//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This describes the calling conventions for the X86-32 and X86-64 // architectures. // //===----------------------------------------------------------------------===// /// CCIfSubtarget - Match if the current subtarget has a feature F. class CCIfSubtarget : CCIf" "(State.getMachineFunction().getSubtarget()).", F), A>; /// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F. class CCIfNotSubtarget : CCIf" "(State.getMachineFunction().getSubtarget()).", F), A>; /// CCIfRegCallv4 - Match if RegCall ABIv4 is respected. class CCIfRegCallv4 : CCIf<"State.getMachineFunction().getFunction().getParent()->getModuleFlag(\"RegCallv4\")!=nullptr", A>; /// CCIfIsVarArgOnWin - Match if isVarArg on Windows 32bits. class CCIfIsVarArgOnWin : CCIf<"State.isVarArg() && " "State.getMachineFunction().getSubtarget().getTargetTriple()." "isWindowsMSVCEnvironment()", A>; // Register classes for RegCall class RC_X86_RegCall { list GPR_8 = []; list GPR_16 = []; list GPR_32 = []; list GPR_64 = []; list FP_CALL = [FP0]; list FP_RET = [FP0, FP1]; list XMM = []; list YMM = []; list ZMM = []; } // RegCall register classes for 32 bits def RC_X86_32_RegCall : RC_X86_RegCall { let GPR_8 = [AL, CL, DL, DIL, SIL]; let GPR_16 = [AX, CX, DX, DI, SI]; let GPR_32 = [EAX, ECX, EDX, EDI, ESI]; let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle [] ///< \todo Fix AssignToReg to enable empty lists let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]; let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]; let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]; } // RegCall register classes for 32 bits if it respect regcall ABI v.4 // Change in __regcall ABI v.4: don't use EAX as a spare register is // needed to code virtual call thunk, def RC_X86_32_RegCallv4_Win : RC_X86_RegCall { let GPR_8 = [CL, DL, DIL, SIL]; let GPR_16 = [CX, DX, DI, SI]; let GPR_32 = [ECX, EDX, EDI, ESI]; let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle [] ///< \todo Fix AssignToReg to enable empty lists let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]; let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]; let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]; } class RC_X86_64_RegCall : RC_X86_RegCall { let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15]; let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7, YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15]; let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7, ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15]; } def RC_X86_64_RegCall_Win : RC_X86_64_RegCall { let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B]; let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W]; let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D]; let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15]; } // On Windows 64 we don't want to use R13 - it is reserved for // largely aligned stack. // Change in __regcall ABI v.4: additionally don't use R10 as a // a spare register is needed to code virtual call thunk. // def RC_X86_64_RegCallv4_Win : RC_X86_64_RegCall { let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R11B, R12B, R14B, R15B]; let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R11W, R12W, R14W, R15W]; let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R11D, R12D, R14D, R15D]; let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R11, R12, R14, R15]; } def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall { let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B]; let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W]; let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D]; let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15]; } // X86-64 Intel regcall calling convention. multiclass X86_RegCall_base { def CC_#NAME : CallingConv<[ // Handles byval parameters. CCIfSubtarget<"is64Bit()", CCIfByVal>>, CCIfByVal>, // Promote i1/i8/i16/v1i1 arguments to i32. CCIfType<[i1, i8, i16, v1i1], CCPromoteToType>, // Promote v8i1/v16i1/v32i1 arguments to i32. CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType>, // bool, char, int, enum, long, pointer --> GPR CCIfType<[i32], CCAssignToReg>, // long long, __int64 --> GPR CCIfType<[i64], CCAssignToReg>, // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32) CCIfType<[v64i1], CCPromoteToType>, CCIfSubtarget<"is64Bit()", CCIfType<[i64], CCAssignToReg>>, CCIfSubtarget<"is32Bit()", CCIfType<[i64], CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>, // float, double, float128 --> XMM // In the case of SSE disabled --> save to stack CCIfType<[f32, f64, f128], CCIfSubtarget<"hasSSE1()", CCAssignToReg>>, // long double --> FP CCIfType<[f80], CCAssignToReg>, // __m128, __m128i, __m128d --> XMM // In the case of SSE disabled --> save to stack CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfSubtarget<"hasSSE1()", CCAssignToReg>>, // __m256, __m256i, __m256d --> YMM // In the case of SSE disabled --> save to stack CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCIfSubtarget<"hasAVX()", CCAssignToReg>>, // __m512, __m512i, __m512d --> ZMM // In the case of SSE disabled --> save to stack CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], CCIfSubtarget<"hasAVX512()",CCAssignToReg>>, // If no register was found -> assign to stack // In 64 bit, assign 64/32 bit values to 8 byte stack CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>>, // In 32 bit, assign 64/32 bit values to 8/4 byte stack CCIfType<[i32, f32], CCAssignToStack<4, 4>>, CCIfType<[i64, f64], CCAssignToStack<8, 4>>, // MMX type gets 8 byte slot in stack , while alignment depends on target CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>, CCIfType<[x86mmx], CCAssignToStack<8, 4>>, // float 128 get stack slots whose size and alignment depends // on the subtarget. CCIfType<[f80, f128], CCAssignToStack<0, 0>>, // Vectors get 16-byte stack slots that are 16-byte aligned. CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCAssignToStack<32, 32>>, // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], CCAssignToStack<64, 64>> ]>; def RetCC_#NAME : CallingConv<[ // Promote i1, v1i1, v8i1 arguments to i8. CCIfType<[i1, v1i1, v8i1], CCPromoteToType>, // Promote v16i1 arguments to i16. CCIfType<[v16i1], CCPromoteToType>, // Promote v32i1 arguments to i32. CCIfType<[v32i1], CCPromoteToType>, // bool, char, int, enum, long, pointer --> GPR CCIfType<[i8], CCAssignToReg>, CCIfType<[i16], CCAssignToReg>, CCIfType<[i32], CCAssignToReg>, // long long, __int64 --> GPR CCIfType<[i64], CCAssignToReg>, // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32) CCIfType<[v64i1], CCPromoteToType>, CCIfSubtarget<"is64Bit()", CCIfType<[i64], CCAssignToReg>>, CCIfSubtarget<"is32Bit()", CCIfType<[i64], CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>, // long double --> FP CCIfType<[f80], CCAssignToReg>, // float, double, float128 --> XMM CCIfType<[f32, f64, f128], CCIfSubtarget<"hasSSE1()", CCAssignToReg>>, // __m128, __m128i, __m128d --> XMM CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfSubtarget<"hasSSE1()", CCAssignToReg>>, // __m256, __m256i, __m256d --> YMM CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCIfSubtarget<"hasAVX()", CCAssignToReg>>, // __m512, __m512i, __m512d --> ZMM CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], CCIfSubtarget<"hasAVX512()", CCAssignToReg>> ]>; } //===----------------------------------------------------------------------===// // Return Value Calling Conventions //===----------------------------------------------------------------------===// // Return-value conventions common to all X86 CC's. def RetCC_X86Common : CallingConv<[ // Scalar values are returned in AX first, then DX. For i8, the ABI // requires the values to be in AL and AH, however this code uses AL and DL // instead. This is because using AH for the second register conflicts with // the way LLVM does multiple return values -- a return of {i16,i8} would end // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI // for functions that return two i8 values are currently expected to pack the // values into an i16 (which uses AX, and thus AL:AH). // // For code that doesn't care about the ABI, we allow returning more than two // integer values in registers. CCIfType<[v1i1], CCPromoteToType>, CCIfType<[i1], CCPromoteToType>, CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>, CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>, // Boolean vectors of AVX-512 are returned in SIMD registers. // The call from AVX to AVX-512 function should work, // since the boolean types in AVX/AVX2 are promoted by default. CCIfType<[v2i1], CCPromoteToType>, CCIfType<[v4i1], CCPromoteToType>, CCIfType<[v8i1], CCPromoteToType>, CCIfType<[v16i1], CCPromoteToType>, CCIfType<[v32i1], CCPromoteToType>, CCIfType<[v64i1], CCPromoteToType>, // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 // can only be used by ABI non-compliant code. If the target doesn't have XMM // registers, it won't have vector types. CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 // can only be used by ABI non-compliant code. This vector type is only // supported while using the AVX target feature. CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3 // can only be used by ABI non-compliant code. This vector type is only // supported while using the AVX-512 target feature. CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64], CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, // MMX vector types are always returned in MM0. If the target doesn't have // MM0, it doesn't support these vector types. CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, // Long double types are always returned in FP0 (even with SSE), // except on Win64. CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>> ]>; // X86-32 C return-value convention. def RetCC_X86_32_C : CallingConv<[ // The X86-32 calling convention returns FP values in FP0, unless marked // with "inreg" (used here to distinguish one kind of reg from another, // weirdly; this is really the sse-regparm calling convention) in which // case they use XMM0, otherwise it is the same as the common X86 calling // conv. CCIfInReg>>>, CCIfSubtarget<"hasX87()", CCIfType<[f32, f64], CCAssignToReg<[FP0, FP1]>>>, CCIfNotSubtarget<"hasX87()", CCIfType<[f32], CCAssignToReg<[EAX, EDX, ECX]>>>, CCIfType<[f16], CCAssignToReg<[XMM0,XMM1,XMM2]>>, CCDelegateTo ]>; // X86-32 FastCC return-value convention. def RetCC_X86_32_Fast : CallingConv<[ // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has // SSE2. // This can happen when a float, 2 x float, or 3 x float vector is split by // target lowering, and is returned in 1-3 sse regs. CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, // For integers, ECX can be used as an extra return register CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>, CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, // Otherwise, it is the same as the common X86 calling convention. CCDelegateTo ]>; // Intel_OCL_BI return-value convention. def RetCC_Intel_OCL_BI : CallingConv<[ // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3. CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, // 256-bit FP vectors // No more than 4 registers CCIfType<[v8f32, v4f64, v8i32, v4i64], CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, // 512-bit FP vectors CCIfType<[v16f32, v8f64, v16i32, v8i64], CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, // i32, i64 in the standard way CCDelegateTo ]>; // X86-32 HiPE return-value convention. def RetCC_X86_32_HiPE : CallingConv<[ // Promote all types to i32 CCIfType<[i8, i16], CCPromoteToType>, // Return: HP, P, VAL1, VAL2 CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>> ]>; // X86-32 Vectorcall return-value convention. def RetCC_X86_32_VectorCall : CallingConv<[ // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3. CCIfType<[f32, f64, f128], CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, // Return integers in the standard way. CCDelegateTo ]>; // X86-64 C return-value convention. def RetCC_X86_64_C : CallingConv<[ // The X86-64 calling convention always returns FP values in XMM0. CCIfType<[f16], CCAssignToReg<[XMM0, XMM1]>>, CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>, // MMX vector types are always returned in XMM0. CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, // Pointers are always returned in full 64-bit registers. CCIfPtr>, CCIfSwiftError>>, CCDelegateTo ]>; // X86-Win64 C return-value convention. def RetCC_X86_Win64_C : CallingConv<[ // The X86-Win64 calling convention always returns __m64 values in RAX. CCIfType<[x86mmx], CCBitConvertToType>, // GCC returns FP values in RAX on Win64. CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType>>, CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType>>, // Otherwise, everything is the same as 'normal' X86-64 C CC. CCDelegateTo ]>; // X86-64 vectorcall return-value convention. def RetCC_X86_64_Vectorcall : CallingConv<[ // Vectorcall calling convention always returns FP values in XMMs. CCIfType<[f32, f64, f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, // Otherwise, everything is the same as Windows X86-64 C CC. CCDelegateTo ]>; // X86-64 HiPE return-value convention. def RetCC_X86_64_HiPE : CallingConv<[ // Promote all types to i64 CCIfType<[i8, i16, i32], CCPromoteToType>, // Return: HP, P, VAL1, VAL2 CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>> ]>; def RetCC_X86_64_Swift : CallingConv<[ CCIfSwiftError>>, // For integers, ECX, R8D can be used as extra return registers. CCIfType<[v1i1], CCPromoteToType>, CCIfType<[i1], CCPromoteToType>, CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>, CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>, CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>, CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>, // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values. CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3. CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, CCDelegateTo ]>; // X86-64 AnyReg return-value convention. No explicit register is specified for // the return-value. The register allocator is allowed and expected to choose // any free register. // // This calling convention is currently only supported by the stackmap and // patchpoint intrinsics. All other uses will result in an assert on Debug // builds. On Release builds we fallback to the X86 C calling convention. def RetCC_X86_64_AnyReg : CallingConv<[ CCCustom<"CC_X86_AnyReg_Error"> ]>; defm X86_32_RegCall : X86_RegCall_base; defm X86_32_RegCallv4_Win : X86_RegCall_base; defm X86_Win64_RegCall : X86_RegCall_base; defm X86_Win64_RegCallv4 : X86_RegCall_base; defm X86_SysV64_RegCall : X86_RegCall_base; // This is the root return-value convention for the X86-32 backend. def RetCC_X86_32 : CallingConv<[ // If FastCC, use RetCC_X86_32_Fast. CCIfCC<"CallingConv::Fast", CCDelegateTo>, CCIfCC<"CallingConv::Tail", CCDelegateTo>, // CFGuard_Check never returns a value so does not need a RetCC. // If HiPE, use RetCC_X86_32_HiPE. CCIfCC<"CallingConv::HiPE", CCDelegateTo>, CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, CCIfCC<"CallingConv::X86_RegCall", CCIfSubtarget<"isTargetWin32()", CCIfRegCallv4>>>, CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo>, // Otherwise, use RetCC_X86_32_C. CCDelegateTo ]>; // This is the root return-value convention for the X86-64 backend. def RetCC_X86_64 : CallingConv<[ // HiPE uses RetCC_X86_64_HiPE CCIfCC<"CallingConv::HiPE", CCDelegateTo>, // Handle AnyReg calls. CCIfCC<"CallingConv::AnyReg", CCDelegateTo>, // Handle Swift calls. CCIfCC<"CallingConv::Swift", CCDelegateTo>, CCIfCC<"CallingConv::SwiftTail", CCDelegateTo>, // Handle explicit CC selection CCIfCC<"CallingConv::Win64", CCDelegateTo>, CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo>, // Handle Vectorcall CC CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, CCIfCC<"CallingConv::X86_RegCall", CCIfSubtarget<"isTargetWin64()", CCIfRegCallv4>>>, CCIfCC<"CallingConv::X86_RegCall", CCIfSubtarget<"isTargetWin64()", CCDelegateTo>>, CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo>, // Mingw64 and native Win64 use Win64 CC CCIfSubtarget<"isTargetWin64()", CCDelegateTo>, // Otherwise, drop to normal X86-64 CC CCDelegateTo ]>; // This is the return-value convention used for the entire X86 backend. let Entry = 1 in def RetCC_X86 : CallingConv<[ // Check if this is the Intel OpenCL built-ins calling convention CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo>, CCIfSubtarget<"is64Bit()", CCDelegateTo>, CCDelegateTo ]>; //===----------------------------------------------------------------------===// // X86-64 Argument Calling Conventions //===----------------------------------------------------------------------===// def CC_X86_64_C : CallingConv<[ // Handles byval parameters. CCIfByVal>, // Promote i1/i8/i16/v1i1 arguments to i32. CCIfType<[i1, i8, i16, v1i1], CCPromoteToType>, // The 'nest' parameter, if any, is passed in R10. CCIfNest>>, CCIfNest>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf>>, // A SwiftError is passed in R12. CCIfSwiftError>>, // Pass SwiftAsync in an otherwise callee saved register so that calls to // normal functions don't need to save it somewhere. CCIfSwiftAsync>>, // For Swift Calling Conventions, pass sret in %rax. CCIfCC<"CallingConv::Swift", CCIfSRet>>>, CCIfCC<"CallingConv::SwiftTail", CCIfSRet>>>, // Pointers are always passed in full 64-bit registers. CCIfPtr>, // The first 6 integer arguments are passed in integer registers. CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, // i128 can be either passed in two i64 registers, or on the stack, but // not split across register and stack. As such, do not allow using R9 // for a split i64. CCIfType<[i64], CCIfSplit>>, CCIfType<[i64], CCIfSplit>>, CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, // The first 8 MMX vector arguments are passed in XMM registers on Darwin. CCIfType<[x86mmx], CCIfSubtarget<"isTargetDarwin()", CCIfSubtarget<"hasSSE2()", CCPromoteToType>>>, // Boolean vectors of AVX-512 are passed in SIMD registers. // The call from AVX to AVX-512 function should work, // since the boolean types in AVX/AVX2 are promoted by default. CCIfType<[v2i1], CCPromoteToType>, CCIfType<[v4i1], CCPromoteToType>, CCIfType<[v8i1], CCPromoteToType>, CCIfType<[v16i1], CCPromoteToType>, CCIfType<[v32i1], CCPromoteToType>, CCIfType<[v64i1], CCPromoteToType>, // The first 8 FP/Vector arguments are passed in XMM registers. CCIfType<[f16, f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCIfSubtarget<"hasSSE1()", CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, // The first 8 256-bit vector arguments are passed in YMM registers, unless // this is a vararg function. // FIXME: This isn't precisely correct; the x86-64 ABI document says that // fixed arguments to vararg functions are supposed to be passed in // registers. Actually modeling that would be a lot of work, though. CCIfNotVarArg>>>, // The first 8 512-bit vector arguments are passed in ZMM registers. CCIfNotVarArg>>>, // Integer/FP values get stored in stack slots that are 8 bytes in size and // 8-byte aligned if there are no more registers to hold them. CCIfType<[i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>, // Long doubles get stack slots whose size and alignment depends on the // subtarget. CCIfType<[f80, f128], CCAssignToStack<0, 0>>, // Vectors get 16-byte stack slots that are 16-byte aligned. CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCAssignToStack<16, 16>>, // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCAssignToStack<32, 32>>, // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64], CCAssignToStack<64, 64>> ]>; // Calling convention used on Win64 def CC_X86_Win64_C : CallingConv<[ // FIXME: Handle varargs. // Byval aggregates are passed by pointer CCIfByVal>, // Promote i1/v1i1 arguments to i8. CCIfType<[i1, v1i1], CCPromoteToType>, // The 'nest' parameter, if any, is passed in R10. CCIfNest>, // A SwiftError is passed in R12. CCIfSwiftError>>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf>>, // Pass SwiftAsync in an otherwise callee saved register so that calls to // normal functions don't need to save it somewhere. CCIfSwiftAsync>>, // The 'CFGuardTarget' parameter, if any, is passed in RAX. CCIfCFGuardTarget>, // 128 bit vectors are passed by pointer CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCPassIndirect>, // 256 bit vectors are passed by pointer CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCPassIndirect>, // 512 bit vectors are passed by pointer CCIfType<[v64i8, v32i16, v16i32, v32f16, v16f32, v8f64, v8i64], CCPassIndirect>, // Long doubles are passed by pointer CCIfType<[f80], CCPassIndirect>, // The first 4 MMX vector arguments are passed in GPRs. CCIfType<[x86mmx], CCBitConvertToType>, // If SSE was disabled, pass FP values smaller than 64-bits as integers in // GPRs or on the stack. CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType>>, CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType>>, // The first 4 FP/Vector arguments are passed in XMM registers. CCIfType<[f16, f32, f64], CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], [RCX , RDX , R8 , R9 ]>>, // The first 4 integer arguments are passed in integer registers. CCIfType<[i8 ], CCAssignToRegWithShadow<[CL , DL , R8B , R9B ], [XMM0, XMM1, XMM2, XMM3]>>, CCIfType<[i16], CCAssignToRegWithShadow<[CX , DX , R8W , R9W ], [XMM0, XMM1, XMM2, XMM3]>>, CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], [XMM0, XMM1, XMM2, XMM3]>>, // Do not pass the sret argument in RCX, the Win64 thiscall calling // convention requires "this" to be passed in RCX. CCIfCC<"CallingConv::X86_ThisCall", CCIfSRet>>>, CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], [XMM0, XMM1, XMM2, XMM3]>>, // Integer/FP values get stored in stack slots that are 8 bytes in size and // 8-byte aligned if there are no more registers to hold them. CCIfType<[i8, i16, i32, i64, f16, f32, f64], CCAssignToStack<8, 8>> ]>; def CC_X86_Win64_VectorCall : CallingConv<[ CCCustom<"CC_X86_64_VectorCall">, // Delegate to fastcall to handle integer types. CCDelegateTo ]>; def CC_X86_64_GHC : CallingConv<[ // Promote i8/i16/i32 arguments to i64. CCIfType<[i8, i16, i32], CCPromoteToType>, // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim CCIfType<[i64], CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, // Pass in STG registers: F1, F2, F3, F4, D1, D2 CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfSubtarget<"hasSSE1()", CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>, // AVX CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCIfSubtarget<"hasAVX()", CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>, // AVX-512 CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], CCIfSubtarget<"hasAVX512()", CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>> ]>; def CC_X86_64_HiPE : CallingConv<[ // Promote i8/i16/i32 arguments to i64. CCIfType<[i8, i16, i32], CCPromoteToType>, // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3 CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>, // Integer/FP values get stored in stack slots that are 8 bytes in size and // 8-byte aligned if there are no more registers to hold them. CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> ]>; // No explicit register is specified for the AnyReg calling convention. The // register allocator may assign the arguments to any free register. // // This calling convention is currently only supported by the stackmap and // patchpoint intrinsics. All other uses will result in an assert on Debug // builds. On Release builds we fallback to the X86 C calling convention. def CC_X86_64_AnyReg : CallingConv<[ CCCustom<"CC_X86_AnyReg_Error"> ]>; //===----------------------------------------------------------------------===// // X86 C Calling Convention //===----------------------------------------------------------------------===// /// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector /// values are spilled on the stack. def CC_X86_32_Vector_Common : CallingConv<[ // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCAssignToStack<16, 16>>, // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCAssignToStack<32, 32>>, // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned. CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64], CCAssignToStack<64, 64>> ]>; /// CC_X86_Win32_Vector - In X86 Win32 calling conventions, extra vector /// values are spilled on the stack. def CC_X86_Win32_Vector : CallingConv<[ // Other SSE vectors get 16-byte stack slots that are 4-byte aligned. CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCAssignToStack<16, 4>>, // 256-bit AVX vectors get 32-byte stack slots that are 4-byte aligned. CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCAssignToStack<32, 4>>, // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 4-byte aligned. CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64], CCAssignToStack<64, 4>> ]>; // CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in // vector registers def CC_X86_32_Vector_Standard : CallingConv<[ // SSE vector arguments are passed in XMM registers. CCIfNotVarArg>>, // AVX 256-bit vector arguments are passed in YMM registers. CCIfNotVarArg>>>, // AVX 512-bit vector arguments are passed in ZMM registers. CCIfNotVarArg>>, CCIfIsVarArgOnWin>, CCDelegateTo ]>; // CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in // vector registers. def CC_X86_32_Vector_Darwin : CallingConv<[ // SSE vector arguments are passed in XMM registers. CCIfNotVarArg>>, // AVX 256-bit vector arguments are passed in YMM registers. CCIfNotVarArg>>>, // AVX 512-bit vector arguments are passed in ZMM registers. CCIfNotVarArg>>, CCDelegateTo ]>; /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP /// values are spilled on the stack. def CC_X86_32_Common : CallingConv<[ // Handles byval/preallocated parameters. CCIfByVal>, CCIfPreallocated>, // The first 3 float or double arguments, if marked 'inreg' and if the call // is not a vararg call and if SSE2 is available, are passed in SSE registers. CCIfNotVarArg>>>>, CCIfNotVarArg>>>, // The first 3 __m64 vector arguments are passed in mmx registers if the // call is not a vararg call. CCIfNotVarArg>>, CCIfType<[f16], CCAssignToStack<4, 4>>, // Integer/Float values get stored in stack slots that are 4 bytes in // size and 4-byte aligned. CCIfType<[i32, f32], CCAssignToStack<4, 4>>, // Doubles get 8-byte slots that are 4-byte aligned. CCIfType<[f64], CCAssignToStack<8, 4>>, // Long doubles get slots whose size and alignment depends on the subtarget. CCIfType<[f80], CCAssignToStack<0, 0>>, // Boolean vectors of AVX-512 are passed in SIMD registers. // The call from AVX to AVX-512 function should work, // since the boolean types in AVX/AVX2 are promoted by default. CCIfType<[v2i1], CCPromoteToType>, CCIfType<[v4i1], CCPromoteToType>, CCIfType<[v8i1], CCPromoteToType>, CCIfType<[v16i1], CCPromoteToType>, CCIfType<[v32i1], CCPromoteToType>, CCIfType<[v64i1], CCPromoteToType>, // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are // passed in the parameter area. CCIfType<[x86mmx], CCAssignToStack<8, 4>>, // Darwin passes vectors in a form that differs from the i386 psABI CCIfSubtarget<"isTargetDarwin()", CCDelegateTo>, // Otherwise, drop to 'normal' X86-32 CC CCDelegateTo ]>; def CC_X86_32_C : CallingConv<[ // Promote i1/i8/i16/v1i1 arguments to i32. CCIfType<[i1, i8, i16, v1i1], CCPromoteToType>, // The 'nest' parameter, if any, is passed in ECX. CCIfNest>, // On swifttailcc pass swiftself in ECX. CCIfCC<"CallingConv::SwiftTail", CCIfSwiftSelf>>>, // The first 3 integer arguments, if marked 'inreg' and if the call is not // a vararg call, are passed in integer registers. CCIfNotVarArg>>>, // Otherwise, same as everything else. CCDelegateTo ]>; def CC_X86_32_MCU : CallingConv<[ // Handles byval parameters. Note that, like FastCC, we can't rely on // the delegation to CC_X86_32_Common because that happens after code that // puts arguments in registers. CCIfByVal>, // Promote i1/i8/i16/v1i1 arguments to i32. CCIfType<[i1, i8, i16, v1i1], CCPromoteToType>, // If the call is not a vararg call, some arguments may be passed // in integer registers. CCIfNotVarArg>>, // Otherwise, same as everything else. CCDelegateTo ]>; def CC_X86_32_FastCall : CallingConv<[ // Promote i1 to i8. CCIfType<[i1], CCPromoteToType>, // The 'nest' parameter, if any, is passed in EAX. CCIfNest>, // The first 2 integer arguments are passed in ECX/EDX CCIfInReg>>, CCIfInReg>>, CCIfInReg>>, // Otherwise, same as everything else. CCDelegateTo ]>; def CC_X86_Win32_VectorCall : CallingConv<[ // Pass floating point in XMMs CCCustom<"CC_X86_32_VectorCall">, // Delegate to fastcall to handle integer types. CCDelegateTo ]>; def CC_X86_32_ThisCall_Common : CallingConv<[ // The first integer argument is passed in ECX CCIfType<[i32], CCAssignToReg<[ECX]>>, // Otherwise, same as everything else. CCDelegateTo ]>; def CC_X86_32_ThisCall_Mingw : CallingConv<[ // Promote i1/i8/i16/v1i1 arguments to i32. CCIfType<[i1, i8, i16, v1i1], CCPromoteToType>, CCDelegateTo ]>; def CC_X86_32_ThisCall_Win : CallingConv<[ // Promote i1/i8/i16/v1i1 arguments to i32. CCIfType<[i1, i8, i16, v1i1], CCPromoteToType>, // Pass sret arguments indirectly through stack. CCIfSRet>, CCDelegateTo ]>; def CC_X86_32_ThisCall : CallingConv<[ CCIfSubtarget<"isTargetCygMing()", CCDelegateTo>, CCDelegateTo ]>; def CC_X86_32_FastCC : CallingConv<[ // Handles byval parameters. Note that we can't rely on the delegation // to CC_X86_32_Common for this because that happens after code that // puts arguments in registers. CCIfByVal>, // Promote i1/i8/i16/v1i1 arguments to i32. CCIfType<[i1, i8, i16, v1i1], CCPromoteToType>, // The 'nest' parameter, if any, is passed in EAX. CCIfNest>, // The first 2 integer arguments are passed in ECX/EDX CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, // The first 3 float or double arguments, if the call is not a vararg // call and if SSE2 is available, are passed in SSE registers. CCIfNotVarArg>>>, // Doubles get 8-byte slots that are 8-byte aligned. CCIfType<[f64], CCAssignToStack<8, 8>>, // Otherwise, same as everything else. CCDelegateTo ]>; def CC_X86_Win32_CFGuard_Check : CallingConv<[ // The CFGuard check call takes exactly one integer argument // (i.e. the target function address), which is passed in ECX. CCIfType<[i32], CCAssignToReg<[ECX]>> ]>; def CC_X86_32_GHC : CallingConv<[ // Promote i8/i16 arguments to i32. CCIfType<[i8, i16], CCPromoteToType>, // Pass in STG registers: Base, Sp, Hp, R1 CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> ]>; def CC_X86_32_HiPE : CallingConv<[ // Promote i8/i16 arguments to i32. CCIfType<[i8, i16], CCPromoteToType>, // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2 CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>, // Integer/Float values get stored in stack slots that are 4 bytes in // size and 4-byte aligned. CCIfType<[i32, f32], CCAssignToStack<4, 4>> ]>; // X86-64 Intel OpenCL built-ins calling convention. def CC_Intel_OCL_BI : CallingConv<[ CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>, CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>, CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>, CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>, CCIfType<[i32], CCAssignToStack<4, 4>>, // The SSE vector arguments are passed in XMM registers. CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, // The 256-bit vector arguments are passed in YMM registers. CCIfType<[v8f32, v4f64, v8i32, v4i64], CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, // The 512-bit vector arguments are passed in ZMM registers. CCIfType<[v16f32, v8f64, v16i32, v8i64], CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>, // Pass masks in mask registers CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>, CCIfSubtarget<"isTargetWin64()", CCDelegateTo>, CCIfSubtarget<"is64Bit()", CCDelegateTo>, CCDelegateTo ]>; //===----------------------------------------------------------------------===// // X86 Root Argument Calling Conventions //===----------------------------------------------------------------------===// // This is the root argument convention for the X86-32 backend. def CC_X86_32 : CallingConv<[ // X86_INTR calling convention is valid in MCU target and should override the // MCU calling convention. Thus, this should be checked before isTargetMCU(). CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>, CCIfSubtarget<"isTargetMCU()", CCDelegateTo>, CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo>, CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo>, CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo>, CCIfCC<"CallingConv::Fast", CCDelegateTo>, CCIfCC<"CallingConv::Tail", CCDelegateTo>, CCIfCC<"CallingConv::GHC", CCDelegateTo>, CCIfCC<"CallingConv::HiPE", CCDelegateTo>, CCIfCC<"CallingConv::X86_RegCall", CCIfSubtarget<"isTargetWin32()", CCIfRegCallv4>>>, CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo>, // Otherwise, drop to normal X86-32 CC CCDelegateTo ]>; // This is the root argument convention for the X86-64 backend. def CC_X86_64 : CallingConv<[ CCIfCC<"CallingConv::GHC", CCDelegateTo>, CCIfCC<"CallingConv::HiPE", CCDelegateTo>, CCIfCC<"CallingConv::AnyReg", CCDelegateTo>, CCIfCC<"CallingConv::Win64", CCDelegateTo>, CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo>, CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, CCIfCC<"CallingConv::X86_RegCall", CCIfSubtarget<"isTargetWin64()", CCIfRegCallv4>>>, CCIfCC<"CallingConv::X86_RegCall", CCIfSubtarget<"isTargetWin64()", CCDelegateTo>>, CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo>, CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>, // Mingw64 and native Win64 use Win64 CC CCIfSubtarget<"isTargetWin64()", CCDelegateTo>, // Otherwise, drop to normal X86-64 CC CCDelegateTo ]>; // This is the argument convention used for the entire X86 backend. let Entry = 1 in def CC_X86 : CallingConv<[ CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo>, CCIfSubtarget<"is64Bit()", CCDelegateTo>, CCDelegateTo ]>; //===----------------------------------------------------------------------===// // Callee-saved Registers. //===----------------------------------------------------------------------===// def CSR_NoRegs : CalleeSavedRegs<(add)>; def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>; def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>; def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>; def CSR_64_SwiftTail : CalleeSavedRegs<(sub CSR_64, R13, R14)>; def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>; def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>; def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>; def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE, (sequence "XMM%u", 6, 15))>; def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>; def CSR_Win64_SwiftTail : CalleeSavedRegs<(sub CSR_Win64, R13, R14)>; // The function used by Darwin to obtain the address of a thread-local variable // uses rdi to pass a single parameter and rax for the return value. All other // GPRs are preserved. def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI, R8, R9, R10, R11)>; // CSRs that are handled by prologue, epilogue. def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>; // CSRs that are handled explicitly via copies. def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>; // All GPRs - except r11 and return registers. def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI, R8, R9, R10)>; def CSR_Win64_RT_MostRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs, (sequence "XMM%u", 6, 15))>; // All registers - except r11 and return registers. def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs, (sequence "XMM%u", 0, 15))>; def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs, (sequence "YMM%u", 0, 15))>; def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15, RBP, (sequence "XMM%u", 0, 15))>; def CSR_32_AllRegs : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI, EDI)>; def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs, (sequence "XMM%u", 0, 7))>; def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs, (sequence "YMM%u", 0, 7))>; def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs, (sequence "ZMM%u", 0, 7), (sequence "K%u", 0, 7))>; def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>; def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15, RBP)>; def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, (sequence "YMM%u", 0, 15)), (sequence "XMM%u", 0, 15))>; def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, (sequence "ZMM%u", 0, 31), (sequence "K%u", 0, 7)), (sequence "XMM%u", 0, 15))>; // Standard C + YMM6-15 def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15, (sequence "YMM%u", 6, 15))>; def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15, (sequence "ZMM%u", 6, 21), K4, K5, K6, K7)>; //Standard C + XMM 8-15 def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64, (sequence "XMM%u", 8, 15))>; //Standard C + YMM 8-15 def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64, (sequence "YMM%u", 8, 15))>; def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15, (sequence "ZMM%u", 16, 31), K4, K5, K6, K7)>; // Register calling convention preserves few GPR and XMM8-15 def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>; def CSR_32_RegCall : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, (sequence "XMM%u", 4, 7))>; def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>; def CSR_Win32_CFGuard_Check : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>; def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, (sequence "R%u", 10, 15))>; def CSR_Win64_RegCall : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE, (sequence "XMM%u", 8, 15))>; def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, (sequence "R%u", 12, 15))>; def CSR_SysV64_RegCall : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE, (sequence "XMM%u", 8, 15))>;