//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to X86 machine code. // //===----------------------------------------------------------------------===// #include "X86AsmPrinter.h" #include "MCTargetDesc/X86ATTInstPrinter.h" #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86MCTargetDesc.h" #include "MCTargetDesc/X86TargetStreamer.h" #include "TargetInfo/X86TargetInfo.h" #include "X86InstrInfo.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; X86AsmPrinter::X86AsmPrinter(TargetMachine &TM, std::unique_ptr Streamer) : AsmPrinter(TM, std::move(Streamer)), FM(*this) {} //===----------------------------------------------------------------------===// // Primitive Helper Functions. //===----------------------------------------------------------------------===// /// runOnMachineFunction - Emit the function body. /// bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); SMShadowTracker.startFunction(MF); CodeEmitter.reset(TM.getTarget().createMCCodeEmitter( *Subtarget->getInstrInfo(), MF.getContext())); EmitFPOData = Subtarget->isTargetWin32() && MF.getMMI().getModule()->getCodeViewFlag(); IndCSPrefix = MF.getMMI().getModule()->getModuleFlag("indirect_branch_cs_prefix"); SetupMachineFunction(MF); if (Subtarget->isTargetCOFF()) { bool Local = MF.getFunction().hasLocalLinkage(); OutStreamer->beginCOFFSymbolDef(CurrentFnSym); OutStreamer->emitCOFFSymbolStorageClass( Local ? COFF::IMAGE_SYM_CLASS_STATIC : COFF::IMAGE_SYM_CLASS_EXTERNAL); OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT); OutStreamer->endCOFFSymbolDef(); } // Emit the rest of the function body. emitFunctionBody(); // Emit the XRay table for this function. emitXRayTable(); EmitFPOData = false; IndCSPrefix = false; // We didn't modify anything. return false; } void X86AsmPrinter::emitFunctionBodyStart() { if (EmitFPOData) { auto *XTS = static_cast(OutStreamer->getTargetStreamer()); XTS->emitFPOProc( CurrentFnSym, MF->getInfo()->getArgumentStackSize()); } } void X86AsmPrinter::emitFunctionBodyEnd() { if (EmitFPOData) { auto *XTS = static_cast(OutStreamer->getTargetStreamer()); XTS->emitFPOEndProc(); } } uint32_t X86AsmPrinter::MaskKCFIType(uint32_t Value) { // If the type hash matches an invalid pattern, mask the value. const uint32_t InvalidValues[] = { 0xFA1E0FF3, /* ENDBR64 */ 0xFB1E0FF3, /* ENDBR32 */ }; for (uint32_t N : InvalidValues) { // LowerKCFI_CHECK emits -Value for indirect call checks, so we must also // mask that. Note that -(Value + 1) == ~Value. if (N == Value || -N == Value) return Value + 1; } return Value; } void X86AsmPrinter::EmitKCFITypePadding(const MachineFunction &MF, bool HasType) { // Keep the function entry aligned, taking patchable-function-prefix into // account if set. int64_t PrefixBytes = 0; (void)MF.getFunction() .getFnAttribute("patchable-function-prefix") .getValueAsString() .getAsInteger(10, PrefixBytes); // Also take the type identifier into account if we're emitting // one. Otherwise, just pad with nops. The X86::MOV32ri instruction emitted // in X86AsmPrinter::emitKCFITypeId is 5 bytes long. if (HasType) PrefixBytes += 5; emitNops(offsetToAlignment(PrefixBytes, MF.getAlignment())); } /// emitKCFITypeId - Emit the KCFI type information in architecture specific /// format. void X86AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { const Function &F = MF.getFunction(); if (!F.getParent()->getModuleFlag("kcfi")) return; ConstantInt *Type = nullptr; if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type)) Type = mdconst::extract(MD->getOperand(0)); // If we don't have a type to emit, just emit padding if needed to maintain // the same alignment for all functions. if (!Type) { EmitKCFITypePadding(MF, /*HasType=*/false); return; } // Emit a function symbol for the type data to avoid unreachable instruction // warnings from binary validation tools, and use the same linkage as the // parent function. Note that using local linkage would result in duplicate // symbols for weak parent functions. MCSymbol *FnSym = OutContext.getOrCreateSymbol("__cfi_" + MF.getName()); emitLinkage(&MF.getFunction(), FnSym); if (MAI->hasDotTypeDotSizeDirective()) OutStreamer->emitSymbolAttribute(FnSym, MCSA_ELF_TypeFunction); OutStreamer->emitLabel(FnSym); // Embed the type hash in the X86::MOV32ri instruction to avoid special // casing object file parsers. EmitKCFITypePadding(MF); EmitAndCountInstruction(MCInstBuilder(X86::MOV32ri) .addReg(X86::EAX) .addImm(MaskKCFIType(Type->getZExtValue()))); if (MAI->hasDotTypeDotSizeDirective()) { MCSymbol *EndSym = OutContext.createTempSymbol("cfi_func_end"); OutStreamer->emitLabel(EndSym); const MCExpr *SizeExp = MCBinaryExpr::createSub( MCSymbolRefExpr::create(EndSym, OutContext), MCSymbolRefExpr::create(FnSym, OutContext), OutContext); OutStreamer->emitELFSize(FnSym, SizeExp); } } /// PrintSymbolOperand - Print a raw symbol reference operand. This handles /// jump tables, constant pools, global address and external symbols, all of /// which print to a label with various suffixes for relocation types etc. void X86AsmPrinter::PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) { switch (MO.getType()) { default: llvm_unreachable("unknown symbol type!"); case MachineOperand::MO_ConstantPoolIndex: GetCPISymbol(MO.getIndex())->print(O, MAI); printOffset(MO.getOffset(), O); break; case MachineOperand::MO_GlobalAddress: { const GlobalValue *GV = MO.getGlobal(); MCSymbol *GVSym; if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY || MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) GVSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); else GVSym = getSymbolPreferLocal(*GV); // Handle dllimport linkage. if (MO.getTargetFlags() == X86II::MO_DLLIMPORT) GVSym = OutContext.getOrCreateSymbol(Twine("__imp_") + GVSym->getName()); else if (MO.getTargetFlags() == X86II::MO_COFFSTUB) GVSym = OutContext.getOrCreateSymbol(Twine(".refptr.") + GVSym->getName()); if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY || MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) { MCSymbol *Sym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); MachineModuleInfoImpl::StubValueTy &StubSym = MMI->getObjFileInfo().getGVStubEntry(Sym); if (!StubSym.getPointer()) StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), !GV->hasInternalLinkage()); } // If the name begins with a dollar-sign, enclose it in parens. We do this // to avoid having it look like an integer immediate to the assembler. if (GVSym->getName()[0] != '$') GVSym->print(O, MAI); else { O << '('; GVSym->print(O, MAI); O << ')'; } printOffset(MO.getOffset(), O); break; } } switch (MO.getTargetFlags()) { default: llvm_unreachable("Unknown target flag on GV operand"); case X86II::MO_NO_FLAG: // No flag. break; case X86II::MO_DARWIN_NONLAZY: case X86II::MO_DLLIMPORT: case X86II::MO_COFFSTUB: // These affect the name of the symbol, not any suffix. break; case X86II::MO_GOT_ABSOLUTE_ADDRESS: O << " + [.-"; MF->getPICBaseSymbol()->print(O, MAI); O << ']'; break; case X86II::MO_PIC_BASE_OFFSET: case X86II::MO_DARWIN_NONLAZY_PIC_BASE: O << '-'; MF->getPICBaseSymbol()->print(O, MAI); break; case X86II::MO_TLSGD: O << "@TLSGD"; break; case X86II::MO_TLSLD: O << "@TLSLD"; break; case X86II::MO_TLSLDM: O << "@TLSLDM"; break; case X86II::MO_GOTTPOFF: O << "@GOTTPOFF"; break; case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break; case X86II::MO_TPOFF: O << "@TPOFF"; break; case X86II::MO_DTPOFF: O << "@DTPOFF"; break; case X86II::MO_NTPOFF: O << "@NTPOFF"; break; case X86II::MO_GOTNTPOFF: O << "@GOTNTPOFF"; break; case X86II::MO_GOTPCREL: O << "@GOTPCREL"; break; case X86II::MO_GOTPCREL_NORELAX: O << "@GOTPCREL_NORELAX"; break; case X86II::MO_GOT: O << "@GOT"; break; case X86II::MO_GOTOFF: O << "@GOTOFF"; break; case X86II::MO_PLT: O << "@PLT"; break; case X86II::MO_TLVP: O << "@TLVP"; break; case X86II::MO_TLVP_PIC_BASE: O << "@TLVP" << '-'; MF->getPICBaseSymbol()->print(O, MAI); break; case X86II::MO_SECREL: O << "@SECREL32"; break; } } void X86AsmPrinter::PrintOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNo); const bool IsATT = MI->getInlineAsmDialect() == InlineAsm::AD_ATT; switch (MO.getType()) { default: llvm_unreachable("unknown operand type!"); case MachineOperand::MO_Register: { if (IsATT) O << '%'; O << X86ATTInstPrinter::getRegisterName(MO.getReg()); return; } case MachineOperand::MO_Immediate: if (IsATT) O << '$'; O << MO.getImm(); return; case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_GlobalAddress: { switch (MI->getInlineAsmDialect()) { case InlineAsm::AD_ATT: O << '$'; break; case InlineAsm::AD_Intel: O << "offset "; break; } PrintSymbolOperand(MO, O); break; } case MachineOperand::MO_BlockAddress: { MCSymbol *Sym = GetBlockAddressSymbol(MO.getBlockAddress()); Sym->print(O, MAI); break; } } } /// PrintModifiedOperand - Print subregisters based on supplied modifier, /// deferring to PrintOperand() if no modifier was supplied or if operand is not /// a register. void X86AsmPrinter::PrintModifiedOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O, const char *Modifier) { const MachineOperand &MO = MI->getOperand(OpNo); if (!Modifier || !MO.isReg()) return PrintOperand(MI, OpNo, O); if (MI->getInlineAsmDialect() == InlineAsm::AD_ATT) O << '%'; Register Reg = MO.getReg(); if (strncmp(Modifier, "subreg", strlen("subreg")) == 0) { unsigned Size = (strcmp(Modifier+6,"64") == 0) ? 64 : (strcmp(Modifier+6,"32") == 0) ? 32 : (strcmp(Modifier+6,"16") == 0) ? 16 : 8; Reg = getX86SubSuperRegister(Reg, Size); } O << X86ATTInstPrinter::getRegisterName(Reg); } /// PrintPCRelImm - This is used to print an immediate value that ends up /// being encoded as a pc-relative value. These print slightly differently, for /// example, a $ is not emitted. void X86AsmPrinter::PrintPCRelImm(const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNo); switch (MO.getType()) { default: llvm_unreachable("Unknown pcrel immediate operand"); case MachineOperand::MO_Register: // pc-relativeness was handled when computing the value in the reg. PrintOperand(MI, OpNo, O); return; case MachineOperand::MO_Immediate: O << MO.getImm(); return; case MachineOperand::MO_GlobalAddress: PrintSymbolOperand(MO, O); return; } } void X86AsmPrinter::PrintLeaMemReference(const MachineInstr *MI, unsigned OpNo, raw_ostream &O, const char *Modifier) { const MachineOperand &BaseReg = MI->getOperand(OpNo + X86::AddrBaseReg); const MachineOperand &IndexReg = MI->getOperand(OpNo + X86::AddrIndexReg); const MachineOperand &DispSpec = MI->getOperand(OpNo + X86::AddrDisp); // If we really don't want to print out (rip), don't. bool HasBaseReg = BaseReg.getReg() != 0; if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") && BaseReg.getReg() == X86::RIP) HasBaseReg = false; // HasParenPart - True if we will print out the () part of the mem ref. bool HasParenPart = IndexReg.getReg() || HasBaseReg; switch (DispSpec.getType()) { default: llvm_unreachable("unknown operand type!"); case MachineOperand::MO_Immediate: { int DispVal = DispSpec.getImm(); if (DispVal || !HasParenPart) O << DispVal; break; } case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_ConstantPoolIndex: PrintSymbolOperand(DispSpec, O); break; } if (Modifier && strcmp(Modifier, "H") == 0) O << "+8"; if (HasParenPart) { assert(IndexReg.getReg() != X86::ESP && "X86 doesn't allow scaling by ESP"); O << '('; if (HasBaseReg) PrintModifiedOperand(MI, OpNo + X86::AddrBaseReg, O, Modifier); if (IndexReg.getReg()) { O << ','; PrintModifiedOperand(MI, OpNo + X86::AddrIndexReg, O, Modifier); unsigned ScaleVal = MI->getOperand(OpNo + X86::AddrScaleAmt).getImm(); if (ScaleVal != 1) O << ',' << ScaleVal; } O << ')'; } } static bool isSimpleReturn(const MachineInstr &MI) { // We exclude all tail calls here which set both isReturn and isCall. return MI.getDesc().isReturn() && !MI.getDesc().isCall(); } static bool isIndirectBranchOrTailCall(const MachineInstr &MI) { unsigned Opc = MI.getOpcode(); return MI.getDesc().isIndirectBranch() /*Make below code in a good shape*/ || Opc == X86::TAILJMPr || Opc == X86::TAILJMPm || Opc == X86::TAILJMPr64 || Opc == X86::TAILJMPm64 || Opc == X86::TCRETURNri || Opc == X86::TCRETURNmi || Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNmi64 || Opc == X86::TAILJMPr64_REX || Opc == X86::TAILJMPm64_REX; } void X86AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { if (Subtarget->hardenSlsRet() || Subtarget->hardenSlsIJmp()) { auto I = MBB.getLastNonDebugInstr(); if (I != MBB.end()) { if ((Subtarget->hardenSlsRet() && isSimpleReturn(*I)) || (Subtarget->hardenSlsIJmp() && isIndirectBranchOrTailCall(*I))) { MCInst TmpInst; TmpInst.setOpcode(X86::INT3); EmitToStreamer(*OutStreamer, TmpInst); } } } AsmPrinter::emitBasicBlockEnd(MBB); SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo()); } void X86AsmPrinter::PrintMemReference(const MachineInstr *MI, unsigned OpNo, raw_ostream &O, const char *Modifier) { assert(isMem(*MI, OpNo) && "Invalid memory reference!"); const MachineOperand &Segment = MI->getOperand(OpNo + X86::AddrSegmentReg); if (Segment.getReg()) { PrintModifiedOperand(MI, OpNo + X86::AddrSegmentReg, O, Modifier); O << ':'; } PrintLeaMemReference(MI, OpNo, O, Modifier); } void X86AsmPrinter::PrintIntelMemReference(const MachineInstr *MI, unsigned OpNo, raw_ostream &O, const char *Modifier) { const MachineOperand &BaseReg = MI->getOperand(OpNo + X86::AddrBaseReg); unsigned ScaleVal = MI->getOperand(OpNo + X86::AddrScaleAmt).getImm(); const MachineOperand &IndexReg = MI->getOperand(OpNo + X86::AddrIndexReg); const MachineOperand &DispSpec = MI->getOperand(OpNo + X86::AddrDisp); const MachineOperand &SegReg = MI->getOperand(OpNo + X86::AddrSegmentReg); // If we really don't want to print out (rip), don't. bool HasBaseReg = BaseReg.getReg() != 0; if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") && BaseReg.getReg() == X86::RIP) HasBaseReg = false; // If we really just want to print out displacement. if (Modifier && (DispSpec.isGlobal() || DispSpec.isSymbol()) && !strcmp(Modifier, "disp-only")) { HasBaseReg = false; } // If this has a segment register, print it. if (SegReg.getReg()) { PrintOperand(MI, OpNo + X86::AddrSegmentReg, O); O << ':'; } O << '['; bool NeedPlus = false; if (HasBaseReg) { PrintOperand(MI, OpNo + X86::AddrBaseReg, O); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (ScaleVal != 1) O << ScaleVal << '*'; PrintOperand(MI, OpNo + X86::AddrIndexReg, O); NeedPlus = true; } if (!DispSpec.isImm()) { if (NeedPlus) O << " + "; // Do not add `offset` operator. Matches the behaviour of // X86IntelInstPrinter::printMemReference. PrintSymbolOperand(DispSpec, O); } else { int64_t DispVal = DispSpec.getImm(); if (DispVal || (!IndexReg.getReg() && !HasBaseReg)) { if (NeedPlus) { if (DispVal > 0) O << " + "; else { O << " - "; DispVal = -DispVal; } } O << DispVal; } } O << ']'; } const MCSubtargetInfo *X86AsmPrinter::getIFuncMCSubtargetInfo() const { assert(Subtarget); return Subtarget; } void X86AsmPrinter::emitMachOIFuncStubBody(Module &M, const GlobalIFunc &GI, MCSymbol *LazyPointer) { // _ifunc: // jmpq *lazy_pointer(%rip) OutStreamer->emitInstruction( MCInstBuilder(X86::JMP32m) .addReg(X86::RIP) .addImm(1) .addReg(0) .addOperand(MCOperand::createExpr( MCSymbolRefExpr::create(LazyPointer, OutContext))) .addReg(0), *Subtarget); } void X86AsmPrinter::emitMachOIFuncStubHelperBody(Module &M, const GlobalIFunc &GI, MCSymbol *LazyPointer) { // _ifunc.stub_helper: // push %rax // push %rdi // push %rsi // push %rdx // push %rcx // push %r8 // push %r9 // callq foo // movq %rax,lazy_pointer(%rip) // pop %r9 // pop %r8 // pop %rcx // pop %rdx // pop %rsi // pop %rdi // pop %rax // jmpq *lazy_pointer(%rip) for (int Reg : {X86::RAX, X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9}) OutStreamer->emitInstruction(MCInstBuilder(X86::PUSH64r).addReg(Reg), *Subtarget); OutStreamer->emitInstruction( MCInstBuilder(X86::CALL64pcrel32) .addOperand(MCOperand::createExpr(lowerConstant(GI.getResolver()))), *Subtarget); OutStreamer->emitInstruction( MCInstBuilder(X86::MOV64mr) .addReg(X86::RIP) .addImm(1) .addReg(0) .addOperand(MCOperand::createExpr( MCSymbolRefExpr::create(LazyPointer, OutContext))) .addReg(0) .addReg(X86::RAX), *Subtarget); for (int Reg : {X86::R9, X86::R8, X86::RCX, X86::RDX, X86::RSI, X86::RDI, X86::RAX}) OutStreamer->emitInstruction(MCInstBuilder(X86::POP64r).addReg(Reg), *Subtarget); OutStreamer->emitInstruction( MCInstBuilder(X86::JMP32m) .addReg(X86::RIP) .addImm(1) .addReg(0) .addOperand(MCOperand::createExpr( MCSymbolRefExpr::create(LazyPointer, OutContext))) .addReg(0), *Subtarget); } static bool printAsmMRegister(const X86AsmPrinter &P, const MachineOperand &MO, char Mode, raw_ostream &O) { Register Reg = MO.getReg(); bool EmitPercent = MO.getParent()->getInlineAsmDialect() == InlineAsm::AD_ATT; if (!X86::GR8RegClass.contains(Reg) && !X86::GR16RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg) && !X86::GR64RegClass.contains(Reg)) return true; switch (Mode) { default: return true; // Unknown mode. case 'b': // Print QImode register Reg = getX86SubSuperRegister(Reg, 8); break; case 'h': // Print QImode high register Reg = getX86SubSuperRegister(Reg, 8, true); if (!Reg.isValid()) return true; break; case 'w': // Print HImode register Reg = getX86SubSuperRegister(Reg, 16); break; case 'k': // Print SImode register Reg = getX86SubSuperRegister(Reg, 32); break; case 'V': EmitPercent = false; [[fallthrough]]; case 'q': // Print 64-bit register names if 64-bit integer registers are available. // Otherwise, print 32-bit register names. Reg = getX86SubSuperRegister(Reg, P.getSubtarget().is64Bit() ? 64 : 32); break; } if (EmitPercent) O << '%'; O << X86ATTInstPrinter::getRegisterName(Reg); return false; } static bool printAsmVRegister(const MachineOperand &MO, char Mode, raw_ostream &O) { Register Reg = MO.getReg(); bool EmitPercent = MO.getParent()->getInlineAsmDialect() == InlineAsm::AD_ATT; unsigned Index; if (X86::VR128XRegClass.contains(Reg)) Index = Reg - X86::XMM0; else if (X86::VR256XRegClass.contains(Reg)) Index = Reg - X86::YMM0; else if (X86::VR512RegClass.contains(Reg)) Index = Reg - X86::ZMM0; else return true; switch (Mode) { default: // Unknown mode. return true; case 'x': // Print V4SFmode register Reg = X86::XMM0 + Index; break; case 't': // Print V8SFmode register Reg = X86::YMM0 + Index; break; case 'g': // Print V16SFmode register Reg = X86::ZMM0 + Index; break; } if (EmitPercent) O << '%'; O << X86ATTInstPrinter::getRegisterName(Reg); return false; } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool X86AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. const MachineOperand &MO = MI->getOperand(OpNo); switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); case 'a': // This is an address. Currently only 'i' and 'r' are expected. switch (MO.getType()) { default: return true; case MachineOperand::MO_Immediate: O << MO.getImm(); return false; case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_JumpTableIndex: case MachineOperand::MO_ExternalSymbol: llvm_unreachable("unexpected operand type!"); case MachineOperand::MO_GlobalAddress: PrintSymbolOperand(MO, O); if (Subtarget->isPICStyleRIPRel()) O << "(%rip)"; return false; case MachineOperand::MO_Register: O << '('; PrintOperand(MI, OpNo, O); O << ')'; return false; } case 'c': // Don't print "$" before a global var name or constant. switch (MO.getType()) { default: PrintOperand(MI, OpNo, O); break; case MachineOperand::MO_Immediate: O << MO.getImm(); break; case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_JumpTableIndex: case MachineOperand::MO_ExternalSymbol: llvm_unreachable("unexpected operand type!"); case MachineOperand::MO_GlobalAddress: PrintSymbolOperand(MO, O); break; } return false; case 'A': // Print '*' before a register (it must be a register) if (MO.isReg()) { O << '*'; PrintOperand(MI, OpNo, O); return false; } return true; case 'b': // Print QImode register case 'h': // Print QImode high register case 'w': // Print HImode register case 'k': // Print SImode register case 'q': // Print DImode register case 'V': // Print native register without '%' if (MO.isReg()) return printAsmMRegister(*this, MO, ExtraCode[0], O); PrintOperand(MI, OpNo, O); return false; case 'x': // Print V4SFmode register case 't': // Print V8SFmode register case 'g': // Print V16SFmode register if (MO.isReg()) return printAsmVRegister(MO, ExtraCode[0], O); PrintOperand(MI, OpNo, O); return false; case 'p': { const MachineOperand &MO = MI->getOperand(OpNo); if (MO.getType() != MachineOperand::MO_GlobalAddress) return true; PrintSymbolOperand(MO, O); return false; } case 'P': // This is the operand of a call, treat specially. PrintPCRelImm(MI, OpNo, O); return false; case 'n': // Negate the immediate or print a '-' before the operand. // Note: this is a temporary solution. It should be handled target // independently as part of the 'MC' work. if (MO.isImm()) { O << -MO.getImm(); return false; } O << '-'; } } PrintOperand(MI, OpNo, O); return false; } bool X86AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'b': // Print QImode register case 'h': // Print QImode high register case 'w': // Print HImode register case 'k': // Print SImode register case 'q': // Print SImode register // These only apply to registers, ignore on mem. break; case 'H': if (MI->getInlineAsmDialect() == InlineAsm::AD_Intel) { return true; // Unsupported modifier in Intel inline assembly. } else { PrintMemReference(MI, OpNo, O, "H"); } return false; // Print memory only with displacement. The Modifer 'P' is used in inline // asm to present a call symbol or a global symbol which can not use base // reg or index reg. case 'P': if (MI->getInlineAsmDialect() == InlineAsm::AD_Intel) { PrintIntelMemReference(MI, OpNo, O, "disp-only"); } else { PrintMemReference(MI, OpNo, O, "disp-only"); } return false; } } if (MI->getInlineAsmDialect() == InlineAsm::AD_Intel) { PrintIntelMemReference(MI, OpNo, O, nullptr); } else { PrintMemReference(MI, OpNo, O, nullptr); } return false; } void X86AsmPrinter::emitStartOfAsmFile(Module &M) { const Triple &TT = TM.getTargetTriple(); if (TT.isOSBinFormatELF()) { // Assemble feature flags that may require creation of a note section. unsigned FeatureFlagsAnd = 0; if (M.getModuleFlag("cf-protection-branch")) FeatureFlagsAnd |= ELF::GNU_PROPERTY_X86_FEATURE_1_IBT; if (M.getModuleFlag("cf-protection-return")) FeatureFlagsAnd |= ELF::GNU_PROPERTY_X86_FEATURE_1_SHSTK; if (FeatureFlagsAnd) { // Emit a .note.gnu.property section with the flags. assert((TT.isArch32Bit() || TT.isArch64Bit()) && "CFProtection used on invalid architecture!"); MCSection *Cur = OutStreamer->getCurrentSectionOnly(); MCSection *Nt = MMI->getContext().getELFSection( ".note.gnu.property", ELF::SHT_NOTE, ELF::SHF_ALLOC); OutStreamer->switchSection(Nt); // Emitting note header. const int WordSize = TT.isArch64Bit() && !TT.isX32() ? 8 : 4; emitAlignment(WordSize == 4 ? Align(4) : Align(8)); OutStreamer->emitIntValue(4, 4 /*size*/); // data size for "GNU\0" OutStreamer->emitIntValue(8 + WordSize, 4 /*size*/); // Elf_Prop size OutStreamer->emitIntValue(ELF::NT_GNU_PROPERTY_TYPE_0, 4 /*size*/); OutStreamer->emitBytes(StringRef("GNU", 4)); // note name // Emitting an Elf_Prop for the CET properties. OutStreamer->emitInt32(ELF::GNU_PROPERTY_X86_FEATURE_1_AND); OutStreamer->emitInt32(4); // data size OutStreamer->emitInt32(FeatureFlagsAnd); // data emitAlignment(WordSize == 4 ? Align(4) : Align(8)); // padding OutStreamer->switchSection(Cur); } } if (TT.isOSBinFormatMachO()) OutStreamer->switchSection(getObjFileLowering().getTextSection()); if (TT.isOSBinFormatCOFF()) { // Emit an absolute @feat.00 symbol. MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00")); OutStreamer->beginCOFFSymbolDef(S); OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC); OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL); OutStreamer->endCOFFSymbolDef(); int64_t Feat00Value = 0; if (TT.getArch() == Triple::x86) { // According to the PE-COFF spec, the LSB of this value marks the object // for "registered SEH". This means that all SEH handler entry points // must be registered in .sxdata. Use of any unregistered handlers will // cause the process to terminate immediately. LLVM does not know how to // register any SEH handlers, so its object files should be safe. Feat00Value |= COFF::Feat00Flags::SafeSEH; } if (M.getModuleFlag("cfguard")) { // Object is CFG-aware. Feat00Value |= COFF::Feat00Flags::GuardCF; } if (M.getModuleFlag("ehcontguard")) { // Object also has EHCont. Feat00Value |= COFF::Feat00Flags::GuardEHCont; } if (M.getModuleFlag("ms-kernel")) { // Object is compiled with /kernel. Feat00Value |= COFF::Feat00Flags::Kernel; } OutStreamer->emitSymbolAttribute(S, MCSA_Global); OutStreamer->emitAssignment( S, MCConstantExpr::create(Feat00Value, MMI->getContext())); } OutStreamer->emitSyntaxDirective(); // If this is not inline asm and we're in 16-bit // mode prefix assembly with .code16. bool is16 = TT.getEnvironment() == Triple::CODE16; if (M.getModuleInlineAsm().empty() && is16) OutStreamer->emitAssemblerFlag(MCAF_Code16); } static void emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, MachineModuleInfoImpl::StubValueTy &MCSym) { // L_foo$stub: OutStreamer.emitLabel(StubLabel); // .indirect_symbol _foo OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); if (MCSym.getInt()) // External to current translation unit. OutStreamer.emitIntValue(0, 4/*size*/); else // Internal to current translation unit. // // When we place the LSDA into the TEXT section, the type info // pointers need to be indirect and pc-rel. We accomplish this by // using NLPs; however, sometimes the types are local to the file. // We need to fill in the value for the NLP in those cases. OutStreamer.emitValue( MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 4 /*size*/); } static void emitNonLazyStubs(MachineModuleInfo *MMI, MCStreamer &OutStreamer) { MachineModuleInfoMachO &MMIMacho = MMI->getObjFileInfo(); // Output stubs for dynamically-linked functions. MachineModuleInfoMachO::SymbolListTy Stubs; // Output stubs for external and common global variables. Stubs = MMIMacho.GetGVStubList(); if (!Stubs.empty()) { OutStreamer.switchSection(MMI->getContext().getMachOSection( "__IMPORT", "__pointers", MachO::S_NON_LAZY_SYMBOL_POINTERS, SectionKind::getMetadata())); for (auto &Stub : Stubs) emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second); Stubs.clear(); OutStreamer.addBlankLine(); } } void X86AsmPrinter::emitEndOfAsmFile(Module &M) { const Triple &TT = TM.getTargetTriple(); if (TT.isOSBinFormatMachO()) { // Mach-O uses non-lazy symbol stubs to encode per-TU information into // global table for symbol lookup. emitNonLazyStubs(MMI, *OutStreamer); // Emit fault map information. FM.serializeToFaultMapSection(); // This flag tells the linker that no global symbols contain code that fall // through to other global symbols (e.g. an implementation of multiple entry // points). If this doesn't occur, the linker can safely perform dead code // stripping. Since LLVM never generates code that does this, it is always // safe to set. OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); } else if (TT.isOSBinFormatCOFF()) { if (MMI->usesMSVCFloatingPoint()) { // In Windows' libcmt.lib, there is a file which is linked in only if the // symbol _fltused is referenced. Linking this in causes some // side-effects: // // 1. For x86-32, it will set the x87 rounding mode to 53-bit instead of // 64-bit mantissas at program start. // // 2. It links in support routines for floating-point in scanf and printf. // // MSVC emits an undefined reference to _fltused when there are any // floating point operations in the program (including calls). A program // that only has: `scanf("%f", &global_float);` may fail to trigger this, // but oh well...that's a documented issue. StringRef SymbolName = (TT.getArch() == Triple::x86) ? "__fltused" : "_fltused"; MCSymbol *S = MMI->getContext().getOrCreateSymbol(SymbolName); OutStreamer->emitSymbolAttribute(S, MCSA_Global); return; } } else if (TT.isOSBinFormatELF()) { FM.serializeToFaultMapSection(); } // Emit __morestack address if needed for indirect calls. if (TT.getArch() == Triple::x86_64 && TM.getCodeModel() == CodeModel::Large) { if (MCSymbol *AddrSymbol = OutContext.lookupSymbol("__morestack_addr")) { Align Alignment(1); MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( getDataLayout(), SectionKind::getReadOnly(), /*C=*/nullptr, Alignment); OutStreamer->switchSection(ReadOnlySection); OutStreamer->emitLabel(AddrSymbol); unsigned PtrSize = MAI->getCodePointerSize(); OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), PtrSize); } } } //===----------------------------------------------------------------------===// // Target Registry Stuff //===----------------------------------------------------------------------===// // Force static initialization. extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86AsmPrinter() { RegisterAsmPrinter X(getTheX86_32Target()); RegisterAsmPrinter Y(getTheX86_64Target()); }