//===-- X86FixupVectorConstants.cpp - optimize constant generation -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file examines all full size vector constant pool loads and attempts to // replace them with smaller constant pool entries, including: // * Converting AVX512 memory-fold instructions to their broadcast-fold form. // * Using vzload scalar loads. // * Broadcasting of full width loads. // * Sign/Zero extension of full width loads. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrFoldTables.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineConstantPool.h" using namespace llvm; #define DEBUG_TYPE "x86-fixup-vector-constants" STATISTIC(NumInstChanges, "Number of instructions changes"); namespace { class X86FixupVectorConstantsPass : public MachineFunctionPass { public: static char ID; X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {} StringRef getPassName() const override { return "X86 Fixup Vector Constants"; } bool runOnMachineFunction(MachineFunction &MF) override; bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB, MachineInstr &MI); // This pass runs after regalloc and doesn't support VReg operands. MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: const X86InstrInfo *TII = nullptr; const X86Subtarget *ST = nullptr; const MCSchedModel *SM = nullptr; }; } // end anonymous namespace char X86FixupVectorConstantsPass::ID = 0; INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false) FunctionPass *llvm::createX86FixupVectorConstants() { return new X86FixupVectorConstantsPass(); } /// Normally, we only allow poison in vector splats. However, as this is part /// of the backend, and working with the DAG representation, which currently /// only natively represents undef values, we need to accept undefs here. static Constant *getSplatValueAllowUndef(const ConstantVector *C) { Constant *Res = nullptr; for (Value *Op : C->operands()) { Constant *OpC = cast(Op); if (isa(OpC)) continue; if (!Res) Res = OpC; else if (Res != OpC) return nullptr; } return Res; } // Attempt to extract the full width of bits data from the constant. static std::optional extractConstantBits(const Constant *C) { unsigned NumBits = C->getType()->getPrimitiveSizeInBits(); if (isa(C)) return APInt::getZero(NumBits); if (auto *CInt = dyn_cast(C)) return CInt->getValue(); if (auto *CFP = dyn_cast(C)) return CFP->getValue().bitcastToAPInt(); if (auto *CV = dyn_cast(C)) { if (auto *CVSplat = getSplatValueAllowUndef(CV)) { if (std::optional Bits = extractConstantBits(CVSplat)) { assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat"); return APInt::getSplat(NumBits, *Bits); } } APInt Bits = APInt::getZero(NumBits); for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) { Constant *Elt = CV->getOperand(I); std::optional SubBits = extractConstantBits(Elt); if (!SubBits) return std::nullopt; assert(NumBits == (E * SubBits->getBitWidth()) && "Illegal vector element size"); Bits.insertBits(*SubBits, I * SubBits->getBitWidth()); } return Bits; } if (auto *CDS = dyn_cast(C)) { bool IsInteger = CDS->getElementType()->isIntegerTy(); bool IsFloat = CDS->getElementType()->isHalfTy() || CDS->getElementType()->isBFloatTy() || CDS->getElementType()->isFloatTy() || CDS->getElementType()->isDoubleTy(); if (IsInteger || IsFloat) { APInt Bits = APInt::getZero(NumBits); unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits(); for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { if (IsInteger) Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits); else Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(), I * EltBits); } return Bits; } } return std::nullopt; } static std::optional extractConstantBits(const Constant *C, unsigned NumBits) { if (std::optional Bits = extractConstantBits(C)) return Bits->zextOrTrunc(NumBits); return std::nullopt; } // Attempt to compute the splat width of bits data by normalizing the splat to // remove undefs. static std::optional getSplatableConstant(const Constant *C, unsigned SplatBitWidth) { const Type *Ty = C->getType(); assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 && "Illegal splat width"); if (std::optional Bits = extractConstantBits(C)) if (Bits->isSplat(SplatBitWidth)) return Bits->trunc(SplatBitWidth); // Detect general splats with undefs. // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting? if (auto *CV = dyn_cast(C)) { unsigned NumOps = CV->getNumOperands(); unsigned NumEltsBits = Ty->getScalarSizeInBits(); unsigned NumScaleOps = SplatBitWidth / NumEltsBits; if ((SplatBitWidth % NumEltsBits) == 0) { // Collect the elements and ensure that within the repeated splat sequence // they either match or are undef. SmallVector Sequence(NumScaleOps, nullptr); for (unsigned Idx = 0; Idx != NumOps; ++Idx) { if (Constant *Elt = CV->getAggregateElement(Idx)) { if (isa(Elt)) continue; unsigned SplatIdx = Idx % NumScaleOps; if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) { Sequence[SplatIdx] = Elt; continue; } } return std::nullopt; } // Extract the constant bits forming the splat and insert into the bits // data, leave undef as zero. APInt SplatBits = APInt::getZero(SplatBitWidth); for (unsigned I = 0; I != NumScaleOps; ++I) { if (!Sequence[I]) continue; if (std::optional Bits = extractConstantBits(Sequence[I])) { SplatBits.insertBits(*Bits, I * Bits->getBitWidth()); continue; } return std::nullopt; } return SplatBits; } } return std::nullopt; } // Split raw bits into a constant vector of elements of a specific bit width. // NOTE: We don't always bother converting to scalars if the vector length is 1. static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy, const APInt &Bits, unsigned NumSclBits) { unsigned BitWidth = Bits.getBitWidth(); if (NumSclBits == 8) { SmallVector RawBits; for (unsigned I = 0; I != BitWidth; I += 8) RawBits.push_back(Bits.extractBits(8, I).getZExtValue()); return ConstantDataVector::get(Ctx, RawBits); } if (NumSclBits == 16) { SmallVector RawBits; for (unsigned I = 0; I != BitWidth; I += 16) RawBits.push_back(Bits.extractBits(16, I).getZExtValue()); if (SclTy->is16bitFPTy()) return ConstantDataVector::getFP(SclTy, RawBits); return ConstantDataVector::get(Ctx, RawBits); } if (NumSclBits == 32) { SmallVector RawBits; for (unsigned I = 0; I != BitWidth; I += 32) RawBits.push_back(Bits.extractBits(32, I).getZExtValue()); if (SclTy->isFloatTy()) return ConstantDataVector::getFP(SclTy, RawBits); return ConstantDataVector::get(Ctx, RawBits); } assert(NumSclBits == 64 && "Unhandled vector element width"); SmallVector RawBits; for (unsigned I = 0; I != BitWidth; I += 64) RawBits.push_back(Bits.extractBits(64, I).getZExtValue()); if (SclTy->isDoubleTy()) return ConstantDataVector::getFP(SclTy, RawBits); return ConstantDataVector::get(Ctx, RawBits); } // Attempt to rebuild a normalized splat vector constant of the requested splat // width, built up of potentially smaller scalar values. static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/, unsigned /*NumElts*/, unsigned SplatBitWidth) { // TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this. std::optional Splat = getSplatableConstant(C, SplatBitWidth); if (!Splat) return nullptr; // Determine scalar size to use for the constant splat vector, clamping as we // might have found a splat smaller than the original constant data. Type *SclTy = C->getType()->getScalarType(); unsigned NumSclBits = SclTy->getPrimitiveSizeInBits(); NumSclBits = std::min(NumSclBits, SplatBitWidth); // Fallback to i64 / double. NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32) ? NumSclBits : 64; // Extract per-element bits. return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits); } static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits, unsigned /*NumElts*/, unsigned ScalarBitWidth) { Type *SclTy = C->getType()->getScalarType(); unsigned NumSclBits = SclTy->getPrimitiveSizeInBits(); LLVMContext &Ctx = C->getContext(); if (NumBits > ScalarBitWidth) { // Determine if the upper bits are all zero. if (std::optional Bits = extractConstantBits(C, NumBits)) { if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) { // If the original constant was made of smaller elements, try to retain // those types. if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0) return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits); // Fallback to raw integer bits. APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth); return ConstantInt::get(Ctx, RawBits); } } } return nullptr; } static Constant *rebuildExtCst(const Constant *C, bool IsSExt, unsigned NumBits, unsigned NumElts, unsigned SrcEltBitWidth) { unsigned DstEltBitWidth = NumBits / NumElts; assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 && (DstEltBitWidth % SrcEltBitWidth) == 0 && (DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width"); if (std::optional Bits = extractConstantBits(C, NumBits)) { assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts && (Bits->getBitWidth() % DstEltBitWidth) == 0 && "Unexpected constant extension"); // Ensure every vector element can be represented by the src bitwidth. APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth); for (unsigned I = 0; I != NumElts; ++I) { APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth); if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) || (!IsSExt && Elt.getActiveBits() > SrcEltBitWidth)) return nullptr; TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth); } Type *Ty = C->getType(); return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits, SrcEltBitWidth); } return nullptr; } static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits, unsigned NumElts, unsigned SrcEltBitWidth) { return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth); } static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits, unsigned NumElts, unsigned SrcEltBitWidth) { return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth); } bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF, MachineBasicBlock &MBB, MachineInstr &MI) { unsigned Opc = MI.getOpcode(); MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool(); bool HasSSE41 = ST->hasSSE41(); bool HasAVX2 = ST->hasAVX2(); bool HasDQI = ST->hasDQI(); bool HasBWI = ST->hasBWI(); bool HasVLX = ST->hasVLX(); struct FixupEntry { int Op; int NumCstElts; int MemBitWidth; std::function RebuildConstant; }; auto FixupConstant = [&](ArrayRef Fixups, unsigned RegBitWidth, unsigned OperandNo) { #ifdef EXPENSIVE_CHECKS assert(llvm::is_sorted(Fixups, [](const FixupEntry &A, const FixupEntry &B) { return (A.NumCstElts * A.MemBitWidth) < (B.NumCstElts * B.MemBitWidth); }) && "Constant fixup table not sorted in ascending constant size"); #endif assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) && "Unexpected number of operands!"); if (auto *C = X86::getConstantFromPool(MI, OperandNo)) { RegBitWidth = RegBitWidth ? RegBitWidth : C->getType()->getPrimitiveSizeInBits(); for (const FixupEntry &Fixup : Fixups) { if (Fixup.Op) { // Construct a suitable constant and adjust the MI to use the new // constant pool entry. if (Constant *NewCst = Fixup.RebuildConstant( C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) { unsigned NewCPI = CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8)); MI.setDesc(TII->get(Fixup.Op)); MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI); return true; } } } } return false; }; // Attempt to detect a suitable vzload/broadcast/vextload from increasing // constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth: // - vzload shouldn't ever need a shuffle port to zero the upper elements and // the fp/int domain versions are equally available so we don't introduce a // domain crossing penalty. // - broadcast sometimes need a shuffle port (especially for 8/16-bit // variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int // domain equivalents. // - vextload always needs a shuffle port and is only ever int domain. switch (Opc) { /* FP Loads */ case X86::MOVAPDrm: case X86::MOVAPSrm: case X86::MOVUPDrm: case X86::MOVUPSrm: // TODO: SSE3 MOVDDUP Handling return FixupConstant({{X86::MOVSSrm, 1, 32, rebuildZeroUpperCst}, {X86::MOVSDrm, 1, 64, rebuildZeroUpperCst}}, 128, 1); case X86::VMOVAPDrm: case X86::VMOVAPSrm: case X86::VMOVUPDrm: case X86::VMOVUPSrm: return FixupConstant({{X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst}, {X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst}, {X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst}, {X86::VMOVDDUPrm, 1, 64, rebuildSplatCst}}, 128, 1); case X86::VMOVAPDYrm: case X86::VMOVAPSYrm: case X86::VMOVUPDYrm: case X86::VMOVUPSYrm: return FixupConstant({{X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst}, {X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst}, {X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst}}, 256, 1); case X86::VMOVAPDZ128rm: case X86::VMOVAPSZ128rm: case X86::VMOVUPDZ128rm: case X86::VMOVUPSZ128rm: return FixupConstant({{X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst}, {X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst}, {X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst}, {X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst}}, 128, 1); case X86::VMOVAPDZ256rm: case X86::VMOVAPSZ256rm: case X86::VMOVUPDZ256rm: case X86::VMOVUPSZ256rm: return FixupConstant( {{X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst}, {X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst}, {X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst}}, 256, 1); case X86::VMOVAPDZrm: case X86::VMOVAPSZrm: case X86::VMOVUPDZrm: case X86::VMOVUPSZrm: return FixupConstant({{X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst}, {X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst}, {X86::VBROADCASTF32X4rm, 1, 128, rebuildSplatCst}, {X86::VBROADCASTF64X4rm, 1, 256, rebuildSplatCst}}, 512, 1); /* Integer Loads */ case X86::MOVDQArm: case X86::MOVDQUrm: { FixupEntry Fixups[] = { {HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst}, {HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst}, {X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst}, {HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst}, {HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst}, {HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst}, {HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst}, {X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst}, {HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst}, {HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst}, {HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst}, {HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst}, {HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst}, {HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}}; return FixupConstant(Fixups, 128, 1); } case X86::VMOVDQArm: case X86::VMOVDQUrm: { FixupEntry Fixups[] = { {HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst}, {HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst}, {X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst}, {X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst}, {X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst}, {HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst}, {X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst}, {X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst}, {X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst}, {X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst}, {X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst}, {HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64, rebuildSplatCst}, {X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst}, {X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst}, {X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst}, {X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst}, {X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst}, {X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}}; return FixupConstant(Fixups, 128, 1); } case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: { FixupEntry Fixups[] = { {HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst}, {HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst}, {HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst}, {HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst}, {HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst}, {HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst}, {HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst}, {HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst}, {HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst}, {HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst}, {HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst}, {HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst}, {HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst}, {HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst}, {HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst}, {HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst}, {HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}}; return FixupConstant(Fixups, 256, 1); } case X86::VMOVDQA32Z128rm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQU64Z128rm: { FixupEntry Fixups[] = { {HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst}, {HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst}, {X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst}, {X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst}, {X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst}, {X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst}, {X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst}, {X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst}, {X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst}, {X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst}, {X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst}, {X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst}, {HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst}, {HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst}, {X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst}, {X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst}, {X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst}, {X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}}; return FixupConstant(Fixups, 128, 1); } case X86::VMOVDQA32Z256rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQU64Z256rm: { FixupEntry Fixups[] = { {HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst}, {HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst}, {X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst}, {X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst}, {X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst}, {X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst}, {X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst}, {X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst}, {X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst}, {X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst}, {X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst}, {HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst}, {HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst}, {X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst}, {X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst}, {X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst}, {X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}}; return FixupConstant(Fixups, 256, 1); } case X86::VMOVDQA32Zrm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU32Zrm: case X86::VMOVDQU64Zrm: { FixupEntry Fixups[] = { {HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst}, {HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst}, {X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst}, {X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst}, {X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst}, {X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst}, {X86::VBROADCASTI32X4rm, 1, 128, rebuildSplatCst}, {X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst}, {X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst}, {X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst}, {X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst}, {X86::VBROADCASTI64X4rm, 1, 256, rebuildSplatCst}, {HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst}, {HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst}, {X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst}, {X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst}, {X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst}, {X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}}; return FixupConstant(Fixups, 512, 1); } } auto ConvertToBroadcastAVX512 = [&](unsigned OpSrc32, unsigned OpSrc64) { unsigned OpBcst32 = 0, OpBcst64 = 0; unsigned OpNoBcst32 = 0, OpNoBcst64 = 0; if (OpSrc32) { if (const X86FoldTableEntry *Mem2Bcst = llvm::lookupBroadcastFoldTableBySize(OpSrc32, 32)) { OpBcst32 = Mem2Bcst->DstOp; OpNoBcst32 = Mem2Bcst->Flags & TB_INDEX_MASK; } } if (OpSrc64) { if (const X86FoldTableEntry *Mem2Bcst = llvm::lookupBroadcastFoldTableBySize(OpSrc64, 64)) { OpBcst64 = Mem2Bcst->DstOp; OpNoBcst64 = Mem2Bcst->Flags & TB_INDEX_MASK; } } assert(((OpBcst32 == 0) || (OpBcst64 == 0) || (OpNoBcst32 == OpNoBcst64)) && "OperandNo mismatch"); if (OpBcst32 || OpBcst64) { unsigned OpNo = OpBcst32 == 0 ? OpNoBcst64 : OpNoBcst32; FixupEntry Fixups[] = {{(int)OpBcst32, 32, 32, rebuildSplatCst}, {(int)OpBcst64, 64, 64, rebuildSplatCst}}; // TODO: Add support for RegBitWidth, but currently rebuildSplatCst // doesn't require it (defaults to Constant::getPrimitiveSizeInBits). return FixupConstant(Fixups, 0, OpNo); } return false; }; // Attempt to find a AVX512 mapping from a full width memory-fold instruction // to a broadcast-fold instruction variant. if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX) return ConvertToBroadcastAVX512(Opc, Opc); // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic // conversion to see if we can convert to a broadcasted (integer) logic op. if (HasVLX && !HasDQI) { unsigned OpSrc32 = 0, OpSrc64 = 0; switch (Opc) { case X86::VANDPDrm: case X86::VANDPSrm: case X86::VPANDrm: OpSrc32 = X86 ::VPANDDZ128rm; OpSrc64 = X86 ::VPANDQZ128rm; break; case X86::VANDPDYrm: case X86::VANDPSYrm: case X86::VPANDYrm: OpSrc32 = X86 ::VPANDDZ256rm; OpSrc64 = X86 ::VPANDQZ256rm; break; case X86::VANDNPDrm: case X86::VANDNPSrm: case X86::VPANDNrm: OpSrc32 = X86 ::VPANDNDZ128rm; OpSrc64 = X86 ::VPANDNQZ128rm; break; case X86::VANDNPDYrm: case X86::VANDNPSYrm: case X86::VPANDNYrm: OpSrc32 = X86 ::VPANDNDZ256rm; OpSrc64 = X86 ::VPANDNQZ256rm; break; case X86::VORPDrm: case X86::VORPSrm: case X86::VPORrm: OpSrc32 = X86 ::VPORDZ128rm; OpSrc64 = X86 ::VPORQZ128rm; break; case X86::VORPDYrm: case X86::VORPSYrm: case X86::VPORYrm: OpSrc32 = X86 ::VPORDZ256rm; OpSrc64 = X86 ::VPORQZ256rm; break; case X86::VXORPDrm: case X86::VXORPSrm: case X86::VPXORrm: OpSrc32 = X86 ::VPXORDZ128rm; OpSrc64 = X86 ::VPXORQZ128rm; break; case X86::VXORPDYrm: case X86::VXORPSYrm: case X86::VPXORYrm: OpSrc32 = X86 ::VPXORDZ256rm; OpSrc64 = X86 ::VPXORQZ256rm; break; } if (OpSrc32 || OpSrc64) return ConvertToBroadcastAVX512(OpSrc32, OpSrc64); } return false; } bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) { LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";); bool Changed = false; ST = &MF.getSubtarget(); TII = ST->getInstrInfo(); SM = &ST->getSchedModel(); for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) { if (processInstruction(MF, MBB, MI)) { ++NumInstChanges; Changed = true; } } } LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";); return Changed; }