're live if our use or its Function is already marked as live. if (isLive(Use)) return Live; // We're maybe live otherwise, but remember that we must become live if // Use becomes live. MaybeLiveUses.push_back(Use); return MaybeLive; } /// Looks at a single use of an argument or return value and determines if it /// should be alive or not. Adds this use to MaybeLiveUses if it causes the /// used value to become MaybeLive. /// /// RetValNum is the return value number to use when this use is used in a /// return instruction. This is used in the recursion, you should always leave /// it at 0. DeadArgumentEliminationPass::Liveness DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses, unsigned RetValNum) { const User *V = U->getUser(); if (const ReturnInst *RI = dyn_cast(V)) { // The value is returned from a function. It's only live when the // function's return value is live. We use RetValNum here, for the case // that U is really a use of an insertvalue instruction that uses the // original Use. const Function *F = RI->getParent()->getParent(); if (RetValNum != -1U) { RetOrArg Use = createRet(F, RetValNum); // We might be live, depending on the liveness of Use. return markIfNotLive(Use, MaybeLiveUses); } DeadArgumentEliminationPass::Liveness Result = MaybeLive; for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) { RetOrArg Use = createRet(F, Ri); // We might be live, depending on the liveness of Use. If any // sub-value is live, then the entire value is considered live. This // is a conservative choice, and better tracking is possible. DeadArgumentEliminationPass::Liveness SubResult = markIfNotLive(Use, MaybeLiveUses); if (Result != Live) Result = SubResult; } return Result; } if (const InsertValueInst *IV = dyn_cast(V)) { if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() && IV->hasIndices()) // The use we are examining is inserted into an aggregate. Our liveness // depends on all uses of that aggregate, but if it is used as a return // value, only index at which we were inserted counts. RetValNum = *IV->idx_begin(); // Note that if we are used as the aggregate operand to the insertvalue, // we don't change RetValNum, but do survey all our uses. Liveness Result = MaybeLive; for (const Use &UU : IV->uses()) { Result = surveyUse(&UU, MaybeLiveUses, RetValNum); if (Result == Live) break; } return Result; } if (const auto *CB = dyn_cast(V)) { const Function *F = CB->getCalledFunction(); if (F) { // Used in a direct call. // The function argument is live if it is used as a bundle operand. if (CB->isBundleOperand(U)) return Live; // Find the argument number. We know for sure that this use is an // argument, since if it was the function argument this would be an // indirect call and that we know can't be looking at a value of the // label type (for the invoke instruction). unsigned ArgNo = CB->getArgOperandNo(U); if (ArgNo >= F->getFunctionType()->getNumParams()) // The value is passed in through a vararg! Must be live. return Live; assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) && "Argument is not where we expected it"); // Value passed to a normal call. It's only live when the corresponding // argument to the called function turns out live. RetOrArg Use = createArg(F, ArgNo); return markIfNotLive(Use, MaybeLiveUses); } } // Used in any other way? Value must be live. return Live; } /// Looks at all the uses of the given value /// Returns the Liveness deduced from the uses of this value. /// /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If /// the result is Live, MaybeLiveUses might be modified but its content should /// be ignored (since it might not be complete). DeadArgumentEliminationPass::Liveness DeadArgumentEliminationPass::surveyUses(const Value *V, UseVector &MaybeLiveUses) { // Assume it's dead (which will only hold if there are no uses at all..). Liveness Result = MaybeLive; // Check each use. for (const Use &U : V->uses()) { Result = surveyUse(&U, MaybeLiveUses); if (Result == Live) break; } return Result; } /// Performs the initial survey of the specified function, checking out whether /// it uses any of its incoming arguments or whether any callers use the return /// value. This fills in the LiveValues set and Uses map. /// /// We consider arguments of non-internal functions to be intrinsically alive as /// well as arguments to functions which have their "address taken". void DeadArgumentEliminationPass::surveyFunction(const Function &F) { // Functions with inalloca/preallocated parameters are expecting args in a // particular register and memory layout. if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) || F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { markLive(F); return; } // Don't touch naked functions. The assembly might be using an argument, or // otherwise rely on the frame layout in a way that this analysis will not // see. if (F.hasFnAttribute(Attribute::Naked)) { markLive(F); return; } unsigned RetCount = numRetVals(&F); // Assume all return values are dead using RetVals = SmallVector; RetVals RetValLiveness(RetCount, MaybeLive); using RetUses = SmallVector; // These vectors map each return value to the uses that make it MaybeLive, so // we can add those to the Uses map if the return value really turns out to be // MaybeLive. Initialized to a list of RetCount empty lists. RetUses MaybeLiveRetUses(RetCount); bool HasMustTailCalls = false; for (const BasicBlock &BB : F) { // If we have any returns of `musttail` results - the signature can't // change if (BB.getTerminatingMustTailCall() != nullptr) HasMustTailCalls = true; } if (HasMustTailCalls) { LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() << " has musttail calls\n"); } if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { markLive(F); return; } LLVM_DEBUG( dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " << F.getName() << "\n"); // Keep track of the number of live retvals, so we can skip checks once all // of them turn out to be live. unsigned NumLiveRetVals = 0; bool HasMustTailCallers = false; // Loop all uses of the function. for (const Use &U : F.uses()) { // If the function is PASSED IN as an argument, its address has been // taken. const auto *CB = dyn_cast(U.getUser()); if (!CB || !CB->isCallee(&U) || CB->getFunctionType() != F.getFunctionType()) { markLive(F); return; } // The number of arguments for `musttail` call must match the number of // arguments of the caller if (CB->isMustTailCall()) HasMustTailCallers = true; // If we end up here, we are looking at a direct call to our function. // Now, check how our return value(s) is/are used in this caller. Don't // bother checking return values if all of them are live already. if (NumLiveRetVals == RetCount) continue; // Check all uses of the return value. for (const Use &UU : CB->uses()) { if (ExtractValueInst *Ext = dyn_cast(UU.getUser())) { // This use uses a part of our return value, survey the uses of // that part and store the results for this index only. unsigned Idx = *Ext->idx_begin(); if (RetValLiveness[Idx] != Live) { RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]); if (RetValLiveness[Idx] == Live) NumLiveRetVals++; } } else { // Used by something else than extractvalue. Survey, but assume that the // result applies to all sub-values. UseVector MaybeLiveAggregateUses; if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) { NumLiveRetVals = RetCount; RetValLiveness.assign(RetCount, Live); break; } for (unsigned Ri = 0; Ri != RetCount; ++Ri) { if (RetValLiveness[Ri] != Live) MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(), MaybeLiveAggregateUses.end()); } } } } if (HasMustTailCallers) { LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() << " has musttail callers\n"); } // Now we've inspected all callers, record the liveness of our return values. for (unsigned Ri = 0; Ri != RetCount; ++Ri) markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]); LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " << F.getName() << "\n"); // Now, check all of our arguments. unsigned ArgI = 0; UseVector MaybeLiveArgUses; for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI, ++ArgI) { Liveness Result; if (F.getFunctionType()->isVarArg() || HasMustTailCallers || HasMustTailCalls) { // Variadic functions will already have a va_arg function expanded inside // them, making them potentially very sensitive to ABI changes resulting // from removing arguments entirely, so don't. For example AArch64 handles // register and stack HFAs very differently, and this is reflected in the // IR which has already been generated. // // `musttail` calls to this function restrict argument removal attempts. // The signature of the caller must match the signature of the function. // // `musttail` calls in this function prevents us from changing its // signature Result = Live; } else { // See what the effect of this use is (recording any uses that cause // MaybeLive in MaybeLiveArgUses). Result = surveyUses(&*AI, MaybeLiveArgUses); } // Mark the result. markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses); // Clear the vector again for the next iteration. MaybeLiveArgUses.clear(); } } /// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes /// all uses in MaybeLiveUses and records them in Uses, such that RA will be /// marked live if any use in MaybeLiveUses gets marked live later on. void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L, const UseVector &MaybeLiveUses) { switch (L) { case Live: markLive(RA); break; case MaybeLive: assert(!isLive(RA) && "Use is already live!"); for (const auto &MaybeLiveUse : MaybeLiveUses) { if (isLive(MaybeLiveUse)) { // A use is live, so this value is live. markLive(RA); break; } // Note any uses of this value, so this value can be // marked live whenever one of the uses becomes live. Uses.emplace(MaybeLiveUse, RA); } break; } } /// Mark the given Function as alive, meaning that it cannot be changed in any /// way. Additionally, mark any values that are used as this function's /// parameters or by its return values (according to Uses) live as well. void DeadArgumentEliminationPass::markLive(const Function &F) { LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: " << F.getName() << "\n"); // Mark the function as live. LiveFunctions.insert(&F); // Mark all arguments as live. for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI) propagateLiveness(createArg(&F, ArgI)); // Mark all return values as live. for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri) propagateLiveness(createRet(&F, Ri)); } /// Mark the given return value or argument as live. Additionally, mark any /// values that are used by this value (according to Uses) live as well. void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) { if (isLive(RA)) return; // Already marked Live. LiveValues.insert(RA); LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " << RA.getDescription() << " live\n"); propagateLiveness(RA); } bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) { return LiveFunctions.count(RA.F) || LiveValues.count(RA); } /// Given that RA is a live value, propagate it's liveness to any other values /// it uses (according to Uses). void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) { // We don't use upper_bound (or equal_range) here, because our recursive call // to ourselves is likely to cause the upper_bound (which is the first value // not belonging to RA) to become erased and the iterator invalidated. UseMap::iterator Begin = Uses.lower_bound(RA); UseMap::iterator E = Uses.end(); UseMap::iterator I; for (I = Begin; I != E && I->first == RA; ++I) markLive(I->second); // Erase RA from the Uses map (from the lower bound to wherever we ended up // after the loop). Uses.erase(Begin, I); } /// Remove any arguments and return values from F that are not in LiveValues. /// Transform the function and all the callees of the function to not have these /// arguments and return values. bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) { // Don't modify fully live functions if (LiveFunctions.count(F)) return false; // Start by computing a new prototype for the function, which is the same as // the old function, but has fewer arguments and a different return type. FunctionType *FTy = F->getFunctionType(); std::vector Params; // Keep track of if we have a live 'returned' argument bool HasLiveReturnedArg = false; // Set up to build a new list of parameter attributes. SmallVector ArgAttrVec; const AttributeList &PAL = F->getAttributes(); // Remember which arguments are still alive. SmallVector ArgAlive(FTy->getNumParams(), false); // Construct the new parameter list from non-dead arguments. Also construct // a new set of parameter attributes to correspond. Skip the first parameter // attribute, since that belongs to the return value. unsigned ArgI = 0; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++ArgI) { RetOrArg Arg = createArg(F, ArgI); if (LiveValues.erase(Arg)) { Params.push_back(I->getType()); ArgAlive[ArgI] = true; ArgAttrVec.push_back(PAL.getParamAttrs(ArgI)); HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned); } else { ++NumArgumentsEliminated; LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " << ArgI << " (" << I->getName() << ") from " << F->getName() << "\n"); } } // Find out the new return value. Type *RetTy = FTy->getReturnType(); Type *NRetTy = nullptr; unsigned RetCount = numRetVals(F); // -1 means unused, other numbers are the new index SmallVector NewRetIdxs(RetCount, -1); std::vector RetTypes; // If there is a function with a live 'returned' argument but a dead return // value, then there are two possible actions: // 1) Eliminate the return value and take off the 'returned' attribute on the // argument. // 2) Retain the 'returned' attribute and treat the return value (but not the // entire function) as live so that it is not eliminated. // // It's not clear in the general case which option is more profitable because, // even in the absence of explicit uses of the return value, code generation // is free to use the 'returned' attribute to do things like eliding // save/restores of registers across calls. Whether this happens is target and // ABI-specific as well as depending on the amount of register pressure, so // there's no good way for an IR-level pass to figure this out. // // Fortunately, the only places where 'returned' is currently generated by // the FE are places where 'returned' is basically free and almost always a // performance win, so the second option can just be used always for now. // // This should be revisited if 'returned' is ever applied more liberally. if (RetTy->isVoidTy() || HasLiveReturnedArg) { NRetTy = RetTy; } else { // Look at each of the original return values individually. for (unsigned Ri = 0; Ri != RetCount; ++Ri) { RetOrArg Ret = createRet(F, Ri); if (LiveValues.erase(Ret)) { RetTypes.push_back(getRetComponentType(F, Ri)); NewRetIdxs[Ri] = RetTypes.size() - 1; } else { ++NumRetValsEliminated; LLVM_DEBUG( dbgs() << "DeadArgumentEliminationPass - Removing return value " << Ri << " from " << F->getName() << "\n"); } } if (RetTypes.size() > 1) { // More than one return type? Reduce it down to size. if (StructType *STy = dyn_cast(RetTy)) { // Make the new struct packed if we used to return a packed struct // already. NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); } else { assert(isa(RetTy) && "unexpected multi-value return"); NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); } } else if (RetTypes.size() == 1) // One return type? Just a simple value then, but only if we didn't use to // return a struct with that simple value before. NRetTy = RetTypes.front(); else if (RetTypes.empty()) // No return types? Make it void, but only if we didn't use to return {}. NRetTy = Type::getVoidTy(F->getContext()); } assert(NRetTy && "No new return type found?"); // The existing function return attributes. AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs()); // Remove any incompatible attributes, but only if we removed all return // values. Otherwise, ensure that we don't have any conflicting attributes // here. Currently, this should not be possible, but special handling might be // required when new return value attributes are added. if (NRetTy->isVoidTy()) RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); else assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) && "Return attributes no longer compatible?"); AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); // Strip allocsize attributes. They might refer to the deleted arguments. AttributeSet FnAttrs = PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize); // Reconstruct the AttributesList based on the vector we constructed. assert(ArgAttrVec.size() == Params.size()); AttributeList NewPAL = AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); // Create the new function type based on the recomputed parameters. FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); // No change? if (NFTy == FTy) return false; // Create the new function body and insert it into the module... Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace()); NF->copyAttributesFrom(F); NF->setComdat(F->getComdat()); NF->setAttributes(NewPAL); // Insert the new function before the old function, so we won't be processing // it again. F->getParent()->getFunctionList().insert(F->getIterator(), NF); NF->takeName(F); // Loop over all the callers of the function, transforming the call sites to // pass in a smaller number of arguments into the new function. std::vector Args; while (!F->use_empty()) { CallBase &CB = cast(*F->user_back()); ArgAttrVec.clear(); const AttributeList &CallPAL = CB.getAttributes(); // Adjust the call return attributes in case the function was changed to // return void. AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs()); RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); // Declare these outside of the loops, so we can reuse them for the second // loop, which loops the varargs. auto *I = CB.arg_begin(); unsigned Pi = 0; // Loop over those operands, corresponding to the normal arguments to the // original function, and add those that are still alive. for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi) if (ArgAlive[Pi]) { Args.push_back(*I); // Get original parameter attributes, but skip return attributes. AttributeSet Attrs = CallPAL.getParamAttrs(Pi); if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) { // If the return type has changed, then get rid of 'returned' on the // call site. The alternative is to make all 'returned' attributes on // call sites keep the return value alive just like 'returned' // attributes on function declaration, but it's less clearly a win and // this is not an expected case anyway ArgAttrVec.push_back(AttributeSet::get( F->getContext(), AttrBuilder(F->getContext(), Attrs) .removeAttribute(Attribute::Returned))); } else { // Otherwise, use the original attributes. ArgAttrVec.push_back(Attrs); } } // Push any varargs arguments on the list. Don't forget their attributes. for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) { Args.push_back(*I); ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi)); } // Reconstruct the AttributesList based on the vector we constructed. assert(ArgAttrVec.size() == Args.size()); // Again, be sure to remove any allocsize attributes, since their indices // may now be incorrect. AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute( F->getContext(), Attribute::AllocSize); AttributeList NewCallPAL = AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); SmallVector OpBundles; CB.getOperandBundlesAsDefs(OpBundles); CallBase *NewCB = nullptr; if (InvokeInst *II = dyn_cast(&CB)) { NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), Args, OpBundles, "", CB.getParent()); } else { NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB); cast(NewCB)->setTailCallKind( cast(&CB)->getTailCallKind()); } NewCB->setCallingConv(CB.getCallingConv()); NewCB->setAttributes(NewCallPAL); NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); Args.clear(); ArgAttrVec.clear(); if (!CB.use_empty() || CB.isUsedByMetadata()) { if (NewCB->getType() == CB.getType()) { // Return type not changed? Just replace users then. CB.replaceAllUsesWith(NewCB); NewCB->takeName(&CB); } else if (NewCB->getType()->isVoidTy()) { // If the return value is dead, replace any uses of it with poison // (any non-debug value uses will get removed later on). if (!CB.getType()->isX86_MMXTy()) CB.replaceAllUsesWith(PoisonValue::get(CB.getType())); } else { assert((RetTy->isStructTy() || RetTy->isArrayTy()) && "Return type changed, but not into a void. The old return type" " must have been a struct or an array!"); Instruction *InsertPt = &CB; if (InvokeInst *II = dyn_cast(&CB)) { BasicBlock *NewEdge = SplitEdge(NewCB->getParent(), II->getNormalDest()); InsertPt = &*NewEdge->getFirstInsertionPt(); } // We used to return a struct or array. Instead of doing smart stuff // with all the uses, we will just rebuild it using extract/insertvalue // chaining and let instcombine clean that up. // // Start out building up our return value from poison Value *RetVal = PoisonValue::get(RetTy); for (unsigned Ri = 0; Ri != RetCount; ++Ri) if (NewRetIdxs[Ri] != -1) { Value *V; IRBuilder IRB(InsertPt); if (RetTypes.size() > 1) // We are still returning a struct, so extract the value from our // return value V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret"); else // We are now returning a single element, so just insert that V = NewCB; // Insert the value at the old position RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret"); } // Now, replace all uses of the old call instruction with the return // struct we built CB.replaceAllUsesWith(RetVal); NewCB->takeName(&CB); } } // Finally, remove the old call from the program, reducing the use-count of // F. CB.eraseFromParent(); } // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); // Loop over the argument list, transferring uses of the old arguments over to // the new arguments, also transferring over the names as well. ArgI = 0; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), I2 = NF->arg_begin(); I != E; ++I, ++ArgI) if (ArgAlive[ArgI]) { // If this is a live argument, move the name and users over to the new // version. I->replaceAllUsesWith(&*I2); I2->takeName(&*I); ++I2; } else { // If this argument is dead, replace any uses of it with poison // (any non-debug value uses will get removed later on). if (!I->getType()->isX86_MMXTy()) I->replaceAllUsesWith(PoisonValue::get(I->getType())); } // If we change the return value of the function we must rewrite any return // instructions. Check this now. if (F->getReturnType() != NF->getReturnType()) for (BasicBlock &BB : *NF) if (ReturnInst *RI = dyn_cast(BB.getTerminator())) { IRBuilder IRB(RI); Value *RetVal = nullptr; if (!NFTy->getReturnType()->isVoidTy()) { assert(RetTy->isStructTy() || RetTy->isArrayTy()); // The original return value was a struct or array, insert // extractvalue/insertvalue chains to extract only the values we need // to return and insert them into our new result. // This does generate messy code, but we'll let it to instcombine to // clean that up. Value *OldRet = RI->getOperand(0); // Start out building up our return value from poison RetVal = PoisonValue::get(NRetTy); for (unsigned RetI = 0; RetI != RetCount; ++RetI) if (NewRetIdxs[RetI] != -1) { Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret"); if (RetTypes.size() > 1) { // We're still returning a struct, so reinsert the value into // our new return value at the new index RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI], "newret"); } else { // We are now only returning a simple value, so just return the // extracted value. RetVal = EV; } } } // Replace the return instruction with one returning the new return // value (possibly 0 if we became void). auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI); NewRet->setDebugLoc(RI->getDebugLoc()); BB.getInstList().erase(RI); } // Clone metadata from the old function, including debug info descriptor. SmallVector, 1> MDs; F->getAllMetadata(MDs); for (auto MD : MDs) NF->addMetadata(MD.first, *MD.second); // If either the return value(s) or argument(s) are removed, then probably the // function does not follow standard calling conventions anymore. Hence, add // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe // to call this function or try to interpret the return value. if (NFTy != FTy && NF->getSubprogram()) { DISubprogram *SP = NF->getSubprogram(); auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall); SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp))); } // Now that the old function is dead, delete it. F->eraseFromParent(); return true; } PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, ModuleAnalysisManager &) { bool Changed = false; // First pass: Do a simple check to see if any functions can have their "..." // removed. We can do this if they never call va_start. This loop cannot be // fused with the next loop, because deleting a function invalidates // information computed while surveying other functions. LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n"); for (Function &F : llvm::make_early_inc_range(M)) if (F.getFunctionType()->isVarArg()) Changed |= deleteDeadVarargs(F); // Second phase: Loop through the module, determining which arguments are // live. We assume all arguments are dead unless proven otherwise (allowing us // to determine that dead arguments passed into recursive functions are dead). LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n"); for (auto &F : M) surveyFunction(F); // Now, remove all dead arguments and return values from each function in // turn. We use make_early_inc_range here because functions will probably get // removed (i.e. replaced by new ones). for (Function &F : llvm::make_early_inc_range(M)) Changed |= removeDeadStuffFromFunction(&F); // Finally, look for any unused parameters in functions with non-local // linkage and replace the passed in parameters with poison. for (auto &F : M) Changed |= removeDeadArgumentsFromCallers(F); if (!Changed) return PreservedAnalyses::all(); return PreservedAnalyses::none(); }