//===- TruncInstCombine.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // TruncInstCombine - looks for expression graphs post-dominated by TruncInst // and for each eligible graph, it will create a reduced bit-width expression, // replace the old expression with this new one and remove the old expression. // Eligible expression graph is such that: // 1. Contains only supported instructions. // 2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value. // 3. Can be evaluated into type with reduced legal bit-width. // 4. All instructions in the graph must not have users outside the graph. // The only exception is for {ZExt, SExt}Inst with operand type equal to // the new reduced type evaluated in (3). // // The motivation for this optimization is that evaluating and expression using // smaller bit-width is preferable, especially for vectorization where we can // fit more values in one vectorized instruction. In addition, this optimization // may decrease the number of cast instructions, but will not increase it. // //===----------------------------------------------------------------------===// #include "AggressiveInstCombineInternal.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/Support/KnownBits.h" using namespace llvm; #define DEBUG_TYPE "aggressive-instcombine" STATISTIC(NumExprsReduced, "Number of truncations eliminated by reducing bit " "width of expression graph"); STATISTIC(NumInstrsReduced, "Number of instructions whose bit width was reduced"); /// Given an instruction and a container, it fills all the relevant operands of /// that instruction, with respect to the Trunc expression graph optimizaton. static void getRelevantOperands(Instruction *I, SmallVectorImpl &Ops) { unsigned Opc = I->getOpcode(); switch (Opc) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: // These CastInst are considered leaves of the evaluated expression, thus, // their operands are not relevent. break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::UDiv: case Instruction::URem: case Instruction::InsertElement: Ops.push_back(I->getOperand(0)); Ops.push_back(I->getOperand(1)); break; case Instruction::ExtractElement: Ops.push_back(I->getOperand(0)); break; case Instruction::Select: Ops.push_back(I->getOperand(1)); Ops.push_back(I->getOperand(2)); break; case Instruction::PHI: for (Value *V : cast(I)->incoming_values()) Ops.push_back(V); break; default: llvm_unreachable("Unreachable!"); } } bool TruncInstCombine::buildTruncExpressionGraph() { SmallVector Worklist; SmallVector Stack; // Clear old instructions info. InstInfoMap.clear(); Worklist.push_back(CurrentTruncInst->getOperand(0)); while (!Worklist.empty()) { Value *Curr = Worklist.back(); if (isa(Curr)) { Worklist.pop_back(); continue; } auto *I = dyn_cast(Curr); if (!I) return false; if (!Stack.empty() && Stack.back() == I) { // Already handled all instruction operands, can remove it from both the // Worklist and the Stack, and add it to the instruction info map. Worklist.pop_back(); Stack.pop_back(); // Insert I to the Info map. InstInfoMap.insert(std::make_pair(I, Info())); continue; } if (InstInfoMap.count(I)) { Worklist.pop_back(); continue; } // Add the instruction to the stack before start handling its operands. Stack.push_back(I); unsigned Opc = I->getOpcode(); switch (Opc) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: // trunc(trunc(x)) -> trunc(x) // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest // trunc(ext(x)) -> trunc(x) if the source type is larger than the new // dest break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::UDiv: case Instruction::URem: case Instruction::InsertElement: case Instruction::ExtractElement: case Instruction::Select: { SmallVector Operands; getRelevantOperands(I, Operands); append_range(Worklist, Operands); break; } case Instruction::PHI: { SmallVector Operands; getRelevantOperands(I, Operands); // Add only operands not in Stack to prevent cycle for (auto *Op : Operands) if (!llvm::is_contained(Stack, Op)) Worklist.push_back(Op); break; } default: // TODO: Can handle more cases here: // 1. shufflevector // 2. sdiv, srem // ... return false; } } return true; } unsigned TruncInstCombine::getMinBitWidth() { SmallVector Worklist; SmallVector Stack; Value *Src = CurrentTruncInst->getOperand(0); Type *DstTy = CurrentTruncInst->getType(); unsigned TruncBitWidth = DstTy->getScalarSizeInBits(); unsigned OrigBitWidth = CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits(); if (isa(Src)) return TruncBitWidth; Worklist.push_back(Src); InstInfoMap[cast(Src)].ValidBitWidth = TruncBitWidth; while (!Worklist.empty()) { Value *Curr = Worklist.back(); if (isa(Curr)) { Worklist.pop_back(); continue; } // Otherwise, it must be an instruction. auto *I = cast(Curr); auto &Info = InstInfoMap[I]; SmallVector Operands; getRelevantOperands(I, Operands); if (!Stack.empty() && Stack.back() == I) { // Already handled all instruction operands, can remove it from both, the // Worklist and the Stack, and update MinBitWidth. Worklist.pop_back(); Stack.pop_back(); for (auto *Operand : Operands) if (auto *IOp = dyn_cast(Operand)) Info.MinBitWidth = std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth); continue; } // Add the instruction to the stack before start handling its operands. Stack.push_back(I); unsigned ValidBitWidth = Info.ValidBitWidth; // Update minimum bit-width before handling its operands. This is required // when the instruction is part of a loop. Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth); for (auto *Operand : Operands) if (auto *IOp = dyn_cast(Operand)) { // If we already calculated the minimum bit-width for this valid // bit-width, or for a smaller valid bit-width, then just keep the // answer we already calculated. unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth; if (IOpBitwidth >= ValidBitWidth) continue; InstInfoMap[IOp].ValidBitWidth = ValidBitWidth; Worklist.push_back(IOp); } } unsigned MinBitWidth = InstInfoMap.lookup(cast(Src)).MinBitWidth; assert(MinBitWidth >= TruncBitWidth); if (MinBitWidth > TruncBitWidth) { // In this case reducing expression with vector type might generate a new // vector type, which is not preferable as it might result in generating // sub-optimal code. if (DstTy->isVectorTy()) return OrigBitWidth; // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth). Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth); // Update minimum bit-width with the new destination type bit-width if // succeeded to find such, otherwise, with original bit-width. MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth; } else { // MinBitWidth == TruncBitWidth // In this case the expression can be evaluated with the trunc instruction // destination type, and trunc instruction can be omitted. However, we // should not perform the evaluation if the original type is a legal scalar // type and the target type is illegal. bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth); bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth); if (!DstTy->isVectorTy() && FromLegal && !ToLegal) return OrigBitWidth; } return MinBitWidth; } Type *TruncInstCombine::getBestTruncatedType() { if (!buildTruncExpressionGraph()) return nullptr; // We don't want to duplicate instructions, which isn't profitable. Thus, we // can't shrink something that has multiple users, unless all users are // post-dominated by the trunc instruction, i.e., were visited during the // expression evaluation. unsigned DesiredBitWidth = 0; for (auto Itr : InstInfoMap) { Instruction *I = Itr.first; if (I->hasOneUse()) continue; bool IsExtInst = (isa(I) || isa(I)); for (auto *U : I->users()) if (auto *UI = dyn_cast(U)) if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) { if (!IsExtInst) return nullptr; // If this is an extension from the dest type, we can eliminate it, // even if it has multiple users. Thus, update the DesiredBitWidth and // validate all extension instructions agrees on same DesiredBitWidth. unsigned ExtInstBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth) return nullptr; DesiredBitWidth = ExtInstBitWidth; } } unsigned OrigBitWidth = CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits(); // Initialize MinBitWidth for shift instructions with the minimum number // that is greater than shift amount (i.e. shift amount + 1). // For `lshr` adjust MinBitWidth so that all potentially truncated // bits of the value-to-be-shifted are zeros. // For `ashr` adjust MinBitWidth so that all potentially truncated // bits of the value-to-be-shifted are sign bits (all zeros or ones) // and even one (first) untruncated bit is sign bit. // Exit early if MinBitWidth is not less than original bitwidth. for (auto &Itr : InstInfoMap) { Instruction *I = Itr.first; if (I->isShift()) { KnownBits KnownRHS = computeKnownBits(I->getOperand(1)); unsigned MinBitWidth = KnownRHS.getMaxValue() .uadd_sat(APInt(OrigBitWidth, 1)) .getLimitedValue(OrigBitWidth); if (MinBitWidth == OrigBitWidth) return nullptr; if (I->getOpcode() == Instruction::LShr) { KnownBits KnownLHS = computeKnownBits(I->getOperand(0)); MinBitWidth = std::max(MinBitWidth, KnownLHS.getMaxValue().getActiveBits()); } if (I->getOpcode() == Instruction::AShr) { unsigned NumSignBits = ComputeNumSignBits(I->getOperand(0)); MinBitWidth = std::max(MinBitWidth, OrigBitWidth - NumSignBits + 1); } if (MinBitWidth >= OrigBitWidth) return nullptr; Itr.second.MinBitWidth = MinBitWidth; } if (I->getOpcode() == Instruction::UDiv || I->getOpcode() == Instruction::URem) { unsigned MinBitWidth = 0; for (const auto &Op : I->operands()) { KnownBits Known = computeKnownBits(Op); MinBitWidth = std::max(Known.getMaxValue().getActiveBits(), MinBitWidth); if (MinBitWidth >= OrigBitWidth) return nullptr; } Itr.second.MinBitWidth = MinBitWidth; } } // Calculate minimum allowed bit-width allowed for shrinking the currently // visited truncate's operand. unsigned MinBitWidth = getMinBitWidth(); // Check that we can shrink to smaller bit-width than original one and that // it is similar to the DesiredBitWidth is such exists. if (MinBitWidth >= OrigBitWidth || (DesiredBitWidth && DesiredBitWidth != MinBitWidth)) return nullptr; return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth); } /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type /// for \p V, according to its type, if it vector type, return the vector /// version of \p Ty, otherwise return \p Ty. static Type *getReducedType(Value *V, Type *Ty) { assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type"); if (auto *VTy = dyn_cast(V->getType())) return VectorType::get(Ty, VTy->getElementCount()); return Ty; } Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) { Type *Ty = getReducedType(V, SclTy); if (auto *C = dyn_cast(V)) { C = ConstantExpr::getIntegerCast(C, Ty, false); // If we got a constantexpr back, try to simplify it with DL info. return ConstantFoldConstant(C, DL, &TLI); } auto *I = cast(V); Info Entry = InstInfoMap.lookup(I); assert(Entry.NewValue); return Entry.NewValue; } void TruncInstCombine::ReduceExpressionGraph(Type *SclTy) { NumInstrsReduced += InstInfoMap.size(); // Pairs of old and new phi-nodes SmallVector, 2> OldNewPHINodes; for (auto &Itr : InstInfoMap) { // Forward Instruction *I = Itr.first; TruncInstCombine::Info &NodeInfo = Itr.second; assert(!NodeInfo.NewValue && "Instruction has been evaluated"); IRBuilder<> Builder(I); Value *Res = nullptr; unsigned Opc = I->getOpcode(); switch (Opc) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: { Type *Ty = getReducedType(I, SclTy); // If the source type of the cast is the type we're trying for then we can // just return the source. There's no need to insert it because it is not // new. if (I->getOperand(0)->getType() == Ty) { assert(!isa(I) && "Cannot reach here with TruncInst"); NodeInfo.NewValue = I->getOperand(0); continue; } // Otherwise, must be the same type of cast, so just reinsert a new one. // This also handles the case of zext(trunc(x)) -> zext(x). Res = Builder.CreateIntCast(I->getOperand(0), Ty, Opc == Instruction::SExt); // Update Worklist entries with new value if needed. // There are three possible changes to the Worklist: // 1. Update Old-TruncInst -> New-TruncInst. // 2. Remove Old-TruncInst (if New node is not TruncInst). // 3. Add New-TruncInst (if Old node was not TruncInst). auto *Entry = find(Worklist, I); if (Entry != Worklist.end()) { if (auto *NewCI = dyn_cast(Res)) *Entry = NewCI; else Worklist.erase(Entry); } else if (auto *NewCI = dyn_cast(Res)) Worklist.push_back(NewCI); break; } case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::UDiv: case Instruction::URem: { Value *LHS = getReducedOperand(I->getOperand(0), SclTy); Value *RHS = getReducedOperand(I->getOperand(1), SclTy); Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS); // Preserve `exact` flag since truncation doesn't change exactness if (auto *PEO = dyn_cast(I)) if (auto *ResI = dyn_cast(Res)) ResI->setIsExact(PEO->isExact()); break; } case Instruction::ExtractElement: { Value *Vec = getReducedOperand(I->getOperand(0), SclTy); Value *Idx = I->getOperand(1); Res = Builder.CreateExtractElement(Vec, Idx); break; } case Instruction::InsertElement: { Value *Vec = getReducedOperand(I->getOperand(0), SclTy); Value *NewElt = getReducedOperand(I->getOperand(1), SclTy); Value *Idx = I->getOperand(2); Res = Builder.CreateInsertElement(Vec, NewElt, Idx); break; } case Instruction::Select: { Value *Op0 = I->getOperand(0); Value *LHS = getReducedOperand(I->getOperand(1), SclTy); Value *RHS = getReducedOperand(I->getOperand(2), SclTy); Res = Builder.CreateSelect(Op0, LHS, RHS); break; } case Instruction::PHI: { Res = Builder.CreatePHI(getReducedType(I, SclTy), I->getNumOperands()); OldNewPHINodes.push_back( std::make_pair(cast(I), cast(Res))); break; } default: llvm_unreachable("Unhandled instruction"); } NodeInfo.NewValue = Res; if (auto *ResI = dyn_cast(Res)) ResI->takeName(I); } for (auto &Node : OldNewPHINodes) { PHINode *OldPN = Node.first; PHINode *NewPN = Node.second; for (auto Incoming : zip(OldPN->incoming_values(), OldPN->blocks())) NewPN->addIncoming(getReducedOperand(std::get<0>(Incoming), SclTy), std::get<1>(Incoming)); } Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy); Type *DstTy = CurrentTruncInst->getType(); if (Res->getType() != DstTy) { IRBuilder<> Builder(CurrentTruncInst); Res = Builder.CreateIntCast(Res, DstTy, false); if (auto *ResI = dyn_cast(Res)) ResI->takeName(CurrentTruncInst); } CurrentTruncInst->replaceAllUsesWith(Res); // Erase old expression graph, which was replaced by the reduced expression // graph. CurrentTruncInst->eraseFromParent(); // First, erase old phi-nodes and its uses for (auto &Node : OldNewPHINodes) { PHINode *OldPN = Node.first; OldPN->replaceAllUsesWith(PoisonValue::get(OldPN->getType())); InstInfoMap.erase(OldPN); OldPN->eraseFromParent(); } // Now we have expression graph turned into dag. // We iterate backward, which means we visit the instruction before we // visit any of its operands, this way, when we get to the operand, we already // removed the instructions (from the expression dag) that uses it. for (auto &I : llvm::reverse(InstInfoMap)) { // We still need to check that the instruction has no users before we erase // it, because {SExt, ZExt}Inst Instruction might have other users that was // not reduced, in such case, we need to keep that instruction. if (I.first->use_empty()) I.first->eraseFromParent(); else assert((isa(I.first) || isa(I.first)) && "Only {SExt, ZExt}Inst might have unreduced users"); } } bool TruncInstCombine::run(Function &F) { bool MadeIRChange = false; // Collect all TruncInst in the function into the Worklist for evaluating. for (auto &BB : F) { // Ignore unreachable basic block. if (!DT.isReachableFromEntry(&BB)) continue; for (auto &I : BB) if (auto *CI = dyn_cast(&I)) Worklist.push_back(CI); } // Process all TruncInst in the Worklist, for each instruction: // 1. Check if it dominates an eligible expression graph to be reduced. // 2. Create a reduced expression graph and replace the old one with it. while (!Worklist.empty()) { CurrentTruncInst = Worklist.pop_back_val(); if (Type *NewDstSclTy = getBestTruncatedType()) { LLVM_DEBUG( dbgs() << "ICE: TruncInstCombine reducing type of expression graph " "dominated by: " << CurrentTruncInst << '\n'); ReduceExpressionGraph(NewDstSclTy); ++NumExprsReduced; MadeIRChange = true; } } return MadeIRChange; }