//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains code to lower X86 MachineInstrs to their corresponding // MCInst records. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86ATTInstPrinter.h" #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86InstComments.h" #include "MCTargetDesc/X86ShuffleDecode.h" #include "MCTargetDesc/X86TargetStreamer.h" #include "X86AsmPrinter.h" #include "X86RegisterInfo.h" #include "X86ShuffleDecodeConstantPool.h" #include "X86Subtarget.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Mangler.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCSymbolELF.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; namespace { /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst. class X86MCInstLower { MCContext &Ctx; const MachineFunction &MF; const TargetMachine &TM; const MCAsmInfo &MAI; X86AsmPrinter &AsmPrinter; public: X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter); Optional LowerMachineOperand(const MachineInstr *MI, const MachineOperand &MO) const; void Lower(const MachineInstr *MI, MCInst &OutMI) const; MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const; MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const; private: MachineModuleInfoMachO &getMachOMMI() const; }; } // end anonymous namespace /// A RAII helper which defines a region of instructions which can't have /// padding added between them for correctness. struct NoAutoPaddingScope { MCStreamer &OS; const bool OldAllowAutoPadding; NoAutoPaddingScope(MCStreamer &OS) : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) { changeAndComment(false); } ~NoAutoPaddingScope() { changeAndComment(OldAllowAutoPadding); } void changeAndComment(bool b) { if (b == OS.getAllowAutoPadding()) return; OS.setAllowAutoPadding(b); if (b) OS.emitRawComment("autopadding"); else OS.emitRawComment("noautopadding"); } }; // Emit a minimal sequence of nops spanning NumBytes bytes. static void emitX86Nops(MCStreamer &OS, unsigned NumBytes, const X86Subtarget *Subtarget); void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst, const MCSubtargetInfo &STI, MCCodeEmitter *CodeEmitter) { if (InShadow) { SmallString<256> Code; SmallVector Fixups; raw_svector_ostream VecOS(Code); CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI); CurrentShadowSize += Code.size(); if (CurrentShadowSize >= RequiredShadowSize) InShadow = false; // The shadow is big enough. Stop counting. } } void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding( MCStreamer &OutStreamer, const MCSubtargetInfo &STI) { if (InShadow && CurrentShadowSize < RequiredShadowSize) { InShadow = false; emitX86Nops(OutStreamer, RequiredShadowSize - CurrentShadowSize, &MF->getSubtarget()); } } void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) { OutStreamer->emitInstruction(Inst, getSubtargetInfo()); SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get()); } X86MCInstLower::X86MCInstLower(const MachineFunction &mf, X86AsmPrinter &asmprinter) : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {} MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const { return MF.getMMI().getObjFileInfo(); } /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol /// operand to an MCSymbol. MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const { const Triple &TT = TM.getTargetTriple(); if (MO.isGlobal() && TT.isOSBinFormatELF()) return AsmPrinter.getSymbolPreferLocal(*MO.getGlobal()); const DataLayout &DL = MF.getDataLayout(); assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference"); MCSymbol *Sym = nullptr; SmallString<128> Name; StringRef Suffix; switch (MO.getTargetFlags()) { case X86II::MO_DLLIMPORT: // Handle dllimport linkage. Name += "__imp_"; break; case X86II::MO_COFFSTUB: Name += ".refptr."; break; case X86II::MO_DARWIN_NONLAZY: case X86II::MO_DARWIN_NONLAZY_PIC_BASE: Suffix = "$non_lazy_ptr"; break; } if (!Suffix.empty()) Name += DL.getPrivateGlobalPrefix(); if (MO.isGlobal()) { const GlobalValue *GV = MO.getGlobal(); AsmPrinter.getNameWithPrefix(Name, GV); } else if (MO.isSymbol()) { Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL); } else if (MO.isMBB()) { assert(Suffix.empty()); Sym = MO.getMBB()->getSymbol(); } Name += Suffix; if (!Sym) Sym = Ctx.getOrCreateSymbol(Name); // If the target flags on the operand changes the name of the symbol, do that // before we return the symbol. switch (MO.getTargetFlags()) { default: break; case X86II::MO_COFFSTUB: { MachineModuleInfoCOFF &MMICOFF = MF.getMMI().getObjFileInfo(); MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym); if (!StubSym.getPointer()) { assert(MO.isGlobal() && "Extern symbol not handled yet"); StubSym = MachineModuleInfoImpl::StubValueTy( AsmPrinter.getSymbol(MO.getGlobal()), true); } break; } case X86II::MO_DARWIN_NONLAZY: case X86II::MO_DARWIN_NONLAZY_PIC_BASE: { MachineModuleInfoImpl::StubValueTy &StubSym = getMachOMMI().getGVStubEntry(Sym); if (!StubSym.getPointer()) { assert(MO.isGlobal() && "Extern symbol not handled yet"); StubSym = MachineModuleInfoImpl::StubValueTy( AsmPrinter.getSymbol(MO.getGlobal()), !MO.getGlobal()->hasInternalLinkage()); } break; } } return Sym; } MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const { // FIXME: We would like an efficient form for this, so we don't have to do a // lot of extra uniquing. const MCExpr *Expr = nullptr; MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None; switch (MO.getTargetFlags()) { default: llvm_unreachable("Unknown target flag on GV operand"); case X86II::MO_NO_FLAG: // No flag. // These affect the name of the symbol, not any suffix. case X86II::MO_DARWIN_NONLAZY: case X86II::MO_DLLIMPORT: case X86II::MO_COFFSTUB: break; case X86II::MO_TLVP: RefKind = MCSymbolRefExpr::VK_TLVP; break; case X86II::MO_TLVP_PIC_BASE: Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx); // Subtract the pic base. Expr = MCBinaryExpr::createSub( Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx); break; case X86II::MO_SECREL: RefKind = MCSymbolRefExpr::VK_SECREL; break; case X86II::MO_TLSGD: RefKind = MCSymbolRefExpr::VK_TLSGD; break; case X86II::MO_TLSLD: RefKind = MCSymbolRefExpr::VK_TLSLD; break; case X86II::MO_TLSLDM: RefKind = MCSymbolRefExpr::VK_TLSLDM; break; case X86II::MO_GOTTPOFF: RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break; case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break; case X86II::MO_TPOFF: RefKind = MCSymbolRefExpr::VK_TPOFF; break; case X86II::MO_DTPOFF: RefKind = MCSymbolRefExpr::VK_DTPOFF; break; case X86II::MO_NTPOFF: RefKind = MCSymbolRefExpr::VK_NTPOFF; break; case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break; case X86II::MO_GOTPCREL: RefKind = MCSymbolRefExpr::VK_GOTPCREL; break; case X86II::MO_GOT: RefKind = MCSymbolRefExpr::VK_GOT; break; case X86II::MO_GOTOFF: RefKind = MCSymbolRefExpr::VK_GOTOFF; break; case X86II::MO_PLT: RefKind = MCSymbolRefExpr::VK_PLT; break; case X86II::MO_ABS8: RefKind = MCSymbolRefExpr::VK_X86_ABS8; break; case X86II::MO_PIC_BASE_OFFSET: case X86II::MO_DARWIN_NONLAZY_PIC_BASE: Expr = MCSymbolRefExpr::create(Sym, Ctx); // Subtract the pic base. Expr = MCBinaryExpr::createSub( Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx); if (MO.isJTI()) { assert(MAI.doesSetDirectiveSuppressReloc()); // If .set directive is supported, use it to reduce the number of // relocations the assembler will generate for differences between // local labels. This is only safe when the symbols are in the same // section so we are restricting it to jumptable references. MCSymbol *Label = Ctx.createTempSymbol(); AsmPrinter.OutStreamer->emitAssignment(Label, Expr); Expr = MCSymbolRefExpr::create(Label, Ctx); } break; } if (!Expr) Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx); if (!MO.isJTI() && !MO.isMBB() && MO.getOffset()) Expr = MCBinaryExpr::createAdd( Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx); return MCOperand::createExpr(Expr); } /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with /// a short fixed-register form. static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) { unsigned ImmOp = Inst.getNumOperands() - 1; assert(Inst.getOperand(0).isReg() && (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) && ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() && Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) || Inst.getNumOperands() == 2) && "Unexpected instruction!"); // Check whether the destination register can be fixed. unsigned Reg = Inst.getOperand(0).getReg(); if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) return; // If so, rewrite the instruction. MCOperand Saved = Inst.getOperand(ImmOp); Inst = MCInst(); Inst.setOpcode(Opcode); Inst.addOperand(Saved); } /// If a movsx instruction has a shorter encoding for the used register /// simplify the instruction to use it instead. static void SimplifyMOVSX(MCInst &Inst) { unsigned NewOpcode = 0; unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg(); switch (Inst.getOpcode()) { default: llvm_unreachable("Unexpected instruction!"); case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw if (Op0 == X86::AX && Op1 == X86::AL) NewOpcode = X86::CBW; break; case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl if (Op0 == X86::EAX && Op1 == X86::AX) NewOpcode = X86::CWDE; break; case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq if (Op0 == X86::RAX && Op1 == X86::EAX) NewOpcode = X86::CDQE; break; } if (NewOpcode != 0) { Inst = MCInst(); Inst.setOpcode(NewOpcode); } } /// Simplify things like MOV32rm to MOV32o32a. static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst, unsigned Opcode) { // Don't make these simplifications in 64-bit mode; other assemblers don't // perform them because they make the code larger. if (Printer.getSubtarget().is64Bit()) return; bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg(); unsigned AddrBase = IsStore; unsigned RegOp = IsStore ? 0 : 5; unsigned AddrOp = AddrBase + 3; assert( Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() && Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() && Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() && Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() && Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() && (Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) && "Unexpected instruction!"); // Check whether the destination register can be fixed. unsigned Reg = Inst.getOperand(RegOp).getReg(); if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX) return; // Check whether this is an absolute address. // FIXME: We know TLVP symbol refs aren't, but there should be a better way // to do this here. bool Absolute = true; if (Inst.getOperand(AddrOp).isExpr()) { const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr(); if (const MCSymbolRefExpr *SRE = dyn_cast(MCE)) if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP) Absolute = false; } if (Absolute && (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 || Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 || Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0)) return; // If so, rewrite the instruction. MCOperand Saved = Inst.getOperand(AddrOp); MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg); Inst = MCInst(); Inst.setOpcode(Opcode); Inst.addOperand(Saved); Inst.addOperand(Seg); } static unsigned getRetOpcode(const X86Subtarget &Subtarget) { return Subtarget.is64Bit() ? X86::RETQ : X86::RETL; } Optional X86MCInstLower::LowerMachineOperand(const MachineInstr *MI, const MachineOperand &MO) const { switch (MO.getType()) { default: MI->print(errs()); llvm_unreachable("unknown operand type"); case MachineOperand::MO_Register: // Ignore all implicit register operands. if (MO.isImplicit()) return None; return MCOperand::createReg(MO.getReg()); case MachineOperand::MO_Immediate: return MCOperand::createImm(MO.getImm()); case MachineOperand::MO_MachineBasicBlock: case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_ExternalSymbol: return LowerSymbolOperand(MO, GetSymbolFromOperand(MO)); case MachineOperand::MO_MCSymbol: return LowerSymbolOperand(MO, MO.getMCSymbol()); case MachineOperand::MO_JumpTableIndex: return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex())); case MachineOperand::MO_ConstantPoolIndex: return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex())); case MachineOperand::MO_BlockAddress: return LowerSymbolOperand( MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress())); case MachineOperand::MO_RegisterMask: // Ignore call clobbers. return None; } } // Replace TAILJMP opcodes with their equivalent opcodes that have encoding // information. static unsigned convertTailJumpOpcode(unsigned Opcode) { switch (Opcode) { case X86::TAILJMPr: Opcode = X86::JMP32r; break; case X86::TAILJMPm: Opcode = X86::JMP32m; break; case X86::TAILJMPr64: Opcode = X86::JMP64r; break; case X86::TAILJMPm64: Opcode = X86::JMP64m; break; case X86::TAILJMPr64_REX: Opcode = X86::JMP64r_REX; break; case X86::TAILJMPm64_REX: Opcode = X86::JMP64m_REX; break; case X86::TAILJMPd: case X86::TAILJMPd64: Opcode = X86::JMP_1; break; case X86::TAILJMPd_CC: case X86::TAILJMPd64_CC: Opcode = X86::JCC_1; break; } return Opcode; } void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { OutMI.setOpcode(MI->getOpcode()); for (const MachineOperand &MO : MI->operands()) if (auto MaybeMCOp = LowerMachineOperand(MI, MO)) OutMI.addOperand(MaybeMCOp.getValue()); // Handle a few special cases to eliminate operand modifiers. switch (OutMI.getOpcode()) { case X86::LEA64_32r: case X86::LEA64r: case X86::LEA16r: case X86::LEA32r: // LEA should have a segment register, but it must be empty. assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands && "Unexpected # of LEA operands"); assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 && "LEA has segment specified!"); break; case X86::MULX32Hrr: case X86::MULX32Hrm: case X86::MULX64Hrr: case X86::MULX64Hrm: { // Turn into regular MULX by duplicating the destination. unsigned NewOpc; switch (OutMI.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break; case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break; case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break; case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break; } OutMI.setOpcode(NewOpc); // Duplicate the destination. unsigned DestReg = OutMI.getOperand(0).getReg(); OutMI.insert(OutMI.begin(), MCOperand::createReg(DestReg)); break; } // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B // if one of the registers is extended, but other isn't. case X86::VMOVZPQILo2PQIrr: case X86::VMOVAPDrr: case X86::VMOVAPDYrr: case X86::VMOVAPSrr: case X86::VMOVAPSYrr: case X86::VMOVDQArr: case X86::VMOVDQAYrr: case X86::VMOVDQUrr: case X86::VMOVDQUYrr: case X86::VMOVUPDrr: case X86::VMOVUPDYrr: case X86::VMOVUPSrr: case X86::VMOVUPSYrr: { if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) { unsigned NewOpc; switch (OutMI.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break; case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break; case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break; case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break; case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break; case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break; case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break; case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break; case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break; case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break; case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break; case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break; case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break; } OutMI.setOpcode(NewOpc); } break; } case X86::VMOVSDrr: case X86::VMOVSSrr: { if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) { unsigned NewOpc; switch (OutMI.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; } OutMI.setOpcode(NewOpc); } break; } case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rmik: case X86::VPCMPBZ128rri: case X86::VPCMPBZ128rrik: case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rmik: case X86::VPCMPBZ256rri: case X86::VPCMPBZ256rrik: case X86::VPCMPBZrmi: case X86::VPCMPBZrmik: case X86::VPCMPBZrri: case X86::VPCMPBZrrik: case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rmik: case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk: case X86::VPCMPDZ128rri: case X86::VPCMPDZ128rrik: case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rmik: case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk: case X86::VPCMPDZ256rri: case X86::VPCMPDZ256rrik: case X86::VPCMPDZrmi: case X86::VPCMPDZrmik: case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk: case X86::VPCMPDZrri: case X86::VPCMPDZrrik: case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rmik: case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk: case X86::VPCMPQZ128rri: case X86::VPCMPQZ128rrik: case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rmik: case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk: case X86::VPCMPQZ256rri: case X86::VPCMPQZ256rrik: case X86::VPCMPQZrmi: case X86::VPCMPQZrmik: case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk: case X86::VPCMPQZrri: case X86::VPCMPQZrrik: case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rmik: case X86::VPCMPWZ128rri: case X86::VPCMPWZ128rrik: case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rmik: case X86::VPCMPWZ256rri: case X86::VPCMPWZ256rrik: case X86::VPCMPWZrmi: case X86::VPCMPWZrmik: case X86::VPCMPWZrri: case X86::VPCMPWZrrik: { // Turn immediate 0 into the VPCMPEQ instruction. if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 0) { unsigned NewOpc; switch (OutMI.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPEQBZ128rm; break; case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPEQBZ128rmk; break; case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPEQBZ128rr; break; case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPEQBZ128rrk; break; case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPEQBZ256rm; break; case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPEQBZ256rmk; break; case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPEQBZ256rr; break; case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPEQBZ256rrk; break; case X86::VPCMPBZrmi: NewOpc = X86::VPCMPEQBZrm; break; case X86::VPCMPBZrmik: NewOpc = X86::VPCMPEQBZrmk; break; case X86::VPCMPBZrri: NewOpc = X86::VPCMPEQBZrr; break; case X86::VPCMPBZrrik: NewOpc = X86::VPCMPEQBZrrk; break; case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPEQDZ128rm; break; case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPEQDZ128rmb; break; case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPEQDZ128rmbk; break; case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPEQDZ128rmk; break; case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPEQDZ128rr; break; case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPEQDZ128rrk; break; case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPEQDZ256rm; break; case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPEQDZ256rmb; break; case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPEQDZ256rmbk; break; case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPEQDZ256rmk; break; case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPEQDZ256rr; break; case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPEQDZ256rrk; break; case X86::VPCMPDZrmi: NewOpc = X86::VPCMPEQDZrm; break; case X86::VPCMPDZrmib: NewOpc = X86::VPCMPEQDZrmb; break; case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPEQDZrmbk; break; case X86::VPCMPDZrmik: NewOpc = X86::VPCMPEQDZrmk; break; case X86::VPCMPDZrri: NewOpc = X86::VPCMPEQDZrr; break; case X86::VPCMPDZrrik: NewOpc = X86::VPCMPEQDZrrk; break; case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPEQQZ128rm; break; case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPEQQZ128rmb; break; case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPEQQZ128rmbk; break; case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPEQQZ128rmk; break; case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPEQQZ128rr; break; case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPEQQZ128rrk; break; case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPEQQZ256rm; break; case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPEQQZ256rmb; break; case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPEQQZ256rmbk; break; case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPEQQZ256rmk; break; case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPEQQZ256rr; break; case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPEQQZ256rrk; break; case X86::VPCMPQZrmi: NewOpc = X86::VPCMPEQQZrm; break; case X86::VPCMPQZrmib: NewOpc = X86::VPCMPEQQZrmb; break; case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPEQQZrmbk; break; case X86::VPCMPQZrmik: NewOpc = X86::VPCMPEQQZrmk; break; case X86::VPCMPQZrri: NewOpc = X86::VPCMPEQQZrr; break; case X86::VPCMPQZrrik: NewOpc = X86::VPCMPEQQZrrk; break; case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPEQWZ128rm; break; case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPEQWZ128rmk; break; case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPEQWZ128rr; break; case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPEQWZ128rrk; break; case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPEQWZ256rm; break; case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPEQWZ256rmk; break; case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPEQWZ256rr; break; case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPEQWZ256rrk; break; case X86::VPCMPWZrmi: NewOpc = X86::VPCMPEQWZrm; break; case X86::VPCMPWZrmik: NewOpc = X86::VPCMPEQWZrmk; break; case X86::VPCMPWZrri: NewOpc = X86::VPCMPEQWZrr; break; case X86::VPCMPWZrrik: NewOpc = X86::VPCMPEQWZrrk; break; } OutMI.setOpcode(NewOpc); OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1)); break; } // Turn immediate 6 into the VPCMPGT instruction. if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 6) { unsigned NewOpc; switch (OutMI.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPGTBZ128rm; break; case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPGTBZ128rmk; break; case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPGTBZ128rr; break; case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPGTBZ128rrk; break; case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPGTBZ256rm; break; case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPGTBZ256rmk; break; case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPGTBZ256rr; break; case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPGTBZ256rrk; break; case X86::VPCMPBZrmi: NewOpc = X86::VPCMPGTBZrm; break; case X86::VPCMPBZrmik: NewOpc = X86::VPCMPGTBZrmk; break; case X86::VPCMPBZrri: NewOpc = X86::VPCMPGTBZrr; break; case X86::VPCMPBZrrik: NewOpc = X86::VPCMPGTBZrrk; break; case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPGTDZ128rm; break; case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPGTDZ128rmb; break; case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPGTDZ128rmbk; break; case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPGTDZ128rmk; break; case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPGTDZ128rr; break; case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPGTDZ128rrk; break; case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPGTDZ256rm; break; case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPGTDZ256rmb; break; case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPGTDZ256rmbk; break; case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPGTDZ256rmk; break; case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPGTDZ256rr; break; case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPGTDZ256rrk; break; case X86::VPCMPDZrmi: NewOpc = X86::VPCMPGTDZrm; break; case X86::VPCMPDZrmib: NewOpc = X86::VPCMPGTDZrmb; break; case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPGTDZrmbk; break; case X86::VPCMPDZrmik: NewOpc = X86::VPCMPGTDZrmk; break; case X86::VPCMPDZrri: NewOpc = X86::VPCMPGTDZrr; break; case X86::VPCMPDZrrik: NewOpc = X86::VPCMPGTDZrrk; break; case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPGTQZ128rm; break; case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPGTQZ128rmb; break; case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPGTQZ128rmbk; break; case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPGTQZ128rmk; break; case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPGTQZ128rr; break; case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPGTQZ128rrk; break; case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPGTQZ256rm; break; case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPGTQZ256rmb; break; case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPGTQZ256rmbk; break; case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPGTQZ256rmk; break; case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPGTQZ256rr; break; case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPGTQZ256rrk; break; case X86::VPCMPQZrmi: NewOpc = X86::VPCMPGTQZrm; break; case X86::VPCMPQZrmib: NewOpc = X86::VPCMPGTQZrmb; break; case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPGTQZrmbk; break; case X86::VPCMPQZrmik: NewOpc = X86::VPCMPGTQZrmk; break; case X86::VPCMPQZrri: NewOpc = X86::VPCMPGTQZrr; break; case X86::VPCMPQZrrik: NewOpc = X86::VPCMPGTQZrrk; break; case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPGTWZ128rm; break; case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPGTWZ128rmk; break; case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPGTWZ128rr; break; case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPGTWZ128rrk; break; case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPGTWZ256rm; break; case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPGTWZ256rmk; break; case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPGTWZ256rr; break; case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPGTWZ256rrk; break; case X86::VPCMPWZrmi: NewOpc = X86::VPCMPGTWZrm; break; case X86::VPCMPWZrmik: NewOpc = X86::VPCMPGTWZrmk; break; case X86::VPCMPWZrri: NewOpc = X86::VPCMPGTWZrr; break; case X86::VPCMPWZrrik: NewOpc = X86::VPCMPGTWZrrk; break; } OutMI.setOpcode(NewOpc); OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1)); break; } break; } // CALL64r, CALL64pcrel32 - These instructions used to have // register inputs modeled as normal uses instead of implicit uses. As such, // they we used to truncate off all but the first operand (the callee). This // issue seems to have been fixed at some point. This assert verifies that. case X86::CALL64r: case X86::CALL64pcrel32: assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!"); break; case X86::EH_RETURN: case X86::EH_RETURN64: { OutMI = MCInst(); OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); break; } case X86::CLEANUPRET: { // Replace CLEANUPRET with the appropriate RET. OutMI = MCInst(); OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget())); break; } case X86::CATCHRET: { // Replace CATCHRET with the appropriate RET. const X86Subtarget &Subtarget = AsmPrinter.getSubtarget(); unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; OutMI = MCInst(); OutMI.setOpcode(getRetOpcode(Subtarget)); OutMI.addOperand(MCOperand::createReg(ReturnReg)); break; } // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump // instruction. case X86::TAILJMPr: case X86::TAILJMPr64: case X86::TAILJMPr64_REX: case X86::TAILJMPd: case X86::TAILJMPd64: assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!"); OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode())); break; case X86::TAILJMPd_CC: case X86::TAILJMPd64_CC: assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!"); OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode())); break; case X86::TAILJMPm: case X86::TAILJMPm64: case X86::TAILJMPm64_REX: assert(OutMI.getNumOperands() == X86::AddrNumOperands && "Unexpected number of operands!"); OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode())); break; case X86::DEC16r: case X86::DEC32r: case X86::INC16r: case X86::INC32r: // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions. if (!AsmPrinter.getSubtarget().is64Bit()) { unsigned Opcode; switch (OutMI.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::DEC16r: Opcode = X86::DEC16r_alt; break; case X86::DEC32r: Opcode = X86::DEC32r_alt; break; case X86::INC16r: Opcode = X86::INC16r_alt; break; case X86::INC32r: Opcode = X86::INC32r_alt; break; } OutMI.setOpcode(Opcode); } break; // We don't currently select the correct instruction form for instructions // which have a short %eax, etc. form. Handle this by custom lowering, for // now. // // Note, we are currently not handling the following instructions: // MOV64ao8, MOV64o8a // XCHG16ar, XCHG32ar, XCHG64ar case X86::MOV8mr_NOREX: case X86::MOV8mr: case X86::MOV8rm_NOREX: case X86::MOV8rm: case X86::MOV16mr: case X86::MOV16rm: case X86::MOV32mr: case X86::MOV32rm: { unsigned NewOpc; switch (OutMI.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::MOV8mr_NOREX: case X86::MOV8mr: NewOpc = X86::MOV8o32a; break; case X86::MOV8rm_NOREX: case X86::MOV8rm: NewOpc = X86::MOV8ao32; break; case X86::MOV16mr: NewOpc = X86::MOV16o32a; break; case X86::MOV16rm: NewOpc = X86::MOV16ao32; break; case X86::MOV32mr: NewOpc = X86::MOV32o32a; break; case X86::MOV32rm: NewOpc = X86::MOV32ao32; break; } SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc); break; } case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32: case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32: case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32: case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32: case X86::OR8ri: case X86::OR16ri: case X86::OR32ri: case X86::OR64ri32: case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32: case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32: case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32: case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: { unsigned NewOpc; switch (OutMI.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::ADC8ri: NewOpc = X86::ADC8i8; break; case X86::ADC16ri: NewOpc = X86::ADC16i16; break; case X86::ADC32ri: NewOpc = X86::ADC32i32; break; case X86::ADC64ri32: NewOpc = X86::ADC64i32; break; case X86::ADD8ri: NewOpc = X86::ADD8i8; break; case X86::ADD16ri: NewOpc = X86::ADD16i16; break; case X86::ADD32ri: NewOpc = X86::ADD32i32; break; case X86::ADD64ri32: NewOpc = X86::ADD64i32; break; case X86::AND8ri: NewOpc = X86::AND8i8; break; case X86::AND16ri: NewOpc = X86::AND16i16; break; case X86::AND32ri: NewOpc = X86::AND32i32; break; case X86::AND64ri32: NewOpc = X86::AND64i32; break; case X86::CMP8ri: NewOpc = X86::CMP8i8; break; case X86::CMP16ri: NewOpc = X86::CMP16i16; break; case X86::CMP32ri: NewOpc = X86::CMP32i32; break; case X86::CMP64ri32: NewOpc = X86::CMP64i32; break; case X86::OR8ri: NewOpc = X86::OR8i8; break; case X86::OR16ri: NewOpc = X86::OR16i16; break; case X86::OR32ri: NewOpc = X86::OR32i32; break; case X86::OR64ri32: NewOpc = X86::OR64i32; break; case X86::SBB8ri: NewOpc = X86::SBB8i8; break; case X86::SBB16ri: NewOpc = X86::SBB16i16; break; case X86::SBB32ri: NewOpc = X86::SBB32i32; break; case X86::SBB64ri32: NewOpc = X86::SBB64i32; break; case X86::SUB8ri: NewOpc = X86::SUB8i8; break; case X86::SUB16ri: NewOpc = X86::SUB16i16; break; case X86::SUB32ri: NewOpc = X86::SUB32i32; break; case X86::SUB64ri32: NewOpc = X86::SUB64i32; break; case X86::TEST8ri: NewOpc = X86::TEST8i8; break; case X86::TEST16ri: NewOpc = X86::TEST16i16; break; case X86::TEST32ri: NewOpc = X86::TEST32i32; break; case X86::TEST64ri32: NewOpc = X86::TEST64i32; break; case X86::XOR8ri: NewOpc = X86::XOR8i8; break; case X86::XOR16ri: NewOpc = X86::XOR16i16; break; case X86::XOR32ri: NewOpc = X86::XOR32i32; break; case X86::XOR64ri32: NewOpc = X86::XOR64i32; break; } SimplifyShortImmForm(OutMI, NewOpc); break; } // Try to shrink some forms of movsx. case X86::MOVSX16rr8: case X86::MOVSX32rr16: case X86::MOVSX64rr32: SimplifyMOVSX(OutMI); break; case X86::VCMPPDrri: case X86::VCMPPDYrri: case X86::VCMPPSrri: case X86::VCMPPSYrri: case X86::VCMPSDrr: case X86::VCMPSSrr: { // Swap the operands if it will enable a 2 byte VEX encoding. // FIXME: Change the immediate to improve opportunities? if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) && X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) { unsigned Imm = MI->getOperand(3).getImm() & 0x7; switch (Imm) { default: break; case 0x00: // EQUAL case 0x03: // UNORDERED case 0x04: // NOT EQUAL case 0x07: // ORDERED std::swap(OutMI.getOperand(1), OutMI.getOperand(2)); break; } } break; } case X86::VMOVHLPSrr: case X86::VUNPCKHPDrr: // These are not truly commutable so hide them from the default case. break; default: { // If the instruction is a commutable arithmetic instruction we might be // able to commute the operands to get a 2 byte VEX prefix. uint64_t TSFlags = MI->getDesc().TSFlags; if (MI->getDesc().isCommutable() && (TSFlags & X86II::EncodingMask) == X86II::VEX && (TSFlags & X86II::OpMapMask) == X86II::TB && (TSFlags & X86II::FormMask) == X86II::MRMSrcReg && !(TSFlags & X86II::VEX_W) && (TSFlags & X86II::VEX_4V) && OutMI.getNumOperands() == 3) { if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) && X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) std::swap(OutMI.getOperand(1), OutMI.getOperand(2)); } break; } } } void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering, const MachineInstr &MI) { NoAutoPaddingScope NoPadScope(*OutStreamer); bool Is64Bits = MI.getOpcode() == X86::TLS_addr64 || MI.getOpcode() == X86::TLS_base_addr64; MCContext &Ctx = OutStreamer->getContext(); MCSymbolRefExpr::VariantKind SRVK; switch (MI.getOpcode()) { case X86::TLS_addr32: case X86::TLS_addr64: SRVK = MCSymbolRefExpr::VK_TLSGD; break; case X86::TLS_base_addr32: SRVK = MCSymbolRefExpr::VK_TLSLDM; break; case X86::TLS_base_addr64: SRVK = MCSymbolRefExpr::VK_TLSLD; break; default: llvm_unreachable("unexpected opcode"); } const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create( MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx); // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by // only using GOT when GOTPCRELX is enabled. // TODO Delete the workaround when GOTPCRELX becomes commonplace. bool UseGot = MMI->getModule()->getRtLibUseGOT() && Ctx.getAsmInfo()->canRelaxRelocations(); if (Is64Bits) { bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD; if (NeedsPadding) EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); EmitAndCountInstruction(MCInstBuilder(X86::LEA64r) .addReg(X86::RDI) .addReg(X86::RIP) .addImm(1) .addReg(0) .addExpr(Sym) .addReg(0)); const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr"); if (NeedsPadding) { if (!UseGot) EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX)); EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX)); } if (UseGot) { const MCExpr *Expr = MCSymbolRefExpr::create( TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx); EmitAndCountInstruction(MCInstBuilder(X86::CALL64m) .addReg(X86::RIP) .addImm(1) .addReg(0) .addExpr(Expr) .addReg(0)); } else { EmitAndCountInstruction( MCInstBuilder(X86::CALL64pcrel32) .addExpr(MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_PLT, Ctx))); } } else { if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) { EmitAndCountInstruction(MCInstBuilder(X86::LEA32r) .addReg(X86::EAX) .addReg(0) .addImm(1) .addReg(X86::EBX) .addExpr(Sym) .addReg(0)); } else { EmitAndCountInstruction(MCInstBuilder(X86::LEA32r) .addReg(X86::EAX) .addReg(X86::EBX) .addImm(1) .addReg(0) .addExpr(Sym) .addReg(0)); } const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr"); if (UseGot) { const MCExpr *Expr = MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx); EmitAndCountInstruction(MCInstBuilder(X86::CALL32m) .addReg(X86::EBX) .addImm(1) .addReg(0) .addExpr(Expr) .addReg(0)); } else { EmitAndCountInstruction( MCInstBuilder(X86::CALLpcrel32) .addExpr(MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_PLT, Ctx))); } } } /// Return the longest nop which can be efficiently decoded for the given /// target cpu. 15-bytes is the longest single NOP instruction, but some /// platforms can't decode the longest forms efficiently. static unsigned maxLongNopLength(const X86Subtarget *Subtarget) { if (Subtarget->getFeatureBits()[X86::ProcIntelSLM]) return 7; if (Subtarget->getFeatureBits()[X86::FeatureFast15ByteNOP]) return 15; if (Subtarget->getFeatureBits()[X86::FeatureFast11ByteNOP]) return 11; if (Subtarget->getFeatureBits()[X86::FeatureNOPL] || Subtarget->is64Bit()) return 10; if (Subtarget->is32Bit()) return 2; return 1; } /// Emit the largest nop instruction smaller than or equal to \p NumBytes /// bytes. Return the size of nop emitted. static unsigned emitNop(MCStreamer &OS, unsigned NumBytes, const X86Subtarget *Subtarget) { // Cap a single nop emission at the profitable value for the target NumBytes = std::min(NumBytes, maxLongNopLength(Subtarget)); unsigned NopSize; unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg; IndexReg = Displacement = SegmentReg = 0; BaseReg = X86::RAX; ScaleVal = 1; switch (NumBytes) { case 0: llvm_unreachable("Zero nops?"); break; case 1: NopSize = 1; Opc = X86::NOOP; break; case 2: NopSize = 2; Opc = X86::XCHG16ar; break; case 3: NopSize = 3; Opc = X86::NOOPL; break; case 4: NopSize = 4; Opc = X86::NOOPL; Displacement = 8; break; case 5: NopSize = 5; Opc = X86::NOOPL; Displacement = 8; IndexReg = X86::RAX; break; case 6: NopSize = 6; Opc = X86::NOOPW; Displacement = 8; IndexReg = X86::RAX; break; case 7: NopSize = 7; Opc = X86::NOOPL; Displacement = 512; break; case 8: NopSize = 8; Opc = X86::NOOPL; Displacement = 512; IndexReg = X86::RAX; break; case 9: NopSize = 9; Opc = X86::NOOPW; Displacement = 512; IndexReg = X86::RAX; break; default: NopSize = 10; Opc = X86::NOOPW; Displacement = 512; IndexReg = X86::RAX; SegmentReg = X86::CS; break; } unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U); NopSize += NumPrefixes; for (unsigned i = 0; i != NumPrefixes; ++i) OS.emitBytes("\x66"); switch (Opc) { default: llvm_unreachable("Unexpected opcode"); case X86::NOOP: OS.emitInstruction(MCInstBuilder(Opc), *Subtarget); break; case X86::XCHG16ar: OS.emitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), *Subtarget); break; case X86::NOOPL: case X86::NOOPW: OS.emitInstruction(MCInstBuilder(Opc) .addReg(BaseReg) .addImm(ScaleVal) .addReg(IndexReg) .addImm(Displacement) .addReg(SegmentReg), *Subtarget); break; } assert(NopSize <= NumBytes && "We overemitted?"); return NopSize; } /// Emit the optimal amount of multi-byte nops on X86. static void emitX86Nops(MCStreamer &OS, unsigned NumBytes, const X86Subtarget *Subtarget) { unsigned NopsToEmit = NumBytes; (void)NopsToEmit; while (NumBytes) { NumBytes -= emitNop(OS, NumBytes, Subtarget); assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!"); } } void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI, X86MCInstLower &MCIL) { assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64"); NoAutoPaddingScope NoPadScope(*OutStreamer); StatepointOpers SOpers(&MI); if (unsigned PatchBytes = SOpers.getNumPatchBytes()) { emitX86Nops(*OutStreamer, PatchBytes, Subtarget); } else { // Lower call target and choose correct opcode const MachineOperand &CallTarget = SOpers.getCallTarget(); MCOperand CallTargetMCOp; unsigned CallOpcode; switch (CallTarget.getType()) { case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_ExternalSymbol: CallTargetMCOp = MCIL.LowerSymbolOperand( CallTarget, MCIL.GetSymbolFromOperand(CallTarget)); CallOpcode = X86::CALL64pcrel32; // Currently, we only support relative addressing with statepoints. // Otherwise, we'll need a scratch register to hold the target // address. You'll fail asserts during load & relocation if this // symbol is to far away. (TODO: support non-relative addressing) break; case MachineOperand::MO_Immediate: CallTargetMCOp = MCOperand::createImm(CallTarget.getImm()); CallOpcode = X86::CALL64pcrel32; // Currently, we only support relative addressing with statepoints. // Otherwise, we'll need a scratch register to hold the target // immediate. You'll fail asserts during load & relocation if this // address is to far away. (TODO: support non-relative addressing) break; case MachineOperand::MO_Register: // FIXME: Add retpoline support and remove this. if (Subtarget->useIndirectThunkCalls()) report_fatal_error("Lowering register statepoints with thunks not " "yet implemented."); CallTargetMCOp = MCOperand::createReg(CallTarget.getReg()); CallOpcode = X86::CALL64r; break; default: llvm_unreachable("Unsupported operand type in statepoint call target"); break; } // Emit call MCInst CallInst; CallInst.setOpcode(CallOpcode); CallInst.addOperand(CallTargetMCOp); OutStreamer->emitInstruction(CallInst, getSubtargetInfo()); } // Record our statepoint node in the same section used by STACKMAP // and PATCHPOINT auto &Ctx = OutStreamer->getContext(); MCSymbol *MILabel = Ctx.createTempSymbol(); OutStreamer->emitLabel(MILabel); SM.recordStatepoint(*MILabel, MI); } void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI, X86MCInstLower &MCIL) { // FAULTING_LOAD_OP , , , // , NoAutoPaddingScope NoPadScope(*OutStreamer); Register DefRegister = FaultingMI.getOperand(0).getReg(); FaultMaps::FaultKind FK = static_cast(FaultingMI.getOperand(1).getImm()); MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol(); unsigned Opcode = FaultingMI.getOperand(3).getImm(); unsigned OperandsBeginIdx = 4; auto &Ctx = OutStreamer->getContext(); MCSymbol *FaultingLabel = Ctx.createTempSymbol(); OutStreamer->emitLabel(FaultingLabel); assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!"); FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel); MCInst MI; MI.setOpcode(Opcode); if (DefRegister != X86::NoRegister) MI.addOperand(MCOperand::createReg(DefRegister)); for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx, E = FaultingMI.operands_end(); I != E; ++I) if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I)) MI.addOperand(MaybeOperand.getValue()); OutStreamer->AddComment("on-fault: " + HandlerLabel->getName()); OutStreamer->emitInstruction(MI, getSubtargetInfo()); } void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI, X86MCInstLower &MCIL) { bool Is64Bits = Subtarget->is64Bit(); MCContext &Ctx = OutStreamer->getContext(); MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__"); const MCSymbolRefExpr *Op = MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx); EmitAndCountInstruction( MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32) .addExpr(Op)); } void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI, X86MCInstLower &MCIL) { // PATCHABLE_OP minsize, opcode, operands NoAutoPaddingScope NoPadScope(*OutStreamer); unsigned MinSize = MI.getOperand(0).getImm(); unsigned Opcode = MI.getOperand(1).getImm(); MCInst MCI; MCI.setOpcode(Opcode); for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end())) if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) MCI.addOperand(MaybeOperand.getValue()); SmallString<256> Code; SmallVector Fixups; raw_svector_ostream VecOS(Code); CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo()); if (Code.size() < MinSize) { if (MinSize == 2 && Subtarget->is32Bit() && Subtarget->isTargetWindowsMSVC() && (Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3")) { // For compatibilty reasons, when targetting MSVC, is is important to // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools // rely specifically on this pattern to be able to patch a function. // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE. OutStreamer->emitInstruction( MCInstBuilder(X86::MOV32rr_REV).addReg(X86::EDI).addReg(X86::EDI), *Subtarget); } else if (MinSize == 2 && Opcode == X86::PUSH64r) { // This is an optimization that lets us get away without emitting a nop in // many cases. // // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two // bytes too, so the check on MinSize is important. MCI.setOpcode(X86::PUSH64rmr); } else { unsigned NopSize = emitNop(*OutStreamer, MinSize, Subtarget); assert(NopSize == MinSize && "Could not implement MinSize!"); (void)NopSize; } } OutStreamer->emitInstruction(MCI, getSubtargetInfo()); } // Lower a stackmap of the form: // , , ... void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) { SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); auto &Ctx = OutStreamer->getContext(); MCSymbol *MILabel = Ctx.createTempSymbol(); OutStreamer->emitLabel(MILabel); SM.recordStackMap(*MILabel, MI); unsigned NumShadowBytes = MI.getOperand(1).getImm(); SMShadowTracker.reset(NumShadowBytes); } // Lower a patchpoint of the form: // [], , , , , , ... void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI, X86MCInstLower &MCIL) { assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64"); SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); NoAutoPaddingScope NoPadScope(*OutStreamer); auto &Ctx = OutStreamer->getContext(); MCSymbol *MILabel = Ctx.createTempSymbol(); OutStreamer->emitLabel(MILabel); SM.recordPatchPoint(*MILabel, MI); PatchPointOpers opers(&MI); unsigned ScratchIdx = opers.getNextScratchIdx(); unsigned EncodedBytes = 0; const MachineOperand &CalleeMO = opers.getCallTarget(); // Check for null target. If target is non-null (i.e. is non-zero or is // symbolic) then emit a call. if (!(CalleeMO.isImm() && !CalleeMO.getImm())) { MCOperand CalleeMCOp; switch (CalleeMO.getType()) { default: /// FIXME: Add a verifier check for bad callee types. llvm_unreachable("Unrecognized callee operand type."); case MachineOperand::MO_Immediate: if (CalleeMO.getImm()) CalleeMCOp = MCOperand::createImm(CalleeMO.getImm()); break; case MachineOperand::MO_ExternalSymbol: case MachineOperand::MO_GlobalAddress: CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO, MCIL.GetSymbolFromOperand(CalleeMO)); break; } // Emit MOV to materialize the target address and the CALL to target. // This is encoded with 12-13 bytes, depending on which register is used. Register ScratchReg = MI.getOperand(ScratchIdx).getReg(); if (X86II::isX86_64ExtendedReg(ScratchReg)) EncodedBytes = 13; else EncodedBytes = 12; EmitAndCountInstruction( MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp)); // FIXME: Add retpoline support and remove this. if (Subtarget->useIndirectThunkCalls()) report_fatal_error( "Lowering patchpoint with thunks not yet implemented."); EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg)); } // Emit padding. unsigned NumBytes = opers.getNumPatchBytes(); assert(NumBytes >= EncodedBytes && "Patchpoint can't request size less than the length of a call."); emitX86Nops(*OutStreamer, NumBytes - EncodedBytes, Subtarget); } void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI, X86MCInstLower &MCIL) { assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64"); NoAutoPaddingScope NoPadScope(*OutStreamer); // We want to emit the following pattern, which follows the x86 calling // convention to prepare for the trampoline call to be patched in. // // .p2align 1, ... // .Lxray_event_sled_N: // jmp +N // jump across the instrumentation sled // ... // set up arguments in register // callq __xray_CustomEvent@plt // force dependency to symbol // ... // // // After patching, it would look something like: // // nopw (2-byte nop) // ... // callq __xrayCustomEvent // already lowered // ... // // --- // First we emit the label and the jump. auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true); OutStreamer->AddComment("# XRay Custom Event Log"); OutStreamer->emitCodeAlignment(2); OutStreamer->emitLabel(CurSled); // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as // an operand (computed as an offset from the jmp instruction). // FIXME: Find another less hacky way do force the relative jump. OutStreamer->emitBinaryData("\xeb\x0f"); // The default C calling convention will place two arguments into %rcx and // %rdx -- so we only work with those. const Register DestRegs[] = {X86::RDI, X86::RSI}; bool UsedMask[] = {false, false}; // Filled out in loop. Register SrcRegs[] = {0, 0}; // Then we put the operands in the %rdi and %rsi registers. We spill the // values in the register before we clobber them, and mark them as used in // UsedMask. In case the arguments are already in the correct register, we use // emit nops appropriately sized to keep the sled the same size in every // situation. for (unsigned I = 0; I < MI.getNumOperands(); ++I) if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) { assert(Op->isReg() && "Only support arguments in registers"); SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64); if (SrcRegs[I] != DestRegs[I]) { UsedMask[I] = true; EmitAndCountInstruction( MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I])); } else { emitX86Nops(*OutStreamer, 4, Subtarget); } } // Now that the register values are stashed, mov arguments into place. // FIXME: This doesn't work if one of the later SrcRegs is equal to an // earlier DestReg. We will have already overwritten over the register before // we can copy from it. for (unsigned I = 0; I < MI.getNumOperands(); ++I) if (SrcRegs[I] != DestRegs[I]) EmitAndCountInstruction( MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I])); // We emit a hard dependency on the __xray_CustomEvent symbol, which is the // name of the trampoline to be implemented by the XRay runtime. auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent"); MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym); if (isPositionIndependent()) TOp.setTargetFlags(X86II::MO_PLT); // Emit the call instruction. EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32) .addOperand(MCIL.LowerSymbolOperand(TOp, TSym))); // Restore caller-saved and used registers. for (unsigned I = sizeof UsedMask; I-- > 0;) if (UsedMask[I]) EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I])); else emitX86Nops(*OutStreamer, 1, Subtarget); OutStreamer->AddComment("xray custom event end."); // Record the sled version. Version 0 of this sled was spelled differently, so // we let the runtime handle the different offsets we're using. Version 2 // changed the absolute address to a PC-relative address. recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 2); } void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI, X86MCInstLower &MCIL) { assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64"); NoAutoPaddingScope NoPadScope(*OutStreamer); // We want to emit the following pattern, which follows the x86 calling // convention to prepare for the trampoline call to be patched in. // // .p2align 1, ... // .Lxray_event_sled_N: // jmp +N // jump across the instrumentation sled // ... // set up arguments in register // callq __xray_TypedEvent@plt // force dependency to symbol // ... // // // After patching, it would look something like: // // nopw (2-byte nop) // ... // callq __xrayTypedEvent // already lowered // ... // // --- // First we emit the label and the jump. auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true); OutStreamer->AddComment("# XRay Typed Event Log"); OutStreamer->emitCodeAlignment(2); OutStreamer->emitLabel(CurSled); // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as // an operand (computed as an offset from the jmp instruction). // FIXME: Find another less hacky way do force the relative jump. OutStreamer->emitBinaryData("\xeb\x14"); // An x86-64 convention may place three arguments into %rcx, %rdx, and R8, // so we'll work with those. Or we may be called via SystemV, in which case // we don't have to do any translation. const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX}; bool UsedMask[] = {false, false, false}; // Will fill out src regs in the loop. Register SrcRegs[] = {0, 0, 0}; // Then we put the operands in the SystemV registers. We spill the values in // the registers before we clobber them, and mark them as used in UsedMask. // In case the arguments are already in the correct register, we emit nops // appropriately sized to keep the sled the same size in every situation. for (unsigned I = 0; I < MI.getNumOperands(); ++I) if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) { // TODO: Is register only support adequate? assert(Op->isReg() && "Only supports arguments in registers"); SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64); if (SrcRegs[I] != DestRegs[I]) { UsedMask[I] = true; EmitAndCountInstruction( MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I])); } else { emitX86Nops(*OutStreamer, 4, Subtarget); } } // In the above loop we only stash all of the destination registers or emit // nops if the arguments are already in the right place. Doing the actually // moving is postponed until after all the registers are stashed so nothing // is clobbers. We've already added nops to account for the size of mov and // push if the register is in the right place, so we only have to worry about // emitting movs. // FIXME: This doesn't work if one of the later SrcRegs is equal to an // earlier DestReg. We will have already overwritten over the register before // we can copy from it. for (unsigned I = 0; I < MI.getNumOperands(); ++I) if (UsedMask[I]) EmitAndCountInstruction( MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I])); // We emit a hard dependency on the __xray_TypedEvent symbol, which is the // name of the trampoline to be implemented by the XRay runtime. auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent"); MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym); if (isPositionIndependent()) TOp.setTargetFlags(X86II::MO_PLT); // Emit the call instruction. EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32) .addOperand(MCIL.LowerSymbolOperand(TOp, TSym))); // Restore caller-saved and used registers. for (unsigned I = sizeof UsedMask; I-- > 0;) if (UsedMask[I]) EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I])); else emitX86Nops(*OutStreamer, 1, Subtarget); OutStreamer->AddComment("xray typed event end."); // Record the sled version. recordSled(CurSled, MI, SledKind::TYPED_EVENT, 2); } void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI, X86MCInstLower &MCIL) { NoAutoPaddingScope NoPadScope(*OutStreamer); const Function &F = MF->getFunction(); if (F.hasFnAttribute("patchable-function-entry")) { unsigned Num; if (F.getFnAttribute("patchable-function-entry") .getValueAsString() .getAsInteger(10, Num)) return; emitX86Nops(*OutStreamer, Num, Subtarget); return; } // We want to emit the following pattern: // // .p2align 1, ... // .Lxray_sled_N: // jmp .tmpN // # 9 bytes worth of noops // // We need the 9 bytes because at runtime, we'd be patching over the full 11 // bytes with the following pattern: // // mov %r10, // 6 bytes // call // 5 bytes // auto CurSled = OutContext.createTempSymbol("xray_sled_", true); OutStreamer->emitCodeAlignment(2); OutStreamer->emitLabel(CurSled); // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as // an operand (computed as an offset from the jmp instruction). // FIXME: Find another less hacky way do force the relative jump. OutStreamer->emitBytes("\xeb\x09"); emitX86Nops(*OutStreamer, 9, Subtarget); recordSled(CurSled, MI, SledKind::FUNCTION_ENTER, 2); } void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI, X86MCInstLower &MCIL) { NoAutoPaddingScope NoPadScope(*OutStreamer); // Since PATCHABLE_RET takes the opcode of the return statement as an // argument, we use that to emit the correct form of the RET that we want. // i.e. when we see this: // // PATCHABLE_RET X86::RET ... // // We should emit the RET followed by sleds. // // .p2align 1, ... // .Lxray_sled_N: // ret # or equivalent instruction // # 10 bytes worth of noops // // This just makes sure that the alignment for the next instruction is 2. auto CurSled = OutContext.createTempSymbol("xray_sled_", true); OutStreamer->emitCodeAlignment(2); OutStreamer->emitLabel(CurSled); unsigned OpCode = MI.getOperand(0).getImm(); MCInst Ret; Ret.setOpcode(OpCode); for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end())) if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) Ret.addOperand(MaybeOperand.getValue()); OutStreamer->emitInstruction(Ret, getSubtargetInfo()); emitX86Nops(*OutStreamer, 10, Subtarget); recordSled(CurSled, MI, SledKind::FUNCTION_EXIT, 2); } void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI, X86MCInstLower &MCIL) { NoAutoPaddingScope NoPadScope(*OutStreamer); // Like PATCHABLE_RET, we have the actual instruction in the operands to this // instruction so we lower that particular instruction and its operands. // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual // tail call much like how we have it in PATCHABLE_RET. auto CurSled = OutContext.createTempSymbol("xray_sled_", true); OutStreamer->emitCodeAlignment(2); OutStreamer->emitLabel(CurSled); auto Target = OutContext.createTempSymbol(); // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as // an operand (computed as an offset from the jmp instruction). // FIXME: Find another less hacky way do force the relative jump. OutStreamer->emitBytes("\xeb\x09"); emitX86Nops(*OutStreamer, 9, Subtarget); OutStreamer->emitLabel(Target); recordSled(CurSled, MI, SledKind::TAIL_CALL, 2); unsigned OpCode = MI.getOperand(0).getImm(); OpCode = convertTailJumpOpcode(OpCode); MCInst TC; TC.setOpcode(OpCode); // Before emitting the instruction, add a comment to indicate that this is // indeed a tail call. OutStreamer->AddComment("TAILCALL"); for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end())) if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO)) TC.addOperand(MaybeOperand.getValue()); OutStreamer->emitInstruction(TC, getSubtargetInfo()); } // Returns instruction preceding MBBI in MachineFunction. // If MBBI is the first instruction of the first basic block, returns null. static MachineBasicBlock::const_iterator PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) { const MachineBasicBlock *MBB = MBBI->getParent(); while (MBBI == MBB->begin()) { if (MBB == &MBB->getParent()->front()) return MachineBasicBlock::const_iterator(); MBB = MBB->getPrevNode(); MBBI = MBB->end(); } --MBBI; return MBBI; } static const Constant *getConstantFromPool(const MachineInstr &MI, const MachineOperand &Op) { if (!Op.isCPI() || Op.getOffset() != 0) return nullptr; ArrayRef Constants = MI.getParent()->getParent()->getConstantPool()->getConstants(); const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()]; // Bail if this is a machine constant pool entry, we won't be able to dig out // anything useful. if (ConstantEntry.isMachineConstantPoolEntry()) return nullptr; const Constant *C = ConstantEntry.Val.ConstVal; assert((!C || ConstantEntry.getType() == C->getType()) && "Expected a constant of the same type!"); return C; } static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx, unsigned SrcOp2Idx, ArrayRef Mask) { std::string Comment; // Compute the name for a register. This is really goofy because we have // multiple instruction printers that could (in theory) use different // names. Fortunately most people use the ATT style (outside of Windows) // and they actually agree on register naming here. Ultimately, this is // a comment, and so its OK if it isn't perfect. auto GetRegisterName = [](unsigned RegNum) -> StringRef { return X86ATTInstPrinter::getRegisterName(RegNum); }; const MachineOperand &DstOp = MI->getOperand(0); const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx); const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx); StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem"; StringRef Src1Name = SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem"; StringRef Src2Name = SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem"; // One source operand, fix the mask to print all elements in one span. SmallVector ShuffleMask(Mask.begin(), Mask.end()); if (Src1Name == Src2Name) for (int i = 0, e = ShuffleMask.size(); i != e; ++i) if (ShuffleMask[i] >= e) ShuffleMask[i] -= e; raw_string_ostream CS(Comment); CS << DstName; // Handle AVX512 MASK/MASXZ write mask comments. // MASK: zmmX {%kY} // MASKZ: zmmX {%kY} {z} if (SrcOp1Idx > 1) { assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask"); const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1); if (WriteMaskOp.isReg()) { CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}"; if (SrcOp1Idx == 2) { CS << " {z}"; } } } CS << " = "; for (int i = 0, e = ShuffleMask.size(); i != e; ++i) { if (i != 0) CS << ","; if (ShuffleMask[i] == SM_SentinelZero) { CS << "zero"; continue; } // Otherwise, it must come from src1 or src2. Print the span of elements // that comes from this src. bool isSrc1 = ShuffleMask[i] < (int)e; CS << (isSrc1 ? Src1Name : Src2Name) << '['; bool IsFirst = true; while (i != e && ShuffleMask[i] != SM_SentinelZero && (ShuffleMask[i] < (int)e) == isSrc1) { if (!IsFirst) CS << ','; else IsFirst = false; if (ShuffleMask[i] == SM_SentinelUndef) CS << "u"; else CS << ShuffleMask[i] % (int)e; ++i; } CS << ']'; --i; // For loop increments element #. } CS.flush(); return Comment; } static void printConstant(const APInt &Val, raw_ostream &CS) { if (Val.getBitWidth() <= 64) { CS << Val.getZExtValue(); } else { // print multi-word constant as (w0,w1) CS << "("; for (int i = 0, N = Val.getNumWords(); i < N; ++i) { if (i > 0) CS << ","; CS << Val.getRawData()[i]; } CS << ")"; } } static void printConstant(const APFloat &Flt, raw_ostream &CS) { SmallString<32> Str; // Force scientific notation to distinquish from integers. Flt.toString(Str, 0, 0); CS << Str; } static void printConstant(const Constant *COp, raw_ostream &CS) { if (isa(COp)) { CS << "u"; } else if (auto *CI = dyn_cast(COp)) { printConstant(CI->getValue(), CS); } else if (auto *CF = dyn_cast(COp)) { printConstant(CF->getValueAPF(), CS); } else { CS << "?"; } } void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) { assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?"); assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only"); // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86. if (EmitFPOData) { X86TargetStreamer *XTS = static_cast(OutStreamer->getTargetStreamer()); switch (MI->getOpcode()) { case X86::SEH_PushReg: XTS->emitFPOPushReg(MI->getOperand(0).getImm()); break; case X86::SEH_StackAlloc: XTS->emitFPOStackAlloc(MI->getOperand(0).getImm()); break; case X86::SEH_StackAlign: XTS->emitFPOStackAlign(MI->getOperand(0).getImm()); break; case X86::SEH_SetFrame: assert(MI->getOperand(1).getImm() == 0 && ".cv_fpo_setframe takes no offset"); XTS->emitFPOSetFrame(MI->getOperand(0).getImm()); break; case X86::SEH_EndPrologue: XTS->emitFPOEndPrologue(); break; case X86::SEH_SaveReg: case X86::SEH_SaveXMM: case X86::SEH_PushFrame: llvm_unreachable("SEH_ directive incompatible with FPO"); break; default: llvm_unreachable("expected SEH_ instruction"); } return; } // Otherwise, use the .seh_ directives for all other Windows platforms. switch (MI->getOpcode()) { case X86::SEH_PushReg: OutStreamer->EmitWinCFIPushReg(MI->getOperand(0).getImm()); break; case X86::SEH_SaveReg: OutStreamer->EmitWinCFISaveReg(MI->getOperand(0).getImm(), MI->getOperand(1).getImm()); break; case X86::SEH_SaveXMM: OutStreamer->EmitWinCFISaveXMM(MI->getOperand(0).getImm(), MI->getOperand(1).getImm()); break; case X86::SEH_StackAlloc: OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm()); break; case X86::SEH_SetFrame: OutStreamer->EmitWinCFISetFrame(MI->getOperand(0).getImm(), MI->getOperand(1).getImm()); break; case X86::SEH_PushFrame: OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm()); break; case X86::SEH_EndPrologue: OutStreamer->EmitWinCFIEndProlog(); break; default: llvm_unreachable("expected SEH_ instruction"); } } static unsigned getRegisterWidth(const MCOperandInfo &Info) { if (Info.RegClass == X86::VR128RegClassID || Info.RegClass == X86::VR128XRegClassID) return 128; if (Info.RegClass == X86::VR256RegClassID || Info.RegClass == X86::VR256XRegClassID) return 256; if (Info.RegClass == X86::VR512RegClassID) return 512; llvm_unreachable("Unknown register class!"); } static void addConstantComments(const MachineInstr *MI, MCStreamer &OutStreamer) { switch (MI->getOpcode()) { // Lower PSHUFB and VPERMILP normally but add a comment if we can find // a constant shuffle mask. We won't be able to do this at the MC layer // because the mask isn't an immediate. case X86::PSHUFBrm: case X86::VPSHUFBrm: case X86::VPSHUFBYrm: case X86::VPSHUFBZ128rm: case X86::VPSHUFBZ128rmk: case X86::VPSHUFBZ128rmkz: case X86::VPSHUFBZ256rm: case X86::VPSHUFBZ256rmk: case X86::VPSHUFBZ256rmkz: case X86::VPSHUFBZrm: case X86::VPSHUFBZrmk: case X86::VPSHUFBZrmkz: { unsigned SrcIdx = 1; if (X86II::isKMasked(MI->getDesc().TSFlags)) { // Skip mask operand. ++SrcIdx; if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) { // Skip passthru operand. ++SrcIdx; } } unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp; assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) && "Unexpected number of operands!"); const MachineOperand &MaskOp = MI->getOperand(MaskIdx); if (auto *C = getConstantFromPool(*MI, MaskOp)) { unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); SmallVector Mask; DecodePSHUFBMask(C, Width, Mask); if (!Mask.empty()) OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask)); } break; } case X86::VPERMILPSrm: case X86::VPERMILPSYrm: case X86::VPERMILPSZ128rm: case X86::VPERMILPSZ128rmk: case X86::VPERMILPSZ128rmkz: case X86::VPERMILPSZ256rm: case X86::VPERMILPSZ256rmk: case X86::VPERMILPSZ256rmkz: case X86::VPERMILPSZrm: case X86::VPERMILPSZrmk: case X86::VPERMILPSZrmkz: case X86::VPERMILPDrm: case X86::VPERMILPDYrm: case X86::VPERMILPDZ128rm: case X86::VPERMILPDZ128rmk: case X86::VPERMILPDZ128rmkz: case X86::VPERMILPDZ256rm: case X86::VPERMILPDZ256rmk: case X86::VPERMILPDZ256rmkz: case X86::VPERMILPDZrm: case X86::VPERMILPDZrmk: case X86::VPERMILPDZrmkz: { unsigned ElSize; switch (MI->getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::VPERMILPSrm: case X86::VPERMILPSYrm: case X86::VPERMILPSZ128rm: case X86::VPERMILPSZ256rm: case X86::VPERMILPSZrm: case X86::VPERMILPSZ128rmkz: case X86::VPERMILPSZ256rmkz: case X86::VPERMILPSZrmkz: case X86::VPERMILPSZ128rmk: case X86::VPERMILPSZ256rmk: case X86::VPERMILPSZrmk: ElSize = 32; break; case X86::VPERMILPDrm: case X86::VPERMILPDYrm: case X86::VPERMILPDZ128rm: case X86::VPERMILPDZ256rm: case X86::VPERMILPDZrm: case X86::VPERMILPDZ128rmkz: case X86::VPERMILPDZ256rmkz: case X86::VPERMILPDZrmkz: case X86::VPERMILPDZ128rmk: case X86::VPERMILPDZ256rmk: case X86::VPERMILPDZrmk: ElSize = 64; break; } unsigned SrcIdx = 1; if (X86II::isKMasked(MI->getDesc().TSFlags)) { // Skip mask operand. ++SrcIdx; if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) { // Skip passthru operand. ++SrcIdx; } } unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp; assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) && "Unexpected number of operands!"); const MachineOperand &MaskOp = MI->getOperand(MaskIdx); if (auto *C = getConstantFromPool(*MI, MaskOp)) { unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); SmallVector Mask; DecodeVPERMILPMask(C, ElSize, Width, Mask); if (!Mask.empty()) OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask)); } break; } case X86::VPERMIL2PDrm: case X86::VPERMIL2PSrm: case X86::VPERMIL2PDYrm: case X86::VPERMIL2PSYrm: { assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) && "Unexpected number of operands!"); const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1); if (!CtrlOp.isImm()) break; unsigned ElSize; switch (MI->getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break; case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break; } const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp); if (auto *C = getConstantFromPool(*MI, MaskOp)) { unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); SmallVector Mask; DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask); if (!Mask.empty()) OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask)); } break; } case X86::VPPERMrrm: { assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands) && "Unexpected number of operands!"); const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp); if (auto *C = getConstantFromPool(*MI, MaskOp)) { unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]); SmallVector Mask; DecodeVPPERMMask(C, Width, Mask); if (!Mask.empty()) OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask)); } break; } case X86::MMX_MOVQ64rm: { assert(MI->getNumOperands() == (1 + X86::AddrNumOperands) && "Unexpected number of operands!"); if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) { std::string Comment; raw_string_ostream CS(Comment); const MachineOperand &DstOp = MI->getOperand(0); CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; if (auto *CF = dyn_cast(C)) { CS << "0x" << CF->getValueAPF().bitcastToAPInt().toString(16, false); OutStreamer.AddComment(CS.str()); } } break; } #define MOV_CASE(Prefix, Suffix) \ case X86::Prefix##MOVAPD##Suffix##rm: \ case X86::Prefix##MOVAPS##Suffix##rm: \ case X86::Prefix##MOVUPD##Suffix##rm: \ case X86::Prefix##MOVUPS##Suffix##rm: \ case X86::Prefix##MOVDQA##Suffix##rm: \ case X86::Prefix##MOVDQU##Suffix##rm: #define MOV_AVX512_CASE(Suffix) \ case X86::VMOVDQA64##Suffix##rm: \ case X86::VMOVDQA32##Suffix##rm: \ case X86::VMOVDQU64##Suffix##rm: \ case X86::VMOVDQU32##Suffix##rm: \ case X86::VMOVDQU16##Suffix##rm: \ case X86::VMOVDQU8##Suffix##rm: \ case X86::VMOVAPS##Suffix##rm: \ case X86::VMOVAPD##Suffix##rm: \ case X86::VMOVUPS##Suffix##rm: \ case X86::VMOVUPD##Suffix##rm: #define CASE_ALL_MOV_RM() \ MOV_CASE(, ) /* SSE */ \ MOV_CASE(V, ) /* AVX-128 */ \ MOV_CASE(V, Y) /* AVX-256 */ \ MOV_AVX512_CASE(Z) \ MOV_AVX512_CASE(Z256) \ MOV_AVX512_CASE(Z128) // For loads from a constant pool to a vector register, print the constant // loaded. CASE_ALL_MOV_RM() case X86::VBROADCASTF128: case X86::VBROADCASTI128: case X86::VBROADCASTF32X4Z256rm: case X86::VBROADCASTF32X4rm: case X86::VBROADCASTF32X8rm: case X86::VBROADCASTF64X2Z128rm: case X86::VBROADCASTF64X2rm: case X86::VBROADCASTF64X4rm: case X86::VBROADCASTI32X4Z256rm: case X86::VBROADCASTI32X4rm: case X86::VBROADCASTI32X8rm: case X86::VBROADCASTI64X2Z128rm: case X86::VBROADCASTI64X2rm: case X86::VBROADCASTI64X4rm: assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) && "Unexpected number of operands!"); if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) { int NumLanes = 1; // Override NumLanes for the broadcast instructions. switch (MI->getOpcode()) { case X86::VBROADCASTF128: NumLanes = 2; break; case X86::VBROADCASTI128: NumLanes = 2; break; case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break; case X86::VBROADCASTF32X4rm: NumLanes = 4; break; case X86::VBROADCASTF32X8rm: NumLanes = 2; break; case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break; case X86::VBROADCASTF64X2rm: NumLanes = 4; break; case X86::VBROADCASTF64X4rm: NumLanes = 2; break; case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break; case X86::VBROADCASTI32X4rm: NumLanes = 4; break; case X86::VBROADCASTI32X8rm: NumLanes = 2; break; case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break; case X86::VBROADCASTI64X2rm: NumLanes = 4; break; case X86::VBROADCASTI64X4rm: NumLanes = 2; break; } std::string Comment; raw_string_ostream CS(Comment); const MachineOperand &DstOp = MI->getOperand(0); CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; if (auto *CDS = dyn_cast(C)) { CS << "["; for (int l = 0; l != NumLanes; ++l) { for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; ++i) { if (i != 0 || l != 0) CS << ","; if (CDS->getElementType()->isIntegerTy()) printConstant(CDS->getElementAsAPInt(i), CS); else if (CDS->getElementType()->isHalfTy() || CDS->getElementType()->isFloatTy() || CDS->getElementType()->isDoubleTy()) printConstant(CDS->getElementAsAPFloat(i), CS); else CS << "?"; } } CS << "]"; OutStreamer.AddComment(CS.str()); } else if (auto *CV = dyn_cast(C)) { CS << "<"; for (int l = 0; l != NumLanes; ++l) { for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; ++i) { if (i != 0 || l != 0) CS << ","; printConstant(CV->getOperand(i), CS); } } CS << ">"; OutStreamer.AddComment(CS.str()); } } break; case X86::MOVDDUPrm: case X86::VMOVDDUPrm: case X86::VMOVDDUPZ128rm: case X86::VBROADCASTSSrm: case X86::VBROADCASTSSYrm: case X86::VBROADCASTSSZ128rm: case X86::VBROADCASTSSZ256rm: case X86::VBROADCASTSSZrm: case X86::VBROADCASTSDYrm: case X86::VBROADCASTSDZ256rm: case X86::VBROADCASTSDZrm: case X86::VPBROADCASTBrm: case X86::VPBROADCASTBYrm: case X86::VPBROADCASTBZ128rm: case X86::VPBROADCASTBZ256rm: case X86::VPBROADCASTBZrm: case X86::VPBROADCASTDrm: case X86::VPBROADCASTDYrm: case X86::VPBROADCASTDZ128rm: case X86::VPBROADCASTDZ256rm: case X86::VPBROADCASTDZrm: case X86::VPBROADCASTQrm: case X86::VPBROADCASTQYrm: case X86::VPBROADCASTQZ128rm: case X86::VPBROADCASTQZ256rm: case X86::VPBROADCASTQZrm: case X86::VPBROADCASTWrm: case X86::VPBROADCASTWYrm: case X86::VPBROADCASTWZ128rm: case X86::VPBROADCASTWZ256rm: case X86::VPBROADCASTWZrm: assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) && "Unexpected number of operands!"); if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) { int NumElts; switch (MI->getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::MOVDDUPrm: NumElts = 2; break; case X86::VMOVDDUPrm: NumElts = 2; break; case X86::VMOVDDUPZ128rm: NumElts = 2; break; case X86::VBROADCASTSSrm: NumElts = 4; break; case X86::VBROADCASTSSYrm: NumElts = 8; break; case X86::VBROADCASTSSZ128rm: NumElts = 4; break; case X86::VBROADCASTSSZ256rm: NumElts = 8; break; case X86::VBROADCASTSSZrm: NumElts = 16; break; case X86::VBROADCASTSDYrm: NumElts = 4; break; case X86::VBROADCASTSDZ256rm: NumElts = 4; break; case X86::VBROADCASTSDZrm: NumElts = 8; break; case X86::VPBROADCASTBrm: NumElts = 16; break; case X86::VPBROADCASTBYrm: NumElts = 32; break; case X86::VPBROADCASTBZ128rm: NumElts = 16; break; case X86::VPBROADCASTBZ256rm: NumElts = 32; break; case X86::VPBROADCASTBZrm: NumElts = 64; break; case X86::VPBROADCASTDrm: NumElts = 4; break; case X86::VPBROADCASTDYrm: NumElts = 8; break; case X86::VPBROADCASTDZ128rm: NumElts = 4; break; case X86::VPBROADCASTDZ256rm: NumElts = 8; break; case X86::VPBROADCASTDZrm: NumElts = 16; break; case X86::VPBROADCASTQrm: NumElts = 2; break; case X86::VPBROADCASTQYrm: NumElts = 4; break; case X86::VPBROADCASTQZ128rm: NumElts = 2; break; case X86::VPBROADCASTQZ256rm: NumElts = 4; break; case X86::VPBROADCASTQZrm: NumElts = 8; break; case X86::VPBROADCASTWrm: NumElts = 8; break; case X86::VPBROADCASTWYrm: NumElts = 16; break; case X86::VPBROADCASTWZ128rm: NumElts = 8; break; case X86::VPBROADCASTWZ256rm: NumElts = 16; break; case X86::VPBROADCASTWZrm: NumElts = 32; break; } std::string Comment; raw_string_ostream CS(Comment); const MachineOperand &DstOp = MI->getOperand(0); CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = "; CS << "["; for (int i = 0; i != NumElts; ++i) { if (i != 0) CS << ","; printConstant(C, CS); } CS << "]"; OutStreamer.AddComment(CS.str()); } } } void X86AsmPrinter::emitInstruction(const MachineInstr *MI) { X86MCInstLower MCInstLowering(*MF, *this); const X86RegisterInfo *RI = MF->getSubtarget().getRegisterInfo(); // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that // are compressed from EVEX encoding to VEX encoding. if (TM.Options.MCOptions.ShowMCEncoding) { if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX) OutStreamer->AddComment("EVEX TO VEX Compression ", false); } // Add comments for values loaded from constant pool. if (OutStreamer->isVerboseAsm()) addConstantComments(MI, *OutStreamer); switch (MI->getOpcode()) { case TargetOpcode::DBG_VALUE: llvm_unreachable("Should be handled target independently"); // Emit nothing here but a comment if we can. case X86::Int_MemBarrier: OutStreamer->emitRawComment("MEMBARRIER"); return; case X86::EH_RETURN: case X86::EH_RETURN64: { // Lower these as normal, but add some comments. Register Reg = MI->getOperand(0).getReg(); OutStreamer->AddComment(StringRef("eh_return, addr: %") + X86ATTInstPrinter::getRegisterName(Reg)); break; } case X86::CLEANUPRET: { // Lower these as normal, but add some comments. OutStreamer->AddComment("CLEANUPRET"); break; } case X86::CATCHRET: { // Lower these as normal, but add some comments. OutStreamer->AddComment("CATCHRET"); break; } case X86::ENDBR32: case X86::ENDBR64: { // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be // non-empty. If MI is the initial ENDBR, place the // __patchable_function_entries label after ENDBR. if (CurrentPatchableFunctionEntrySym && CurrentPatchableFunctionEntrySym == CurrentFnBegin && MI == &MF->front().front()) { MCInst Inst; MCInstLowering.Lower(MI, Inst); EmitAndCountInstruction(Inst); CurrentPatchableFunctionEntrySym = createTempSymbol("patch"); OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); return; } break; } case X86::TAILJMPr: case X86::TAILJMPm: case X86::TAILJMPd: case X86::TAILJMPd_CC: case X86::TAILJMPr64: case X86::TAILJMPm64: case X86::TAILJMPd64: case X86::TAILJMPd64_CC: case X86::TAILJMPr64_REX: case X86::TAILJMPm64_REX: // Lower these as normal, but add some comments. OutStreamer->AddComment("TAILCALL"); break; case X86::TLS_addr32: case X86::TLS_addr64: case X86::TLS_base_addr32: case X86::TLS_base_addr64: return LowerTlsAddr(MCInstLowering, *MI); case X86::MOVPC32r: { // This is a pseudo op for a two instruction sequence with a label, which // looks like: // call "L1$pb" // "L1$pb": // popl %esi // Emit the call. MCSymbol *PICBase = MF->getPICBaseSymbol(); // FIXME: We would like an efficient form for this, so we don't have to do a // lot of extra uniquing. EmitAndCountInstruction( MCInstBuilder(X86::CALLpcrel32) .addExpr(MCSymbolRefExpr::create(PICBase, OutContext))); const X86FrameLowering *FrameLowering = MF->getSubtarget().getFrameLowering(); bool hasFP = FrameLowering->hasFP(*MF); // TODO: This is needed only if we require precise CFA. bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() && !OutStreamer->getDwarfFrameInfos().back().End; int stackGrowth = -RI->getSlotSize(); if (HasActiveDwarfFrame && !hasFP) { OutStreamer->emitCFIAdjustCfaOffset(-stackGrowth); } // Emit the label. OutStreamer->emitLabel(PICBase); // popl $reg EmitAndCountInstruction( MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg())); if (HasActiveDwarfFrame && !hasFP) { OutStreamer->emitCFIAdjustCfaOffset(stackGrowth); } return; } case X86::ADD32ri: { // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri. if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS) break; // Okay, we have something like: // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL) // For this, we want to print something like: // MYGLOBAL + (. - PICBASE) // However, we can't generate a ".", so just emit a new label here and refer // to it. MCSymbol *DotSym = OutContext.createTempSymbol(); OutStreamer->emitLabel(DotSym); // Now that we have emitted the label, lower the complex operand expression. MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2)); const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); const MCExpr *PICBase = MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext); DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext); DotExpr = MCBinaryExpr::createAdd( MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext); EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) .addExpr(DotExpr)); return; } case TargetOpcode::STATEPOINT: return LowerSTATEPOINT(*MI, MCInstLowering); case TargetOpcode::FAULTING_OP: return LowerFAULTING_OP(*MI, MCInstLowering); case TargetOpcode::FENTRY_CALL: return LowerFENTRY_CALL(*MI, MCInstLowering); case TargetOpcode::PATCHABLE_OP: return LowerPATCHABLE_OP(*MI, MCInstLowering); case TargetOpcode::STACKMAP: return LowerSTACKMAP(*MI); case TargetOpcode::PATCHPOINT: return LowerPATCHPOINT(*MI, MCInstLowering); case TargetOpcode::PATCHABLE_FUNCTION_ENTER: return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering); case TargetOpcode::PATCHABLE_RET: return LowerPATCHABLE_RET(*MI, MCInstLowering); case TargetOpcode::PATCHABLE_TAIL_CALL: return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering); case TargetOpcode::PATCHABLE_EVENT_CALL: return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering); case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering); case X86::MORESTACK_RET: EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); return; case X86::MORESTACK_RET_RESTORE_R10: // Return, then restore R10. EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget))); EmitAndCountInstruction( MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX)); return; case X86::SEH_PushReg: case X86::SEH_SaveReg: case X86::SEH_SaveXMM: case X86::SEH_StackAlloc: case X86::SEH_StackAlign: case X86::SEH_SetFrame: case X86::SEH_PushFrame: case X86::SEH_EndPrologue: EmitSEHInstruction(MI); return; case X86::SEH_Epilogue: { assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?"); MachineBasicBlock::const_iterator MBBI(MI); // Check if preceded by a call and emit nop if so. for (MBBI = PrevCrossBBInst(MBBI); MBBI != MachineBasicBlock::const_iterator(); MBBI = PrevCrossBBInst(MBBI)) { // Conservatively assume that pseudo instructions don't emit code and keep // looking for a call. We may emit an unnecessary nop in some cases. if (!MBBI->isPseudo()) { if (MBBI->isCall()) EmitAndCountInstruction(MCInstBuilder(X86::NOOP)); break; } } return; } } MCInst TmpInst; MCInstLowering.Lower(MI, TmpInst); // Stackmap shadows cannot include branch targets, so we can count the bytes // in a call towards the shadow, but must ensure that the no thread returns // in to the stackmap shadow. The only way to achieve this is if the call // is at the end of the shadow. if (MI->isCall()) { // Count then size of the call towards the shadow SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get()); // Then flush the shadow so that we fill with nops before the call, not // after it. SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); // Then emit the call OutStreamer->emitInstruction(TmpInst, getSubtargetInfo()); return; } EmitAndCountInstruction(TmpInst); }