//===-- X86InstrExtension.td - Sign and Zero Extensions ----*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the sign and zero extension operations. // //===----------------------------------------------------------------------===// let hasSideEffects = 0 in { let Defs = [AX], Uses = [AL] in // AX = signext(AL) def CBW : I<0x98, RawFrm, (outs), (ins), "{cbtw|cbw}", []>, OpSize16, Sched<[WriteALU]>; let Defs = [EAX], Uses = [AX] in // EAX = signext(AX) def CWDE : I<0x98, RawFrm, (outs), (ins), "{cwtl|cwde}", []>, OpSize32, Sched<[WriteALU]>; let Defs = [AX,DX], Uses = [AX] in // DX:AX = signext(AX) def CWD : I<0x99, RawFrm, (outs), (ins), "{cwtd|cwd}", []>, OpSize16, Sched<[WriteALU]>; let Defs = [EAX,EDX], Uses = [EAX] in // EDX:EAX = signext(EAX) def CDQ : I<0x99, RawFrm, (outs), (ins), "{cltd|cdq}", []>, OpSize32, Sched<[WriteALU]>; let Defs = [RAX], Uses = [EAX] in // RAX = signext(EAX) def CDQE : RI<0x98, RawFrm, (outs), (ins), "{cltq|cdqe}", []>, Sched<[WriteALU]>, Requires<[In64BitMode]>; let Defs = [RAX,RDX], Uses = [RAX] in // RDX:RAX = signext(RAX) def CQO : RI<0x99, RawFrm, (outs), (ins), "{cqto|cqo}", []>, Sched<[WriteALU]>, Requires<[In64BitMode]>; } // Sign/Zero extenders let hasSideEffects = 0 in { def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src), "movs{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16, Sched<[WriteALU]>; let mayLoad = 1 in def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src), "movs{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16, Sched<[WriteALULd]>; } // hasSideEffects = 0 def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8:$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sext GR8:$src))]>, TB, OpSize32, Sched<[WriteALU]>; def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sextloadi32i8 addr:$src))]>, TB, OpSize32, Sched<[WriteALULd]>; def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src), "movs{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sext GR16:$src))]>, TB, OpSize32, Sched<[WriteALU]>; def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src), "movs{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sextloadi32i16 addr:$src))]>, OpSize32, TB, Sched<[WriteALULd]>; let hasSideEffects = 0 in { def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src), "movz{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16, Sched<[WriteALU]>; let mayLoad = 1 in def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src), "movz{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16, Sched<[WriteALULd]>; } // hasSideEffects = 0 def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zext GR8:$src))]>, TB, OpSize32, Sched<[WriteALU]>; def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zextloadi32i8 addr:$src))]>, TB, OpSize32, Sched<[WriteALULd]>; def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src), "movz{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zext GR16:$src))]>, TB, OpSize32, Sched<[WriteALU]>; def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src), "movz{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zextloadi32i16 addr:$src))]>, TB, OpSize32, Sched<[WriteALULd]>; // These instructions exist as a consequence of operand size prefix having // control of the destination size, but not the input size. Only support them // for the disassembler. let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { def MOVSX16rr16: I<0xBF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "movs{ww|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable; def MOVZX16rr16: I<0xB7, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "movz{ww|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable; let mayLoad = 1 in { def MOVSX16rm16: I<0xBF, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "movs{ww|x}\t{$src, $dst|$dst, $src}", []>, OpSize16, TB, Sched<[WriteALULd]>, NotMemoryFoldable; def MOVZX16rm16: I<0xB7, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "movz{ww|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize16, Sched<[WriteALULd]>, NotMemoryFoldable; } // mayLoad = 1 } // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 // These are the same as the regular MOVZX32rr8 and MOVZX32rm8 // except that they use GR32_NOREX for the output operand register class // instead of GR32. This allows them to operate on h registers on x86-64. let hasSideEffects = 0, isCodeGenOnly = 1 in { def MOVZX32rr8_NOREX : I<0xB6, MRMSrcReg, (outs GR32_NOREX:$dst), (ins GR8_NOREX:$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize32, Sched<[WriteALU]>; let mayLoad = 1 in def MOVZX32rm8_NOREX : I<0xB6, MRMSrcMem, (outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize32, Sched<[WriteALULd]>; def MOVSX32rr8_NOREX : I<0xBE, MRMSrcReg, (outs GR32_NOREX:$dst), (ins GR8_NOREX:$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize32, Sched<[WriteALU]>; let mayLoad = 1 in def MOVSX32rm8_NOREX : I<0xBE, MRMSrcMem, (outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize32, Sched<[WriteALULd]>; } // MOVSX64rr8 always has a REX prefix and it has an 8-bit register // operand, which makes it a rare instruction with an 8-bit register // operand that can never access an h register. If support for h registers // were generalized, this would require a special register class. def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src), "movs{bq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sext GR8:$src))]>, TB, Sched<[WriteALU]>; def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src), "movs{bq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sextloadi64i8 addr:$src))]>, TB, Sched<[WriteALULd]>; def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src), "movs{wq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sext GR16:$src))]>, TB, Sched<[WriteALU]>; def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src), "movs{wq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sextloadi64i16 addr:$src))]>, TB, Sched<[WriteALULd]>; def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sext GR32:$src))]>, Sched<[WriteALU]>, Requires<[In64BitMode]>; def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sextloadi64i32 addr:$src))]>, Sched<[WriteALULd]>, Requires<[In64BitMode]>; // These instructions exist as a consequence of operand size prefix having // control of the destination size, but not the input size. Only support them // for the disassembler. let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { def MOVSX16rr32: I<0x63, MRMSrcReg, (outs GR16:$dst), (ins GR32:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>, Sched<[WriteALU]>, OpSize16, Requires<[In64BitMode]>; def MOVSX32rr32: I<0x63, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>, Sched<[WriteALU]>, OpSize32, Requires<[In64BitMode]>; let mayLoad = 1 in { def MOVSX16rm32: I<0x63, MRMSrcMem, (outs GR16:$dst), (ins i32mem:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>, Sched<[WriteALULd]>, OpSize16, Requires<[In64BitMode]>; def MOVSX32rm32: I<0x63, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>, Sched<[WriteALULd]>, OpSize32, Requires<[In64BitMode]>; } // mayLoad = 1 } // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 // movzbq and movzwq encodings for the disassembler let hasSideEffects = 0 in { def MOVZX64rr8 : RI<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8:$src), "movz{bq|x}\t{$src, $dst|$dst, $src}", []>, TB, Sched<[WriteALU]>; let mayLoad = 1 in def MOVZX64rm8 : RI<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem:$src), "movz{bq|x}\t{$src, $dst|$dst, $src}", []>, TB, Sched<[WriteALULd]>; def MOVZX64rr16 : RI<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src), "movz{wq|x}\t{$src, $dst|$dst, $src}", []>, TB, Sched<[WriteALU]>; let mayLoad = 1 in def MOVZX64rm16 : RI<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src), "movz{wq|x}\t{$src, $dst|$dst, $src}", []>, TB, Sched<[WriteALULd]>; } // 64-bit zero-extension patterns use SUBREG_TO_REG and an operation writing a // 32-bit register. def : Pat<(i64 (zext GR8:$src)), (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8:$src), sub_32bit)>; def : Pat<(zextloadi64i8 addr:$src), (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; def : Pat<(i64 (zext GR16:$src)), (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16:$src), sub_32bit)>; def : Pat<(zextloadi64i16 addr:$src), (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; // The preferred way to do 32-bit-to-64-bit zero extension on x86-64 is to use a // SUBREG_TO_REG to utilize implicit zero-extension, however this isn't possible // when the 32-bit value is defined by a truncate or is copied from something // where the high bits aren't necessarily all zero. In such cases, we fall back // to these explicit zext instructions. def : Pat<(i64 (zext GR32:$src)), (SUBREG_TO_REG (i64 0), (MOV32rr GR32:$src), sub_32bit)>; def : Pat<(i64 (zextloadi64i32 addr:$src)), (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;