//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass promotes "by reference" arguments to be "by value" arguments. In // practice, this means looking for internal functions that have pointer // arguments. If it can prove, through the use of alias analysis, that an // argument is *only* loaded, then it can pass the value into the function // instead of the address of the value. This can cause recursive simplification // of code and lead to the elimination of allocas (especially in C++ template // code like the STL). // // This pass also handles aggregate arguments that are passed into a function, // scalarizing them if the elements of the aggregate are only loaded. Note that // by default it refuses to scalarize aggregates which would require passing in // more than three operands to the function, because passing thousands of // operands for a large array or structure is unprofitable! This limit can be // configured or disabled, however. // // Note that this transformation could also be done for arguments that are only // stored to (returning the value instead), but does not currently. This case // would be best handled when and if LLVM begins supporting multiple return // values from functions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/ArgumentPromotion.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/CallGraphSCCPass.h" #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/IPO.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "argpromotion" STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); /// A vector used to hold the indices of a single GEP instruction using IndicesVector = std::vector; /// DoPromotion - This method actually performs the promotion of the specified /// arguments, and returns the new function. At this point, we know that it's /// safe to do so. static Function * doPromotion(Function *F, SmallPtrSetImpl &ArgsToPromote, SmallPtrSetImpl &ByValArgsToTransform, Optional> ReplaceCallSite) { // Start by computing a new prototype for the function, which is the same as // the old function, but has modified arguments. FunctionType *FTy = F->getFunctionType(); std::vector Params; using ScalarizeTable = std::set>; // ScalarizedElements - If we are promoting a pointer that has elements // accessed out of it, keep track of which elements are accessed so that we // can add one argument for each. // // Arguments that are directly loaded will have a zero element value here, to // handle cases where there are both a direct load and GEP accesses. std::map ScalarizedElements; // OriginalLoads - Keep track of a representative load instruction from the // original function so that we can tell the alias analysis implementation // what the new GEP/Load instructions we are inserting look like. // We need to keep the original loads for each argument and the elements // of the argument that are accessed. std::map, LoadInst *> OriginalLoads; // Attribute - Keep track of the parameter attributes for the arguments // that we are *not* promoting. For the ones that we do promote, the parameter // attributes are lost SmallVector ArgAttrVec; AttributeList PAL = F->getAttributes(); // First, determine the new argument list unsigned ArgNo = 0; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++ArgNo) { if (ByValArgsToTransform.count(&*I)) { // Simple byval argument? Just add all the struct element types. Type *AgTy = cast(I->getType())->getElementType(); StructType *STy = cast(AgTy); Params.insert(Params.end(), STy->element_begin(), STy->element_end()); ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), AttributeSet()); ++NumByValArgsPromoted; } else if (!ArgsToPromote.count(&*I)) { // Unchanged argument Params.push_back(I->getType()); ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); } else if (I->use_empty()) { // Dead argument (which are always marked as promotable) ++NumArgumentsDead; // There may be remaining metadata uses of the argument for things like // llvm.dbg.value. Replace them with undef. I->replaceAllUsesWith(UndefValue::get(I->getType())); } else { // Okay, this is being promoted. This means that the only uses are loads // or GEPs which are only used by loads // In this table, we will track which indices are loaded from the argument // (where direct loads are tracked as no indices). ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; for (User *U : I->users()) { Instruction *UI = cast(U); Type *SrcTy; if (LoadInst *L = dyn_cast(UI)) SrcTy = L->getType(); else SrcTy = cast(UI)->getSourceElementType(); IndicesVector Indices; Indices.reserve(UI->getNumOperands() - 1); // Since loads will only have a single operand, and GEPs only a single // non-index operand, this will record direct loads without any indices, // and gep+loads with the GEP indices. for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); II != IE; ++II) Indices.push_back(cast(*II)->getSExtValue()); // GEPs with a single 0 index can be merged with direct loads if (Indices.size() == 1 && Indices.front() == 0) Indices.clear(); ArgIndices.insert(std::make_pair(SrcTy, Indices)); LoadInst *OrigLoad; if (LoadInst *L = dyn_cast(UI)) OrigLoad = L; else // Take any load, we will use it only to update Alias Analysis OrigLoad = cast(UI->user_back()); OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; } // Add a parameter to the function for each element passed in. for (const auto &ArgIndex : ArgIndices) { // not allowed to dereference ->begin() if size() is 0 Params.push_back(GetElementPtrInst::getIndexedType( cast(I->getType())->getElementType(), ArgIndex.second)); ArgAttrVec.push_back(AttributeSet()); assert(Params.back()); } if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) ++NumArgumentsPromoted; else ++NumAggregatesPromoted; } } Type *RetTy = FTy->getReturnType(); // Construct the new function type using the new arguments. FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); // Create the new function body and insert it into the module. Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), F->getName()); NF->copyAttributesFrom(F); // Patch the pointer to LLVM function in debug info descriptor. NF->setSubprogram(F->getSubprogram()); F->setSubprogram(nullptr); LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" << "From: " << *F); // Recompute the parameter attributes list based on the new arguments for // the function. NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), PAL.getRetAttributes(), ArgAttrVec)); ArgAttrVec.clear(); F->getParent()->getFunctionList().insert(F->getIterator(), NF); NF->takeName(F); // Loop over all of the callers of the function, transforming the call sites // to pass in the loaded pointers. // SmallVector Args; while (!F->use_empty()) { CallBase &CB = cast(*F->user_back()); assert(CB.getCalledFunction() == F); const AttributeList &CallPAL = CB.getAttributes(); IRBuilder IRB(&CB); // Loop over the operands, inserting GEP and loads in the caller as // appropriate. auto AI = CB.arg_begin(); ArgNo = 0; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++AI, ++ArgNo) if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { Args.push_back(*AI); // Unmodified argument ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); } else if (ByValArgsToTransform.count(&*I)) { // Emit a GEP and load for each element of the struct. Type *AgTy = cast(I->getType())->getElementType(); StructType *STy = cast(AgTy); Value *Idxs[2] = { ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); auto *Idx = IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i)); // TODO: Tell AA about the new values? Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx, Idx->getName() + ".val")); ArgAttrVec.push_back(AttributeSet()); } } else if (!I->use_empty()) { // Non-dead argument: insert GEPs and loads as appropriate. ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; // Store the Value* version of the indices in here, but declare it now // for reuse. std::vector Ops; for (const auto &ArgIndex : ArgIndices) { Value *V = *AI; LoadInst *OrigLoad = OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; if (!ArgIndex.second.empty()) { Ops.reserve(ArgIndex.second.size()); Type *ElTy = V->getType(); for (auto II : ArgIndex.second) { // Use i32 to index structs, and i64 for others (pointers/arrays). // This satisfies GEP constraints. Type *IdxTy = (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) : Type::getInt64Ty(F->getContext())); Ops.push_back(ConstantInt::get(IdxTy, II)); // Keep track of the type we're currently indexing. if (auto *ElPTy = dyn_cast(ElTy)) ElTy = ElPTy->getElementType(); else ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II); } // And create a GEP to extract those indices. V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx"); Ops.clear(); } // Since we're replacing a load make sure we take the alignment // of the previous load. LoadInst *newLoad = IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val"); newLoad->setAlignment(OrigLoad->getAlign()); // Transfer the AA info too. AAMDNodes AAInfo; OrigLoad->getAAMetadata(AAInfo); newLoad->setAAMetadata(AAInfo); Args.push_back(newLoad); ArgAttrVec.push_back(AttributeSet()); } } // Push any varargs arguments on the list. for (; AI != CB.arg_end(); ++AI, ++ArgNo) { Args.push_back(*AI); ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); } SmallVector OpBundles; CB.getOperandBundlesAsDefs(OpBundles); CallBase *NewCS = nullptr; if (InvokeInst *II = dyn_cast(&CB)) { NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), Args, OpBundles, "", &CB); } else { auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB); NewCall->setTailCallKind(cast(&CB)->getTailCallKind()); NewCS = NewCall; } NewCS->setCallingConv(CB.getCallingConv()); NewCS->setAttributes( AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), CallPAL.getRetAttributes(), ArgAttrVec)); NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); Args.clear(); ArgAttrVec.clear(); // Update the callgraph to know that the callsite has been transformed. if (ReplaceCallSite) (*ReplaceCallSite)(CB, *NewCS); if (!CB.use_empty()) { CB.replaceAllUsesWith(NewCS); NewCS->takeName(&CB); } // Finally, remove the old call from the program, reducing the use-count of // F. CB.eraseFromParent(); } const DataLayout &DL = F->getParent()->getDataLayout(); // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); // Loop over the argument list, transferring uses of the old arguments over to // the new arguments, also transferring over the names as well. for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), I2 = NF->arg_begin(); I != E; ++I) { if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { // If this is an unmodified argument, move the name and users over to the // new version. I->replaceAllUsesWith(&*I2); I2->takeName(&*I); ++I2; continue; } if (ByValArgsToTransform.count(&*I)) { // In the callee, we create an alloca, and store each of the new incoming // arguments into the alloca. Instruction *InsertPt = &NF->begin()->front(); // Just add all the struct element types. Type *AgTy = cast(I->getType())->getElementType(); Value *TheAlloca = new AllocaInst( AgTy, DL.getAllocaAddrSpace(), nullptr, I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "", InsertPt); StructType *STy = cast(AgTy); Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); Value *Idx = GetElementPtrInst::Create( AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), InsertPt); I2->setName(I->getName() + "." + Twine(i)); new StoreInst(&*I2++, Idx, InsertPt); } // Anything that used the arg should now use the alloca. I->replaceAllUsesWith(TheAlloca); TheAlloca->takeName(&*I); // If the alloca is used in a call, we must clear the tail flag since // the callee now uses an alloca from the caller. for (User *U : TheAlloca->users()) { CallInst *Call = dyn_cast(U); if (!Call) continue; Call->setTailCall(false); } continue; } if (I->use_empty()) continue; // Otherwise, if we promoted this argument, then all users are load // instructions (or GEPs with only load users), and all loads should be // using the new argument that we added. ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; while (!I->use_empty()) { if (LoadInst *LI = dyn_cast(I->user_back())) { assert(ArgIndices.begin()->second.empty() && "Load element should sort to front!"); I2->setName(I->getName() + ".val"); LI->replaceAllUsesWith(&*I2); LI->eraseFromParent(); LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() << "' in function '" << F->getName() << "'\n"); } else { GetElementPtrInst *GEP = cast(I->user_back()); IndicesVector Operands; Operands.reserve(GEP->getNumIndices()); for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); II != IE; ++II) Operands.push_back(cast(*II)->getSExtValue()); // GEPs with a single 0 index can be merged with direct loads if (Operands.size() == 1 && Operands.front() == 0) Operands.clear(); Function::arg_iterator TheArg = I2; for (ScalarizeTable::iterator It = ArgIndices.begin(); It->second != Operands; ++It, ++TheArg) { assert(It != ArgIndices.end() && "GEP not handled??"); } TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(), make_range(Operands.begin(), Operands.end()))); LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() << "' of function '" << NF->getName() << "'\n"); // All of the uses must be load instructions. Replace them all with // the argument specified by ArgNo. while (!GEP->use_empty()) { LoadInst *L = cast(GEP->user_back()); L->replaceAllUsesWith(&*TheArg); L->eraseFromParent(); } GEP->eraseFromParent(); } } // Increment I2 past all of the arguments added for this promoted pointer. std::advance(I2, ArgIndices.size()); } return NF; } /// Return true if we can prove that all callees pass in a valid pointer for the /// specified function argument. static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) { Function *Callee = Arg->getParent(); const DataLayout &DL = Callee->getParent()->getDataLayout(); unsigned ArgNo = Arg->getArgNo(); // Look at all call sites of the function. At this point we know we only have // direct callees. for (User *U : Callee->users()) { CallBase &CB = cast(*U); if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL)) return false; } return true; } /// Returns true if Prefix is a prefix of longer. That means, Longer has a size /// that is greater than or equal to the size of prefix, and each of the /// elements in Prefix is the same as the corresponding elements in Longer. /// /// This means it also returns true when Prefix and Longer are equal! static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { if (Prefix.size() > Longer.size()) return false; return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); } /// Checks if Indices, or a prefix of Indices, is in Set. static bool prefixIn(const IndicesVector &Indices, std::set &Set) { std::set::iterator Low; Low = Set.upper_bound(Indices); if (Low != Set.begin()) Low--; // Low is now the last element smaller than or equal to Indices. This means // it points to a prefix of Indices (possibly Indices itself), if such // prefix exists. // // This load is safe if any prefix of its operands is safe to load. return Low != Set.end() && isPrefix(*Low, Indices); } /// Mark the given indices (ToMark) as safe in the given set of indices /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there /// is already a prefix of Indices in Safe, Indices are implicitely marked safe /// already. Furthermore, any indices that Indices is itself a prefix of, are /// removed from Safe (since they are implicitely safe because of Indices now). static void markIndicesSafe(const IndicesVector &ToMark, std::set &Safe) { std::set::iterator Low; Low = Safe.upper_bound(ToMark); // Guard against the case where Safe is empty if (Low != Safe.begin()) Low--; // Low is now the last element smaller than or equal to Indices. This // means it points to a prefix of Indices (possibly Indices itself), if // such prefix exists. if (Low != Safe.end()) { if (isPrefix(*Low, ToMark)) // If there is already a prefix of these indices (or exactly these // indices) marked a safe, don't bother adding these indices return; // Increment Low, so we can use it as a "insert before" hint ++Low; } // Insert Low = Safe.insert(Low, ToMark); ++Low; // If there we're a prefix of longer index list(s), remove those std::set::iterator End = Safe.end(); while (Low != End && isPrefix(ToMark, *Low)) { std::set::iterator Remove = Low; ++Low; Safe.erase(Remove); } } /// isSafeToPromoteArgument - As you might guess from the name of this method, /// it checks to see if it is both safe and useful to promote the argument. /// This method limits promotion of aggregates to only promote up to three /// elements of the aggregate in order to avoid exploding the number of /// arguments passed in. static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR, unsigned MaxElements) { using GEPIndicesSet = std::set; // Quick exit for unused arguments if (Arg->use_empty()) return true; // We can only promote this argument if all of the uses are loads, or are GEP // instructions (with constant indices) that are subsequently loaded. // // Promoting the argument causes it to be loaded in the caller // unconditionally. This is only safe if we can prove that either the load // would have happened in the callee anyway (ie, there is a load in the entry // block) or the pointer passed in at every call site is guaranteed to be // valid. // In the former case, invalid loads can happen, but would have happened // anyway, in the latter case, invalid loads won't happen. This prevents us // from introducing an invalid load that wouldn't have happened in the // original code. // // This set will contain all sets of indices that are loaded in the entry // block, and thus are safe to unconditionally load in the caller. GEPIndicesSet SafeToUnconditionallyLoad; // This set contains all the sets of indices that we are planning to promote. // This makes it possible to limit the number of arguments added. GEPIndicesSet ToPromote; // If the pointer is always valid, any load with first index 0 is valid. if (ByValTy) SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); // Whenever a new underlying type for the operand is found, make sure it's // consistent with the GEPs and loads we've already seen and, if necessary, // use it to see if all incoming pointers are valid (which implies the 0-index // is safe). Type *BaseTy = ByValTy; auto UpdateBaseTy = [&](Type *NewBaseTy) { if (BaseTy) return BaseTy == NewBaseTy; BaseTy = NewBaseTy; if (allCallersPassValidPointerForArgument(Arg, BaseTy)) { assert(SafeToUnconditionallyLoad.empty()); SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); } return true; }; // First, iterate the entry block and mark loads of (geps of) arguments as // safe. BasicBlock &EntryBlock = Arg->getParent()->front(); // Declare this here so we can reuse it IndicesVector Indices; for (Instruction &I : EntryBlock) if (LoadInst *LI = dyn_cast(&I)) { Value *V = LI->getPointerOperand(); if (GetElementPtrInst *GEP = dyn_cast(V)) { V = GEP->getPointerOperand(); if (V == Arg) { // This load actually loads (part of) Arg? Check the indices then. Indices.reserve(GEP->getNumIndices()); for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); II != IE; ++II) if (ConstantInt *CI = dyn_cast(*II)) Indices.push_back(CI->getSExtValue()); else // We found a non-constant GEP index for this argument? Bail out // right away, can't promote this argument at all. return false; if (!UpdateBaseTy(GEP->getSourceElementType())) return false; // Indices checked out, mark them as safe markIndicesSafe(Indices, SafeToUnconditionallyLoad); Indices.clear(); } } else if (V == Arg) { // Direct loads are equivalent to a GEP with a single 0 index. markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); if (BaseTy && LI->getType() != BaseTy) return false; BaseTy = LI->getType(); } } // Now, iterate all uses of the argument to see if there are any uses that are // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. SmallVector Loads; IndicesVector Operands; for (Use &U : Arg->uses()) { User *UR = U.getUser(); Operands.clear(); if (LoadInst *LI = dyn_cast(UR)) { // Don't hack volatile/atomic loads if (!LI->isSimple()) return false; Loads.push_back(LI); // Direct loads are equivalent to a GEP with a zero index and then a load. Operands.push_back(0); if (!UpdateBaseTy(LI->getType())) return false; } else if (GetElementPtrInst *GEP = dyn_cast(UR)) { if (GEP->use_empty()) { // Dead GEP's cause trouble later. Just remove them if we run into // them. GEP->eraseFromParent(); // TODO: This runs the above loop over and over again for dead GEPs // Couldn't we just do increment the UI iterator earlier and erase the // use? return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements); } if (!UpdateBaseTy(GEP->getSourceElementType())) return false; // Ensure that all of the indices are constants. for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; ++i) if (ConstantInt *C = dyn_cast(*i)) Operands.push_back(C->getSExtValue()); else return false; // Not a constant operand GEP! // Ensure that the only users of the GEP are load instructions. for (User *GEPU : GEP->users()) if (LoadInst *LI = dyn_cast(GEPU)) { // Don't hack volatile/atomic loads if (!LI->isSimple()) return false; Loads.push_back(LI); } else { // Other uses than load? return false; } } else { return false; // Not a load or a GEP. } // Now, see if it is safe to promote this load / loads of this GEP. Loading // is safe if Operands, or a prefix of Operands, is marked as safe. if (!prefixIn(Operands, SafeToUnconditionallyLoad)) return false; // See if we are already promoting a load with these indices. If not, check // to make sure that we aren't promoting too many elements. If so, nothing // to do. if (ToPromote.find(Operands) == ToPromote.end()) { if (MaxElements > 0 && ToPromote.size() == MaxElements) { LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" << Arg->getName() << "' because it would require adding more " << "than " << MaxElements << " arguments to the function.\n"); // We limit aggregate promotion to only promoting up to a fixed number // of elements of the aggregate. return false; } ToPromote.insert(std::move(Operands)); } } if (Loads.empty()) return true; // No users, this is a dead argument. // Okay, now we know that the argument is only used by load instructions and // it is safe to unconditionally perform all of them. Use alias analysis to // check to see if the pointer is guaranteed to not be modified from entry of // the function to each of the load instructions. // Because there could be several/many load instructions, remember which // blocks we know to be transparent to the load. df_iterator_default_set TranspBlocks; for (LoadInst *Load : Loads) { // Check to see if the load is invalidated from the start of the block to // the load itself. BasicBlock *BB = Load->getParent(); MemoryLocation Loc = MemoryLocation::get(Load); if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) return false; // Pointer is invalidated! // Now check every path from the entry block to the load for transparency. // To do this, we perform a depth first search on the inverse CFG from the // loading block. for (BasicBlock *P : predecessors(BB)) { for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) if (AAR.canBasicBlockModify(*TranspBB, Loc)) return false; } } // If the path from the entry of the function to each load is free of // instructions that potentially invalidate the load, we can make the // transformation! return true; } bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) { // There is no size information, so be conservative. if (!type->isSized()) return false; // If the alloc size is not equal to the storage size, then there are padding // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) return false; // FIXME: This isn't the right way to check for padding in vectors with // non-byte-size elements. if (VectorType *seqTy = dyn_cast(type)) return isDenselyPacked(seqTy->getElementType(), DL); // For array types, check for padding within members. if (ArrayType *seqTy = dyn_cast(type)) return isDenselyPacked(seqTy->getElementType(), DL); if (!isa(type)) return true; // Check for padding within and between elements of a struct. StructType *StructTy = cast(type); const StructLayout *Layout = DL.getStructLayout(StructTy); uint64_t StartPos = 0; for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { Type *ElTy = StructTy->getElementType(i); if (!isDenselyPacked(ElTy, DL)) return false; if (StartPos != Layout->getElementOffsetInBits(i)) return false; StartPos += DL.getTypeAllocSizeInBits(ElTy); } return true; } /// Checks if the padding bytes of an argument could be accessed. static bool canPaddingBeAccessed(Argument *arg) { assert(arg->hasByValAttr()); // Track all the pointers to the argument to make sure they are not captured. SmallPtrSet PtrValues; PtrValues.insert(arg); // Track all of the stores. SmallVector Stores; // Scan through the uses recursively to make sure the pointer is always used // sanely. SmallVector WorkList; WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); while (!WorkList.empty()) { Value *V = WorkList.back(); WorkList.pop_back(); if (isa(V) || isa(V)) { if (PtrValues.insert(V).second) WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); } else if (StoreInst *Store = dyn_cast(V)) { Stores.push_back(Store); } else if (!isa(V)) { return true; } } // Check to make sure the pointers aren't captured for (StoreInst *Store : Stores) if (PtrValues.count(Store->getValueOperand())) return true; return false; } bool ArgumentPromotionPass::areFunctionArgsABICompatible( const Function &F, const TargetTransformInfo &TTI, SmallPtrSetImpl &ArgsToPromote, SmallPtrSetImpl &ByValArgsToTransform) { for (const Use &U : F.uses()) { CallBase *CB = dyn_cast(U.getUser()); if (!CB) return false; const Function *Caller = CB->getCaller(); const Function *Callee = CB->getCalledFunction(); if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) return false; } return true; } /// PromoteArguments - This method checks the specified function to see if there /// are any promotable arguments and if it is safe to promote the function (for /// example, all callers are direct). If safe to promote some arguments, it /// calls the DoPromotion method. static Function * promoteArguments(Function *F, function_ref AARGetter, unsigned MaxElements, Optional> ReplaceCallSite, const TargetTransformInfo &TTI) { // Don't perform argument promotion for naked functions; otherwise we can end // up removing parameters that are seemingly 'not used' as they are referred // to in the assembly. if(F->hasFnAttribute(Attribute::Naked)) return nullptr; // Make sure that it is local to this module. if (!F->hasLocalLinkage()) return nullptr; // Don't promote arguments for variadic functions. Adding, removing, or // changing non-pack parameters can change the classification of pack // parameters. Frontends encode that classification at the call site in the // IR, while in the callee the classification is determined dynamically based // on the number of registers consumed so far. if (F->isVarArg()) return nullptr; // Don't transform functions that receive inallocas, as the transformation may // not be safe depending on calling convention. if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) return nullptr; // First check: see if there are any pointer arguments! If not, quick exit. SmallVector PointerArgs; for (Argument &I : F->args()) if (I.getType()->isPointerTy()) PointerArgs.push_back(&I); if (PointerArgs.empty()) return nullptr; // Second check: make sure that all callers are direct callers. We can't // transform functions that have indirect callers. Also see if the function // is self-recursive and check that target features are compatible. bool isSelfRecursive = false; for (Use &U : F->uses()) { CallBase *CB = dyn_cast(U.getUser()); // Must be a direct call. if (CB == nullptr || !CB->isCallee(&U)) return nullptr; // Can't change signature of musttail callee if (CB->isMustTailCall()) return nullptr; if (CB->getParent()->getParent() == F) isSelfRecursive = true; } // Can't change signature of musttail caller // FIXME: Support promoting whole chain of musttail functions for (BasicBlock &BB : *F) if (BB.getTerminatingMustTailCall()) return nullptr; const DataLayout &DL = F->getParent()->getDataLayout(); AAResults &AAR = AARGetter(*F); // Check to see which arguments are promotable. If an argument is promotable, // add it to ArgsToPromote. SmallPtrSet ArgsToPromote; SmallPtrSet ByValArgsToTransform; for (Argument *PtrArg : PointerArgs) { Type *AgTy = cast(PtrArg->getType())->getElementType(); // Replace sret attribute with noalias. This reduces register pressure by // avoiding a register copy. if (PtrArg->hasStructRetAttr()) { unsigned ArgNo = PtrArg->getArgNo(); F->removeParamAttr(ArgNo, Attribute::StructRet); F->addParamAttr(ArgNo, Attribute::NoAlias); for (Use &U : F->uses()) { CallBase &CB = cast(*U.getUser()); CB.removeParamAttr(ArgNo, Attribute::StructRet); CB.addParamAttr(ArgNo, Attribute::NoAlias); } } // If this is a byval argument, and if the aggregate type is small, just // pass the elements, which is always safe, if the passed value is densely // packed or if we can prove the padding bytes are never accessed. bool isSafeToPromote = PtrArg->hasByValAttr() && (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); if (isSafeToPromote) { if (StructType *STy = dyn_cast(AgTy)) { if (MaxElements > 0 && STy->getNumElements() > MaxElements) { LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" << PtrArg->getName() << "' because it would require adding more" << " than " << MaxElements << " arguments to the function.\n"); continue; } // If all the elements are single-value types, we can promote it. bool AllSimple = true; for (const auto *EltTy : STy->elements()) { if (!EltTy->isSingleValueType()) { AllSimple = false; break; } } // Safe to transform, don't even bother trying to "promote" it. // Passing the elements as a scalar will allow sroa to hack on // the new alloca we introduce. if (AllSimple) { ByValArgsToTransform.insert(PtrArg); continue; } } } // If the argument is a recursive type and we're in a recursive // function, we could end up infinitely peeling the function argument. if (isSelfRecursive) { if (StructType *STy = dyn_cast(AgTy)) { bool RecursiveType = false; for (const auto *EltTy : STy->elements()) { if (EltTy == PtrArg->getType()) { RecursiveType = true; break; } } if (RecursiveType) continue; } } // Otherwise, see if we can promote the pointer to its value. Type *ByValTy = PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr; if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements)) ArgsToPromote.insert(PtrArg); } // No promotable pointer arguments. if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) return nullptr; if (!ArgumentPromotionPass::areFunctionArgsABICompatible( *F, TTI, ArgsToPromote, ByValArgsToTransform)) return nullptr; return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); } PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG, CGSCCUpdateResult &UR) { bool Changed = false, LocalChange; // Iterate until we stop promoting from this SCC. do { LocalChange = false; for (LazyCallGraph::Node &N : C) { Function &OldF = N.getFunction(); FunctionAnalysisManager &FAM = AM.getResult(C, CG).getManager(); // FIXME: This lambda must only be used with this function. We should // skip the lambda and just get the AA results directly. auto AARGetter = [&](Function &F) -> AAResults & { assert(&F == &OldF && "Called with an unexpected function!"); return FAM.getResult(F); }; const TargetTransformInfo &TTI = FAM.getResult(OldF); Function *NewF = promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); if (!NewF) continue; LocalChange = true; // Directly substitute the functions in the call graph. Note that this // requires the old function to be completely dead and completely // replaced by the new function. It does no call graph updates, it merely // swaps out the particular function mapped to a particular node in the // graph. C.getOuterRefSCC().replaceNodeFunction(N, *NewF); OldF.eraseFromParent(); } Changed |= LocalChange; } while (LocalChange); if (!Changed) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } namespace { /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. struct ArgPromotion : public CallGraphSCCPass { // Pass identification, replacement for typeid static char ID; explicit ArgPromotion(unsigned MaxElements = 3) : CallGraphSCCPass(ID), MaxElements(MaxElements) { initializeArgPromotionPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); getAAResultsAnalysisUsage(AU); CallGraphSCCPass::getAnalysisUsage(AU); } bool runOnSCC(CallGraphSCC &SCC) override; private: using llvm::Pass::doInitialization; bool doInitialization(CallGraph &CG) override; /// The maximum number of elements to expand, or 0 for unlimited. unsigned MaxElements; }; } // end anonymous namespace char ArgPromotion::ID = 0; INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", "Promote 'by reference' arguments to scalars", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(ArgPromotion, "argpromotion", "Promote 'by reference' arguments to scalars", false, false) Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { return new ArgPromotion(MaxElements); } bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { if (skipSCC(SCC)) return false; // Get the callgraph information that we need to update to reflect our // changes. CallGraph &CG = getAnalysis().getCallGraph(); LegacyAARGetter AARGetter(*this); bool Changed = false, LocalChange; // Iterate until we stop promoting from this SCC. do { LocalChange = false; // Attempt to promote arguments from all functions in this SCC. for (CallGraphNode *OldNode : SCC) { Function *OldF = OldNode->getFunction(); if (!OldF) continue; auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) { Function *Caller = OldCS.getParent()->getParent(); CallGraphNode *NewCalleeNode = CG.getOrInsertFunction(NewCS.getCalledFunction()); CallGraphNode *CallerNode = CG[Caller]; CallerNode->replaceCallEdge(cast(OldCS), cast(NewCS), NewCalleeNode); }; const TargetTransformInfo &TTI = getAnalysis().getTTI(*OldF); if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, {ReplaceCallSite}, TTI)) { LocalChange = true; // Update the call graph for the newly promoted function. CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); NewNode->stealCalledFunctionsFrom(OldNode); if (OldNode->getNumReferences() == 0) delete CG.removeFunctionFromModule(OldNode); else OldF->setLinkage(Function::ExternalLinkage); // And updat ethe SCC we're iterating as well. SCC.ReplaceNode(OldNode, NewNode); } } // Remember that we changed something. Changed |= LocalChange; } while (LocalChange); return Changed; } bool ArgPromotion::doInitialization(CallGraph &CG) { return CallGraphSCCPass::doInitialization(CG); }