//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the X86MCCodeEmitter class. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86FixupKinds.h" #include "MCTargetDesc/X86MCTargetDesc.h" #include "llvm/ADT/SmallVector.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "mccodeemitter" namespace { class X86MCCodeEmitter : public MCCodeEmitter { const MCInstrInfo &MCII; MCContext &Ctx; public: X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx) : MCII(mcii), Ctx(ctx) {} X86MCCodeEmitter(const X86MCCodeEmitter &) = delete; X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete; ~X86MCCodeEmitter() override = default; void emitPrefix(const MCInst &MI, raw_ostream &OS, const MCSubtargetInfo &STI) const override; void encodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override; private: unsigned getX86RegNum(const MCOperand &MO) const; unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const; /// \param MI a single low-level machine instruction. /// \param OpNum the operand #. /// \returns true if the OpNumth operand of MI require a bit to be set in /// REX prefix. bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const; void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize, MCFixupKind FixupKind, uint64_t StartByte, raw_ostream &OS, SmallVectorImpl &Fixups, int ImmOffset = 0) const; void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, raw_ostream &OS) const; void emitSIBByte(unsigned SS, unsigned Index, unsigned Base, raw_ostream &OS) const; void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags, bool HasREX, uint64_t StartByte, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI, bool ForceSIB = false) const; bool emitPrefixImpl(unsigned &CurOp, const MCInst &MI, const MCSubtargetInfo &STI, raw_ostream &OS) const; void emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, raw_ostream &OS) const; void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI, raw_ostream &OS) const; bool emitOpcodePrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, raw_ostream &OS) const; bool emitREXPrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, raw_ostream &OS) const; }; } // end anonymous namespace static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } static void emitByte(uint8_t C, raw_ostream &OS) { OS << static_cast(C); } static void emitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) { // Output the constant in little endian byte order. for (unsigned i = 0; i != Size; ++i) { emitByte(Val & 255, OS); Val >>= 8; } } /// Determine if this immediate can fit in a disp8 or a compressed disp8 for /// EVEX instructions. \p will be set to the value to pass to the ImmOffset /// parameter of emitImmediate. static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) { bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX; int CD8_Scale = (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift; if (!HasEVEX || CD8_Scale == 0) return isInt<8>(Value); assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!"); if (Value & (CD8_Scale - 1)) // Unaligned offset return false; int CDisp8 = Value / CD8_Scale; if (!isInt<8>(CDisp8)) return false; // ImmOffset will be added to Value in emitImmediate leaving just CDisp8. ImmOffset = CDisp8 - Value; return true; } /// \returns the appropriate fixup kind to use for an immediate in an /// instruction with the specified TSFlags. static MCFixupKind getImmFixupKind(uint64_t TSFlags) { unsigned Size = X86II::getSizeOfImm(TSFlags); bool isPCRel = X86II::isImmPCRel(TSFlags); if (X86II::isImmSigned(TSFlags)) { switch (Size) { default: llvm_unreachable("Unsupported signed fixup size!"); case 4: return MCFixupKind(X86::reloc_signed_4byte); } } return MCFixup::getKindForSize(Size, isPCRel); } enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff }; /// Check if this expression starts with _GLOBAL_OFFSET_TABLE_ and if it is /// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on /// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a /// binary expression. static GlobalOffsetTableExprKind startsWithGlobalOffsetTable(const MCExpr *Expr) { const MCExpr *RHS = nullptr; if (Expr->getKind() == MCExpr::Binary) { const MCBinaryExpr *BE = static_cast(Expr); Expr = BE->getLHS(); RHS = BE->getRHS(); } if (Expr->getKind() != MCExpr::SymbolRef) return GOT_None; const MCSymbolRefExpr *Ref = static_cast(Expr); const MCSymbol &S = Ref->getSymbol(); if (S.getName() != "_GLOBAL_OFFSET_TABLE_") return GOT_None; if (RHS && RHS->getKind() == MCExpr::SymbolRef) return GOT_SymDiff; return GOT_Normal; } static bool hasSecRelSymbolRef(const MCExpr *Expr) { if (Expr->getKind() == MCExpr::SymbolRef) { const MCSymbolRefExpr *Ref = static_cast(Expr); return Ref->getKind() == MCSymbolRefExpr::VK_SECREL; } return false; } static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 && Opcode != X86::JCC_4) || getImmFixupKind(Desc.TSFlags) != FK_PCRel_4) return false; unsigned CurOp = X86II::getOperandBias(Desc); const MCOperand &Op = MI.getOperand(CurOp); if (!Op.isExpr()) return false; const MCSymbolRefExpr *Ref = dyn_cast(Op.getExpr()); return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None; } unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const { return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7; } unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI, unsigned OpNum) const { return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg()); } /// \param MI a single low-level machine instruction. /// \param OpNum the operand #. /// \returns true if the OpNumth operand of MI require a bit to be set in /// REX prefix. bool X86MCCodeEmitter::isREXExtendedReg(const MCInst &MI, unsigned OpNum) const { return (getX86RegEncoding(MI, OpNum) >> 3) & 1; } void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size, MCFixupKind FixupKind, uint64_t StartByte, raw_ostream &OS, SmallVectorImpl &Fixups, int ImmOffset) const { const MCExpr *Expr = nullptr; if (DispOp.isImm()) { // If this is a simple integer displacement that doesn't require a // relocation, emit it now. if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 && FixupKind != FK_PCRel_4) { emitConstant(DispOp.getImm() + ImmOffset, Size, OS); return; } Expr = MCConstantExpr::create(DispOp.getImm(), Ctx); } else { Expr = DispOp.getExpr(); } // If we have an immoffset, add it to the expression. if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 || FixupKind == MCFixupKind(X86::reloc_signed_4byte))) { GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr); if (Kind != GOT_None) { assert(ImmOffset == 0); if (Size == 8) { FixupKind = MCFixupKind(X86::reloc_global_offset_table8); } else { assert(Size == 4); FixupKind = MCFixupKind(X86::reloc_global_offset_table); } if (Kind == GOT_Normal) ImmOffset = static_cast(OS.tell() - StartByte); } else if (Expr->getKind() == MCExpr::SymbolRef) { if (hasSecRelSymbolRef(Expr)) { FixupKind = MCFixupKind(FK_SecRel_4); } } else if (Expr->getKind() == MCExpr::Binary) { const MCBinaryExpr *Bin = static_cast(Expr); if (hasSecRelSymbolRef(Bin->getLHS()) || hasSecRelSymbolRef(Bin->getRHS())) { FixupKind = MCFixupKind(FK_SecRel_4); } } } // If the fixup is pc-relative, we need to bias the value to be relative to // the start of the field, not the end of the field. if (FixupKind == FK_PCRel_4 || FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) || FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) || FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) || FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) { ImmOffset -= 4; // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_: // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15 // this needs to be a GOTPC32 relocation. if (startsWithGlobalOffsetTable(Expr) != GOT_None) FixupKind = MCFixupKind(X86::reloc_global_offset_table); } if (FixupKind == FK_PCRel_2) ImmOffset -= 2; if (FixupKind == FK_PCRel_1) ImmOffset -= 1; if (ImmOffset) Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx), Ctx); // Emit a symbolic constant as a fixup and 4 zeros. Fixups.push_back(MCFixup::create(static_cast(OS.tell() - StartByte), Expr, FixupKind, Loc)); emitConstant(0, Size, OS); } void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, raw_ostream &OS) const { emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), OS); } void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base, raw_ostream &OS) const { // SIB byte is in the same format as the modRMByte. emitByte(modRMByte(SS, Index, Base), OS); } void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags, bool HasREX, uint64_t StartByte, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI, bool ForceSIB) const { const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp); const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg); const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt); const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg); unsigned BaseReg = Base.getReg(); // Handle %rip relative addressing. if (BaseReg == X86::RIP || BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode assert(STI.hasFeature(X86::Is64Bit) && "Rip-relative addressing requires 64-bit mode"); assert(IndexReg.getReg() == 0 && !ForceSIB && "Invalid rip-relative address"); emitByte(modRMByte(0, RegOpcodeField, 5), OS); unsigned Opcode = MI.getOpcode(); unsigned FixupKind = [&]() { // Enable relaxed relocation only for a MCSymbolRefExpr. We cannot use a // relaxed relocation if an offset is present (e.g. x@GOTPCREL+4). if (!(Disp.isExpr() && isa(Disp.getExpr()))) return X86::reloc_riprel_4byte; // Certain loads for GOT references can be relocated against the symbol // directly if the symbol ends up in the same linkage unit. switch (Opcode) { default: return X86::reloc_riprel_4byte; case X86::MOV64rm: // movq loads is a subset of reloc_riprel_4byte_relax_rex. It is a // special case because COFF and Mach-O don't support ELF's more // flexible R_X86_64_REX_GOTPCRELX relaxation. assert(HasREX); return X86::reloc_riprel_4byte_movq_load; case X86::ADC32rm: case X86::ADD32rm: case X86::AND32rm: case X86::CMP32rm: case X86::MOV32rm: case X86::OR32rm: case X86::SBB32rm: case X86::SUB32rm: case X86::TEST32mr: case X86::XOR32rm: case X86::CALL64m: case X86::JMP64m: case X86::TAILJMPm64: case X86::TEST64mr: case X86::ADC64rm: case X86::ADD64rm: case X86::AND64rm: case X86::CMP64rm: case X86::OR64rm: case X86::SBB64rm: case X86::SUB64rm: case X86::XOR64rm: return HasREX ? X86::reloc_riprel_4byte_relax_rex : X86::reloc_riprel_4byte_relax; } }(); // rip-relative addressing is actually relative to the *next* instruction. // Since an immediate can follow the mod/rm byte for an instruction, this // means that we need to bias the displacement field of the instruction with // the size of the immediate field. If we have this case, add it into the // expression to emit. // Note: rip-relative addressing using immediate displacement values should // not be adjusted, assuming it was the user's intent. int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0; emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS, Fixups, -ImmSize); return; } unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U; // 16-bit addressing forms of the ModR/M byte have a different encoding for // the R/M field and are far more limited in which registers can be used. if (X86_MC::is16BitMemOperand(MI, Op, STI)) { if (BaseReg) { // For 32-bit addressing, the row and column values in Table 2-2 are // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with // some special cases. And getX86RegNum reflects that numbering. // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A, // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order, // while values 0-3 indicate the allowed combinations (base+index) of // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI. // // R16Table[] is a lookup from the normal RegNo, to the row values from // Table 2-1 for 16-bit addressing modes. Where zero means disallowed. static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5}; unsigned RMfield = R16Table[BaseRegNo]; assert(RMfield && "invalid 16-bit base register"); if (IndexReg.getReg()) { unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)]; assert(IndexReg16 && "invalid 16-bit index register"); // We must have one of SI/DI (4,5), and one of BP/BX (6,7). assert(((IndexReg16 ^ RMfield) & 2) && "invalid 16-bit base/index register combination"); assert(Scale.getImm() == 1 && "invalid scale for 16-bit memory reference"); // Allow base/index to appear in either order (although GAS doesn't). if (IndexReg16 & 2) RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1); else RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1); } if (Disp.isImm() && isInt<8>(Disp.getImm())) { if (Disp.getImm() == 0 && RMfield != 6) { // There is no displacement; just the register. emitByte(modRMByte(0, RegOpcodeField, RMfield), OS); return; } // Use the [REG]+disp8 form, including for [BP] which cannot be encoded. emitByte(modRMByte(1, RegOpcodeField, RMfield), OS); emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups); return; } // This is the [REG]+disp16 case. emitByte(modRMByte(2, RegOpcodeField, RMfield), OS); } else { assert(IndexReg.getReg() == 0 && "Unexpected index register!"); // There is no BaseReg; this is the plain [disp16] case. emitByte(modRMByte(0, RegOpcodeField, 6), OS); } // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases. emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, OS, Fixups); return; } // Check for presence of {disp8} or {disp32} pseudo prefixes. bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8; bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32; // We only allow no displacement if no pseudo prefix is present. bool AllowNoDisp = !UseDisp8 && !UseDisp32; // Disp8 is allowed unless the {disp32} prefix is present. bool AllowDisp8 = !UseDisp32; // Determine whether a SIB byte is needed. if (// The SIB byte must be used if there is an index register or the // encoding requires a SIB byte. !ForceSIB && IndexReg.getReg() == 0 && // The SIB byte must be used if the base is ESP/RSP/R12, all of which // encode to an R/M value of 4, which indicates that a SIB byte is // present. BaseRegNo != N86::ESP && // If there is no base register and we're in 64-bit mode, we need a SIB // byte to emit an addr that is just 'disp32' (the non-RIP relative form). (!STI.hasFeature(X86::Is64Bit) || BaseReg != 0)) { if (BaseReg == 0) { // [disp32] in X86-32 mode emitByte(modRMByte(0, RegOpcodeField, 5), OS); emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, OS, Fixups); return; } // If the base is not EBP/ESP/R12/R13 and there is no displacement, use // simple indirect register encoding, this handles addresses like [EAX]. // The encoding for [EBP] or[R13] with no displacement means [disp32] so we // handle it by emitting a displacement of 0 later. if (BaseRegNo != N86::EBP) { if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) { emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS); return; } // If the displacement is @tlscall, treat it as a zero. if (Disp.isExpr()) { auto *Sym = dyn_cast(Disp.getExpr()); if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) { // This is exclusively used by call *a@tlscall(base). The relocation // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning. Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc())); emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS); return; } } } // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. // Including a compressed disp8 for EVEX instructions that support it. // This also handles the 0 displacement for [EBP] or [R13]. We can't use // disp8 if the {disp32} pseudo prefix is present. if (Disp.isImm() && AllowDisp8) { int ImmOffset = 0; if (isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) { emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), OS); emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups, ImmOffset); return; } } // Otherwise, emit the most general non-SIB encoding: [REG+disp32]. // Displacement may be 0 for [EBP] or [R13] case if {disp32} pseudo prefix // prevented using disp8 above. emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), OS); unsigned Opcode = MI.getOpcode(); unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax : X86::reloc_signed_4byte; emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS, Fixups); return; } // We need a SIB byte, so start by outputting the ModR/M byte first assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); bool ForceDisp32 = false; bool ForceDisp8 = false; int ImmOffset = 0; if (BaseReg == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=5, to JUST get the index, scale, and displacement. BaseRegNo = 5; emitByte(modRMByte(0, RegOpcodeField, 4), OS); ForceDisp32 = true; } else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp && // Base reg can't be EBP/RBP/R13 as that would end up with '5' as // the base field, but that is the magic [*] nomenclature that // indicates no base when mod=0. For these cases we'll emit a 0 // displacement instead. BaseRegNo != N86::EBP) { // Emit no displacement ModR/M byte emitByte(modRMByte(0, RegOpcodeField, 4), OS); } else if (Disp.isImm() && AllowDisp8 && isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) { // Displacement fits in a byte or matches an EVEX compressed disp8, use // disp8 encoding. This also handles EBP/R13 base with 0 displacement unless // {disp32} pseudo prefix was used. emitByte(modRMByte(1, RegOpcodeField, 4), OS); ForceDisp8 = true; } else { // Otherwise, emit the normal disp32 encoding. emitByte(modRMByte(2, RegOpcodeField, 4), OS); ForceDisp32 = true; } // Calculate what the SS field value should be... static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3}; unsigned SS = SSTable[Scale.getImm()]; unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(IndexReg) : 4; emitSIBByte(SS, IndexRegNo, BaseRegNo, OS); // Do we need to output a displacement? if (ForceDisp8) emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups, ImmOffset); else if (ForceDisp32) emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), StartByte, OS, Fixups); } /// Emit all instruction prefixes. /// /// \returns true if REX prefix is used, otherwise returns false. bool X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI, const MCSubtargetInfo &STI, raw_ostream &OS) const { uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags; // Determine where the memory operand starts, if present. int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); // Emit segment override opcode prefix as needed. if (MemoryOperand != -1) { MemoryOperand += CurOp; emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, OS); } // Emit the repeat opcode prefix as needed. unsigned Flags = MI.getFlags(); if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT) emitByte(0xF3, OS); if (Flags & X86::IP_HAS_REPEAT_NE) emitByte(0xF2, OS); // Emit the address size opcode prefix as needed. if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) || Flags & X86::IP_HAS_AD_SIZE) emitByte(0x67, OS); uint64_t Form = TSFlags & X86II::FormMask; switch (Form) { default: break; case X86II::RawFrmDstSrc: { // Emit segment override opcode prefix as needed (not for %ds). if (MI.getOperand(2).getReg() != X86::DS) emitSegmentOverridePrefix(2, MI, OS); CurOp += 3; // Consume operands. break; } case X86II::RawFrmSrc: { // Emit segment override opcode prefix as needed (not for %ds). if (MI.getOperand(1).getReg() != X86::DS) emitSegmentOverridePrefix(1, MI, OS); CurOp += 2; // Consume operands. break; } case X86II::RawFrmDst: { ++CurOp; // Consume operand. break; } case X86II::RawFrmMemOffs: { // Emit segment override opcode prefix as needed. emitSegmentOverridePrefix(1, MI, OS); break; } } // REX prefix is optional, but if used must be immediately before the opcode // Encoding type for this instruction. uint64_t Encoding = TSFlags & X86II::EncodingMask; bool HasREX = false; if (Encoding) emitVEXOpcodePrefix(MemoryOperand, MI, OS); else HasREX = emitOpcodePrefix(MemoryOperand, MI, STI, OS); return HasREX; } /// AVX instructions are encoded using a opcode prefix called VEX. void X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, raw_ostream &OS) const { const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); uint64_t TSFlags = Desc.TSFlags; assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX."); uint64_t Encoding = TSFlags & X86II::EncodingMask; bool HasEVEX_K = TSFlags & X86II::EVEX_K; bool HasVEX_4V = TSFlags & X86II::VEX_4V; bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; // VEX_R: opcode externsion equivalent to REX.R in // 1's complement (inverted) form // // 1: Same as REX_R=0 (must be 1 in 32-bit mode) // 0: Same as REX_R=1 (64 bit mode only) // uint8_t VEX_R = 0x1; uint8_t EVEX_R2 = 0x1; // VEX_X: equivalent to REX.X, only used when a // register is used for index in SIB Byte. // // 1: Same as REX.X=0 (must be 1 in 32-bit mode) // 0: Same as REX.X=1 (64-bit mode only) uint8_t VEX_X = 0x1; // VEX_B: // // 1: Same as REX_B=0 (ignored in 32-bit mode) // 0: Same as REX_B=1 (64 bit mode only) // uint8_t VEX_B = 0x1; // VEX_W: opcode specific (use like REX.W, or used for // opcode extension, or ignored, depending on the opcode byte) uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0; // VEX_5M (VEX m-mmmmm field): // // 0b00000: Reserved for future use // 0b00001: implied 0F leading opcode // 0b00010: implied 0F 38 leading opcode bytes // 0b00011: implied 0F 3A leading opcode bytes // 0b00100: Reserved for future use // 0b00101: VEX MAP5 // 0b00110: VEX MAP6 // 0b00111-0b11111: Reserved for future use // 0b01000: XOP map select - 08h instructions with imm byte // 0b01001: XOP map select - 09h instructions with no imm byte // 0b01010: XOP map select - 0Ah instructions with imm dword uint8_t VEX_5M; switch (TSFlags & X86II::OpMapMask) { default: llvm_unreachable("Invalid prefix!"); case X86II::TB: VEX_5M = 0x1; break; // 0F case X86II::T8: VEX_5M = 0x2; break; // 0F 38 case X86II::TA: VEX_5M = 0x3; break; // 0F 3A case X86II::XOP8: VEX_5M = 0x8; break; case X86II::XOP9: VEX_5M = 0x9; break; case X86II::XOPA: VEX_5M = 0xA; break; case X86II::T_MAP5: VEX_5M = 0x5; break; case X86II::T_MAP6: VEX_5M = 0x6; break; } // VEX_4V (VEX vvvv field): a register specifier // (in 1's complement form) or 1111 if unused. uint8_t VEX_4V = 0xf; uint8_t EVEX_V2 = 0x1; // EVEX_L2/VEX_L (Vector Length): // // L2 L // 0 0: scalar or 128-bit vector // 0 1: 256-bit vector // 1 0: 512-bit vector // uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0; uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0; // VEX_PP: opcode extension providing equivalent // functionality of a SIMD prefix // // 0b00: None // 0b01: 66 // 0b10: F3 // 0b11: F2 // uint8_t VEX_PP = 0; switch (TSFlags & X86II::OpPrefixMask) { case X86II::PD: VEX_PP = 0x1; break; // 66 case X86II::XS: VEX_PP = 0x2; break; // F3 case X86II::XD: VEX_PP = 0x3; break; // F2 } // EVEX_U uint8_t EVEX_U = 1; // Always '1' so far // EVEX_z uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0; // EVEX_b uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0; // EVEX_rc uint8_t EVEX_rc = 0; // EVEX_aaa uint8_t EVEX_aaa = 0; bool EncodeRC = false; // Classify VEX_B, VEX_4V, VEX_R, VEX_X unsigned NumOps = Desc.getNumOperands(); unsigned CurOp = X86II::getOperandBias(Desc); switch (TSFlags & X86II::FormMask) { default: llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!"); case X86II::MRMDestMem4VOp3CC: { // MemAddr, src1(ModR/M), src2(VEX_4V) unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); VEX_B = ~(BaseRegEnc >> 3) & 1; unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); VEX_X = ~(IndexRegEnc >> 3) & 1; CurOp += X86::AddrNumOperands; unsigned RegEnc = getX86RegEncoding(MI, ++CurOp); VEX_R = ~(RegEnc >> 3) & 1; unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); VEX_4V = ~VRegEnc & 0xf; break; } case X86II::MRM_C0: case X86II::RawFrm: case X86II::PrefixByte: break; case X86II::MRMDestMemFSIB: case X86II::MRMDestMem: { // MRMDestMem instructions forms: // MemAddr, src1(ModR/M) // MemAddr, src1(VEX_4V), src2(ModR/M) // MemAddr, src1(ModR/M), imm8 // unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); VEX_B = ~(BaseRegEnc >> 3) & 1; unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); VEX_X = ~(IndexRegEnc >> 3) & 1; if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV. EVEX_V2 = ~(IndexRegEnc >> 4) & 1; CurOp += X86::AddrNumOperands; if (HasEVEX_K) EVEX_aaa = getX86RegEncoding(MI, CurOp++); if (HasVEX_4V) { unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); VEX_4V = ~VRegEnc & 0xf; EVEX_V2 = ~(VRegEnc >> 4) & 1; } unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_R = ~(RegEnc >> 3) & 1; EVEX_R2 = ~(RegEnc >> 4) & 1; break; } case X86II::MRMSrcMemFSIB: case X86II::MRMSrcMem: { // MRMSrcMem instructions forms: // src1(ModR/M), MemAddr // src1(ModR/M), src2(VEX_4V), MemAddr // src1(ModR/M), MemAddr, imm8 // src1(ModR/M), MemAddr, src2(Imm[7:4]) // // FMA4: // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_R = ~(RegEnc >> 3) & 1; EVEX_R2 = ~(RegEnc >> 4) & 1; if (HasEVEX_K) EVEX_aaa = getX86RegEncoding(MI, CurOp++); if (HasVEX_4V) { unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); VEX_4V = ~VRegEnc & 0xf; EVEX_V2 = ~(VRegEnc >> 4) & 1; } unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); VEX_B = ~(BaseRegEnc >> 3) & 1; unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); VEX_X = ~(IndexRegEnc >> 3) & 1; if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV. EVEX_V2 = ~(IndexRegEnc >> 4) & 1; break; } case X86II::MRMSrcMem4VOp3: { // Instruction format for 4VOp3: // src1(ModR/M), MemAddr, src3(VEX_4V) unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_R = ~(RegEnc >> 3) & 1; unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); VEX_B = ~(BaseRegEnc >> 3) & 1; unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); VEX_X = ~(IndexRegEnc >> 3) & 1; VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf; break; } case X86II::MRMSrcMemOp4: { // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_R = ~(RegEnc >> 3) & 1; unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); VEX_4V = ~VRegEnc & 0xf; unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); VEX_B = ~(BaseRegEnc >> 3) & 1; unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); VEX_X = ~(IndexRegEnc >> 3) & 1; break; } case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { // MRM[0-9]m instructions forms: // MemAddr // src1(VEX_4V), MemAddr if (HasVEX_4V) { unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); VEX_4V = ~VRegEnc & 0xf; EVEX_V2 = ~(VRegEnc >> 4) & 1; } if (HasEVEX_K) EVEX_aaa = getX86RegEncoding(MI, CurOp++); unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); VEX_B = ~(BaseRegEnc >> 3) & 1; unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); VEX_X = ~(IndexRegEnc >> 3) & 1; if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV. EVEX_V2 = ~(IndexRegEnc >> 4) & 1; break; } case X86II::MRMSrcReg: { // MRMSrcReg instructions forms: // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) // dst(ModR/M), src1(ModR/M) // dst(ModR/M), src1(ModR/M), imm8 // // FMA4: // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_R = ~(RegEnc >> 3) & 1; EVEX_R2 = ~(RegEnc >> 4) & 1; if (HasEVEX_K) EVEX_aaa = getX86RegEncoding(MI, CurOp++); if (HasVEX_4V) { unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); VEX_4V = ~VRegEnc & 0xf; EVEX_V2 = ~(VRegEnc >> 4) & 1; } RegEnc = getX86RegEncoding(MI, CurOp++); VEX_B = ~(RegEnc >> 3) & 1; VEX_X = ~(RegEnc >> 4) & 1; if (EVEX_b) { if (HasEVEX_RC) { unsigned RcOperand = NumOps - 1; assert(RcOperand >= CurOp); EVEX_rc = MI.getOperand(RcOperand).getImm(); assert(EVEX_rc <= 3 && "Invalid rounding control!"); } EncodeRC = true; } break; } case X86II::MRMSrcReg4VOp3: { // Instruction format for 4VOp3: // src1(ModR/M), src2(ModR/M), src3(VEX_4V) unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_R = ~(RegEnc >> 3) & 1; RegEnc = getX86RegEncoding(MI, CurOp++); VEX_B = ~(RegEnc >> 3) & 1; VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf; break; } case X86II::MRMSrcRegOp4: { // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_R = ~(RegEnc >> 3) & 1; unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); VEX_4V = ~VRegEnc & 0xf; // Skip second register source (encoded in Imm[7:4]) ++CurOp; RegEnc = getX86RegEncoding(MI, CurOp++); VEX_B = ~(RegEnc >> 3) & 1; VEX_X = ~(RegEnc >> 4) & 1; break; } case X86II::MRMDestReg: { // MRMDestReg instructions forms: // dst(ModR/M), src(ModR/M) // dst(ModR/M), src(ModR/M), imm8 // dst(ModR/M), src1(VEX_4V), src2(ModR/M) unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_B = ~(RegEnc >> 3) & 1; VEX_X = ~(RegEnc >> 4) & 1; if (HasEVEX_K) EVEX_aaa = getX86RegEncoding(MI, CurOp++); if (HasVEX_4V) { unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); VEX_4V = ~VRegEnc & 0xf; EVEX_V2 = ~(VRegEnc >> 4) & 1; } RegEnc = getX86RegEncoding(MI, CurOp++); VEX_R = ~(RegEnc >> 3) & 1; EVEX_R2 = ~(RegEnc >> 4) & 1; if (EVEX_b) EncodeRC = true; break; } case X86II::MRMr0: { // MRMr0 instructions forms: // 11:rrr:000 // dst(ModR/M) unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_R = ~(RegEnc >> 3) & 1; EVEX_R2 = ~(RegEnc >> 4) & 1; break; } case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: { // MRM0r-MRM7r instructions forms: // dst(VEX_4V), src(ModR/M), imm8 if (HasVEX_4V) { unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); VEX_4V = ~VRegEnc & 0xf; EVEX_V2 = ~(VRegEnc >> 4) & 1; } if (HasEVEX_K) EVEX_aaa = getX86RegEncoding(MI, CurOp++); unsigned RegEnc = getX86RegEncoding(MI, CurOp++); VEX_B = ~(RegEnc >> 3) & 1; VEX_X = ~(RegEnc >> 4) & 1; break; } } if (Encoding == X86II::VEX || Encoding == X86II::XOP) { // VEX opcode prefix can have 2 or 3 bytes // // 3 bytes: // +-----+ +--------------+ +-------------------+ // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | // +-----+ +--------------+ +-------------------+ // 2 bytes: // +-----+ +-------------------+ // | C5h | | R | vvvv | L | pp | // +-----+ +-------------------+ // // XOP uses a similar prefix: // +-----+ +--------------+ +-------------------+ // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp | // +-----+ +--------------+ +-------------------+ uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); // Can we use the 2 byte VEX prefix? if (!(MI.getFlags() & X86::IP_USE_VEX3) && Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { emitByte(0xC5, OS); emitByte(LastByte | (VEX_R << 7), OS); return; } // 3 byte VEX prefix emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, OS); emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, OS); emitByte(LastByte | (VEX_W << 7), OS); } else { assert(Encoding == X86II::EVEX && "unknown encoding!"); // EVEX opcode prefix can have 4 bytes // // +-----+ +--------------+ +-------------------+ +------------------------+ // | 62h | | RXBR' | 0mmm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa | // +-----+ +--------------+ +-------------------+ +------------------------+ assert((VEX_5M & 0x7) == VEX_5M && "More than 3 significant bits in VEX.m-mmmm fields for EVEX!"); emitByte(0x62, OS); emitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) | VEX_5M, OS); emitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, OS); if (EncodeRC) emitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) | EVEX_aaa, OS); else emitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) | EVEX_aaa, OS); } } /// Emit REX prefix which specifies /// 1) 64-bit instructions, /// 2) non-default operand size, and /// 3) use of X86-64 extended registers. /// /// \returns true if REX prefix is used, otherwise returns false. bool X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, raw_ostream &OS) const { uint8_t REX = [&, MemOperand]() { uint8_t REX = 0; bool UsesHighByteReg = false; const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); uint64_t TSFlags = Desc.TSFlags; if (TSFlags & X86II::REX_W) REX |= 1 << 3; // set REX.W if (MI.getNumOperands() == 0) return REX; unsigned NumOps = MI.getNumOperands(); unsigned CurOp = X86II::getOperandBias(Desc); // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. for (unsigned i = CurOp; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg()) { unsigned Reg = MO.getReg(); if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) UsesHighByteReg = true; if (X86II::isX86_64NonExtLowByteReg(Reg)) // FIXME: The caller of determineREXPrefix slaps this prefix onto // anything that returns non-zero. REX |= 0x40; // REX fixed encoding prefix } else if (MO.isExpr() && STI.getTargetTriple().isX32()) { // GOTTPOFF and TLSDESC relocations require a REX prefix to allow // linker optimizations: even if the instructions we see may not require // any prefix, they may be replaced by instructions that do. This is // handled as a special case here so that it also works for hand-written // assembly without the user needing to write REX, as with GNU as. const auto *Ref = dyn_cast(MO.getExpr()); if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF || Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) { REX |= 0x40; // REX fixed encoding prefix } } } switch (TSFlags & X86II::FormMask) { case X86II::AddRegFrm: REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B break; case X86II::MRMSrcReg: case X86II::MRMSrcRegCC: REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B break; case X86II::MRMSrcMem: case X86II::MRMSrcMemCC: REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; // REX.B REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X CurOp += X86::AddrNumOperands; break; case X86II::MRMDestReg: REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R break; case X86II::MRMDestMem: REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; // REX.B REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X CurOp += X86::AddrNumOperands; REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R break; case X86II::MRMXmCC: case X86II::MRMXm: case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; // REX.B REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X break; case X86II::MRMXrCC: case X86II::MRMXr: case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B break; case X86II::MRMr0: REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R break; case X86II::MRMDestMemFSIB: llvm_unreachable("FSIB format never need REX prefix!"); } if (REX && UsesHighByteReg) report_fatal_error( "Cannot encode high byte register in REX-prefixed instruction"); return REX; }(); if (!REX) return false; emitByte(0x40 | REX, OS); return true; } /// Emit segment override opcode prefix as needed. void X86MCCodeEmitter::emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI, raw_ostream &OS) const { // Check for explicit segment override on memory operand. if (unsigned Reg = MI.getOperand(SegOperand).getReg()) emitByte(X86::getSegmentOverridePrefixForReg(Reg), OS); } /// Emit all instruction prefixes prior to the opcode. /// /// \param MemOperand the operand # of the start of a memory operand if present. /// If not present, it is -1. /// /// \returns true if REX prefix is used, otherwise returns false. bool X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, raw_ostream &OS) const { const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); uint64_t TSFlags = Desc.TSFlags; // Emit the operand size opcode prefix as needed. if ((TSFlags & X86II::OpSizeMask) == (STI.hasFeature(X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16)) emitByte(0x66, OS); // Emit the LOCK opcode prefix. if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK) emitByte(0xF0, OS); // Emit the NOTRACK opcode prefix. if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK) emitByte(0x3E, OS); switch (TSFlags & X86II::OpPrefixMask) { case X86II::PD: // 66 emitByte(0x66, OS); break; case X86II::XS: // F3 emitByte(0xF3, OS); break; case X86II::XD: // F2 emitByte(0xF2, OS); break; } // Handle REX prefix. assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) && "REX.W requires 64bit mode."); bool HasREX = STI.hasFeature(X86::Is64Bit) ? emitREXPrefix(MemOperand, MI, STI, OS) : false; // 0x0F escape code must be emitted just before the opcode. switch (TSFlags & X86II::OpMapMask) { case X86II::TB: // Two-byte opcode map case X86II::T8: // 0F 38 case X86II::TA: // 0F 3A case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller. emitByte(0x0F, OS); break; } switch (TSFlags & X86II::OpMapMask) { case X86II::T8: // 0F 38 emitByte(0x38, OS); break; case X86II::TA: // 0F 3A emitByte(0x3A, OS); break; } return HasREX; } void X86MCCodeEmitter::emitPrefix(const MCInst &MI, raw_ostream &OS, const MCSubtargetInfo &STI) const { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); uint64_t TSFlags = Desc.TSFlags; // Pseudo instructions don't get encoded. if (X86II::isPseudo(TSFlags)) return; unsigned CurOp = X86II::getOperandBias(Desc); emitPrefixImpl(CurOp, MI, STI, OS); } void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); uint64_t TSFlags = Desc.TSFlags; // Pseudo instructions don't get encoded. if (X86II::isPseudo(TSFlags)) return; unsigned NumOps = Desc.getNumOperands(); unsigned CurOp = X86II::getOperandBias(Desc); uint64_t StartByte = OS.tell(); bool HasREX = emitPrefixImpl(CurOp, MI, STI, OS); // It uses the VEX.VVVV field? bool HasVEX_4V = TSFlags & X86II::VEX_4V; bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg; // It uses the EVEX.aaa field? bool HasEVEX_K = TSFlags & X86II::EVEX_K; bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; // Used if a register is encoded in 7:4 of immediate. unsigned I8RegNum = 0; uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) BaseOpcode = 0x0F; // Weird 3DNow! encoding. unsigned OpcodeOffset = 0; uint64_t Form = TSFlags & X86II::FormMask; switch (Form) { default: errs() << "FORM: " << Form << "\n"; llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!"); case X86II::Pseudo: llvm_unreachable("Pseudo instruction shouldn't be emitted"); case X86II::RawFrmDstSrc: case X86II::RawFrmSrc: case X86II::RawFrmDst: case X86II::PrefixByte: emitByte(BaseOpcode, OS); break; case X86II::AddCCFrm: { // This will be added to the opcode in the fallthrough. OpcodeOffset = MI.getOperand(NumOps - 1).getImm(); assert(OpcodeOffset < 16 && "Unexpected opcode offset!"); --NumOps; // Drop the operand from the end. [[fallthrough]]; case X86II::RawFrm: emitByte(BaseOpcode + OpcodeOffset, OS); if (!STI.hasFeature(X86::Is64Bit) || !isPCRel32Branch(MI, MCII)) break; const MCOperand &Op = MI.getOperand(CurOp++); emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags), MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, OS, Fixups); break; } case X86II::RawFrmMemOffs: emitByte(BaseOpcode, OS); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), StartByte, OS, Fixups); ++CurOp; // skip segment operand break; case X86II::RawFrmImm8: emitByte(BaseOpcode, OS); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), StartByte, OS, Fixups); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups); break; case X86II::RawFrmImm16: emitByte(BaseOpcode, OS); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), StartByte, OS, Fixups); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte, OS, Fixups); break; case X86II::AddRegFrm: emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), OS); break; case X86II::MRMDestReg: { emitByte(BaseOpcode, OS); unsigned SrcRegNum = CurOp + 1; if (HasEVEX_K) // Skip writemask ++SrcRegNum; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; emitRegModRMByte(MI.getOperand(CurOp), getX86RegNum(MI.getOperand(SrcRegNum)), OS); CurOp = SrcRegNum + 1; break; } case X86II::MRMDestMem4VOp3CC: { unsigned CC = MI.getOperand(8).getImm(); emitByte(BaseOpcode + CC, OS); unsigned SrcRegNum = CurOp + X86::AddrNumOperands; emitMemModRMByte(MI, CurOp + 1, getX86RegNum(MI.getOperand(0)), TSFlags, HasREX, StartByte, OS, Fixups, STI, false); CurOp = SrcRegNum + 3; // skip reg, VEX_V4 and CC break; } case X86II::MRMDestMemFSIB: case X86II::MRMDestMem: { emitByte(BaseOpcode, OS); unsigned SrcRegNum = CurOp + X86::AddrNumOperands; if (HasEVEX_K) // Skip writemask ++SrcRegNum; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; bool ForceSIB = (Form == X86II::MRMDestMemFSIB); emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags, HasREX, StartByte, OS, Fixups, STI, ForceSIB); CurOp = SrcRegNum + 1; break; } case X86II::MRMSrcReg: { emitByte(BaseOpcode, OS); unsigned SrcRegNum = CurOp + 1; if (HasEVEX_K) // Skip writemask ++SrcRegNum; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; emitRegModRMByte(MI.getOperand(SrcRegNum), getX86RegNum(MI.getOperand(CurOp)), OS); CurOp = SrcRegNum + 1; if (HasVEX_I8Reg) I8RegNum = getX86RegEncoding(MI, CurOp++); // do not count the rounding control operand if (HasEVEX_RC) --NumOps; break; } case X86II::MRMSrcReg4VOp3: { emitByte(BaseOpcode, OS); unsigned SrcRegNum = CurOp + 1; emitRegModRMByte(MI.getOperand(SrcRegNum), getX86RegNum(MI.getOperand(CurOp)), OS); CurOp = SrcRegNum + 1; ++CurOp; // Encoded in VEX.VVVV break; } case X86II::MRMSrcRegOp4: { emitByte(BaseOpcode, OS); unsigned SrcRegNum = CurOp + 1; // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; // Capture 2nd src (which is encoded in Imm[7:4]) assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg"); I8RegNum = getX86RegEncoding(MI, SrcRegNum++); emitRegModRMByte(MI.getOperand(SrcRegNum), getX86RegNum(MI.getOperand(CurOp)), OS); CurOp = SrcRegNum + 1; break; } case X86II::MRMSrcRegCC: { unsigned FirstOp = CurOp++; unsigned SecondOp = CurOp++; unsigned CC = MI.getOperand(CurOp++).getImm(); emitByte(BaseOpcode + CC, OS); emitRegModRMByte(MI.getOperand(SecondOp), getX86RegNum(MI.getOperand(FirstOp)), OS); break; } case X86II::MRMSrcMemFSIB: case X86II::MRMSrcMem: { unsigned FirstMemOp = CurOp + 1; if (HasEVEX_K) // Skip writemask ++FirstMemOp; if (HasVEX_4V) ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). emitByte(BaseOpcode, OS); bool ForceSIB = (Form == X86II::MRMSrcMemFSIB); emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)), TSFlags, HasREX, StartByte, OS, Fixups, STI, ForceSIB); CurOp = FirstMemOp + X86::AddrNumOperands; if (HasVEX_I8Reg) I8RegNum = getX86RegEncoding(MI, CurOp++); break; } case X86II::MRMSrcMem4VOp3: { unsigned FirstMemOp = CurOp + 1; emitByte(BaseOpcode, OS); emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)), TSFlags, HasREX, StartByte, OS, Fixups, STI); CurOp = FirstMemOp + X86::AddrNumOperands; ++CurOp; // Encoded in VEX.VVVV. break; } case X86II::MRMSrcMemOp4: { unsigned FirstMemOp = CurOp + 1; ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). // Capture second register source (encoded in Imm[7:4]) assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg"); I8RegNum = getX86RegEncoding(MI, FirstMemOp++); emitByte(BaseOpcode, OS); emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)), TSFlags, HasREX, StartByte, OS, Fixups, STI); CurOp = FirstMemOp + X86::AddrNumOperands; break; } case X86II::MRMSrcMemCC: { unsigned RegOp = CurOp++; unsigned FirstMemOp = CurOp; CurOp = FirstMemOp + X86::AddrNumOperands; unsigned CC = MI.getOperand(CurOp++).getImm(); emitByte(BaseOpcode + CC, OS); emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)), TSFlags, HasREX, StartByte, OS, Fixups, STI); break; } case X86II::MRMXrCC: { unsigned RegOp = CurOp++; unsigned CC = MI.getOperand(CurOp++).getImm(); emitByte(BaseOpcode + CC, OS); emitRegModRMByte(MI.getOperand(RegOp), 0, OS); break; } case X86II::MRMXr: case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). ++CurOp; if (HasEVEX_K) // Skip writemask ++CurOp; emitByte(BaseOpcode, OS); emitRegModRMByte(MI.getOperand(CurOp++), (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, OS); break; case X86II::MRMr0: emitByte(BaseOpcode, OS); emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)),0), OS); break; case X86II::MRMXmCC: { unsigned FirstMemOp = CurOp; CurOp = FirstMemOp + X86::AddrNumOperands; unsigned CC = MI.getOperand(CurOp++).getImm(); emitByte(BaseOpcode + CC, OS); emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, HasREX, StartByte, OS, Fixups, STI); break; } case X86II::MRMXm: case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). ++CurOp; if (HasEVEX_K) // Skip writemask ++CurOp; emitByte(BaseOpcode, OS); emitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags, HasREX, StartByte, OS, Fixups, STI); CurOp += X86::AddrNumOperands; break; case X86II::MRM0X: case X86II::MRM1X: case X86II::MRM2X: case X86II::MRM3X: case X86II::MRM4X: case X86II::MRM5X: case X86II::MRM6X: case X86II::MRM7X: emitByte(BaseOpcode, OS); emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), OS); break; case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5: case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8: case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE: case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6: case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF: case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF: emitByte(BaseOpcode, OS); emitByte(0xC0 + Form - X86II::MRM_C0, OS); break; } if (HasVEX_I8Reg) { // The last source register of a 4 operand instruction in AVX is encoded // in bits[7:4] of a immediate byte. assert(I8RegNum < 16 && "Register encoding out of range"); I8RegNum <<= 4; if (CurOp != NumOps) { unsigned Val = MI.getOperand(CurOp++).getImm(); assert(Val < 16 && "Immediate operand value out of range"); I8RegNum |= Val; } emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups); } else { // If there is a remaining operand, it must be a trailing immediate. Emit it // according to the right size for the instruction. Some instructions // (SSE4a extrq and insertq) have two trailing immediates. while (CurOp != NumOps && NumOps - CurOp <= 2) { emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), StartByte, OS, Fixups); } } if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) emitByte(X86II::getBaseOpcodeFor(TSFlags), OS); assert(OS.tell() - StartByte <= 15 && "The size of instruction must be no longer than 15."); #ifndef NDEBUG // FIXME: Verify. if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { errs() << "Cannot encode all operands of: "; MI.dump(); errs() << '\n'; abort(); } #endif } MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, MCContext &Ctx) { return new X86MCCodeEmitter(MCII, Ctx); }