//====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// Provide a pass which mitigates speculative execution attacks which operate /// by speculating incorrectly past some predicate (a type check, bounds check, /// or other condition) to reach a load with invalid inputs and leak the data /// accessed by that load using a side channel out of the speculative domain. /// /// For details on the attacks, see the first variant in both the Project Zero /// writeup and the Spectre paper: /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html /// https://spectreattack.com/spectre.pdf /// //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrBuilder.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineSSAUpdater.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/MC/MCSchedule.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; #define PASS_KEY "x86-slh" #define DEBUG_TYPE PASS_KEY STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced"); STATISTIC(NumBranchesUntraced, "Number of branches unable to trace"); STATISTIC(NumAddrRegsHardened, "Number of address mode used registers hardaned"); STATISTIC(NumPostLoadRegsHardened, "Number of post-load register values hardened"); STATISTIC(NumCallsOrJumpsHardened, "Number of calls or jumps requiring extra hardening"); STATISTIC(NumInstsInserted, "Number of instructions inserted"); STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted"); static cl::opt EnableSpeculativeLoadHardening( "x86-speculative-load-hardening", cl::desc("Force enable speculative load hardening"), cl::init(false), cl::Hidden); static cl::opt HardenEdgesWithLFENCE( PASS_KEY "-lfence", cl::desc( "Use LFENCE along each conditional edge to harden against speculative " "loads rather than conditional movs and poisoned pointers."), cl::init(false), cl::Hidden); static cl::opt EnablePostLoadHardening( PASS_KEY "-post-load", cl::desc("Harden the value loaded *after* it is loaded by " "flushing the loaded bits to 1. This is hard to do " "in general but can be done easily for GPRs."), cl::init(true), cl::Hidden); static cl::opt FenceCallAndRet( PASS_KEY "-fence-call-and-ret", cl::desc("Use a full speculation fence to harden both call and ret edges " "rather than a lighter weight mitigation."), cl::init(false), cl::Hidden); static cl::opt HardenInterprocedurally( PASS_KEY "-ip", cl::desc("Harden interprocedurally by passing our state in and out of " "functions in the high bits of the stack pointer."), cl::init(true), cl::Hidden); static cl::opt HardenLoads(PASS_KEY "-loads", cl::desc("Sanitize loads from memory. When disable, no " "significant security is provided."), cl::init(true), cl::Hidden); static cl::opt HardenIndirectCallsAndJumps( PASS_KEY "-indirect", cl::desc("Harden indirect calls and jumps against using speculatively " "stored attacker controlled addresses. This is designed to " "mitigate Spectre v1.2 style attacks."), cl::init(true), cl::Hidden); namespace { class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { public: X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { } StringRef getPassName() const override { return "X86 speculative load hardening"; } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override; /// Pass identification, replacement for typeid. static char ID; private: /// The information about a block's conditional terminators needed to trace /// our predicate state through the exiting edges. struct BlockCondInfo { MachineBasicBlock *MBB; // We mostly have one conditional branch, and in extremely rare cases have // two. Three and more are so rare as to be unimportant for compile time. SmallVector CondBrs; MachineInstr *UncondBr; }; /// Manages the predicate state traced through the program. struct PredState { unsigned InitialReg; unsigned PoisonReg; const TargetRegisterClass *RC; MachineSSAUpdater SSA; PredState(MachineFunction &MF, const TargetRegisterClass *RC) : RC(RC), SSA(MF) {} }; const X86Subtarget *Subtarget; MachineRegisterInfo *MRI; const X86InstrInfo *TII; const TargetRegisterInfo *TRI; Optional PS; void hardenEdgesWithLFENCE(MachineFunction &MF); SmallVector collectBlockCondInfo(MachineFunction &MF); SmallVector tracePredStateThroughCFG(MachineFunction &MF, ArrayRef Infos); void unfoldCallAndJumpLoads(MachineFunction &MF); SmallVector tracePredStateThroughIndirectBranches(MachineFunction &MF); void tracePredStateThroughBlocksAndHarden(MachineFunction &MF); unsigned saveEFLAGS(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc); void restoreEFLAGS(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, unsigned OFReg); void mergePredStateIntoSP(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, unsigned PredStateReg); unsigned extractPredStateFromSP(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc); void hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, SmallDenseMap &AddrRegToHardenedReg); MachineInstr * sinkPostLoadHardenedInst(MachineInstr &MI, SmallPtrSetImpl &HardenedInstrs); bool canHardenRegister(unsigned Reg); unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc); unsigned hardenPostLoad(MachineInstr &MI); void hardenReturnInstr(MachineInstr &MI); void tracePredStateThroughCall(MachineInstr &MI); void hardenIndirectCallOrJumpInstr( MachineInstr &MI, SmallDenseMap &AddrRegToHardenedReg); }; } // end anonymous namespace char X86SpeculativeLoadHardeningPass::ID = 0; void X86SpeculativeLoadHardeningPass::getAnalysisUsage( AnalysisUsage &AU) const { MachineFunctionPass::getAnalysisUsage(AU); } static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, MachineInstr *Br, MachineInstr *&UncondBr, const X86InstrInfo &TII) { assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!"); MachineFunction &MF = *MBB.getParent(); MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); // We have to insert the new block immediately after the current one as we // don't know what layout-successor relationships the successor has and we // may not be able to (and generally don't want to) try to fix those up. MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); // Update the branch instruction if necessary. if (Br) { assert(Br->getOperand(0).getMBB() == &Succ && "Didn't start with the right target!"); Br->getOperand(0).setMBB(&NewMBB); // If this successor was reached through a branch rather than fallthrough, // we might have *broken* fallthrough and so need to inject a new // unconditional branch. if (!UncondBr) { MachineBasicBlock &OldLayoutSucc = *std::next(MachineFunction::iterator(&NewMBB)); assert(MBB.isSuccessor(&OldLayoutSucc) && "Without an unconditional branch, the old layout successor should " "be an actual successor!"); auto BrBuilder = BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); // Update the unconditional branch now that we've added one. UncondBr = &*BrBuilder; } // Insert unconditional "jump Succ" instruction in the new block if // necessary. if (!NewMBB.isLayoutSuccessor(&Succ)) { SmallVector Cond; TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); } } else { assert(!UncondBr && "Cannot have a branchless successor and an unconditional branch!"); assert(NewMBB.isLayoutSuccessor(&Succ) && "A non-branch successor must have been a layout successor before " "and now is a layout successor of the new block."); } // If this is the only edge to the successor, we can just replace it in the // CFG. Otherwise we need to add a new entry in the CFG for the new // successor. if (SuccCount == 1) { MBB.replaceSuccessor(&Succ, &NewMBB); } else { MBB.splitSuccessor(&Succ, &NewMBB); } // Hook up the edge from the new basic block to the old successor in the CFG. NewMBB.addSuccessor(&Succ); // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. for (MachineInstr &MI : Succ) { if (!MI.isPHI()) break; for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; OpIdx += 2) { MachineOperand &OpV = MI.getOperand(OpIdx); MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); if (OpMBB.getMBB() != &MBB) continue; // If this is the last edge to the succesor, just replace MBB in the PHI if (SuccCount == 1) { OpMBB.setMBB(&NewMBB); break; } // Otherwise, append a new pair of operands for the new incoming edge. MI.addOperand(MF, OpV); MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); break; } } // Inherit live-ins from the successor for (auto &LI : Succ.liveins()) NewMBB.addLiveIn(LI); LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '" << Succ.getName() << "'.\n"); return NewMBB; } /// Removing duplicate PHI operands to leave the PHI in a canonical and /// predictable form. /// /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR /// isn't what you might expect. We may have multiple entries in PHI nodes for /// a single predecessor. This makes CFG-updating extremely complex, so here we /// simplify all PHI nodes to a model even simpler than the IR's model: exactly /// one entry per predecessor, regardless of how many edges there are. static void canonicalizePHIOperands(MachineFunction &MF) { SmallPtrSet Preds; SmallVector DupIndices; for (auto &MBB : MF) for (auto &MI : MBB) { if (!MI.isPHI()) break; // First we scan the operands of the PHI looking for duplicate entries // a particular predecessor. We retain the operand index of each duplicate // entry found. for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; OpIdx += 2) if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) DupIndices.push_back(OpIdx); // Now walk the duplicate indices, removing both the block and value. Note // that these are stored as a vector making this element-wise removal // :w // potentially quadratic. // // FIXME: It is really frustrating that we have to use a quadratic // removal algorithm here. There should be a better way, but the use-def // updates required make that impossible using the public API. // // Note that we have to process these backwards so that we don't // invalidate other indices with each removal. while (!DupIndices.empty()) { int OpIdx = DupIndices.pop_back_val(); // Remove both the block and value operand, again in reverse order to // preserve indices. MI.RemoveOperand(OpIdx + 1); MI.RemoveOperand(OpIdx); } Preds.clear(); } } /// Helper to scan a function for loads vulnerable to misspeculation that we /// want to harden. /// /// We use this to avoid making changes to functions where there is nothing we /// need to do to harden against misspeculation. static bool hasVulnerableLoad(MachineFunction &MF) { for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) { // Loads within this basic block after an LFENCE are not at risk of // speculatively executing with invalid predicates from prior control // flow. So break out of this block but continue scanning the function. if (MI.getOpcode() == X86::LFENCE) break; // Looking for loads only. if (!MI.mayLoad()) continue; // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. if (MI.getOpcode() == X86::MFENCE) continue; // We found a load. return true; } } // No loads found. return false; } bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( MachineFunction &MF) { LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() << " **********\n"); // Only run if this pass is forced enabled or we detect the relevant function // attribute requesting SLH. if (!EnableSpeculativeLoadHardening && !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) return false; Subtarget = &MF.getSubtarget(); MRI = &MF.getRegInfo(); TII = Subtarget->getInstrInfo(); TRI = Subtarget->getRegisterInfo(); // FIXME: Support for 32-bit. PS.emplace(MF, &X86::GR64_NOSPRegClass); if (MF.begin() == MF.end()) // Nothing to do for a degenerate empty function... return false; // We support an alternative hardening technique based on a debug flag. if (HardenEdgesWithLFENCE) { hardenEdgesWithLFENCE(MF); return true; } // Create a dummy debug loc to use for all the generated code here. DebugLoc Loc; MachineBasicBlock &Entry = *MF.begin(); auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); // Do a quick scan to see if we have any checkable loads. bool HasVulnerableLoad = hasVulnerableLoad(MF); // See if we have any conditional branching blocks that we will need to trace // predicate state through. SmallVector Infos = collectBlockCondInfo(MF); // If we have no interesting conditions or loads, nothing to do here. if (!HasVulnerableLoad && Infos.empty()) return true; // The poison value is required to be an all-ones value for many aspects of // this mitigation. const int PoisonVal = -1; PS->PoisonReg = MRI->createVirtualRegister(PS->RC); BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg) .addImm(PoisonVal); ++NumInstsInserted; // If we have loads being hardened and we've asked for call and ret edges to // get a full fence-based mitigation, inject that fence. if (HasVulnerableLoad && FenceCallAndRet) { // We need to insert an LFENCE at the start of the function to suspend any // incoming misspeculation from the caller. This helps two-fold: the caller // may not have been protected as this code has been, and this code gets to // not take any specific action to protect across calls. // FIXME: We could skip this for functions which unconditionally return // a constant. BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); ++NumInstsInserted; ++NumLFENCEsInserted; } // If we guarded the entry with an LFENCE and have no conditionals to protect // in blocks, then we're done. if (FenceCallAndRet && Infos.empty()) // We may have changed the function's code at this point to insert fences. return true; // For every basic block in the function which can b if (HardenInterprocedurally && !FenceCallAndRet) { // Set up the predicate state by extracting it from the incoming stack // pointer so we pick up any misspeculation in our caller. PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); } else { // Otherwise, just build the predicate state itself by zeroing a register // as we don't need any initial state. PS->InitialReg = MRI->createVirtualRegister(PS->RC); Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), PredStateSubReg); ++NumInstsInserted; MachineOperand *ZeroEFLAGSDefOp = ZeroI->findRegisterDefOperand(X86::EFLAGS); assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && "Must have an implicit def of EFLAGS!"); ZeroEFLAGSDefOp->setIsDead(true); BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), PS->InitialReg) .addImm(0) .addReg(PredStateSubReg) .addImm(X86::sub_32bit); } // We're going to need to trace predicate state throughout the function's // CFG. Prepare for this by setting up our initial state of PHIs with unique // predecessor entries and all the initial predicate state. canonicalizePHIOperands(MF); // Track the updated values in an SSA updater to rewrite into SSA form at the // end. PS->SSA.Initialize(PS->InitialReg); PS->SSA.AddAvailableValue(&Entry, PS->InitialReg); // Trace through the CFG. auto CMovs = tracePredStateThroughCFG(MF, Infos); // We may also enter basic blocks in this function via exception handling // control flow. Here, if we are hardening interprocedurally, we need to // re-capture the predicate state from the throwing code. In the Itanium ABI, // the throw will always look like a call to __cxa_throw and will have the // predicate state in the stack pointer, so extract fresh predicate state from // the stack pointer and make it available in SSA. // FIXME: Handle non-itanium ABI EH models. if (HardenInterprocedurally) { for (MachineBasicBlock &MBB : MF) { assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!"); assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!"); assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!"); if (!MBB.isEHPad()) continue; PS->SSA.AddAvailableValue( &MBB, extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); } } if (HardenIndirectCallsAndJumps) { // If we are going to harden calls and jumps we need to unfold their memory // operands. unfoldCallAndJumpLoads(MF); // Then we trace predicate state through the indirect branches. auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF); CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end()); } // Now that we have the predicate state available at the start of each block // in the CFG, trace it through each block, hardening vulnerable instructions // as we go. tracePredStateThroughBlocksAndHarden(MF); // Now rewrite all the uses of the pred state using the SSA updater to insert // PHIs connecting the state between blocks along the CFG edges. for (MachineInstr *CMovI : CMovs) for (MachineOperand &Op : CMovI->operands()) { if (!Op.isReg() || Op.getReg() != PS->InitialReg) continue; PS->SSA.RewriteUse(Op); } LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump(); dbgs() << "\n"; MF.verify(this)); return true; } /// Implements the naive hardening approach of putting an LFENCE after every /// potentially mis-predicted control flow construct. /// /// We include this as an alternative mostly for the purpose of comparison. The /// performance impact of this is expected to be extremely severe and not /// practical for any real-world users. void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( MachineFunction &MF) { // First, we scan the function looking for blocks that are reached along edges // that we might want to harden. SmallSetVector Blocks; for (MachineBasicBlock &MBB : MF) { // If there are no or only one successor, nothing to do here. if (MBB.succ_size() <= 1) continue; // Skip blocks unless their terminators start with a branch. Other // terminators don't seem interesting for guarding against misspeculation. auto TermIt = MBB.getFirstTerminator(); if (TermIt == MBB.end() || !TermIt->isBranch()) continue; // Add all the non-EH-pad succossors to the blocks we want to harden. We // skip EH pads because there isn't really a condition of interest on // entering. for (MachineBasicBlock *SuccMBB : MBB.successors()) if (!SuccMBB->isEHPad()) Blocks.insert(SuccMBB); } for (MachineBasicBlock *MBB : Blocks) { auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); ++NumInstsInserted; ++NumLFENCEsInserted; } } SmallVector X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { SmallVector Infos; // Walk the function and build up a summary for each block's conditions that // we need to trace through. for (MachineBasicBlock &MBB : MF) { // If there are no or only one successor, nothing to do here. if (MBB.succ_size() <= 1) continue; // We want to reliably handle any conditional branch terminators in the // MBB, so we manually analyze the branch. We can handle all of the // permutations here, including ones that analyze branch cannot. // // The approach is to walk backwards across the terminators, resetting at // any unconditional non-indirect branch, and track all conditional edges // to basic blocks as well as the fallthrough or unconditional successor // edge. For each conditional edge, we track the target and the opposite // condition code in order to inject a "no-op" cmov into that successor // that will harden the predicate. For the fallthrough/unconditional // edge, we inject a separate cmov for each conditional branch with // matching condition codes. This effectively implements an "and" of the // condition flags, even if there isn't a single condition flag that would // directly implement that. We don't bother trying to optimize either of // these cases because if such an optimization is possible, LLVM should // have optimized the conditional *branches* in that way already to reduce // instruction count. This late, we simply assume the minimal number of // branch instructions is being emitted and use that to guide our cmov // insertion. BlockCondInfo Info = {&MBB, {}, nullptr}; // Now walk backwards through the terminators and build up successors they // reach and the conditions. for (MachineInstr &MI : llvm::reverse(MBB)) { // Once we've handled all the terminators, we're done. if (!MI.isTerminator()) break; // If we see a non-branch terminator, we can't handle anything so bail. if (!MI.isBranch()) { Info.CondBrs.clear(); break; } // If we see an unconditional branch, reset our state, clear any // fallthrough, and set this is the "else" successor. if (MI.getOpcode() == X86::JMP_1) { Info.CondBrs.clear(); Info.UncondBr = &MI; continue; } // If we get an invalid condition, we have an indirect branch or some // other unanalyzable "fallthrough" case. We model this as a nullptr for // the destination so we can still guard any conditional successors. // Consider code sequences like: // ``` // jCC L1 // jmpq *%rax // ``` // We still want to harden the edge to `L1`. if (X86::getCondFromBranch(MI) == X86::COND_INVALID) { Info.CondBrs.clear(); Info.UncondBr = &MI; continue; } // We have a vanilla conditional branch, add it to our list. Info.CondBrs.push_back(&MI); } if (Info.CondBrs.empty()) { ++NumBranchesUntraced; LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n"; MBB.dump()); continue; } Infos.push_back(Info); } return Infos; } /// Trace the predicate state through the CFG, instrumenting each conditional /// branch such that misspeculation through an edge will poison the predicate /// state. /// /// Returns the list of inserted CMov instructions so that they can have their /// uses of the predicate state rewritten into proper SSA form once it is /// complete. SmallVector X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( MachineFunction &MF, ArrayRef Infos) { // Collect the inserted cmov instructions so we can rewrite their uses of the // predicate state into SSA form. SmallVector CMovs; // Now walk all of the basic blocks looking for ones that end in conditional // jumps where we need to update this register along each edge. for (const BlockCondInfo &Info : Infos) { MachineBasicBlock &MBB = *Info.MBB; const SmallVectorImpl &CondBrs = Info.CondBrs; MachineInstr *UncondBr = Info.UncondBr; LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() << "\n"); ++NumCondBranchesTraced; // Compute the non-conditional successor as either the target of any // unconditional branch or the layout successor. MachineBasicBlock *UncondSucc = UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 ? UncondBr->getOperand(0).getMBB() : nullptr) : &*std::next(MachineFunction::iterator(&MBB)); // Count how many edges there are to any given successor. SmallDenseMap SuccCounts; if (UncondSucc) ++SuccCounts[UncondSucc]; for (auto *CondBr : CondBrs) ++SuccCounts[CondBr->getOperand(0).getMBB()]; // A lambda to insert cmov instructions into a block checking all of the // condition codes in a sequence. auto BuildCheckingBlockForSuccAndConds = [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, MachineInstr *Br, MachineInstr *&UncondBr, ArrayRef Conds) { // First, we split the edge to insert the checking block into a safe // location. auto &CheckingMBB = (SuccCount == 1 && Succ.pred_size() == 1) ? Succ : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); if (!LiveEFLAGS) CheckingMBB.addLiveIn(X86::EFLAGS); // Now insert the cmovs to implement the checks. auto InsertPt = CheckingMBB.begin(); assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && "Should never have a PHI in the initial checking block as it " "always has a single predecessor!"); // We will wire each cmov to each other, but need to start with the // incoming pred state. unsigned CurStateReg = PS->InitialReg; for (X86::CondCode Cond : Conds) { int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); // Note that we intentionally use an empty debug location so that // this picks up the preceding location. auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg) .addReg(CurStateReg) .addReg(PS->PoisonReg) .addImm(Cond); // If this is the last cmov and the EFLAGS weren't originally // live-in, mark them as killed. if (!LiveEFLAGS && Cond == Conds.back()) CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); // The first one of the cmovs will be using the top level // `PredStateReg` and need to get rewritten into SSA form. if (CurStateReg == PS->InitialReg) CMovs.push_back(&*CMovI); // The next cmov should start from this one's def. CurStateReg = UpdatedStateReg; } // And put the last one into the available values for SSA form of our // predicate state. PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg); }; std::vector UncondCodeSeq; for (auto *CondBr : CondBrs) { MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); int &SuccCount = SuccCounts[&Succ]; X86::CondCode Cond = X86::getCondFromBranch(*CondBr); X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); UncondCodeSeq.push_back(Cond); BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, {InvCond}); // Decrement the successor count now that we've split one of the edges. // We need to keep the count of edges to the successor accurate in order // to know above when to *replace* the successor in the CFG vs. just // adding the new successor. --SuccCount; } // Since we may have split edges and changed the number of successors, // normalize the probabilities. This avoids doing it each time we split an // edge. MBB.normalizeSuccProbs(); // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we // need to intersect the other condition codes. We can do this by just // doing a cmov for each one. if (!UncondSucc) // If we have no fallthrough to protect (perhaps it is an indirect jump?) // just skip this and continue. continue; assert(SuccCounts[UncondSucc] == 1 && "We should never have more than one edge to the unconditional " "successor at this point because every other edge must have been " "split above!"); // Sort and unique the codes to minimize them. llvm::sort(UncondCodeSeq); UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()), UncondCodeSeq.end()); // Build a checking version of the successor. BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, UncondBr, UncondBr, UncondCodeSeq); } return CMovs; } /// Compute the register class for the unfolded load. /// /// FIXME: This should probably live in X86InstrInfo, potentially by adding /// a way to unfold into a newly created vreg rather than requiring a register /// input. static const TargetRegisterClass * getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII, unsigned Opcode) { unsigned Index; unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold( Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index); const MCInstrDesc &MCID = TII.get(UnfoldedOpc); return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF); } void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads( MachineFunction &MF) { for (MachineBasicBlock &MBB : MF) for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) { // Grab a reference and increment the iterator so we can remove this // instruction if needed without disturbing the iteration. MachineInstr &MI = *MII++; // Must either be a call or a branch. if (!MI.isCall() && !MI.isBranch()) continue; // We only care about loading variants of these instructions. if (!MI.mayLoad()) continue; switch (MI.getOpcode()) { default: { LLVM_DEBUG( dbgs() << "ERROR: Found an unexpected loading branch or call " "instruction:\n"; MI.dump(); dbgs() << "\n"); report_fatal_error("Unexpected loading branch or call!"); } case X86::FARCALL16m: case X86::FARCALL32m: case X86::FARCALL64: case X86::FARJMP16m: case X86::FARJMP32m: case X86::FARJMP64: // We cannot mitigate far jumps or calls, but we also don't expect them // to be vulnerable to Spectre v1.2 style attacks. continue; case X86::CALL16m: case X86::CALL16m_NT: case X86::CALL32m: case X86::CALL32m_NT: case X86::CALL64m: case X86::CALL64m_NT: case X86::JMP16m: case X86::JMP16m_NT: case X86::JMP32m: case X86::JMP32m_NT: case X86::JMP64m: case X86::JMP64m_NT: case X86::TAILJMPm64: case X86::TAILJMPm64_REX: case X86::TAILJMPm: case X86::TCRETURNmi64: case X86::TCRETURNmi: { // Use the generic unfold logic now that we know we're dealing with // expected instructions. // FIXME: We don't have test coverage for all of these! auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode()); if (!UnfoldedRC) { LLVM_DEBUG(dbgs() << "ERROR: Unable to unfold load from instruction:\n"; MI.dump(); dbgs() << "\n"); report_fatal_error("Unable to unfold load!"); } Register Reg = MRI->createVirtualRegister(UnfoldedRC); SmallVector NewMIs; // If we were able to compute an unfolded reg class, any failure here // is just a programming error so just assert. bool Unfolded = TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, NewMIs); (void)Unfolded; assert(Unfolded && "Computed unfolded register class but failed to unfold"); // Now stitch the new instructions into place and erase the old one. for (auto *NewMI : NewMIs) MBB.insert(MI.getIterator(), NewMI); MI.eraseFromParent(); LLVM_DEBUG({ dbgs() << "Unfolded load successfully into:\n"; for (auto *NewMI : NewMIs) { NewMI->dump(); dbgs() << "\n"; } }); continue; } } llvm_unreachable("Escaped switch with default!"); } } /// Trace the predicate state through indirect branches, instrumenting them to /// poison the state if a target is reached that does not match the expected /// target. /// /// This is designed to mitigate Spectre variant 1 attacks where an indirect /// branch is trained to predict a particular target and then mispredicts that /// target in a way that can leak data. Despite using an indirect branch, this /// is really a variant 1 style attack: it does not steer execution to an /// arbitrary or attacker controlled address, and it does not require any /// special code executing next to the victim. This attack can also be mitigated /// through retpolines, but those require either replacing indirect branches /// with conditional direct branches or lowering them through a device that /// blocks speculation. This mitigation can replace these retpoline-style /// mitigations for jump tables and other indirect branches within a function /// when variant 2 isn't a risk while allowing limited speculation. Indirect /// calls, however, cannot be mitigated through this technique without changing /// the ABI in a fundamental way. SmallVector X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches( MachineFunction &MF) { // We use the SSAUpdater to insert PHI nodes for the target addresses of // indirect branches. We don't actually need the full power of the SSA updater // in this particular case as we always have immediately available values, but // this avoids us having to re-implement the PHI construction logic. MachineSSAUpdater TargetAddrSSA(MF); TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass)); // Track which blocks were terminated with an indirect branch. SmallPtrSet IndirectTerminatedMBBs; // We need to know what blocks end up reached via indirect branches. We // expect this to be a subset of those whose address is taken and so track it // directly via the CFG. SmallPtrSet IndirectTargetMBBs; // Walk all the blocks which end in an indirect branch and make the // target address available. for (MachineBasicBlock &MBB : MF) { // Find the last terminator. auto MII = MBB.instr_rbegin(); while (MII != MBB.instr_rend() && MII->isDebugInstr()) ++MII; if (MII == MBB.instr_rend()) continue; MachineInstr &TI = *MII; if (!TI.isTerminator() || !TI.isBranch()) // No terminator or non-branch terminator. continue; unsigned TargetReg; switch (TI.getOpcode()) { default: // Direct branch or conditional branch (leading to fallthrough). continue; case X86::FARJMP16m: case X86::FARJMP32m: case X86::FARJMP64: // We cannot mitigate far jumps or calls, but we also don't expect them // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks. continue; case X86::JMP16m: case X86::JMP16m_NT: case X86::JMP32m: case X86::JMP32m_NT: case X86::JMP64m: case X86::JMP64m_NT: // Mostly as documentation. report_fatal_error("Memory operand jumps should have been unfolded!"); case X86::JMP16r: report_fatal_error( "Support for 16-bit indirect branches is not implemented."); case X86::JMP32r: report_fatal_error( "Support for 32-bit indirect branches is not implemented."); case X86::JMP64r: TargetReg = TI.getOperand(0).getReg(); } // We have definitely found an indirect branch. Verify that there are no // preceding conditional branches as we don't yet support that. if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) { return !OtherTI.isDebugInstr() && &OtherTI != &TI; })) { LLVM_DEBUG({ dbgs() << "ERROR: Found other terminators in a block with an indirect " "branch! This is not yet supported! Terminator sequence:\n"; for (MachineInstr &MI : MBB.terminators()) { MI.dump(); dbgs() << '\n'; } }); report_fatal_error("Unimplemented terminator sequence!"); } // Make the target register an available value for this block. TargetAddrSSA.AddAvailableValue(&MBB, TargetReg); IndirectTerminatedMBBs.insert(&MBB); // Add all the successors to our target candidates. for (MachineBasicBlock *Succ : MBB.successors()) IndirectTargetMBBs.insert(Succ); } // Keep track of the cmov instructions we insert so we can return them. SmallVector CMovs; // If we didn't find any indirect branches with targets, nothing to do here. if (IndirectTargetMBBs.empty()) return CMovs; // We found indirect branches and targets that need to be instrumented to // harden loads within them. Walk the blocks of the function (to get a stable // ordering) and instrument each target of an indirect branch. for (MachineBasicBlock &MBB : MF) { // Skip the blocks that aren't candidate targets. if (!IndirectTargetMBBs.count(&MBB)) continue; // We don't expect EH pads to ever be reached via an indirect branch. If // this is desired for some reason, we could simply skip them here rather // than asserting. assert(!MBB.isEHPad() && "Unexpected EH pad as target of an indirect branch!"); // We should never end up threading EFLAGS into a block to harden // conditional jumps as there would be an additional successor via the // indirect branch. As a consequence, all such edges would be split before // reaching here, and the inserted block will handle the EFLAGS-based // hardening. assert(!MBB.isLiveIn(X86::EFLAGS) && "Cannot check within a block that already has live-in EFLAGS!"); // We can't handle having non-indirect edges into this block unless this is // the only successor and we can synthesize the necessary target address. for (MachineBasicBlock *Pred : MBB.predecessors()) { // If we've already handled this by extracting the target directly, // nothing to do. if (IndirectTerminatedMBBs.count(Pred)) continue; // Otherwise, we have to be the only successor. We generally expect this // to be true as conditional branches should have had a critical edge // split already. We don't however need to worry about EH pad successors // as they'll happily ignore the target and their hardening strategy is // resilient to all ways in which they could be reached speculatively. if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) { return Succ->isEHPad() || Succ == &MBB; })) { LLVM_DEBUG({ dbgs() << "ERROR: Found conditional entry to target of indirect " "branch!\n"; Pred->dump(); MBB.dump(); }); report_fatal_error("Cannot harden a conditional entry to a target of " "an indirect branch!"); } // Now we need to compute the address of this block and install it as a // synthetic target in the predecessor. We do this at the bottom of the // predecessor. auto InsertPt = Pred->getFirstTerminator(); Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass); if (MF.getTarget().getCodeModel() == CodeModel::Small && !Subtarget->isPositionIndependent()) { // Directly materialize it into an immediate. auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::MOV64ri32), TargetReg) .addMBB(&MBB); ++NumInstsInserted; (void)AddrI; LLVM_DEBUG(dbgs() << " Inserting mov: "; AddrI->dump(); dbgs() << "\n"); } else { auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r), TargetReg) .addReg(/*Base*/ X86::RIP) .addImm(/*Scale*/ 1) .addReg(/*Index*/ 0) .addMBB(&MBB) .addReg(/*Segment*/ 0); ++NumInstsInserted; (void)AddrI; LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); dbgs() << "\n"); } // And make this available. TargetAddrSSA.AddAvailableValue(Pred, TargetReg); } // Materialize the needed SSA value of the target. Note that we need the // middle of the block as this block might at the bottom have an indirect // branch back to itself. We can do this here because at this point, every // predecessor of this block has an available value. This is basically just // automating the construction of a PHI node for this target. unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB); // Insert a comparison of the incoming target register with this block's // address. This also requires us to mark the block as having its address // taken explicitly. MBB.setHasAddressTaken(); auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin()); if (MF.getTarget().getCodeModel() == CodeModel::Small && !Subtarget->isPositionIndependent()) { // Check directly against a relocated immediate when we can. auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32)) .addReg(TargetReg, RegState::Kill) .addMBB(&MBB); ++NumInstsInserted; (void)CheckI; LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); } else { // Otherwise compute the address into a register first. Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass); auto AddrI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg) .addReg(/*Base*/ X86::RIP) .addImm(/*Scale*/ 1) .addReg(/*Index*/ 0) .addMBB(&MBB) .addReg(/*Segment*/ 0); ++NumInstsInserted; (void)AddrI; LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); dbgs() << "\n"); auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr)) .addReg(TargetReg, RegState::Kill) .addReg(AddrReg, RegState::Kill); ++NumInstsInserted; (void)CheckI; LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); } // Now cmov over the predicate if the comparison wasn't equal. int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); auto CMovI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg) .addReg(PS->InitialReg) .addReg(PS->PoisonReg) .addImm(X86::COND_NE); CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); CMovs.push_back(&*CMovI); // And put the new value into the available values for SSA form of our // predicate state. PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); } // Return all the newly inserted cmov instructions of the predicate state. return CMovs; } /// Returns true if the instruction has no behavior (specified or otherwise) /// that is based on the value of any of its register operands /// /// A classical example of something that is inherently not data invariant is an /// indirect jump -- the destination is loaded into icache based on the bits set /// in the jump destination register. /// /// FIXME: This should become part of our instruction tables. static bool isDataInvariant(MachineInstr &MI) { switch (MI.getOpcode()) { default: // By default, assume that the instruction is not data invariant. return false; // Some target-independent operations that trivially lower to data-invariant // instructions. case TargetOpcode::COPY: case TargetOpcode::INSERT_SUBREG: case TargetOpcode::SUBREG_TO_REG: return true; // On x86 it is believed that imul is constant time w.r.t. the loaded data. // However, they set flags and are perhaps the most surprisingly constant // time operations so we call them out here separately. case X86::IMUL16rr: case X86::IMUL16rri8: case X86::IMUL16rri: case X86::IMUL32rr: case X86::IMUL32rri8: case X86::IMUL32rri: case X86::IMUL64rr: case X86::IMUL64rri32: case X86::IMUL64rri8: // Bit scanning and counting instructions that are somewhat surprisingly // constant time as they scan across bits and do other fairly complex // operations like popcnt, but are believed to be constant time on x86. // However, these set flags. case X86::BSF16rr: case X86::BSF32rr: case X86::BSF64rr: case X86::BSR16rr: case X86::BSR32rr: case X86::BSR64rr: case X86::LZCNT16rr: case X86::LZCNT32rr: case X86::LZCNT64rr: case X86::POPCNT16rr: case X86::POPCNT32rr: case X86::POPCNT64rr: case X86::TZCNT16rr: case X86::TZCNT32rr: case X86::TZCNT64rr: // Bit manipulation instructions are effectively combinations of basic // arithmetic ops, and should still execute in constant time. These also // set flags. case X86::BLCFILL32rr: case X86::BLCFILL64rr: case X86::BLCI32rr: case X86::BLCI64rr: case X86::BLCIC32rr: case X86::BLCIC64rr: case X86::BLCMSK32rr: case X86::BLCMSK64rr: case X86::BLCS32rr: case X86::BLCS64rr: case X86::BLSFILL32rr: case X86::BLSFILL64rr: case X86::BLSI32rr: case X86::BLSI64rr: case X86::BLSIC32rr: case X86::BLSIC64rr: case X86::BLSMSK32rr: case X86::BLSMSK64rr: case X86::BLSR32rr: case X86::BLSR64rr: case X86::TZMSK32rr: case X86::TZMSK64rr: // Bit extracting and clearing instructions should execute in constant time, // and set flags. case X86::BEXTR32rr: case X86::BEXTR64rr: case X86::BEXTRI32ri: case X86::BEXTRI64ri: case X86::BZHI32rr: case X86::BZHI64rr: // Shift and rotate. case X86::ROL8r1: case X86::ROL16r1: case X86::ROL32r1: case X86::ROL64r1: case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL: case X86::ROL8ri: case X86::ROL16ri: case X86::ROL32ri: case X86::ROL64ri: case X86::ROR8r1: case X86::ROR16r1: case X86::ROR32r1: case X86::ROR64r1: case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL: case X86::ROR8ri: case X86::ROR16ri: case X86::ROR32ri: case X86::ROR64ri: case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1: case X86::SAR64r1: case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL: case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri: case X86::SAR64ri: case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1: case X86::SHL64r1: case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL: case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri: case X86::SHL64ri: case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1: case X86::SHR64r1: case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL: case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri: case X86::SHR64ri: case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL: case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8: case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL: case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8: // Basic arithmetic is constant time on the input but does set flags. case X86::ADC8rr: case X86::ADC8ri: case X86::ADC16rr: case X86::ADC16ri: case X86::ADC16ri8: case X86::ADC32rr: case X86::ADC32ri: case X86::ADC32ri8: case X86::ADC64rr: case X86::ADC64ri8: case X86::ADC64ri32: case X86::ADD8rr: case X86::ADD8ri: case X86::ADD16rr: case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD32rr: case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD64rr: case X86::ADD64ri8: case X86::ADD64ri32: case X86::AND8rr: case X86::AND8ri: case X86::AND16rr: case X86::AND16ri: case X86::AND16ri8: case X86::AND32rr: case X86::AND32ri: case X86::AND32ri8: case X86::AND64rr: case X86::AND64ri8: case X86::AND64ri32: case X86::OR8rr: case X86::OR8ri: case X86::OR16rr: case X86::OR16ri: case X86::OR16ri8: case X86::OR32rr: case X86::OR32ri: case X86::OR32ri8: case X86::OR64rr: case X86::OR64ri8: case X86::OR64ri32: case X86::SBB8rr: case X86::SBB8ri: case X86::SBB16rr: case X86::SBB16ri: case X86::SBB16ri8: case X86::SBB32rr: case X86::SBB32ri: case X86::SBB32ri8: case X86::SBB64rr: case X86::SBB64ri8: case X86::SBB64ri32: case X86::SUB8rr: case X86::SUB8ri: case X86::SUB16rr: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB32rr: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB64rr: case X86::SUB64ri8: case X86::SUB64ri32: case X86::XOR8rr: case X86::XOR8ri: case X86::XOR16rr: case X86::XOR16ri: case X86::XOR16ri8: case X86::XOR32rr: case X86::XOR32ri: case X86::XOR32ri8: case X86::XOR64rr: case X86::XOR64ri8: case X86::XOR64ri32: // Arithmetic with just 32-bit and 64-bit variants and no immediates. case X86::ADCX32rr: case X86::ADCX64rr: case X86::ADOX32rr: case X86::ADOX64rr: case X86::ANDN32rr: case X86::ANDN64rr: // Unary arithmetic operations. case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r: case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r: case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: // Check whether the EFLAGS implicit-def is dead. We assume that this will // always find the implicit-def because this code should only be reached // for instructions that do in fact implicitly def this. if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { // If we would clobber EFLAGS that are used, just bail for now. LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: "; MI.dump(); dbgs() << "\n"); return false; } // Otherwise, fallthrough to handle these the same as instructions that // don't set EFLAGS. LLVM_FALLTHROUGH; // Unlike other arithmetic, NOT doesn't set EFLAGS. case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r: // Various move instructions used to zero or sign extend things. Note that we // intentionally don't support the _NOREX variants as we can't handle that // register constraint anyways. case X86::MOVSX16rr8: case X86::MOVSX32rr8: case X86::MOVSX32rr16: case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32: case X86::MOVZX16rr8: case X86::MOVZX32rr8: case X86::MOVZX32rr16: case X86::MOVZX64rr8: case X86::MOVZX64rr16: case X86::MOV32rr: // Arithmetic instructions that are both constant time and don't set flags. case X86::RORX32ri: case X86::RORX64ri: case X86::SARX32rr: case X86::SARX64rr: case X86::SHLX32rr: case X86::SHLX64rr: case X86::SHRX32rr: case X86::SHRX64rr: // LEA doesn't actually access memory, and its arithmetic is constant time. case X86::LEA16r: case X86::LEA32r: case X86::LEA64_32r: case X86::LEA64r: return true; } } /// Returns true if the instruction has no behavior (specified or otherwise) /// that is based on the value loaded from memory or the value of any /// non-address register operands. /// /// For example, if the latency of the instruction is dependent on the /// particular bits set in any of the registers *or* any of the bits loaded from /// memory. /// /// A classical example of something that is inherently not data invariant is an /// indirect jump -- the destination is loaded into icache based on the bits set /// in the jump destination register. /// /// FIXME: This should become part of our instruction tables. static bool isDataInvariantLoad(MachineInstr &MI) { switch (MI.getOpcode()) { default: // By default, assume that the load will immediately leak. return false; // On x86 it is believed that imul is constant time w.r.t. the loaded data. // However, they set flags and are perhaps the most surprisingly constant // time operations so we call them out here separately. case X86::IMUL16rm: case X86::IMUL16rmi8: case X86::IMUL16rmi: case X86::IMUL32rm: case X86::IMUL32rmi8: case X86::IMUL32rmi: case X86::IMUL64rm: case X86::IMUL64rmi32: case X86::IMUL64rmi8: // Bit scanning and counting instructions that are somewhat surprisingly // constant time as they scan across bits and do other fairly complex // operations like popcnt, but are believed to be constant time on x86. // However, these set flags. case X86::BSF16rm: case X86::BSF32rm: case X86::BSF64rm: case X86::BSR16rm: case X86::BSR32rm: case X86::BSR64rm: case X86::LZCNT16rm: case X86::LZCNT32rm: case X86::LZCNT64rm: case X86::POPCNT16rm: case X86::POPCNT32rm: case X86::POPCNT64rm: case X86::TZCNT16rm: case X86::TZCNT32rm: case X86::TZCNT64rm: // Bit manipulation instructions are effectively combinations of basic // arithmetic ops, and should still execute in constant time. These also // set flags. case X86::BLCFILL32rm: case X86::BLCFILL64rm: case X86::BLCI32rm: case X86::BLCI64rm: case X86::BLCIC32rm: case X86::BLCIC64rm: case X86::BLCMSK32rm: case X86::BLCMSK64rm: case X86::BLCS32rm: case X86::BLCS64rm: case X86::BLSFILL32rm: case X86::BLSFILL64rm: case X86::BLSI32rm: case X86::BLSI64rm: case X86::BLSIC32rm: case X86::BLSIC64rm: case X86::BLSMSK32rm: case X86::BLSMSK64rm: case X86::BLSR32rm: case X86::BLSR64rm: case X86::TZMSK32rm: case X86::TZMSK64rm: // Bit extracting and clearing instructions should execute in constant time, // and set flags. case X86::BEXTR32rm: case X86::BEXTR64rm: case X86::BEXTRI32mi: case X86::BEXTRI64mi: case X86::BZHI32rm: case X86::BZHI64rm: // Basic arithmetic is constant time on the input but does set flags. case X86::ADC8rm: case X86::ADC16rm: case X86::ADC32rm: case X86::ADC64rm: case X86::ADCX32rm: case X86::ADCX64rm: case X86::ADD8rm: case X86::ADD16rm: case X86::ADD32rm: case X86::ADD64rm: case X86::ADOX32rm: case X86::ADOX64rm: case X86::AND8rm: case X86::AND16rm: case X86::AND32rm: case X86::AND64rm: case X86::ANDN32rm: case X86::ANDN64rm: case X86::OR8rm: case X86::OR16rm: case X86::OR32rm: case X86::OR64rm: case X86::SBB8rm: case X86::SBB16rm: case X86::SBB32rm: case X86::SBB64rm: case X86::SUB8rm: case X86::SUB16rm: case X86::SUB32rm: case X86::SUB64rm: case X86::XOR8rm: case X86::XOR16rm: case X86::XOR32rm: case X86::XOR64rm: // Check whether the EFLAGS implicit-def is dead. We assume that this will // always find the implicit-def because this code should only be reached // for instructions that do in fact implicitly def this. if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { // If we would clobber EFLAGS that are used, just bail for now. LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: "; MI.dump(); dbgs() << "\n"); return false; } // Otherwise, fallthrough to handle these the same as instructions that // don't set EFLAGS. LLVM_FALLTHROUGH; // Integer multiply w/o affecting flags is still believed to be constant // time on x86. Called out separately as this is among the most surprising // instructions to exhibit that behavior. case X86::MULX32rm: case X86::MULX64rm: // Arithmetic instructions that are both constant time and don't set flags. case X86::RORX32mi: case X86::RORX64mi: case X86::SARX32rm: case X86::SARX64rm: case X86::SHLX32rm: case X86::SHLX64rm: case X86::SHRX32rm: case X86::SHRX64rm: // Conversions are believed to be constant time and don't set flags. case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm: case X86::CVTTSD2SIrm: case X86::VCVTTSD2SIrm: case X86::VCVTTSD2SIZrm: case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm: case X86::CVTTSS2SIrm: case X86::VCVTTSS2SIrm: case X86::VCVTTSS2SIZrm: case X86::CVTSI2SDrm: case X86::VCVTSI2SDrm: case X86::VCVTSI2SDZrm: case X86::CVTSI2SSrm: case X86::VCVTSI2SSrm: case X86::VCVTSI2SSZrm: case X86::CVTSI642SDrm: case X86::VCVTSI642SDrm: case X86::VCVTSI642SDZrm: case X86::CVTSI642SSrm: case X86::VCVTSI642SSrm: case X86::VCVTSI642SSZrm: case X86::CVTSS2SDrm: case X86::VCVTSS2SDrm: case X86::VCVTSS2SDZrm: case X86::CVTSD2SSrm: case X86::VCVTSD2SSrm: case X86::VCVTSD2SSZrm: // AVX512 added unsigned integer conversions. case X86::VCVTTSD2USI64Zrm: case X86::VCVTTSD2USIZrm: case X86::VCVTTSS2USI64Zrm: case X86::VCVTTSS2USIZrm: case X86::VCVTUSI2SDZrm: case X86::VCVTUSI642SDZrm: case X86::VCVTUSI2SSZrm: case X86::VCVTUSI642SSZrm: // Loads to register don't set flags. case X86::MOV8rm: case X86::MOV8rm_NOREX: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::MOVSX16rm8: case X86::MOVSX32rm16: case X86::MOVSX32rm8: case X86::MOVSX32rm8_NOREX: case X86::MOVSX64rm16: case X86::MOVSX64rm32: case X86::MOVSX64rm8: case X86::MOVZX16rm8: case X86::MOVZX32rm16: case X86::MOVZX32rm8: case X86::MOVZX32rm8_NOREX: case X86::MOVZX64rm16: case X86::MOVZX64rm8: return true; } } static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const TargetRegisterInfo &TRI) { // Check if EFLAGS are alive by seeing if there is a def of them or they // live-in, and then seeing if that def is in turn used. for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { // If the def is dead, then EFLAGS is not live. if (DefOp->isDead()) return false; // Otherwise we've def'ed it, and it is live. return true; } // While at this instruction, also check if we use and kill EFLAGS // which means it isn't live. if (MI.killsRegister(X86::EFLAGS, &TRI)) return false; } // If we didn't find anything conclusive (neither definitely alive or // definitely dead) return whether it lives into the block. return MBB.isLiveIn(X86::EFLAGS); } /// Trace the predicate state through each of the blocks in the function, /// hardening everything necessary along the way. /// /// We call this routine once the initial predicate state has been established /// for each basic block in the function in the SSA updater. This routine traces /// it through the instructions within each basic block, and for non-returning /// blocks informs the SSA updater about the final state that lives out of the /// block. Along the way, it hardens any vulnerable instruction using the /// currently valid predicate state. We have to do these two things together /// because the SSA updater only works across blocks. Within a block, we track /// the current predicate state directly and update it as it changes. /// /// This operates in two passes over each block. First, we analyze the loads in /// the block to determine which strategy will be used to harden them: hardening /// the address or hardening the loaded value when loaded into a register /// amenable to hardening. We have to process these first because the two /// strategies may interact -- later hardening may change what strategy we wish /// to use. We also will analyze data dependencies between loads and avoid /// hardening those loads that are data dependent on a load with a hardened /// address. We also skip hardening loads already behind an LFENCE as that is /// sufficient to harden them against misspeculation. /// /// Second, we actively trace the predicate state through the block, applying /// the hardening steps we determined necessary in the first pass as we go. /// /// These two passes are applied to each basic block. We operate one block at a /// time to simplify reasoning about reachability and sequencing. void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden( MachineFunction &MF) { SmallPtrSet HardenPostLoad; SmallPtrSet HardenLoadAddr; SmallSet HardenedAddrRegs; SmallDenseMap AddrRegToHardenedReg; // Track the set of load-dependent registers through the basic block. Because // the values of these registers have an existing data dependency on a loaded // value which we would have checked, we can omit any checks on them. SparseBitVector<> LoadDepRegs; for (MachineBasicBlock &MBB : MF) { // The first pass over the block: collect all the loads which can have their // loaded value hardened and all the loads that instead need their address // hardened. During this walk we propagate load dependence for address // hardened loads and also look for LFENCE to stop hardening wherever // possible. When deciding whether or not to harden the loaded value or not, // we check to see if any registers used in the address will have been // hardened at this point and if so, harden any remaining address registers // as that often successfully re-uses hardened addresses and minimizes // instructions. // // FIXME: We should consider an aggressive mode where we continue to keep as // many loads value hardened even when some address register hardening would // be free (due to reuse). // // Note that we only need this pass if we are actually hardening loads. if (HardenLoads) for (MachineInstr &MI : MBB) { // We naively assume that all def'ed registers of an instruction have // a data dependency on all of their operands. // FIXME: Do a more careful analysis of x86 to build a conservative // model here. if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { return Op.isReg() && LoadDepRegs.test(Op.getReg()); })) for (MachineOperand &Def : MI.defs()) if (Def.isReg()) LoadDepRegs.set(Def.getReg()); // Both Intel and AMD are guiding that they will change the semantics of // LFENCE to be a speculation barrier, so if we see an LFENCE, there is // no more need to guard things in this block. if (MI.getOpcode() == X86::LFENCE) break; // If this instruction cannot load, nothing to do. if (!MI.mayLoad()) continue; // Some instructions which "load" are trivially safe or unimportant. if (MI.getOpcode() == X86::MFENCE) continue; // Extract the memory operand information about this instruction. // FIXME: This doesn't handle loading pseudo instructions which we often // could handle with similarly generic logic. We probably need to add an // MI-layer routine similar to the MC-layer one we use here which maps // pseudos much like this maps real instructions. const MCInstrDesc &Desc = MI.getDesc(); int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); if (MemRefBeginIdx < 0) { LLVM_DEBUG(dbgs() << "WARNING: unable to harden loading instruction: "; MI.dump()); continue; } MemRefBeginIdx += X86II::getOperandBias(Desc); MachineOperand &BaseMO = MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); MachineOperand &IndexMO = MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); // If we have at least one (non-frame-index, non-RIP) register operand, // and neither operand is load-dependent, we need to check the load. unsigned BaseReg = 0, IndexReg = 0; if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && BaseMO.getReg() != X86::NoRegister) BaseReg = BaseMO.getReg(); if (IndexMO.getReg() != X86::NoRegister) IndexReg = IndexMO.getReg(); if (!BaseReg && !IndexReg) // No register operands! continue; // If any register operand is dependent, this load is dependent and we // needn't check it. // FIXME: Is this true in the case where we are hardening loads after // they complete? Unclear, need to investigate. if ((BaseReg && LoadDepRegs.test(BaseReg)) || (IndexReg && LoadDepRegs.test(IndexReg))) continue; // If post-load hardening is enabled, this load is compatible with // post-load hardening, and we aren't already going to harden one of the // address registers, queue it up to be hardened post-load. Notably, // even once hardened this won't introduce a useful dependency that // could prune out subsequent loads. if (EnablePostLoadHardening && isDataInvariantLoad(MI) && MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() && canHardenRegister(MI.getOperand(0).getReg()) && !HardenedAddrRegs.count(BaseReg) && !HardenedAddrRegs.count(IndexReg)) { HardenPostLoad.insert(&MI); HardenedAddrRegs.insert(MI.getOperand(0).getReg()); continue; } // Record this instruction for address hardening and record its register // operands as being address-hardened. HardenLoadAddr.insert(&MI); if (BaseReg) HardenedAddrRegs.insert(BaseReg); if (IndexReg) HardenedAddrRegs.insert(IndexReg); for (MachineOperand &Def : MI.defs()) if (Def.isReg()) LoadDepRegs.set(Def.getReg()); } // Now re-walk the instructions in the basic block, and apply whichever // hardening strategy we have elected. Note that we do this in a second // pass specifically so that we have the complete set of instructions for // which we will do post-load hardening and can defer it in certain // circumstances. for (MachineInstr &MI : MBB) { if (HardenLoads) { // We cannot both require hardening the def of a load and its address. assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && "Requested to harden both the address and def of a load!"); // Check if this is a load whose address needs to be hardened. if (HardenLoadAddr.erase(&MI)) { const MCInstrDesc &Desc = MI.getDesc(); int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!"); MemRefBeginIdx += X86II::getOperandBias(Desc); MachineOperand &BaseMO = MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); MachineOperand &IndexMO = MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); continue; } // Test if this instruction is one of our post load instructions (and // remove it from the set if so). if (HardenPostLoad.erase(&MI)) { assert(!MI.isCall() && "Must not try to post-load harden a call!"); // If this is a data-invariant load, we want to try and sink any // hardening as far as possible. if (isDataInvariantLoad(MI)) { // Sink the instruction we'll need to harden as far as we can down // the graph. MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); // If we managed to sink this instruction, update everything so we // harden that instruction when we reach it in the instruction // sequence. if (SunkMI != &MI) { // If in sinking there was no instruction needing to be hardened, // we're done. if (!SunkMI) continue; // Otherwise, add this to the set of defs we harden. HardenPostLoad.insert(SunkMI); continue; } } unsigned HardenedReg = hardenPostLoad(MI); // Mark the resulting hardened register as such so we don't re-harden. AddrRegToHardenedReg[HardenedReg] = HardenedReg; continue; } // Check for an indirect call or branch that may need its input hardened // even if we couldn't find the specific load used, or were able to // avoid hardening it for some reason. Note that here we cannot break // out afterward as we may still need to handle any call aspect of this // instruction. if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps) hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg); } // After we finish hardening loads we handle interprocedural hardening if // enabled and relevant for this instruction. if (!HardenInterprocedurally) continue; if (!MI.isCall() && !MI.isReturn()) continue; // If this is a direct return (IE, not a tail call) just directly harden // it. if (MI.isReturn() && !MI.isCall()) { hardenReturnInstr(MI); continue; } // Otherwise we have a call. We need to handle transferring the predicate // state into a call and recovering it after the call returns (unless this // is a tail call). assert(MI.isCall() && "Should only reach here for calls!"); tracePredStateThroughCall(MI); } HardenPostLoad.clear(); HardenLoadAddr.clear(); HardenedAddrRegs.clear(); AddrRegToHardenedReg.clear(); // Currently, we only track data-dependent loads within a basic block. // FIXME: We should see if this is necessary or if we could be more // aggressive here without opening up attack avenues. LoadDepRegs.clear(); } } /// Save EFLAGS into the returned GPR. This can in turn be restored with /// `restoreEFLAGS`. /// /// Note that LLVM can only lower very simple patterns of saved and restored /// EFLAGS registers. The restore should always be within the same basic block /// as the save so that no PHI nodes are inserted. unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc) { // FIXME: Hard coding this to a 32-bit register class seems weird, but matches // what instruction selection does. Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass); // We directly copy the FLAGS register and rely on later lowering to clean // this up into the appropriate setCC instructions. BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); ++NumInstsInserted; return Reg; } /// Restore EFLAGS from the provided GPR. This should be produced by /// `saveEFLAGS`. /// /// This must be done within the same basic block as the save in order to /// reliably lower. void X86SpeculativeLoadHardeningPass::restoreEFLAGS( MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, unsigned Reg) { BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); ++NumInstsInserted; } /// Takes the current predicate state (in a register) and merges it into the /// stack pointer. The state is essentially a single bit, but we merge this in /// a way that won't form non-canonical pointers and also will be preserved /// across normal stack adjustments. void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, unsigned PredStateReg) { Register TmpReg = MRI->createVirtualRegister(PS->RC); // FIXME: This hard codes a shift distance based on the number of bits needed // to stay canonical on 64-bit. We should compute this somehow and support // 32-bit as part of that. auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) .addReg(PredStateReg, RegState::Kill) .addImm(47); ShiftI->addRegisterDead(X86::EFLAGS, TRI); ++NumInstsInserted; auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) .addReg(X86::RSP) .addReg(TmpReg, RegState::Kill); OrI->addRegisterDead(X86::EFLAGS, TRI); ++NumInstsInserted; } /// Extracts the predicate state stored in the high bits of the stack pointer. unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc) { Register PredStateReg = MRI->createVirtualRegister(PS->RC); Register TmpReg = MRI->createVirtualRegister(PS->RC); // We know that the stack pointer will have any preserved predicate state in // its high bit. We just want to smear this across the other bits. Turns out, // this is exactly what an arithmetic right shift does. BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) .addReg(X86::RSP); auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) .addReg(TmpReg, RegState::Kill) .addImm(TRI->getRegSizeInBits(*PS->RC) - 1); ShiftI->addRegisterDead(X86::EFLAGS, TRI); ++NumInstsInserted; return PredStateReg; } void X86SpeculativeLoadHardeningPass::hardenLoadAddr( MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, SmallDenseMap &AddrRegToHardenedReg) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc Loc = MI.getDebugLoc(); // Check if EFLAGS are alive by seeing if there is a def of them or they // live-in, and then seeing if that def is in turn used. bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); SmallVector HardenOpRegs; if (BaseMO.isFI()) { // A frame index is never a dynamically controllable load, so only // harden it if we're covering fixed address loads as well. LLVM_DEBUG( dbgs() << " Skipping hardening base of explicit stack frame load: "; MI.dump(); dbgs() << "\n"); } else if (BaseMO.getReg() == X86::RSP) { // Some idempotent atomic operations are lowered directly to a locked // OR with 0 to the top of stack(or slightly offset from top) which uses an // explicit RSP register as the base. assert(IndexMO.getReg() == X86::NoRegister && "Explicit RSP access with dynamic index!"); LLVM_DEBUG( dbgs() << " Cannot harden base of explicit RSP offset in a load!"); } else if (BaseMO.getReg() == X86::RIP || BaseMO.getReg() == X86::NoRegister) { // For both RIP-relative addressed loads or absolute loads, we cannot // meaningfully harden them because the address being loaded has no // dynamic component. // // FIXME: When using a segment base (like TLS does) we end up with the // dynamic address being the base plus -1 because we can't mutate the // segment register here. This allows the signed 32-bit offset to point at // valid segment-relative addresses and load them successfully. LLVM_DEBUG( dbgs() << " Cannot harden base of " << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base") << " address in a load!"); } else { assert(BaseMO.isReg() && "Only allowed to have a frame index or register base."); HardenOpRegs.push_back(&BaseMO); } if (IndexMO.getReg() != X86::NoRegister && (HardenOpRegs.empty() || HardenOpRegs.front()->getReg() != IndexMO.getReg())) HardenOpRegs.push_back(&IndexMO); assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && "Should have exactly one or two registers to harden!"); assert((HardenOpRegs.size() == 1 || HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && "Should not have two of the same registers!"); // Remove any registers that have alreaded been checked. llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { // See if this operand's register has already been checked. auto It = AddrRegToHardenedReg.find(Op->getReg()); if (It == AddrRegToHardenedReg.end()) // Not checked, so retain this one. return false; // Otherwise, we can directly update this operand and remove it. Op->setReg(It->second); return true; }); // If there are none left, we're done. if (HardenOpRegs.empty()) return; // Compute the current predicate state. unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); auto InsertPt = MI.getIterator(); // If EFLAGS are live and we don't have access to instructions that avoid // clobbering EFLAGS we need to save and restore them. This in turn makes // the EFLAGS no longer live. unsigned FlagsReg = 0; if (EFLAGSLive && !Subtarget->hasBMI2()) { EFLAGSLive = false; FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); } for (MachineOperand *Op : HardenOpRegs) { Register OpReg = Op->getReg(); auto *OpRC = MRI->getRegClass(OpReg); Register TmpReg = MRI->createVirtualRegister(OpRC); // If this is a vector register, we'll need somewhat custom logic to handle // hardening it. if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || OpRC->hasSuperClassEq(&X86::VR256RegClass))) { assert(Subtarget->hasAVX2() && "AVX2-specific register classes!"); bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); // Move our state into a vector register. // FIXME: We could skip this at the cost of longer encodings with AVX-512 // but that doesn't seem likely worth it. Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); auto MovI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) .addReg(StateReg); (void)MovI; ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n"); // Broadcast it across the vector register. Register VBStateReg = MRI->createVirtualRegister(OpRC); auto BroadcastI = BuildMI(MBB, InsertPt, Loc, TII->get(Is128Bit ? X86::VPBROADCASTQrr : X86::VPBROADCASTQYrr), VBStateReg) .addReg(VStateReg); (void)BroadcastI; ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); dbgs() << "\n"); // Merge our potential poison state into the value with a vector or. auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) .addReg(VBStateReg) .addReg(OpReg); (void)OrI; ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || OpRC->hasSuperClassEq(&X86::VR256XRegClass) || OpRC->hasSuperClassEq(&X86::VR512RegClass)) { assert(Subtarget->hasAVX512() && "AVX512-specific register classes!"); bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); if (Is128Bit || Is256Bit) assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!"); // Broadcast our state into a vector register. Register VStateReg = MRI->createVirtualRegister(OpRC); unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128r : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr; auto BroadcastI = BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) .addReg(StateReg); (void)BroadcastI; ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); dbgs() << "\n"); // Merge our potential poison state into the value with a vector or. unsigned OrOp = Is128Bit ? X86::VPORQZ128rr : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) .addReg(VStateReg) .addReg(OpReg); (void)OrI; ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); } else { // FIXME: Need to support GR32 here for 32-bit code. assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && "Not a supported register class for address hardening!"); if (!EFLAGSLive) { // Merge our potential poison state into the value with an or. auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) .addReg(StateReg) .addReg(OpReg); OrI->addRegisterDead(X86::EFLAGS, TRI); ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); } else { // We need to avoid touching EFLAGS so shift out all but the least // significant bit using the instruction that doesn't update flags. auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) .addReg(OpReg) .addReg(StateReg); (void)ShiftI; ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump(); dbgs() << "\n"); } } // Record this register as checked and update the operand. assert(!AddrRegToHardenedReg.count(Op->getReg()) && "Should not have checked this register yet!"); AddrRegToHardenedReg[Op->getReg()] = TmpReg; Op->setReg(TmpReg); ++NumAddrRegsHardened; } // And restore the flags if needed. if (FlagsReg) restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); } MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( MachineInstr &InitialMI, SmallPtrSetImpl &HardenedInstrs) { assert(isDataInvariantLoad(InitialMI) && "Cannot get here with a non-invariant load!"); // See if we can sink hardening the loaded value. auto SinkCheckToSingleUse = [&](MachineInstr &MI) -> Optional { Register DefReg = MI.getOperand(0).getReg(); // We need to find a single use which we can sink the check. We can // primarily do this because many uses may already end up checked on their // own. MachineInstr *SingleUseMI = nullptr; for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { // If we're already going to harden this use, it is data invariant and // within our block. if (HardenedInstrs.count(&UseMI)) { if (!isDataInvariantLoad(UseMI)) { // If we've already decided to harden a non-load, we must have sunk // some other post-load hardened instruction to it and it must itself // be data-invariant. assert(isDataInvariant(UseMI) && "Data variant instruction being hardened!"); continue; } // Otherwise, this is a load and the load component can't be data // invariant so check how this register is being used. const MCInstrDesc &Desc = UseMI.getDesc(); int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); assert(MemRefBeginIdx >= 0 && "Should always have mem references here!"); MemRefBeginIdx += X86II::getOperandBias(Desc); MachineOperand &BaseMO = UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); MachineOperand &IndexMO = UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || (IndexMO.isReg() && IndexMO.getReg() == DefReg)) // The load uses the register as part of its address making it not // invariant. return {}; continue; } if (SingleUseMI) // We already have a single use, this would make two. Bail. return {}; // If this single use isn't data invariant, isn't in this block, or has // interfering EFLAGS, we can't sink the hardening to it. if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent()) return {}; // If this instruction defines multiple registers bail as we won't harden // all of them. if (UseMI.getDesc().getNumDefs() > 1) return {}; // If this register isn't a virtual register we can't walk uses of sanely, // just bail. Also check that its register class is one of the ones we // can harden. Register UseDefReg = UseMI.getOperand(0).getReg(); if (!Register::isVirtualRegister(UseDefReg) || !canHardenRegister(UseDefReg)) return {}; SingleUseMI = &UseMI; } // If SingleUseMI is still null, there is no use that needs its own // checking. Otherwise, it is the single use that needs checking. return {SingleUseMI}; }; MachineInstr *MI = &InitialMI; while (Optional SingleUse = SinkCheckToSingleUse(*MI)) { // Update which MI we're checking now. MI = *SingleUse; if (!MI) break; } return MI; } bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) { auto *RC = MRI->getRegClass(Reg); int RegBytes = TRI->getRegSizeInBits(*RC) / 8; if (RegBytes > 8) // We don't support post-load hardening of vectors. return false; unsigned RegIdx = Log2_32(RegBytes); assert(RegIdx < 4 && "Unsupported register size"); // If this register class is explicitly constrained to a class that doesn't // require REX prefix, we may not be able to satisfy that constraint when // emitting the hardening instructions, so bail out here. // FIXME: This seems like a pretty lame hack. The way this comes up is when we // end up both with a NOREX and REX-only register as operands to the hardening // instructions. It would be better to fix that code to handle this situation // rather than hack around it in this way. const TargetRegisterClass *NOREXRegClasses[] = { &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; if (RC == NOREXRegClasses[RegIdx]) return false; const TargetRegisterClass *GPRRegClasses[] = { &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, &X86::GR64RegClass}; return RC->hasSuperClassEq(GPRRegClasses[RegIdx]); } /// Harden a value in a register. /// /// This is the low-level logic to fully harden a value sitting in a register /// against leaking during speculative execution. /// /// Unlike hardening an address that is used by a load, this routine is required /// to hide *all* incoming bits in the register. /// /// `Reg` must be a virtual register. Currently, it is required to be a GPR no /// larger than the predicate state register. FIXME: We should support vector /// registers here by broadcasting the predicate state. /// /// The new, hardened virtual register is returned. It will have the same /// register class as `Reg`. unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister( unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc) { assert(canHardenRegister(Reg) && "Cannot harden this register!"); assert(Register::isVirtualRegister(Reg) && "Cannot harden a physical register!"); auto *RC = MRI->getRegClass(Reg); int Bytes = TRI->getRegSizeInBits(*RC) / 8; unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); // FIXME: Need to teach this about 32-bit mode. if (Bytes != 8) { unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; unsigned SubRegImm = SubRegImms[Log2_32(Bytes)]; Register NarrowStateReg = MRI->createVirtualRegister(RC); BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg) .addReg(StateReg, 0, SubRegImm); StateReg = NarrowStateReg; } unsigned FlagsReg = 0; if (isEFLAGSLive(MBB, InsertPt, *TRI)) FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); Register NewReg = MRI->createVirtualRegister(RC); unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)]; auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg) .addReg(StateReg) .addReg(Reg); OrI->addRegisterDead(X86::EFLAGS, TRI); ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); if (FlagsReg) restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); return NewReg; } /// Harden a load by hardening the loaded value in the defined register. /// /// We can harden a non-leaking load into a register without touching the /// address by just hiding all of the loaded bits during misspeculation. We use /// an `or` instruction to do this because we set up our poison value as all /// ones. And the goal is just for the loaded bits to not be exposed to /// execution and coercing them to one is sufficient. /// /// Returns the newly hardened register. unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc Loc = MI.getDebugLoc(); auto &DefOp = MI.getOperand(0); Register OldDefReg = DefOp.getReg(); auto *DefRC = MRI->getRegClass(OldDefReg); // Because we want to completely replace the uses of this def'ed value with // the hardened value, create a dedicated new register that will only be used // to communicate the unhardened value to the hardening. Register UnhardenedReg = MRI->createVirtualRegister(DefRC); DefOp.setReg(UnhardenedReg); // Now harden this register's value, getting a hardened reg that is safe to // use. Note that we insert the instructions to compute this *after* the // defining instruction, not before it. unsigned HardenedReg = hardenValueInRegister( UnhardenedReg, MBB, std::next(MI.getIterator()), Loc); // Finally, replace the old register (which now only has the uses of the // original def) with the hardened register. MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg); ++NumPostLoadRegsHardened; return HardenedReg; } /// Harden a return instruction. /// /// Returns implicitly perform a load which we need to harden. Without hardening /// this load, an attacker my speculatively write over the return address to /// steer speculation of the return to an attacker controlled address. This is /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in /// this paper: /// https://people.csail.mit.edu/vlk/spectre11.pdf /// /// We can harden this by introducing an LFENCE that will delay any load of the /// return address until prior instructions have retired (and thus are not being /// speculated), or we can harden the address used by the implicit load: the /// stack pointer. /// /// If we are not using an LFENCE, hardening the stack pointer has an additional /// benefit: it allows us to pass the predicate state accumulated in this /// function back to the caller. In the absence of a BCBS attack on the return, /// the caller will typically be resumed and speculatively executed due to the /// Return Stack Buffer (RSB) prediction which is very accurate and has a high /// priority. It is possible that some code from the caller will be executed /// speculatively even during a BCBS-attacked return until the steering takes /// effect. Whenever this happens, the caller can recover the (poisoned) /// predicate state from the stack pointer and continue to harden loads. void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc Loc = MI.getDebugLoc(); auto InsertPt = MI.getIterator(); if (FenceCallAndRet) // No need to fence here as we'll fence at the return site itself. That // handles more cases than we can handle here. return; // Take our predicate state, shift it to the high 17 bits (so that we keep // pointers canonical) and merge it into RSP. This will allow the caller to // extract it when we return (speculatively). mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB)); } /// Trace the predicate state through a call. /// /// There are several layers of this needed to handle the full complexity of /// calls. /// /// First, we need to send the predicate state into the called function. We do /// this by merging it into the high bits of the stack pointer. /// /// For tail calls, this is all we need to do. /// /// For calls where we might return and resume the control flow, we need to /// extract the predicate state from the high bits of the stack pointer after /// control returns from the called function. /// /// We also need to verify that we intended to return to this location in the /// code. An attacker might arrange for the processor to mispredict the return /// to this valid but incorrect return address in the program rather than the /// correct one. See the paper on this attack, called "ret2spec" by the /// researchers, here: /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf /// /// The way we verify that we returned to the correct location is by preserving /// the expected return address across the call. One technique involves taking /// advantage of the red-zone to load the return address from `8(%rsp)` where it /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can /// directly save the address into a register that will be preserved across the /// call. We compare this intended return address against the address /// immediately following the call (the observed return address). If these /// mismatch, we have detected misspeculation and can poison our predicate /// state. void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall( MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); auto InsertPt = MI.getIterator(); DebugLoc Loc = MI.getDebugLoc(); if (FenceCallAndRet) { if (MI.isReturn()) // Tail call, we don't return to this function. // FIXME: We should also handle noreturn calls. return; // We don't need to fence before the call because the function should fence // in its entry. However, we do need to fence after the call returns. // Fencing before the return doesn't correctly handle cases where the return // itself is mispredicted. BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE)); ++NumInstsInserted; ++NumLFENCEsInserted; return; } // First, we transfer the predicate state into the called function by merging // it into the stack pointer. This will kill the current def of the state. unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); // If this call is also a return, it is a tail call and we don't need anything // else to handle it so just return. Also, if there are no further // instructions and no successors, this call does not return so we can also // bail. if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty())) return; // Create a symbol to track the return address and attach it to the call // machine instruction. We will lower extra symbols attached to call // instructions as label immediately following the call. MCSymbol *RetSymbol = MF.getContext().createTempSymbol("slh_ret_addr", /*AlwaysAddSuffix*/ true); MI.setPostInstrSymbol(MF, RetSymbol); const TargetRegisterClass *AddrRC = &X86::GR64RegClass; unsigned ExpectedRetAddrReg = 0; // If we have no red zones or if the function returns twice (possibly without // using the `ret` instruction) like setjmp, we need to save the expected // return address prior to the call. if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) || MF.exposesReturnsTwice()) { // If we don't have red zones, we need to compute the expected return // address prior to the call and store it in a register that lives across // the call. // // In some ways, this is doubly satisfying as a mitigation because it will // also successfully detect stack smashing bugs in some cases (typically, // when a callee-saved register is used and the callee doesn't push it onto // the stack). But that isn't our primary goal, so we only use it as // a fallback. // // FIXME: It isn't clear that this is reliable in the face of // rematerialization in the register allocator. We somehow need to force // that to not occur for this particular instruction, and instead to spill // or otherwise preserve the value computed *prior* to the call. // // FIXME: It is even less clear why MachineCSE can't just fold this when we // end up having to use identical instructions both before and after the // call to feed the comparison. ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); if (MF.getTarget().getCodeModel() == CodeModel::Small && !Subtarget->isPositionIndependent()) { BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg) .addSym(RetSymbol); } else { BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg) .addReg(/*Base*/ X86::RIP) .addImm(/*Scale*/ 1) .addReg(/*Index*/ 0) .addSym(RetSymbol) .addReg(/*Segment*/ 0); } } // Step past the call to handle when it returns. ++InsertPt; // If we didn't pre-compute the expected return address into a register, then // red zones are enabled and the return address is still available on the // stack immediately after the call. As the very first instruction, we load it // into a register. if (!ExpectedRetAddrReg) { ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg) .addReg(/*Base*/ X86::RSP) .addImm(/*Scale*/ 1) .addReg(/*Index*/ 0) .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so // the return address is 8-bytes past it. .addReg(/*Segment*/ 0); } // Now we extract the callee's predicate state from the stack pointer. unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); // Test the expected return address against our actual address. If we can // form this basic block's address as an immediate, this is easy. Otherwise // we compute it. if (MF.getTarget().getCodeModel() == CodeModel::Small && !Subtarget->isPositionIndependent()) { // FIXME: Could we fold this with the load? It would require careful EFLAGS // management. BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32)) .addReg(ExpectedRetAddrReg, RegState::Kill) .addSym(RetSymbol); } else { Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC); BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg) .addReg(/*Base*/ X86::RIP) .addImm(/*Scale*/ 1) .addReg(/*Index*/ 0) .addSym(RetSymbol) .addReg(/*Segment*/ 0); BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr)) .addReg(ExpectedRetAddrReg, RegState::Kill) .addReg(ActualRetAddrReg, RegState::Kill); } // Now conditionally update the predicate state we just extracted if we ended // up at a different return address than expected. int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg) .addReg(NewStateReg, RegState::Kill) .addReg(PS->PoisonReg) .addImm(X86::COND_NE); CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); ++NumInstsInserted; LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); } /// An attacker may speculatively store over a value that is then speculatively /// loaded and used as the target of an indirect call or jump instruction. This /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described /// in this paper: /// https://people.csail.mit.edu/vlk/spectre11.pdf /// /// When this happens, the speculative execution of the call or jump will end up /// being steered to this attacker controlled address. While most such loads /// will be adequately hardened already, we want to ensure that they are /// definitively treated as needing post-load hardening. While address hardening /// is sufficient to prevent secret data from leaking to the attacker, it may /// not be sufficient to prevent an attacker from steering speculative /// execution. We forcibly unfolded all relevant loads above and so will always /// have an opportunity to post-load harden here, we just need to scan for cases /// not already flagged and add them. void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr( MachineInstr &MI, SmallDenseMap &AddrRegToHardenedReg) { switch (MI.getOpcode()) { case X86::FARCALL16m: case X86::FARCALL32m: case X86::FARCALL64: case X86::FARJMP16m: case X86::FARJMP32m: case X86::FARJMP64: // We don't need to harden either far calls or far jumps as they are // safe from Spectre. return; default: break; } // We should never see a loading instruction at this point, as those should // have been unfolded. assert(!MI.mayLoad() && "Found a lingering loading instruction!"); // If the first operand isn't a register, this is a branch or call // instruction with an immediate operand which doesn't need to be hardened. if (!MI.getOperand(0).isReg()) return; // For all of these, the target register is the first operand of the // instruction. auto &TargetOp = MI.getOperand(0); Register OldTargetReg = TargetOp.getReg(); // Try to lookup a hardened version of this register. We retain a reference // here as we want to update the map to track any newly computed hardened // register. unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg]; // If we don't have a hardened register yet, compute one. Otherwise, just use // the already hardened register. // // FIXME: It is a little suspect that we use partially hardened registers that // only feed addresses. The complexity of partial hardening with SHRX // continues to pile up. Should definitively measure its value and consider // eliminating it. if (!HardenedTargetReg) HardenedTargetReg = hardenValueInRegister( OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc()); // Set the target operand to the hardened register. TargetOp.setReg(HardenedTargetReg); ++NumCallsOrJumpsHardened; } INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY, "X86 speculative load hardener", false, false) INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY, "X86 speculative load hardener", false, false) FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { return new X86SpeculativeLoadHardeningPass(); }