//===-- X86FixupVectorConstants.cpp - optimize constant generation -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file examines all full size vector constant pool loads and attempts to // replace them with smaller constant pool entries, including: // * Converting AVX512 memory-fold instructions to their broadcast-fold form // * Broadcasting of full width loads. // * TODO: Sign/Zero extension of full width loads. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrFoldTables.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineConstantPool.h" using namespace llvm; #define DEBUG_TYPE "x86-fixup-vector-constants" STATISTIC(NumInstChanges, "Number of instructions changes"); namespace { class X86FixupVectorConstantsPass : public MachineFunctionPass { public: static char ID; X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {} StringRef getPassName() const override { return "X86 Fixup Vector Constants"; } bool runOnMachineFunction(MachineFunction &MF) override; bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB, MachineInstr &MI); // This pass runs after regalloc and doesn't support VReg operands. MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: const X86InstrInfo *TII = nullptr; const X86Subtarget *ST = nullptr; const MCSchedModel *SM = nullptr; }; } // end anonymous namespace char X86FixupVectorConstantsPass::ID = 0; INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false) FunctionPass *llvm::createX86FixupVectorConstants() { return new X86FixupVectorConstantsPass(); } // Attempt to extract the full width of bits data from the constant. static std::optional extractConstantBits(const Constant *C) { unsigned NumBits = C->getType()->getPrimitiveSizeInBits(); if (auto *CInt = dyn_cast(C)) return CInt->getValue(); if (auto *CFP = dyn_cast(C)) return CFP->getValue().bitcastToAPInt(); if (auto *CV = dyn_cast(C)) { if (auto *CVSplat = CV->getSplatValue(/*AllowUndefs*/ true)) { if (std::optional Bits = extractConstantBits(CVSplat)) { assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat"); return APInt::getSplat(NumBits, *Bits); } } } if (auto *CDS = dyn_cast(C)) { bool IsInteger = CDS->getElementType()->isIntegerTy(); bool IsFloat = CDS->getElementType()->isHalfTy() || CDS->getElementType()->isBFloatTy() || CDS->getElementType()->isFloatTy() || CDS->getElementType()->isDoubleTy(); if (IsInteger || IsFloat) { APInt Bits = APInt::getZero(NumBits); unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits(); for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { if (IsInteger) Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits); else Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(), I * EltBits); } return Bits; } } return std::nullopt; } // Attempt to compute the splat width of bits data by normalizing the splat to // remove undefs. static std::optional getSplatableConstant(const Constant *C, unsigned SplatBitWidth) { const Type *Ty = C->getType(); assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 && "Illegal splat width"); if (std::optional Bits = extractConstantBits(C)) if (Bits->isSplat(SplatBitWidth)) return Bits->trunc(SplatBitWidth); // Detect general splats with undefs. // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting? if (auto *CV = dyn_cast(C)) { unsigned NumOps = CV->getNumOperands(); unsigned NumEltsBits = Ty->getScalarSizeInBits(); unsigned NumScaleOps = SplatBitWidth / NumEltsBits; if ((SplatBitWidth % NumEltsBits) == 0) { // Collect the elements and ensure that within the repeated splat sequence // they either match or are undef. SmallVector Sequence(NumScaleOps, nullptr); for (unsigned Idx = 0; Idx != NumOps; ++Idx) { if (Constant *Elt = CV->getAggregateElement(Idx)) { if (isa(Elt)) continue; unsigned SplatIdx = Idx % NumScaleOps; if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) { Sequence[SplatIdx] = Elt; continue; } } return std::nullopt; } // Extract the constant bits forming the splat and insert into the bits // data, leave undef as zero. APInt SplatBits = APInt::getZero(SplatBitWidth); for (unsigned I = 0; I != NumScaleOps; ++I) { if (!Sequence[I]) continue; if (std::optional Bits = extractConstantBits(Sequence[I])) { SplatBits.insertBits(*Bits, I * Bits->getBitWidth()); continue; } return std::nullopt; } return SplatBits; } } return std::nullopt; } // Split raw bits into a constant vector of elements of a specific bit width. // NOTE: We don't always bother converting to scalars if the vector length is 1. static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy, const APInt &Bits, unsigned NumSclBits) { unsigned BitWidth = Bits.getBitWidth(); if (NumSclBits == 8) { SmallVector RawBits; for (unsigned I = 0; I != BitWidth; I += 8) RawBits.push_back(Bits.extractBits(8, I).getZExtValue()); return ConstantDataVector::get(Ctx, RawBits); } if (NumSclBits == 16) { SmallVector RawBits; for (unsigned I = 0; I != BitWidth; I += 16) RawBits.push_back(Bits.extractBits(16, I).getZExtValue()); if (SclTy->is16bitFPTy()) return ConstantDataVector::getFP(SclTy, RawBits); return ConstantDataVector::get(Ctx, RawBits); } if (NumSclBits == 32) { SmallVector RawBits; for (unsigned I = 0; I != BitWidth; I += 32) RawBits.push_back(Bits.extractBits(32, I).getZExtValue()); if (SclTy->isFloatTy()) return ConstantDataVector::getFP(SclTy, RawBits); return ConstantDataVector::get(Ctx, RawBits); } assert(NumSclBits == 64 && "Unhandled vector element width"); SmallVector RawBits; for (unsigned I = 0; I != BitWidth; I += 64) RawBits.push_back(Bits.extractBits(64, I).getZExtValue()); if (SclTy->isDoubleTy()) return ConstantDataVector::getFP(SclTy, RawBits); return ConstantDataVector::get(Ctx, RawBits); } // Attempt to rebuild a normalized splat vector constant of the requested splat // width, built up of potentially smaller scalar values. static Constant *rebuildSplatableConstant(const Constant *C, unsigned SplatBitWidth) { std::optional Splat = getSplatableConstant(C, SplatBitWidth); if (!Splat) return nullptr; // Determine scalar size to use for the constant splat vector, clamping as we // might have found a splat smaller than the original constant data. const Type *OriginalType = C->getType(); Type *SclTy = OriginalType->getScalarType(); unsigned NumSclBits = SclTy->getPrimitiveSizeInBits(); NumSclBits = std::min(NumSclBits, SplatBitWidth); // Fallback to i64 / double. NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32) ? NumSclBits : 64; // Extract per-element bits. return rebuildConstant(OriginalType->getContext(), SclTy, *Splat, NumSclBits); } bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF, MachineBasicBlock &MBB, MachineInstr &MI) { unsigned Opc = MI.getOpcode(); MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool(); bool HasAVX2 = ST->hasAVX2(); bool HasDQI = ST->hasDQI(); bool HasBWI = ST->hasBWI(); bool HasVLX = ST->hasVLX(); auto ConvertToBroadcast = [&](unsigned OpBcst256, unsigned OpBcst128, unsigned OpBcst64, unsigned OpBcst32, unsigned OpBcst16, unsigned OpBcst8, unsigned OperandNo) { assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) && "Unexpected number of operands!"); if (auto *C = X86::getConstantFromPool(MI, OperandNo)) { // Attempt to detect a suitable splat from increasing splat widths. std::pair Broadcasts[] = { {8, OpBcst8}, {16, OpBcst16}, {32, OpBcst32}, {64, OpBcst64}, {128, OpBcst128}, {256, OpBcst256}, }; for (auto [BitWidth, OpBcst] : Broadcasts) { if (OpBcst) { // Construct a suitable splat constant and adjust the MI to // use the new constant pool entry. if (Constant *NewCst = rebuildSplatableConstant(C, BitWidth)) { unsigned NewCPI = CP->getConstantPoolIndex(NewCst, Align(BitWidth / 8)); MI.setDesc(TII->get(OpBcst)); MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI); return true; } } } } return false; }; // Attempt to convert full width vector loads into broadcast loads. switch (Opc) { /* FP Loads */ case X86::MOVAPDrm: case X86::MOVAPSrm: case X86::MOVUPDrm: case X86::MOVUPSrm: // TODO: SSE3 MOVDDUP Handling return false; case X86::VMOVAPDrm: case X86::VMOVAPSrm: case X86::VMOVUPDrm: case X86::VMOVUPSrm: return ConvertToBroadcast(0, 0, X86::VMOVDDUPrm, X86::VBROADCASTSSrm, 0, 0, 1); case X86::VMOVAPDYrm: case X86::VMOVAPSYrm: case X86::VMOVUPDYrm: case X86::VMOVUPSYrm: return ConvertToBroadcast(0, X86::VBROADCASTF128rm, X86::VBROADCASTSDYrm, X86::VBROADCASTSSYrm, 0, 0, 1); case X86::VMOVAPDZ128rm: case X86::VMOVAPSZ128rm: case X86::VMOVUPDZ128rm: case X86::VMOVUPSZ128rm: return ConvertToBroadcast(0, 0, X86::VMOVDDUPZ128rm, X86::VBROADCASTSSZ128rm, 0, 0, 1); case X86::VMOVAPDZ256rm: case X86::VMOVAPSZ256rm: case X86::VMOVUPDZ256rm: case X86::VMOVUPSZ256rm: return ConvertToBroadcast(0, X86::VBROADCASTF32X4Z256rm, X86::VBROADCASTSDZ256rm, X86::VBROADCASTSSZ256rm, 0, 0, 1); case X86::VMOVAPDZrm: case X86::VMOVAPSZrm: case X86::VMOVUPDZrm: case X86::VMOVUPSZrm: return ConvertToBroadcast(X86::VBROADCASTF64X4rm, X86::VBROADCASTF32X4rm, X86::VBROADCASTSDZrm, X86::VBROADCASTSSZrm, 0, 0, 1); /* Integer Loads */ case X86::VMOVDQArm: case X86::VMOVDQUrm: return ConvertToBroadcast( 0, 0, HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, HasAVX2 ? X86::VPBROADCASTWrm : 0, HasAVX2 ? X86::VPBROADCASTBrm : 0, 1); case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: return ConvertToBroadcast( 0, HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, HasAVX2 ? X86::VPBROADCASTWYrm : 0, HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1); case X86::VMOVDQA32Z128rm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQU64Z128rm: return ConvertToBroadcast(0, 0, X86::VPBROADCASTQZ128rm, X86::VPBROADCASTDZ128rm, HasBWI ? X86::VPBROADCASTWZ128rm : 0, HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1); case X86::VMOVDQA32Z256rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQU64Z256rm: return ConvertToBroadcast(0, X86::VBROADCASTI32X4Z256rm, X86::VPBROADCASTQZ256rm, X86::VPBROADCASTDZ256rm, HasBWI ? X86::VPBROADCASTWZ256rm : 0, HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1); case X86::VMOVDQA32Zrm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU32Zrm: case X86::VMOVDQU64Zrm: return ConvertToBroadcast(X86::VBROADCASTI64X4rm, X86::VBROADCASTI32X4rm, X86::VPBROADCASTQZrm, X86::VPBROADCASTDZrm, HasBWI ? X86::VPBROADCASTWZrm : 0, HasBWI ? X86::VPBROADCASTBZrm : 0, 1); } auto ConvertToBroadcastAVX512 = [&](unsigned OpSrc32, unsigned OpSrc64) { unsigned OpBcst32 = 0, OpBcst64 = 0; unsigned OpNoBcst32 = 0, OpNoBcst64 = 0; if (OpSrc32) { if (const X86FoldTableEntry *Mem2Bcst = llvm::lookupBroadcastFoldTable(OpSrc32, 32)) { OpBcst32 = Mem2Bcst->DstOp; OpNoBcst32 = Mem2Bcst->Flags & TB_INDEX_MASK; } } if (OpSrc64) { if (const X86FoldTableEntry *Mem2Bcst = llvm::lookupBroadcastFoldTable(OpSrc64, 64)) { OpBcst64 = Mem2Bcst->DstOp; OpNoBcst64 = Mem2Bcst->Flags & TB_INDEX_MASK; } } assert(((OpBcst32 == 0) || (OpBcst64 == 0) || (OpNoBcst32 == OpNoBcst64)) && "OperandNo mismatch"); if (OpBcst32 || OpBcst64) { unsigned OpNo = OpBcst32 == 0 ? OpNoBcst64 : OpNoBcst32; return ConvertToBroadcast(0, 0, OpBcst64, OpBcst32, 0, 0, OpNo); } return false; }; // Attempt to find a AVX512 mapping from a full width memory-fold instruction // to a broadcast-fold instruction variant. if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX) return ConvertToBroadcastAVX512(Opc, Opc); // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic // conversion to see if we can convert to a broadcasted (integer) logic op. if (HasVLX && !HasDQI) { unsigned OpSrc32 = 0, OpSrc64 = 0; switch (Opc) { case X86::VANDPDrm: case X86::VANDPSrm: case X86::VPANDrm: OpSrc32 = X86 ::VPANDDZ128rm; OpSrc64 = X86 ::VPANDQZ128rm; break; case X86::VANDPDYrm: case X86::VANDPSYrm: case X86::VPANDYrm: OpSrc32 = X86 ::VPANDDZ256rm; OpSrc64 = X86 ::VPANDQZ256rm; break; case X86::VANDNPDrm: case X86::VANDNPSrm: case X86::VPANDNrm: OpSrc32 = X86 ::VPANDNDZ128rm; OpSrc64 = X86 ::VPANDNQZ128rm; break; case X86::VANDNPDYrm: case X86::VANDNPSYrm: case X86::VPANDNYrm: OpSrc32 = X86 ::VPANDNDZ256rm; OpSrc64 = X86 ::VPANDNQZ256rm; break; case X86::VORPDrm: case X86::VORPSrm: case X86::VPORrm: OpSrc32 = X86 ::VPORDZ128rm; OpSrc64 = X86 ::VPORQZ128rm; break; case X86::VORPDYrm: case X86::VORPSYrm: case X86::VPORYrm: OpSrc32 = X86 ::VPORDZ256rm; OpSrc64 = X86 ::VPORQZ256rm; break; case X86::VXORPDrm: case X86::VXORPSrm: case X86::VPXORrm: OpSrc32 = X86 ::VPXORDZ128rm; OpSrc64 = X86 ::VPXORQZ128rm; break; case X86::VXORPDYrm: case X86::VXORPSYrm: case X86::VPXORYrm: OpSrc32 = X86 ::VPXORDZ256rm; OpSrc64 = X86 ::VPXORQZ256rm; break; } if (OpSrc32 || OpSrc64) return ConvertToBroadcastAVX512(OpSrc32, OpSrc64); } return false; } bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) { LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";); bool Changed = false; ST = &MF.getSubtarget(); TII = ST->getInstrInfo(); SM = &ST->getSchedModel(); for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) { if (processInstruction(MF, MBB, MI)) { ++NumInstChanges; Changed = true; } } } LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";); return Changed; }