//===-- ARMTargetParser - Parser for ARM target features --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a target parser to recognise ARM hardware features // such as FPU/CPU/ARCH/extensions and specific support such as HWDIV. // //===----------------------------------------------------------------------===// #include "llvm/TargetParser/ARMTargetParser.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/ARMTargetParserCommon.h" #include "llvm/TargetParser/Triple.h" #include using namespace llvm; static StringRef getHWDivSynonym(StringRef HWDiv) { return StringSwitch(HWDiv) .Case("thumb,arm", "arm,thumb") .Default(HWDiv); } // Allows partial match, ex. "v7a" matches "armv7a". ARM::ArchKind ARM::parseArch(StringRef Arch) { Arch = getCanonicalArchName(Arch); StringRef Syn = getArchSynonym(Arch); for (const auto &A : ARMArchNames) { if (A.Name.ends_with(Syn)) return A.ID; } return ArchKind::INVALID; } // Version number (ex. v7 = 7). unsigned ARM::parseArchVersion(StringRef Arch) { Arch = getCanonicalArchName(Arch); switch (parseArch(Arch)) { case ArchKind::ARMV4: case ArchKind::ARMV4T: return 4; case ArchKind::ARMV5T: case ArchKind::ARMV5TE: case ArchKind::IWMMXT: case ArchKind::IWMMXT2: case ArchKind::XSCALE: case ArchKind::ARMV5TEJ: return 5; case ArchKind::ARMV6: case ArchKind::ARMV6K: case ArchKind::ARMV6T2: case ArchKind::ARMV6KZ: case ArchKind::ARMV6M: return 6; case ArchKind::ARMV7A: case ArchKind::ARMV7VE: case ArchKind::ARMV7R: case ArchKind::ARMV7M: case ArchKind::ARMV7S: case ArchKind::ARMV7EM: case ArchKind::ARMV7K: return 7; case ArchKind::ARMV8A: case ArchKind::ARMV8_1A: case ArchKind::ARMV8_2A: case ArchKind::ARMV8_3A: case ArchKind::ARMV8_4A: case ArchKind::ARMV8_5A: case ArchKind::ARMV8_6A: case ArchKind::ARMV8_7A: case ArchKind::ARMV8_8A: case ArchKind::ARMV8_9A: case ArchKind::ARMV8R: case ArchKind::ARMV8MBaseline: case ArchKind::ARMV8MMainline: case ArchKind::ARMV8_1MMainline: return 8; case ArchKind::ARMV9A: case ArchKind::ARMV9_1A: case ArchKind::ARMV9_2A: case ArchKind::ARMV9_3A: case ArchKind::ARMV9_4A: case ArchKind::ARMV9_5A: return 9; case ArchKind::INVALID: return 0; } llvm_unreachable("Unhandled architecture"); } static ARM::ProfileKind getProfileKind(ARM::ArchKind AK) { switch (AK) { case ARM::ArchKind::ARMV6M: case ARM::ArchKind::ARMV7M: case ARM::ArchKind::ARMV7EM: case ARM::ArchKind::ARMV8MMainline: case ARM::ArchKind::ARMV8MBaseline: case ARM::ArchKind::ARMV8_1MMainline: return ARM::ProfileKind::M; case ARM::ArchKind::ARMV7R: case ARM::ArchKind::ARMV8R: return ARM::ProfileKind::R; case ARM::ArchKind::ARMV7A: case ARM::ArchKind::ARMV7VE: case ARM::ArchKind::ARMV7K: case ARM::ArchKind::ARMV8A: case ARM::ArchKind::ARMV8_1A: case ARM::ArchKind::ARMV8_2A: case ARM::ArchKind::ARMV8_3A: case ARM::ArchKind::ARMV8_4A: case ARM::ArchKind::ARMV8_5A: case ARM::ArchKind::ARMV8_6A: case ARM::ArchKind::ARMV8_7A: case ARM::ArchKind::ARMV8_8A: case ARM::ArchKind::ARMV8_9A: case ARM::ArchKind::ARMV9A: case ARM::ArchKind::ARMV9_1A: case ARM::ArchKind::ARMV9_2A: case ARM::ArchKind::ARMV9_3A: case ARM::ArchKind::ARMV9_4A: case ARM::ArchKind::ARMV9_5A: return ARM::ProfileKind::A; case ARM::ArchKind::ARMV4: case ARM::ArchKind::ARMV4T: case ARM::ArchKind::ARMV5T: case ARM::ArchKind::ARMV5TE: case ARM::ArchKind::ARMV5TEJ: case ARM::ArchKind::ARMV6: case ARM::ArchKind::ARMV6K: case ARM::ArchKind::ARMV6T2: case ARM::ArchKind::ARMV6KZ: case ARM::ArchKind::ARMV7S: case ARM::ArchKind::IWMMXT: case ARM::ArchKind::IWMMXT2: case ARM::ArchKind::XSCALE: case ARM::ArchKind::INVALID: return ARM::ProfileKind::INVALID; } llvm_unreachable("Unhandled architecture"); } // Profile A/R/M ARM::ProfileKind ARM::parseArchProfile(StringRef Arch) { Arch = getCanonicalArchName(Arch); return getProfileKind(parseArch(Arch)); } bool ARM::getFPUFeatures(ARM::FPUKind FPUKind, std::vector &Features) { if (FPUKind >= FK_LAST || FPUKind == FK_INVALID) return false; static const struct FPUFeatureNameInfo { const char *PlusName, *MinusName; FPUVersion MinVersion; FPURestriction MaxRestriction; } FPUFeatureInfoList[] = { // We have to specify the + and - versions of the name in full so // that we can return them as static StringRefs. // // Also, the SubtargetFeatures ending in just "sp" are listed here // under FPURestriction::None, which is the only FPURestriction in // which they would be valid (since FPURestriction::SP doesn't // exist). {"+vfp2", "-vfp2", FPUVersion::VFPV2, FPURestriction::D16}, {"+vfp2sp", "-vfp2sp", FPUVersion::VFPV2, FPURestriction::SP_D16}, {"+vfp3", "-vfp3", FPUVersion::VFPV3, FPURestriction::None}, {"+vfp3d16", "-vfp3d16", FPUVersion::VFPV3, FPURestriction::D16}, {"+vfp3d16sp", "-vfp3d16sp", FPUVersion::VFPV3, FPURestriction::SP_D16}, {"+vfp3sp", "-vfp3sp", FPUVersion::VFPV3, FPURestriction::None}, {"+fp16", "-fp16", FPUVersion::VFPV3_FP16, FPURestriction::SP_D16}, {"+vfp4", "-vfp4", FPUVersion::VFPV4, FPURestriction::None}, {"+vfp4d16", "-vfp4d16", FPUVersion::VFPV4, FPURestriction::D16}, {"+vfp4d16sp", "-vfp4d16sp", FPUVersion::VFPV4, FPURestriction::SP_D16}, {"+vfp4sp", "-vfp4sp", FPUVersion::VFPV4, FPURestriction::None}, {"+fp-armv8", "-fp-armv8", FPUVersion::VFPV5, FPURestriction::None}, {"+fp-armv8d16", "-fp-armv8d16", FPUVersion::VFPV5, FPURestriction::D16}, {"+fp-armv8d16sp", "-fp-armv8d16sp", FPUVersion::VFPV5, FPURestriction::SP_D16}, {"+fp-armv8sp", "-fp-armv8sp", FPUVersion::VFPV5, FPURestriction::None}, {"+fullfp16", "-fullfp16", FPUVersion::VFPV5_FULLFP16, FPURestriction::SP_D16}, {"+fp64", "-fp64", FPUVersion::VFPV2, FPURestriction::D16}, {"+d32", "-d32", FPUVersion::VFPV3, FPURestriction::None}, }; for (const auto &Info: FPUFeatureInfoList) { if (FPUNames[FPUKind].FPUVer >= Info.MinVersion && FPUNames[FPUKind].Restriction <= Info.MaxRestriction) Features.push_back(Info.PlusName); else Features.push_back(Info.MinusName); } static const struct NeonFeatureNameInfo { const char *PlusName, *MinusName; NeonSupportLevel MinSupportLevel; } NeonFeatureInfoList[] = { {"+neon", "-neon", NeonSupportLevel::Neon}, {"+sha2", "-sha2", NeonSupportLevel::Crypto}, {"+aes", "-aes", NeonSupportLevel::Crypto}, }; for (const auto &Info: NeonFeatureInfoList) { if (FPUNames[FPUKind].NeonSupport >= Info.MinSupportLevel) Features.push_back(Info.PlusName); else Features.push_back(Info.MinusName); } return true; } ARM::FPUKind ARM::parseFPU(StringRef FPU) { StringRef Syn = getFPUSynonym(FPU); for (const auto &F : FPUNames) { if (Syn == F.Name) return F.ID; } return FK_INVALID; } ARM::NeonSupportLevel ARM::getFPUNeonSupportLevel(ARM::FPUKind FPUKind) { if (FPUKind >= FK_LAST) return NeonSupportLevel::None; return FPUNames[FPUKind].NeonSupport; } StringRef ARM::getFPUSynonym(StringRef FPU) { return StringSwitch(FPU) .Cases("fpa", "fpe2", "fpe3", "maverick", "invalid") // Unsupported .Case("vfp2", "vfpv2") .Case("vfp3", "vfpv3") .Case("vfp4", "vfpv4") .Case("vfp3-d16", "vfpv3-d16") .Case("vfp4-d16", "vfpv4-d16") .Cases("fp4-sp-d16", "vfpv4-sp-d16", "fpv4-sp-d16") .Cases("fp4-dp-d16", "fpv4-dp-d16", "vfpv4-d16") .Case("fp5-sp-d16", "fpv5-sp-d16") .Cases("fp5-dp-d16", "fpv5-dp-d16", "fpv5-d16") // FIXME: Clang uses it, but it's bogus, since neon defaults to vfpv3. .Case("neon-vfpv3", "neon") .Default(FPU); } StringRef ARM::getFPUName(ARM::FPUKind FPUKind) { if (FPUKind >= FK_LAST) return StringRef(); return FPUNames[FPUKind].Name; } ARM::FPUVersion ARM::getFPUVersion(ARM::FPUKind FPUKind) { if (FPUKind >= FK_LAST) return FPUVersion::NONE; return FPUNames[FPUKind].FPUVer; } ARM::FPURestriction ARM::getFPURestriction(ARM::FPUKind FPUKind) { if (FPUKind >= FK_LAST) return FPURestriction::None; return FPUNames[FPUKind].Restriction; } ARM::FPUKind ARM::getDefaultFPU(StringRef CPU, ARM::ArchKind AK) { if (CPU == "generic") return ARM::ARMArchNames[static_cast(AK)].DefaultFPU; return StringSwitch(CPU) #define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ .Case(NAME, DEFAULT_FPU) #include "llvm/TargetParser/ARMTargetParser.def" .Default(ARM::FK_INVALID); } uint64_t ARM::getDefaultExtensions(StringRef CPU, ARM::ArchKind AK) { if (CPU == "generic") return ARM::ARMArchNames[static_cast(AK)].ArchBaseExtensions; return StringSwitch(CPU) #define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ .Case(NAME, \ ARMArchNames[static_cast(ArchKind::ID)].ArchBaseExtensions | \ DEFAULT_EXT) #include "llvm/TargetParser/ARMTargetParser.def" .Default(ARM::AEK_INVALID); } bool ARM::getHWDivFeatures(uint64_t HWDivKind, std::vector &Features) { if (HWDivKind == AEK_INVALID) return false; if (HWDivKind & AEK_HWDIVARM) Features.push_back("+hwdiv-arm"); else Features.push_back("-hwdiv-arm"); if (HWDivKind & AEK_HWDIVTHUMB) Features.push_back("+hwdiv"); else Features.push_back("-hwdiv"); return true; } bool ARM::getExtensionFeatures(uint64_t Extensions, std::vector &Features) { if (Extensions == AEK_INVALID) return false; for (const auto &AE : ARCHExtNames) { if ((Extensions & AE.ID) == AE.ID && !AE.Feature.empty()) Features.push_back(AE.Feature); else if (!AE.NegFeature.empty()) Features.push_back(AE.NegFeature); } return getHWDivFeatures(Extensions, Features); } StringRef ARM::getArchName(ARM::ArchKind AK) { return ARMArchNames[static_cast(AK)].Name; } StringRef ARM::getCPUAttr(ARM::ArchKind AK) { return ARMArchNames[static_cast(AK)].CPUAttr; } StringRef ARM::getSubArch(ARM::ArchKind AK) { return ARMArchNames[static_cast(AK)].getSubArch(); } unsigned ARM::getArchAttr(ARM::ArchKind AK) { return ARMArchNames[static_cast(AK)].ArchAttr; } StringRef ARM::getArchExtName(uint64_t ArchExtKind) { for (const auto &AE : ARCHExtNames) { if (ArchExtKind == AE.ID) return AE.Name; } return StringRef(); } static bool stripNegationPrefix(StringRef &Name) { return Name.consume_front("no"); } StringRef ARM::getArchExtFeature(StringRef ArchExt) { bool Negated = stripNegationPrefix(ArchExt); for (const auto &AE : ARCHExtNames) { if (!AE.Feature.empty() && ArchExt == AE.Name) return StringRef(Negated ? AE.NegFeature : AE.Feature); } return StringRef(); } static ARM::FPUKind findDoublePrecisionFPU(ARM::FPUKind InputFPUKind) { if (InputFPUKind == ARM::FK_INVALID || InputFPUKind == ARM::FK_NONE) return ARM::FK_INVALID; const ARM::FPUName &InputFPU = ARM::FPUNames[InputFPUKind]; // If the input FPU already supports double-precision, then there // isn't any different FPU we can return here. if (ARM::isDoublePrecision(InputFPU.Restriction)) return InputFPUKind; // Otherwise, look for an FPU entry with all the same fields, except // that it supports double precision. for (const ARM::FPUName &CandidateFPU : ARM::FPUNames) { if (CandidateFPU.FPUVer == InputFPU.FPUVer && CandidateFPU.NeonSupport == InputFPU.NeonSupport && ARM::has32Regs(CandidateFPU.Restriction) == ARM::has32Regs(InputFPU.Restriction) && ARM::isDoublePrecision(CandidateFPU.Restriction)) { return CandidateFPU.ID; } } // nothing found return ARM::FK_INVALID; } static ARM::FPUKind findSinglePrecisionFPU(ARM::FPUKind InputFPUKind) { if (InputFPUKind == ARM::FK_INVALID || InputFPUKind == ARM::FK_NONE) return ARM::FK_INVALID; const ARM::FPUName &InputFPU = ARM::FPUNames[InputFPUKind]; // If the input FPU already is single-precision only, then there // isn't any different FPU we can return here. if (!ARM::isDoublePrecision(InputFPU.Restriction)) return InputFPUKind; // Otherwise, look for an FPU entry with all the same fields, except // that it does not support double precision. for (const ARM::FPUName &CandidateFPU : ARM::FPUNames) { if (CandidateFPU.FPUVer == InputFPU.FPUVer && CandidateFPU.NeonSupport == InputFPU.NeonSupport && ARM::has32Regs(CandidateFPU.Restriction) == ARM::has32Regs(InputFPU.Restriction) && !ARM::isDoublePrecision(CandidateFPU.Restriction)) { return CandidateFPU.ID; } } // nothing found return ARM::FK_INVALID; } bool ARM::appendArchExtFeatures(StringRef CPU, ARM::ArchKind AK, StringRef ArchExt, std::vector &Features, ARM::FPUKind &ArgFPUKind) { size_t StartingNumFeatures = Features.size(); const bool Negated = stripNegationPrefix(ArchExt); uint64_t ID = parseArchExt(ArchExt); if (ID == AEK_INVALID) return false; for (const auto &AE : ARCHExtNames) { if (Negated) { if ((AE.ID & ID) == ID && !AE.NegFeature.empty()) Features.push_back(AE.NegFeature); } else { if ((AE.ID & ID) == AE.ID && !AE.Feature.empty()) Features.push_back(AE.Feature); } } if (CPU == "") CPU = "generic"; if (ArchExt == "fp" || ArchExt == "fp.dp") { const ARM::FPUKind DefaultFPU = getDefaultFPU(CPU, AK); ARM::FPUKind FPUKind; if (ArchExt == "fp.dp") { const bool IsDP = ArgFPUKind != ARM::FK_INVALID && ArgFPUKind != ARM::FK_NONE && isDoublePrecision(getFPURestriction(ArgFPUKind)); if (Negated) { /* If there is no FPU selected yet, we still need to set ArgFPUKind, as * leaving it as FK_INVALID, would cause default FPU to be selected * later and that could be double precision one. */ if (ArgFPUKind != ARM::FK_INVALID && !IsDP) return true; FPUKind = findSinglePrecisionFPU(DefaultFPU); if (FPUKind == ARM::FK_INVALID) FPUKind = ARM::FK_NONE; } else { if (IsDP) return true; FPUKind = findDoublePrecisionFPU(DefaultFPU); if (FPUKind == ARM::FK_INVALID) return false; } } else if (Negated) { FPUKind = ARM::FK_NONE; } else { FPUKind = DefaultFPU; } ArgFPUKind = FPUKind; return true; } return StartingNumFeatures != Features.size(); } ARM::ArchKind ARM::convertV9toV8(ARM::ArchKind AK) { if (getProfileKind(AK) != ProfileKind::A) return ARM::ArchKind::INVALID; if (AK < ARM::ArchKind::ARMV9A || AK > ARM::ArchKind::ARMV9_3A) return ARM::ArchKind::INVALID; unsigned AK_v8 = static_cast(ARM::ArchKind::ARMV8_5A); AK_v8 += static_cast(AK) - static_cast(ARM::ArchKind::ARMV9A); return static_cast(AK_v8); } StringRef ARM::getDefaultCPU(StringRef Arch) { ArchKind AK = parseArch(Arch); if (AK == ArchKind::INVALID) return StringRef(); // Look for multiple AKs to find the default for pair AK+Name. for (const auto &CPU : CPUNames) { if (CPU.ArchID == AK && CPU.Default) return CPU.Name; } // If we can't find a default then target the architecture instead return "generic"; } uint64_t ARM::parseHWDiv(StringRef HWDiv) { StringRef Syn = getHWDivSynonym(HWDiv); for (const auto &D : HWDivNames) { if (Syn == D.Name) return D.ID; } return AEK_INVALID; } uint64_t ARM::parseArchExt(StringRef ArchExt) { for (const auto &A : ARCHExtNames) { if (ArchExt == A.Name) return A.ID; } return AEK_INVALID; } ARM::ArchKind ARM::parseCPUArch(StringRef CPU) { for (const auto &C : CPUNames) { if (CPU == C.Name) return C.ArchID; } return ArchKind::INVALID; } void ARM::fillValidCPUArchList(SmallVectorImpl &Values) { for (const auto &Arch : CPUNames) { if (Arch.ArchID != ArchKind::INVALID) Values.push_back(Arch.Name); } } StringRef ARM::computeDefaultTargetABI(const Triple &TT, StringRef CPU) { StringRef ArchName = CPU.empty() ? TT.getArchName() : getArchName(parseCPUArch(CPU)); if (TT.isOSBinFormatMachO()) { if (TT.getEnvironment() == Triple::EABI || TT.getOS() == Triple::UnknownOS || parseArchProfile(ArchName) == ProfileKind::M) return "aapcs"; if (TT.isWatchABI()) return "aapcs16"; return "apcs-gnu"; } else if (TT.isOSWindows()) // FIXME: this is invalid for WindowsCE. return "aapcs"; // Select the default based on the platform. switch (TT.getEnvironment()) { case Triple::Android: case Triple::GNUEABI: case Triple::GNUEABIT64: case Triple::GNUEABIHF: case Triple::GNUEABIHFT64: case Triple::MuslEABI: case Triple::MuslEABIHF: case Triple::OpenHOS: return "aapcs-linux"; case Triple::EABIHF: case Triple::EABI: return "aapcs"; default: if (TT.isOSNetBSD()) return "apcs-gnu"; if (TT.isOSFreeBSD() || TT.isOSOpenBSD() || TT.isOSHaiku() || TT.isOHOSFamily()) return "aapcs-linux"; return "aapcs"; } } StringRef ARM::getARMCPUForArch(const llvm::Triple &Triple, StringRef MArch) { if (MArch.empty()) MArch = Triple.getArchName(); MArch = llvm::ARM::getCanonicalArchName(MArch); // Some defaults are forced. switch (Triple.getOS()) { case llvm::Triple::FreeBSD: case llvm::Triple::NetBSD: case llvm::Triple::OpenBSD: case llvm::Triple::Haiku: if (!MArch.empty() && MArch == "v6") return "arm1176jzf-s"; if (!MArch.empty() && MArch == "v7") return "cortex-a8"; break; case llvm::Triple::Win32: // FIXME: this is invalid for WindowsCE if (llvm::ARM::parseArchVersion(MArch) <= 7) return "cortex-a9"; break; case llvm::Triple::IOS: case llvm::Triple::MacOSX: case llvm::Triple::TvOS: case llvm::Triple::WatchOS: case llvm::Triple::DriverKit: case llvm::Triple::XROS: if (MArch == "v7k") return "cortex-a7"; break; default: break; } if (MArch.empty()) return StringRef(); StringRef CPU = llvm::ARM::getDefaultCPU(MArch); if (!CPU.empty() && CPU != "invalid") return CPU; // If no specific architecture version is requested, return the minimum CPU // required by the OS and environment. switch (Triple.getOS()) { case llvm::Triple::Haiku: return "arm1176jzf-s"; case llvm::Triple::NetBSD: switch (Triple.getEnvironment()) { case llvm::Triple::EABI: case llvm::Triple::EABIHF: case llvm::Triple::GNUEABI: case llvm::Triple::GNUEABIHF: return "arm926ej-s"; default: return "strongarm"; } case llvm::Triple::NaCl: case llvm::Triple::OpenBSD: return "cortex-a8"; default: switch (Triple.getEnvironment()) { case llvm::Triple::EABIHF: case llvm::Triple::GNUEABIHF: case llvm::Triple::GNUEABIHFT64: case llvm::Triple::MuslEABIHF: return "arm1176jzf-s"; default: return "arm7tdmi"; } } llvm_unreachable("invalid arch name"); } void ARM::PrintSupportedExtensions(StringMap DescMap) { outs() << "All available -march extensions for ARM\n\n" << " " << left_justify("Name", 20) << (DescMap.empty() ? "\n" : "Description\n"); for (const auto &Ext : ARCHExtNames) { // Extensions without a feature cannot be used with -march. if (!Ext.Feature.empty()) { std::string Description = DescMap[Ext.Name].str(); outs() << " " << format(Description.empty() ? "%s\n" : "%-20s%s\n", Ext.Name.str().c_str(), Description.c_str()); } } }