//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the X86MCCodeEmitter class. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86FixupKinds.h" #include "MCTargetDesc/X86MCTargetDesc.h" #include "llvm/ADT/SmallVector.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "mccodeemitter" namespace { enum PrefixKind { None, REX, REX2, XOP, VEX2, VEX3, EVEX }; static void emitByte(uint8_t C, SmallVectorImpl &CB) { CB.push_back(C); } class X86OpcodePrefixHelper { // REX (1 byte) // +-----+ +------+ // | 40H | | WRXB | // +-----+ +------+ // REX2 (2 bytes) // +-----+ +-------------------+ // | D5H | | M | R'X'B' | WRXB | // +-----+ +-------------------+ // XOP (3-byte) // +-----+ +--------------+ +-------------------+ // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp | // +-----+ +--------------+ +-------------------+ // VEX2 (2 bytes) // +-----+ +-------------------+ // | C5h | | R | vvvv | L | pp | // +-----+ +-------------------+ // VEX3 (3 bytes) // +-----+ +--------------+ +-------------------+ // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | // +-----+ +--------------+ +-------------------+ // VEX_R: opcode externsion equivalent to REX.R in // 1's complement (inverted) form // // 1: Same as REX_R=0 (must be 1 in 32-bit mode) // 0: Same as REX_R=1 (64 bit mode only) // VEX_X: equivalent to REX.X, only used when a // register is used for index in SIB Byte. // // 1: Same as REX.X=0 (must be 1 in 32-bit mode) // 0: Same as REX.X=1 (64-bit mode only) // VEX_B: // 1: Same as REX_B=0 (ignored in 32-bit mode) // 0: Same as REX_B=1 (64 bit mode only) // VEX_W: opcode specific (use like REX.W, or used for // opcode extension, or ignored, depending on the opcode byte) // VEX_5M (VEX m-mmmmm field): // // 0b00000: Reserved for future use // 0b00001: implied 0F leading opcode // 0b00010: implied 0F 38 leading opcode bytes // 0b00011: implied 0F 3A leading opcode bytes // 0b00100: Reserved for future use // 0b00101: VEX MAP5 // 0b00110: VEX MAP6 // 0b00111: VEX MAP7 // 0b00111-0b11111: Reserved for future use // 0b01000: XOP map select - 08h instructions with imm byte // 0b01001: XOP map select - 09h instructions with no imm byte // 0b01010: XOP map select - 0Ah instructions with imm dword // VEX_4V (VEX vvvv field): a register specifier // (in 1's complement form) or 1111 if unused. // VEX_PP: opcode extension providing equivalent // functionality of a SIMD prefix // 0b00: None // 0b01: 66 // 0b10: F3 // 0b11: F2 // EVEX (4 bytes) // +-----+ +---------------+ +--------------------+ +------------------------+ // | 62h | | RXBR' | B'mmm | | W | vvvv | X' | pp | | z | L'L | b | v' | aaa | // +-----+ +---------------+ +--------------------+ +------------------------+ // EVEX_L2/VEX_L (Vector Length): // L2 L // 0 0: scalar or 128-bit vector // 0 1: 256-bit vector // 1 0: 512-bit vector // 32-Register Support in 64-bit Mode Using EVEX with Embedded REX/REX2 Bits: // // +----------+---------+--------+-----------+---------+--------------+ // | | 4 | 3 | [2:0] | Type | Common Usage | // +----------+---------+--------+-----------+---------+--------------+ // | REG | EVEX_R' | EVEX_R | modrm.reg | GPR, VR | Dest or Src | // | VVVV | EVEX_v' | EVEX.vvvv | GPR, VR | Dest or Src | // | RM (VR) | EVEX_X | EVEX_B | modrm.r/m | VR | Dest or Src | // | RM (GPR) | EVEX_B' | EVEX_B | modrm.r/m | GPR | Dest or Src | // | BASE | EVEX_B' | EVEX_B | modrm.r/m | GPR | MA | // | INDEX | EVEX_X' | EVEX_X | sib.index | GPR | MA | // | VIDX | EVEX_v' | EVEX_X | sib.index | VR | VSIB MA | // +----------+---------+--------+-----------+---------+--------------+ // // * GPR - General-purpose register // * VR - Vector register // * VIDX - Vector index // * VSIB - Vector SIB // * MA - Memory addressing private: unsigned W : 1; unsigned R : 1; unsigned X : 1; unsigned B : 1; unsigned M : 1; unsigned R2 : 1; unsigned X2 : 1; unsigned B2 : 1; unsigned VEX_4V : 4; unsigned VEX_L : 1; unsigned VEX_PP : 2; unsigned VEX_5M : 5; unsigned EVEX_z : 1; unsigned EVEX_L2 : 1; unsigned EVEX_b : 1; unsigned EVEX_V2 : 1; unsigned EVEX_aaa : 3; PrefixKind Kind = None; const MCRegisterInfo &MRI; unsigned getRegEncoding(const MCInst &MI, unsigned OpNum) const { return MRI.getEncodingValue(MI.getOperand(OpNum).getReg()); } void setR(unsigned Encoding) { R = Encoding >> 3 & 1; } void setR2(unsigned Encoding) { R2 = Encoding >> 4 & 1; assert((!R2 || (Kind <= REX2 || Kind == EVEX)) && "invalid setting"); } void setX(unsigned Encoding) { X = Encoding >> 3 & 1; } void setX2(unsigned Encoding) { assert((Kind <= REX2 || Kind == EVEX) && "invalid setting"); X2 = Encoding >> 4 & 1; } void setB(unsigned Encoding) { B = Encoding >> 3 & 1; } void setB2(unsigned Encoding) { assert((Kind <= REX2 || Kind == EVEX) && "invalid setting"); B2 = Encoding >> 4 & 1; } void set4V(unsigned Encoding) { VEX_4V = Encoding & 0xf; } void setV2(unsigned Encoding) { EVEX_V2 = Encoding >> 4 & 1; } public: void setW(bool V) { W = V; } void setR(const MCInst &MI, unsigned OpNum) { setR(getRegEncoding(MI, OpNum)); } void setX(const MCInst &MI, unsigned OpNum, unsigned Shift = 3) { unsigned Reg = MI.getOperand(OpNum).getReg(); // X is used to extend vector register only when shift is not 3. if (Shift != 3 && X86II::isApxExtendedReg(Reg)) return; unsigned Encoding = MRI.getEncodingValue(Reg); X = Encoding >> Shift & 1; } void setB(const MCInst &MI, unsigned OpNum) { B = getRegEncoding(MI, OpNum) >> 3 & 1; } void set4V(const MCInst &MI, unsigned OpNum) { set4V(getRegEncoding(MI, OpNum)); } void setL(bool V) { VEX_L = V; } void setPP(unsigned V) { VEX_PP = V; } void set5M(unsigned V) { VEX_5M = V; } void setR2(const MCInst &MI, unsigned OpNum) { setR2(getRegEncoding(MI, OpNum)); } void setRR2(const MCInst &MI, unsigned OpNum) { unsigned Encoding = getRegEncoding(MI, OpNum); setR(Encoding); setR2(Encoding); } void setM(bool V) { M = V; } void setXX2(const MCInst &MI, unsigned OpNum) { unsigned Reg = MI.getOperand(OpNum).getReg(); unsigned Encoding = MRI.getEncodingValue(Reg); setX(Encoding); // Index can be a vector register while X2 is used to extend GPR only. if (Kind <= REX2 || X86II::isApxExtendedReg(Reg)) setX2(Encoding); } void setBB2(const MCInst &MI, unsigned OpNum) { unsigned Reg = MI.getOperand(OpNum).getReg(); unsigned Encoding = MRI.getEncodingValue(Reg); setB(Encoding); // Base can be a vector register while B2 is used to extend GPR only if (Kind <= REX2 || X86II::isApxExtendedReg(Reg)) setB2(Encoding); } void setZ(bool V) { EVEX_z = V; } void setL2(bool V) { EVEX_L2 = V; } void setEVEX_b(bool V) { EVEX_b = V; } void setV2(const MCInst &MI, unsigned OpNum, bool HasVEX_4V) { // Only needed with VSIB which don't use VVVV. if (HasVEX_4V) return; unsigned Reg = MI.getOperand(OpNum).getReg(); if (X86II::isApxExtendedReg(Reg)) return; setV2(MRI.getEncodingValue(Reg)); } void set4VV2(const MCInst &MI, unsigned OpNum) { unsigned Encoding = getRegEncoding(MI, OpNum); set4V(Encoding); setV2(Encoding); } void setAAA(const MCInst &MI, unsigned OpNum) { EVEX_aaa = getRegEncoding(MI, OpNum); } void setNF(bool V) { EVEX_aaa |= V << 2; } X86OpcodePrefixHelper(const MCRegisterInfo &MRI) : W(0), R(0), X(0), B(0), M(0), R2(0), X2(0), B2(0), VEX_4V(0), VEX_L(0), VEX_PP(0), VEX_5M(0), EVEX_z(0), EVEX_L2(0), EVEX_b(0), EVEX_V2(0), EVEX_aaa(0), MRI(MRI) {} void setLowerBound(PrefixKind K) { Kind = K; } PrefixKind determineOptimalKind() { switch (Kind) { case None: // Not M bit here by intention b/c // 1. No guarantee that REX2 is supported by arch w/o explict EGPR // 2. REX2 is longer than 0FH Kind = (R2 | X2 | B2) ? REX2 : (W | R | X | B) ? REX : None; break; case REX: Kind = (R2 | X2 | B2) ? REX2 : REX; break; case REX2: case XOP: case VEX3: case EVEX: break; case VEX2: Kind = (W | X | B | (VEX_5M != 1)) ? VEX3 : VEX2; break; } return Kind; } void emit(SmallVectorImpl &CB) const { uint8_t FirstPayload = ((~R) & 0x1) << 7 | ((~X) & 0x1) << 6 | ((~B) & 0x1) << 5; uint8_t LastPayload = ((~VEX_4V) & 0xf) << 3 | VEX_L << 2 | VEX_PP; switch (Kind) { case None: return; case REX: emitByte(0x40 | W << 3 | R << 2 | X << 1 | B, CB); return; case REX2: emitByte(0xD5, CB); emitByte(M << 7 | R2 << 6 | X2 << 5 | B2 << 4 | W << 3 | R << 2 | X << 1 | B, CB); return; case VEX2: emitByte(0xC5, CB); emitByte(((~R) & 1) << 7 | LastPayload, CB); return; case VEX3: case XOP: emitByte(Kind == VEX3 ? 0xC4 : 0x8F, CB); emitByte(FirstPayload | VEX_5M, CB); emitByte(W << 7 | LastPayload, CB); return; case EVEX: assert(VEX_5M && !(VEX_5M & 0x8) && "invalid mmm fields for EVEX!"); emitByte(0x62, CB); emitByte(FirstPayload | ((~R2) & 0x1) << 4 | B2 << 3 | VEX_5M, CB); emitByte(W << 7 | ((~VEX_4V) & 0xf) << 3 | ((~X2) & 0x1) << 2 | VEX_PP, CB); emitByte(EVEX_z << 7 | EVEX_L2 << 6 | VEX_L << 5 | EVEX_b << 4 | ((~EVEX_V2) & 0x1) << 3 | EVEX_aaa, CB); return; } } }; class X86MCCodeEmitter : public MCCodeEmitter { const MCInstrInfo &MCII; MCContext &Ctx; public: X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx) : MCII(mcii), Ctx(ctx) {} X86MCCodeEmitter(const X86MCCodeEmitter &) = delete; X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete; ~X86MCCodeEmitter() override = default; void emitPrefix(const MCInst &MI, SmallVectorImpl &CB, const MCSubtargetInfo &STI) const override; void encodeInstruction(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override; private: unsigned getX86RegNum(const MCOperand &MO) const; unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const; void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize, MCFixupKind FixupKind, uint64_t StartByte, SmallVectorImpl &CB, SmallVectorImpl &Fixups, int ImmOffset = 0) const; void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, SmallVectorImpl &CB) const; void emitSIBByte(unsigned SS, unsigned Index, unsigned Base, SmallVectorImpl &CB) const; void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags, PrefixKind Kind, uint64_t StartByte, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI, bool ForceSIB = false) const; PrefixKind emitPrefixImpl(unsigned &CurOp, const MCInst &MI, const MCSubtargetInfo &STI, SmallVectorImpl &CB) const; PrefixKind emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, SmallVectorImpl &CB) const; void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI, SmallVectorImpl &CB) const; PrefixKind emitOpcodePrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, SmallVectorImpl &CB) const; PrefixKind emitREXPrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, SmallVectorImpl &CB) const; }; } // end anonymous namespace static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } static void emitConstant(uint64_t Val, unsigned Size, SmallVectorImpl &CB) { // Output the constant in little endian byte order. for (unsigned i = 0; i != Size; ++i) { emitByte(Val & 255, CB); Val >>= 8; } } /// Determine if this immediate can fit in a disp8 or a compressed disp8 for /// EVEX instructions. \p will be set to the value to pass to the ImmOffset /// parameter of emitImmediate. static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) { bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX; unsigned CD8_Scale = (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift; CD8_Scale = CD8_Scale ? 1U << (CD8_Scale - 1) : 0U; if (!HasEVEX || !CD8_Scale) return isInt<8>(Value); assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!"); if (Value & (CD8_Scale - 1)) // Unaligned offset return false; int CDisp8 = Value / static_cast(CD8_Scale); if (!isInt<8>(CDisp8)) return false; // ImmOffset will be added to Value in emitImmediate leaving just CDisp8. ImmOffset = CDisp8 - Value; return true; } /// \returns the appropriate fixup kind to use for an immediate in an /// instruction with the specified TSFlags. static MCFixupKind getImmFixupKind(uint64_t TSFlags) { unsigned Size = X86II::getSizeOfImm(TSFlags); bool isPCRel = X86II::isImmPCRel(TSFlags); if (X86II::isImmSigned(TSFlags)) { switch (Size) { default: llvm_unreachable("Unsupported signed fixup size!"); case 4: return MCFixupKind(X86::reloc_signed_4byte); } } return MCFixup::getKindForSize(Size, isPCRel); } enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff }; /// Check if this expression starts with _GLOBAL_OFFSET_TABLE_ and if it is /// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on /// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a /// binary expression. static GlobalOffsetTableExprKind startsWithGlobalOffsetTable(const MCExpr *Expr) { const MCExpr *RHS = nullptr; if (Expr->getKind() == MCExpr::Binary) { const MCBinaryExpr *BE = static_cast(Expr); Expr = BE->getLHS(); RHS = BE->getRHS(); } if (Expr->getKind() != MCExpr::SymbolRef) return GOT_None; const MCSymbolRefExpr *Ref = static_cast(Expr); const MCSymbol &S = Ref->getSymbol(); if (S.getName() != "_GLOBAL_OFFSET_TABLE_") return GOT_None; if (RHS && RHS->getKind() == MCExpr::SymbolRef) return GOT_SymDiff; return GOT_Normal; } static bool hasSecRelSymbolRef(const MCExpr *Expr) { if (Expr->getKind() == MCExpr::SymbolRef) { const MCSymbolRefExpr *Ref = static_cast(Expr); return Ref->getKind() == MCSymbolRefExpr::VK_SECREL; } return false; } static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 && Opcode != X86::JCC_4) || getImmFixupKind(Desc.TSFlags) != FK_PCRel_4) return false; unsigned CurOp = X86II::getOperandBias(Desc); const MCOperand &Op = MI.getOperand(CurOp); if (!Op.isExpr()) return false; const MCSymbolRefExpr *Ref = dyn_cast(Op.getExpr()); return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None; } unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const { return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7; } unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI, unsigned OpNum) const { return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg()); } void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size, MCFixupKind FixupKind, uint64_t StartByte, SmallVectorImpl &CB, SmallVectorImpl &Fixups, int ImmOffset) const { const MCExpr *Expr = nullptr; if (DispOp.isImm()) { // If this is a simple integer displacement that doesn't require a // relocation, emit it now. if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 && FixupKind != FK_PCRel_4) { emitConstant(DispOp.getImm() + ImmOffset, Size, CB); return; } Expr = MCConstantExpr::create(DispOp.getImm(), Ctx); } else { Expr = DispOp.getExpr(); } // If we have an immoffset, add it to the expression. if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 || FixupKind == MCFixupKind(X86::reloc_signed_4byte))) { GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr); if (Kind != GOT_None) { assert(ImmOffset == 0); if (Size == 8) { FixupKind = MCFixupKind(X86::reloc_global_offset_table8); } else { assert(Size == 4); FixupKind = MCFixupKind(X86::reloc_global_offset_table); } if (Kind == GOT_Normal) ImmOffset = static_cast(CB.size() - StartByte); } else if (Expr->getKind() == MCExpr::SymbolRef) { if (hasSecRelSymbolRef(Expr)) { FixupKind = MCFixupKind(FK_SecRel_4); } } else if (Expr->getKind() == MCExpr::Binary) { const MCBinaryExpr *Bin = static_cast(Expr); if (hasSecRelSymbolRef(Bin->getLHS()) || hasSecRelSymbolRef(Bin->getRHS())) { FixupKind = MCFixupKind(FK_SecRel_4); } } } // If the fixup is pc-relative, we need to bias the value to be relative to // the start of the field, not the end of the field. if (FixupKind == FK_PCRel_4 || FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) || FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) || FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) || FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) { ImmOffset -= 4; // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_: // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15 // this needs to be a GOTPC32 relocation. if (startsWithGlobalOffsetTable(Expr) != GOT_None) FixupKind = MCFixupKind(X86::reloc_global_offset_table); } if (FixupKind == FK_PCRel_2) ImmOffset -= 2; if (FixupKind == FK_PCRel_1) ImmOffset -= 1; if (ImmOffset) Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx), Ctx); // Emit a symbolic constant as a fixup and 4 zeros. Fixups.push_back(MCFixup::create(static_cast(CB.size() - StartByte), Expr, FixupKind, Loc)); emitConstant(0, Size, CB); } void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, SmallVectorImpl &CB) const { emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), CB); } void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base, SmallVectorImpl &CB) const { // SIB byte is in the same format as the modRMByte. emitByte(modRMByte(SS, Index, Base), CB); } void X86MCCodeEmitter::emitMemModRMByte( const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags, PrefixKind Kind, uint64_t StartByte, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI, bool ForceSIB) const { const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp); const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg); const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt); const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg); unsigned BaseReg = Base.getReg(); // Handle %rip relative addressing. if (BaseReg == X86::RIP || BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode assert(STI.hasFeature(X86::Is64Bit) && "Rip-relative addressing requires 64-bit mode"); assert(IndexReg.getReg() == 0 && !ForceSIB && "Invalid rip-relative address"); emitByte(modRMByte(0, RegOpcodeField, 5), CB); unsigned Opcode = MI.getOpcode(); unsigned FixupKind = [&]() { // Enable relaxed relocation only for a MCSymbolRefExpr. We cannot use a // relaxed relocation if an offset is present (e.g. x@GOTPCREL+4). if (!(Disp.isExpr() && isa(Disp.getExpr()))) return X86::reloc_riprel_4byte; // Certain loads for GOT references can be relocated against the symbol // directly if the symbol ends up in the same linkage unit. switch (Opcode) { default: return X86::reloc_riprel_4byte; case X86::MOV64rm: // movq loads is a subset of reloc_riprel_4byte_relax_rex. It is a // special case because COFF and Mach-O don't support ELF's more // flexible R_X86_64_REX_GOTPCRELX relaxation. // TODO: Support new relocation for REX2. assert(Kind == REX || Kind == REX2); return X86::reloc_riprel_4byte_movq_load; case X86::ADC32rm: case X86::ADD32rm: case X86::AND32rm: case X86::CMP32rm: case X86::MOV32rm: case X86::OR32rm: case X86::SBB32rm: case X86::SUB32rm: case X86::TEST32mr: case X86::XOR32rm: case X86::CALL64m: case X86::JMP64m: case X86::TAILJMPm64: case X86::TEST64mr: case X86::ADC64rm: case X86::ADD64rm: case X86::AND64rm: case X86::CMP64rm: case X86::OR64rm: case X86::SBB64rm: case X86::SUB64rm: case X86::XOR64rm: // We haven't support relocation for REX2 prefix, so temporarily use REX // relocation. // TODO: Support new relocation for REX2. return (Kind == REX || Kind == REX2) ? X86::reloc_riprel_4byte_relax_rex : X86::reloc_riprel_4byte_relax; } }(); // rip-relative addressing is actually relative to the *next* instruction. // Since an immediate can follow the mod/rm byte for an instruction, this // means that we need to bias the displacement field of the instruction with // the size of the immediate field. If we have this case, add it into the // expression to emit. // Note: rip-relative addressing using immediate displacement values should // not be adjusted, assuming it was the user's intent. int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0; emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, CB, Fixups, -ImmSize); return; } unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U; // 16-bit addressing forms of the ModR/M byte have a different encoding for // the R/M field and are far more limited in which registers can be used. if (X86_MC::is16BitMemOperand(MI, Op, STI)) { if (BaseReg) { // For 32-bit addressing, the row and column values in Table 2-2 are // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with // some special cases. And getX86RegNum reflects that numbering. // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A, // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order, // while values 0-3 indicate the allowed combinations (base+index) of // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI. // // R16Table[] is a lookup from the normal RegNo, to the row values from // Table 2-1 for 16-bit addressing modes. Where zero means disallowed. static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5}; unsigned RMfield = R16Table[BaseRegNo]; assert(RMfield && "invalid 16-bit base register"); if (IndexReg.getReg()) { unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)]; assert(IndexReg16 && "invalid 16-bit index register"); // We must have one of SI/DI (4,5), and one of BP/BX (6,7). assert(((IndexReg16 ^ RMfield) & 2) && "invalid 16-bit base/index register combination"); assert(Scale.getImm() == 1 && "invalid scale for 16-bit memory reference"); // Allow base/index to appear in either order (although GAS doesn't). if (IndexReg16 & 2) RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1); else RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1); } if (Disp.isImm() && isInt<8>(Disp.getImm())) { if (Disp.getImm() == 0 && RMfield != 6) { // There is no displacement; just the register. emitByte(modRMByte(0, RegOpcodeField, RMfield), CB); return; } // Use the [REG]+disp8 form, including for [BP] which cannot be encoded. emitByte(modRMByte(1, RegOpcodeField, RMfield), CB); emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups); return; } // This is the [REG]+disp16 case. emitByte(modRMByte(2, RegOpcodeField, RMfield), CB); } else { assert(IndexReg.getReg() == 0 && "Unexpected index register!"); // There is no BaseReg; this is the plain [disp16] case. emitByte(modRMByte(0, RegOpcodeField, 6), CB); } // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases. emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, CB, Fixups); return; } // Check for presence of {disp8} or {disp32} pseudo prefixes. bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8; bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32; // We only allow no displacement if no pseudo prefix is present. bool AllowNoDisp = !UseDisp8 && !UseDisp32; // Disp8 is allowed unless the {disp32} prefix is present. bool AllowDisp8 = !UseDisp32; // Determine whether a SIB byte is needed. if ( // The SIB byte must be used if there is an index register or the // encoding requires a SIB byte. !ForceSIB && IndexReg.getReg() == 0 && // The SIB byte must be used if the base is ESP/RSP/R12/R20/R28, all of // which encode to an R/M value of 4, which indicates that a SIB byte is // present. BaseRegNo != N86::ESP && // If there is no base register and we're in 64-bit mode, we need a SIB // byte to emit an addr that is just 'disp32' (the non-RIP relative form). (!STI.hasFeature(X86::Is64Bit) || BaseReg != 0)) { if (BaseReg == 0) { // [disp32] in X86-32 mode emitByte(modRMByte(0, RegOpcodeField, 5), CB); emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, CB, Fixups); return; } // If the base is not EBP/ESP/R12/R13/R20/R21/R28/R29 and there is no // displacement, use simple indirect register encoding, this handles // addresses like [EAX]. The encoding for [EBP], [R13], [R20], [R21], [R28] // or [R29] with no displacement means [disp32] so we handle it by emitting // a displacement of 0 later. if (BaseRegNo != N86::EBP) { if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) { emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CB); return; } // If the displacement is @tlscall, treat it as a zero. if (Disp.isExpr()) { auto *Sym = dyn_cast(Disp.getExpr()); if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) { // This is exclusively used by call *a@tlscall(base). The relocation // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning. Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc())); emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CB); return; } } } // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. // Including a compressed disp8 for EVEX instructions that support it. // This also handles the 0 displacement for [EBP], [R13], [R21] or [R29]. We // can't use disp8 if the {disp32} pseudo prefix is present. if (Disp.isImm() && AllowDisp8) { int ImmOffset = 0; if (isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) { emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CB); emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups, ImmOffset); return; } } // Otherwise, emit the most general non-SIB encoding: [REG+disp32]. // Displacement may be 0 for [EBP], [R13], [R21], [R29] case if {disp32} // pseudo prefix prevented using disp8 above. emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), CB); unsigned Opcode = MI.getOpcode(); unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax : X86::reloc_signed_4byte; emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, CB, Fixups); return; } // We need a SIB byte, so start by outputting the ModR/M byte first assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); bool ForceDisp32 = false; bool ForceDisp8 = false; int ImmOffset = 0; if (BaseReg == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=5, to JUST get the index, scale, and displacement. BaseRegNo = 5; emitByte(modRMByte(0, RegOpcodeField, 4), CB); ForceDisp32 = true; } else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp && // Base reg can't be EBP/RBP/R13/R21/R29 as that would end up with // '5' as the base field, but that is the magic [*] nomenclature // that indicates no base when mod=0. For these cases we'll emit a // 0 displacement instead. BaseRegNo != N86::EBP) { // Emit no displacement ModR/M byte emitByte(modRMByte(0, RegOpcodeField, 4), CB); } else if (Disp.isImm() && AllowDisp8 && isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) { // Displacement fits in a byte or matches an EVEX compressed disp8, use // disp8 encoding. This also handles EBP/R13/R21/R29 base with 0 // displacement unless {disp32} pseudo prefix was used. emitByte(modRMByte(1, RegOpcodeField, 4), CB); ForceDisp8 = true; } else { // Otherwise, emit the normal disp32 encoding. emitByte(modRMByte(2, RegOpcodeField, 4), CB); ForceDisp32 = true; } // Calculate what the SS field value should be... static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3}; unsigned SS = SSTable[Scale.getImm()]; unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(IndexReg) : 4; emitSIBByte(SS, IndexRegNo, BaseRegNo, CB); // Do we need to output a displacement? if (ForceDisp8) emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups, ImmOffset); else if (ForceDisp32) emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), StartByte, CB, Fixups); } /// Emit all instruction prefixes. /// /// \returns one of the REX, XOP, VEX2, VEX3, EVEX if any of them is used, /// otherwise returns None. PrefixKind X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI, const MCSubtargetInfo &STI, SmallVectorImpl &CB) const { uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags; // Determine where the memory operand starts, if present. int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); // Emit segment override opcode prefix as needed. if (MemoryOperand != -1) { MemoryOperand += CurOp; emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, CB); } // Emit the repeat opcode prefix as needed. unsigned Flags = MI.getFlags(); if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT) emitByte(0xF3, CB); if (Flags & X86::IP_HAS_REPEAT_NE) emitByte(0xF2, CB); // Emit the address size opcode prefix as needed. if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) || Flags & X86::IP_HAS_AD_SIZE) emitByte(0x67, CB); uint64_t Form = TSFlags & X86II::FormMask; switch (Form) { default: break; case X86II::RawFrmDstSrc: { // Emit segment override opcode prefix as needed (not for %ds). if (MI.getOperand(2).getReg() != X86::DS) emitSegmentOverridePrefix(2, MI, CB); CurOp += 3; // Consume operands. break; } case X86II::RawFrmSrc: { // Emit segment override opcode prefix as needed (not for %ds). if (MI.getOperand(1).getReg() != X86::DS) emitSegmentOverridePrefix(1, MI, CB); CurOp += 2; // Consume operands. break; } case X86II::RawFrmDst: { ++CurOp; // Consume operand. break; } case X86II::RawFrmMemOffs: { // Emit segment override opcode prefix as needed. emitSegmentOverridePrefix(1, MI, CB); break; } } // REX prefix is optional, but if used must be immediately before the opcode // Encoding type for this instruction. return (TSFlags & X86II::EncodingMask) ? emitVEXOpcodePrefix(MemoryOperand, MI, STI, CB) : emitOpcodePrefix(MemoryOperand, MI, STI, CB); } // AVX instructions are encoded using an encoding scheme that combines // prefix bytes, opcode extension field, operand encoding fields, and vector // length encoding capability into a new prefix, referred to as VEX. // The majority of the AVX-512 family of instructions (operating on // 512/256/128-bit vector register operands) are encoded using a new prefix // (called EVEX). // XOP is a revised subset of what was originally intended as SSE5. It was // changed to be similar but not overlapping with AVX. /// Emit XOP, VEX2, VEX3 or EVEX prefix. /// \returns the used prefix. PrefixKind X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, SmallVectorImpl &CB) const { const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); uint64_t TSFlags = Desc.TSFlags; assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX."); #ifndef NDEBUG unsigned NumOps = MI.getNumOperands(); for (unsigned I = NumOps ? X86II::getOperandBias(Desc) : 0; I != NumOps; ++I) { const MCOperand &MO = MI.getOperand(I); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) report_fatal_error( "Cannot encode high byte register in VEX/EVEX-prefixed instruction"); } #endif X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo()); switch (TSFlags & X86II::EncodingMask) { default: break; case X86II::XOP: Prefix.setLowerBound(XOP); break; case X86II::VEX: // VEX can be 2 byte or 3 byte, not determined yet if not explicit Prefix.setLowerBound(MI.getFlags() & X86::IP_USE_VEX3 ? VEX3 : VEX2); break; case X86II::EVEX: Prefix.setLowerBound(EVEX); break; } Prefix.setW(TSFlags & X86II::REX_W); Prefix.setNF(TSFlags & X86II::EVEX_NF); bool HasEVEX_K = TSFlags & X86II::EVEX_K; bool HasVEX_4V = TSFlags & X86II::VEX_4V; bool IsND = X86II::hasNewDataDest(TSFlags); // IsND implies HasVEX_4V bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; switch (TSFlags & X86II::OpMapMask) { default: llvm_unreachable("Invalid prefix!"); case X86II::TB: Prefix.set5M(0x1); // 0F break; case X86II::T8: Prefix.set5M(0x2); // 0F 38 break; case X86II::TA: Prefix.set5M(0x3); // 0F 3A break; case X86II::XOP8: Prefix.set5M(0x8); break; case X86II::XOP9: Prefix.set5M(0x9); break; case X86II::XOPA: Prefix.set5M(0xA); break; case X86II::T_MAP4: Prefix.set5M(0x4); break; case X86II::T_MAP5: Prefix.set5M(0x5); break; case X86II::T_MAP6: Prefix.set5M(0x6); break; case X86II::T_MAP7: Prefix.set5M(0x7); break; } Prefix.setL(TSFlags & X86II::VEX_L); Prefix.setL2(TSFlags & X86II::EVEX_L2); if ((TSFlags & X86II::EVEX_L2) && STI.hasFeature(X86::FeatureAVX512) && !STI.hasFeature(X86::FeatureEVEX512)) report_fatal_error("ZMM registers are not supported without EVEX512"); switch (TSFlags & X86II::OpPrefixMask) { case X86II::PD: Prefix.setPP(0x1); // 66 break; case X86II::XS: Prefix.setPP(0x2); // F3 break; case X86II::XD: Prefix.setPP(0x3); // F2 break; } Prefix.setZ(HasEVEX_K && (TSFlags & X86II::EVEX_Z)); Prefix.setEVEX_b(TSFlags & X86II::EVEX_B); bool EncodeRC = false; uint8_t EVEX_rc = 0; unsigned CurOp = X86II::getOperandBias(Desc); switch (TSFlags & X86II::FormMask) { default: llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!"); case X86II::MRMDestMem4VOp3CC: { // src1(ModR/M), MemAddr, src2(VEX_4V) Prefix.setRR2(MI, CurOp++); Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg); Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg); CurOp += X86::AddrNumOperands; Prefix.set4VV2(MI, CurOp++); break; } case X86II::MRM_C0: case X86II::RawFrm: break; case X86II::MRMDestMemFSIB: case X86II::MRMDestMem: { // MRMDestMem instructions forms: // MemAddr, src1(ModR/M) // MemAddr, src1(VEX_4V), src2(ModR/M) // MemAddr, src1(ModR/M), imm8 // // NDD: // dst(VEX_4V), MemAddr, src1(ModR/M) Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg); Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg); Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V); if (IsND) Prefix.set4VV2(MI, CurOp++); CurOp += X86::AddrNumOperands; if (HasEVEX_K) Prefix.setAAA(MI, CurOp++); if (!IsND && HasVEX_4V) Prefix.set4VV2(MI, CurOp++); Prefix.setRR2(MI, CurOp++); break; } case X86II::MRMSrcMemFSIB: case X86II::MRMSrcMem: { // MRMSrcMem instructions forms: // src1(ModR/M), MemAddr // src1(ModR/M), src2(VEX_4V), MemAddr // src1(ModR/M), MemAddr, imm8 // src1(ModR/M), MemAddr, src2(Imm[7:4]) // // FMA4: // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) // // NDD: // dst(VEX_4V), src1(ModR/M), MemAddr if (IsND) Prefix.set4VV2(MI, CurOp++); Prefix.setRR2(MI, CurOp++); if (HasEVEX_K) Prefix.setAAA(MI, CurOp++); if (!IsND && HasVEX_4V) Prefix.set4VV2(MI, CurOp++); Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg); Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg); Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V); break; } case X86II::MRMSrcMem4VOp3: { // Instruction format for 4VOp3: // src1(ModR/M), MemAddr, src3(VEX_4V) Prefix.setRR2(MI, CurOp++); Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg); Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg); Prefix.set4VV2(MI, CurOp + X86::AddrNumOperands); break; } case X86II::MRMSrcMemOp4: { // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), Prefix.setR(MI, CurOp++); Prefix.set4V(MI, CurOp++); Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg); Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg); break; } case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { // MRM[0-9]m instructions forms: // MemAddr // src1(VEX_4V), MemAddr if (HasVEX_4V) Prefix.set4VV2(MI, CurOp++); if (HasEVEX_K) Prefix.setAAA(MI, CurOp++); Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg); Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg); Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V); break; } case X86II::MRMSrcReg: { // MRMSrcReg instructions forms: // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) // dst(ModR/M), src1(ModR/M) // dst(ModR/M), src1(ModR/M), imm8 // // FMA4: // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), // // NDD: // dst(VEX_4V), src1(ModR/M.reg), src2(ModR/M) if (IsND) Prefix.set4VV2(MI, CurOp++); Prefix.setRR2(MI, CurOp++); if (HasEVEX_K) Prefix.setAAA(MI, CurOp++); if (!IsND && HasVEX_4V) Prefix.set4VV2(MI, CurOp++); Prefix.setBB2(MI, CurOp); Prefix.setX(MI, CurOp, 4); ++CurOp; if (TSFlags & X86II::EVEX_B) { if (HasEVEX_RC) { unsigned NumOps = Desc.getNumOperands(); unsigned RcOperand = NumOps - 1; assert(RcOperand >= CurOp); EVEX_rc = MI.getOperand(RcOperand).getImm(); assert(EVEX_rc <= 3 && "Invalid rounding control!"); } EncodeRC = true; } break; } case X86II::MRMSrcReg4VOp3: { // Instruction format for 4VOp3: // src1(ModR/M), src2(ModR/M), src3(VEX_4V) Prefix.setRR2(MI, CurOp++); Prefix.setBB2(MI, CurOp++); Prefix.set4VV2(MI, CurOp++); break; } case X86II::MRMSrcRegOp4: { // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), Prefix.setR(MI, CurOp++); Prefix.set4V(MI, CurOp++); // Skip second register source (encoded in Imm[7:4]) ++CurOp; Prefix.setB(MI, CurOp); Prefix.setX(MI, CurOp, 4); ++CurOp; break; } case X86II::MRMDestReg: { // MRMDestReg instructions forms: // dst(ModR/M), src(ModR/M) // dst(ModR/M), src(ModR/M), imm8 // dst(ModR/M), src1(VEX_4V), src2(ModR/M) // // NDD: // dst(VEX_4V), src1(ModR/M), src2(ModR/M) if (IsND) Prefix.set4VV2(MI, CurOp++); Prefix.setBB2(MI, CurOp); Prefix.setX(MI, CurOp, 4); ++CurOp; if (HasEVEX_K) Prefix.setAAA(MI, CurOp++); if (!IsND && HasVEX_4V) Prefix.set4VV2(MI, CurOp++); Prefix.setRR2(MI, CurOp++); if (TSFlags & X86II::EVEX_B) EncodeRC = true; break; } case X86II::MRMr0: { // MRMr0 instructions forms: // 11:rrr:000 // dst(ModR/M) Prefix.setRR2(MI, CurOp++); break; } case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: { // MRM0r-MRM7r instructions forms: // dst(VEX_4V), src(ModR/M), imm8 if (HasVEX_4V) Prefix.set4VV2(MI, CurOp++); if (HasEVEX_K) Prefix.setAAA(MI, CurOp++); Prefix.setBB2(MI, CurOp); Prefix.setX(MI, CurOp, 4); ++CurOp; break; } } if (EncodeRC) { Prefix.setL(EVEX_rc & 0x1); Prefix.setL2(EVEX_rc & 0x2); } PrefixKind Kind = Prefix.determineOptimalKind(); Prefix.emit(CB); return Kind; } /// Emit REX prefix which specifies /// 1) 64-bit instructions, /// 2) non-default operand size, and /// 3) use of X86-64 extended registers. /// /// \returns the used prefix (REX or None). PrefixKind X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, SmallVectorImpl &CB) const { if (!STI.hasFeature(X86::Is64Bit)) return None; X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo()); const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); uint64_t TSFlags = Desc.TSFlags; Prefix.setW(TSFlags & X86II::REX_W); unsigned NumOps = MI.getNumOperands(); bool UsesHighByteReg = false; #ifndef NDEBUG bool HasRegOp = false; #endif unsigned CurOp = NumOps ? X86II::getOperandBias(Desc) : 0; for (unsigned i = CurOp; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg()) { #ifndef NDEBUG HasRegOp = true; #endif unsigned Reg = MO.getReg(); if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) UsesHighByteReg = true; // If it accesses SPL, BPL, SIL, or DIL, then it requires a REX prefix. if (X86II::isX86_64NonExtLowByteReg(Reg)) Prefix.setLowerBound(REX); } else if (MO.isExpr() && STI.getTargetTriple().isX32()) { // GOTTPOFF and TLSDESC relocations require a REX prefix to allow // linker optimizations: even if the instructions we see may not require // any prefix, they may be replaced by instructions that do. This is // handled as a special case here so that it also works for hand-written // assembly without the user needing to write REX, as with GNU as. const auto *Ref = dyn_cast(MO.getExpr()); if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF || Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) { Prefix.setLowerBound(REX); } } } if ((TSFlags & X86II::ExplicitOpPrefixMask) == X86II::ExplicitREX2Prefix) Prefix.setLowerBound(REX2); switch (TSFlags & X86II::FormMask) { default: assert(!HasRegOp && "Unexpected form in emitREXPrefix!"); break; case X86II::RawFrm: case X86II::RawFrmMemOffs: case X86II::RawFrmSrc: case X86II::RawFrmDst: case X86II::RawFrmDstSrc: break; case X86II::AddRegFrm: Prefix.setBB2(MI, CurOp++); break; case X86II::MRMSrcReg: case X86II::MRMSrcRegCC: Prefix.setRR2(MI, CurOp++); Prefix.setBB2(MI, CurOp++); break; case X86II::MRMSrcMem: case X86II::MRMSrcMemCC: Prefix.setRR2(MI, CurOp++); Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg); Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg); CurOp += X86::AddrNumOperands; break; case X86II::MRMDestReg: Prefix.setBB2(MI, CurOp++); Prefix.setRR2(MI, CurOp++); break; case X86II::MRMDestMem: Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg); Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg); CurOp += X86::AddrNumOperands; Prefix.setRR2(MI, CurOp++); break; case X86II::MRMXmCC: case X86II::MRMXm: case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg); Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg); break; case X86II::MRMXrCC: case X86II::MRMXr: case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: Prefix.setBB2(MI, CurOp++); break; } Prefix.setM((TSFlags & X86II::OpMapMask) == X86II::TB); PrefixKind Kind = Prefix.determineOptimalKind(); if (Kind && UsesHighByteReg) report_fatal_error( "Cannot encode high byte register in REX-prefixed instruction"); Prefix.emit(CB); return Kind; } /// Emit segment override opcode prefix as needed. void X86MCCodeEmitter::emitSegmentOverridePrefix( unsigned SegOperand, const MCInst &MI, SmallVectorImpl &CB) const { // Check for explicit segment override on memory operand. if (unsigned Reg = MI.getOperand(SegOperand).getReg()) emitByte(X86::getSegmentOverridePrefixForReg(Reg), CB); } /// Emit all instruction prefixes prior to the opcode. /// /// \param MemOperand the operand # of the start of a memory operand if present. /// If not present, it is -1. /// /// \returns the used prefix (REX or None). PrefixKind X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI, const MCSubtargetInfo &STI, SmallVectorImpl &CB) const { const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); uint64_t TSFlags = Desc.TSFlags; // Emit the operand size opcode prefix as needed. if ((TSFlags & X86II::OpSizeMask) == (STI.hasFeature(X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16)) emitByte(0x66, CB); // Emit the LOCK opcode prefix. if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK) emitByte(0xF0, CB); // Emit the NOTRACK opcode prefix. if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK) emitByte(0x3E, CB); switch (TSFlags & X86II::OpPrefixMask) { case X86II::PD: // 66 emitByte(0x66, CB); break; case X86II::XS: // F3 emitByte(0xF3, CB); break; case X86II::XD: // F2 emitByte(0xF2, CB); break; } // Handle REX prefix. assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) && "REX.W requires 64bit mode."); PrefixKind Kind = emitREXPrefix(MemOperand, MI, STI, CB); // 0x0F escape code must be emitted just before the opcode. switch (TSFlags & X86II::OpMapMask) { case X86II::TB: // Two-byte opcode map // Encoded by M bit in REX2 if (Kind == REX2) break; [[fallthrough]]; case X86II::T8: // 0F 38 case X86II::TA: // 0F 3A case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller. emitByte(0x0F, CB); break; } switch (TSFlags & X86II::OpMapMask) { case X86II::T8: // 0F 38 emitByte(0x38, CB); break; case X86II::TA: // 0F 3A emitByte(0x3A, CB); break; } return Kind; } void X86MCCodeEmitter::emitPrefix(const MCInst &MI, SmallVectorImpl &CB, const MCSubtargetInfo &STI) const { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); uint64_t TSFlags = Desc.TSFlags; // Pseudo instructions don't get encoded. if (X86II::isPseudo(TSFlags)) return; unsigned CurOp = X86II::getOperandBias(Desc); emitPrefixImpl(CurOp, MI, STI, CB); } void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); uint64_t TSFlags = Desc.TSFlags; // Pseudo instructions don't get encoded. if (X86II::isPseudo(TSFlags)) return; unsigned NumOps = Desc.getNumOperands(); unsigned CurOp = X86II::getOperandBias(Desc); uint64_t StartByte = CB.size(); PrefixKind Kind = emitPrefixImpl(CurOp, MI, STI, CB); // It uses the VEX.VVVV field? bool HasVEX_4V = TSFlags & X86II::VEX_4V; bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg; // It uses the EVEX.aaa field? bool HasEVEX_K = TSFlags & X86II::EVEX_K; bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; // Used if a register is encoded in 7:4 of immediate. unsigned I8RegNum = 0; uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) BaseOpcode = 0x0F; // Weird 3DNow! encoding. unsigned OpcodeOffset = 0; bool IsND = X86II::hasNewDataDest(TSFlags); uint64_t Form = TSFlags & X86II::FormMask; switch (Form) { default: errs() << "FORM: " << Form << "\n"; llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!"); case X86II::Pseudo: llvm_unreachable("Pseudo instruction shouldn't be emitted"); case X86II::RawFrmDstSrc: case X86II::RawFrmSrc: case X86II::RawFrmDst: case X86II::PrefixByte: emitByte(BaseOpcode, CB); break; case X86II::AddCCFrm: { // This will be added to the opcode in the fallthrough. OpcodeOffset = MI.getOperand(NumOps - 1).getImm(); assert(OpcodeOffset < 16 && "Unexpected opcode offset!"); --NumOps; // Drop the operand from the end. [[fallthrough]]; case X86II::RawFrm: emitByte(BaseOpcode + OpcodeOffset, CB); if (!STI.hasFeature(X86::Is64Bit) || !isPCRel32Branch(MI, MCII)) break; const MCOperand &Op = MI.getOperand(CurOp++); emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags), MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, CB, Fixups); break; } case X86II::RawFrmMemOffs: emitByte(BaseOpcode, CB); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), StartByte, CB, Fixups); ++CurOp; // skip segment operand break; case X86II::RawFrmImm8: emitByte(BaseOpcode, CB); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), StartByte, CB, Fixups); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups); break; case X86II::RawFrmImm16: emitByte(BaseOpcode, CB); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), StartByte, CB, Fixups); emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte, CB, Fixups); break; case X86II::AddRegFrm: emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), CB); break; case X86II::MRMDestReg: { emitByte(BaseOpcode, CB); unsigned SrcRegNum = CurOp + 1; if (HasEVEX_K) // Skip writemask ++SrcRegNum; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; if (IsND) // Skip the NDD operand encoded in EVEX_VVVV ++CurOp; emitRegModRMByte(MI.getOperand(CurOp), getX86RegNum(MI.getOperand(SrcRegNum)), CB); CurOp = SrcRegNum + 1; break; } case X86II::MRMDestMem4VOp3CC: { unsigned CC = MI.getOperand(8).getImm(); emitByte(BaseOpcode + CC, CB); unsigned SrcRegNum = CurOp + X86::AddrNumOperands; emitMemModRMByte(MI, CurOp + 1, getX86RegNum(MI.getOperand(0)), TSFlags, Kind, StartByte, CB, Fixups, STI, false); CurOp = SrcRegNum + 3; // skip reg, VEX_V4 and CC break; } case X86II::MRMDestMemFSIB: case X86II::MRMDestMem: { emitByte(BaseOpcode, CB); unsigned SrcRegNum = CurOp + X86::AddrNumOperands; if (HasEVEX_K) // Skip writemask ++SrcRegNum; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; if (IsND) // Skip new data destination ++CurOp; bool ForceSIB = (Form == X86II::MRMDestMemFSIB); emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags, Kind, StartByte, CB, Fixups, STI, ForceSIB); CurOp = SrcRegNum + 1; break; } case X86II::MRMSrcReg: { emitByte(BaseOpcode, CB); unsigned SrcRegNum = CurOp + 1; if (HasEVEX_K) // Skip writemask ++SrcRegNum; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; if (IsND) // Skip new data destination ++CurOp; emitRegModRMByte(MI.getOperand(SrcRegNum), getX86RegNum(MI.getOperand(CurOp)), CB); CurOp = SrcRegNum + 1; if (HasVEX_I8Reg) I8RegNum = getX86RegEncoding(MI, CurOp++); // do not count the rounding control operand if (HasEVEX_RC) --NumOps; break; } case X86II::MRMSrcReg4VOp3: { emitByte(BaseOpcode, CB); unsigned SrcRegNum = CurOp + 1; emitRegModRMByte(MI.getOperand(SrcRegNum), getX86RegNum(MI.getOperand(CurOp)), CB); CurOp = SrcRegNum + 1; ++CurOp; // Encoded in VEX.VVVV break; } case X86II::MRMSrcRegOp4: { emitByte(BaseOpcode, CB); unsigned SrcRegNum = CurOp + 1; // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; // Capture 2nd src (which is encoded in Imm[7:4]) assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg"); I8RegNum = getX86RegEncoding(MI, SrcRegNum++); emitRegModRMByte(MI.getOperand(SrcRegNum), getX86RegNum(MI.getOperand(CurOp)), CB); CurOp = SrcRegNum + 1; break; } case X86II::MRMSrcRegCC: { unsigned FirstOp = CurOp++; unsigned SecondOp = CurOp++; unsigned CC = MI.getOperand(CurOp++).getImm(); emitByte(BaseOpcode + CC, CB); emitRegModRMByte(MI.getOperand(SecondOp), getX86RegNum(MI.getOperand(FirstOp)), CB); break; } case X86II::MRMSrcMemFSIB: case X86II::MRMSrcMem: { unsigned FirstMemOp = CurOp + 1; if (IsND) // Skip new data destination CurOp++; if (HasEVEX_K) // Skip writemask ++FirstMemOp; if (HasVEX_4V) ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). emitByte(BaseOpcode, CB); bool ForceSIB = (Form == X86II::MRMSrcMemFSIB); emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)), TSFlags, Kind, StartByte, CB, Fixups, STI, ForceSIB); CurOp = FirstMemOp + X86::AddrNumOperands; if (HasVEX_I8Reg) I8RegNum = getX86RegEncoding(MI, CurOp++); break; } case X86II::MRMSrcMem4VOp3: { unsigned FirstMemOp = CurOp + 1; emitByte(BaseOpcode, CB); emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)), TSFlags, Kind, StartByte, CB, Fixups, STI); CurOp = FirstMemOp + X86::AddrNumOperands; ++CurOp; // Encoded in VEX.VVVV. break; } case X86II::MRMSrcMemOp4: { unsigned FirstMemOp = CurOp + 1; ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). // Capture second register source (encoded in Imm[7:4]) assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg"); I8RegNum = getX86RegEncoding(MI, FirstMemOp++); emitByte(BaseOpcode, CB); emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)), TSFlags, Kind, StartByte, CB, Fixups, STI); CurOp = FirstMemOp + X86::AddrNumOperands; break; } case X86II::MRMSrcMemCC: { unsigned RegOp = CurOp++; unsigned FirstMemOp = CurOp; CurOp = FirstMemOp + X86::AddrNumOperands; unsigned CC = MI.getOperand(CurOp++).getImm(); emitByte(BaseOpcode + CC, CB); emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)), TSFlags, Kind, StartByte, CB, Fixups, STI); break; } case X86II::MRMXrCC: { unsigned RegOp = CurOp++; unsigned CC = MI.getOperand(CurOp++).getImm(); emitByte(BaseOpcode + CC, CB); emitRegModRMByte(MI.getOperand(RegOp), 0, CB); break; } case X86II::MRMXr: case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). ++CurOp; if (HasEVEX_K) // Skip writemask ++CurOp; emitByte(BaseOpcode, CB); emitRegModRMByte(MI.getOperand(CurOp++), (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, CB); break; case X86II::MRMr0: emitByte(BaseOpcode, CB); emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)), 0), CB); break; case X86II::MRMXmCC: { unsigned FirstMemOp = CurOp; CurOp = FirstMemOp + X86::AddrNumOperands; unsigned CC = MI.getOperand(CurOp++).getImm(); emitByte(BaseOpcode + CC, CB); emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, Kind, StartByte, CB, Fixups, STI); break; } case X86II::MRMXm: case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). ++CurOp; if (HasEVEX_K) // Skip writemask ++CurOp; emitByte(BaseOpcode, CB); emitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags, Kind, StartByte, CB, Fixups, STI); CurOp += X86::AddrNumOperands; break; case X86II::MRM0X: case X86II::MRM1X: case X86II::MRM2X: case X86II::MRM3X: case X86II::MRM4X: case X86II::MRM5X: case X86II::MRM6X: case X86II::MRM7X: emitByte(BaseOpcode, CB); emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), CB); break; case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5: case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8: case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE: case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6: case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF: case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF: emitByte(BaseOpcode, CB); emitByte(0xC0 + Form - X86II::MRM_C0, CB); break; } if (HasVEX_I8Reg) { // The last source register of a 4 operand instruction in AVX is encoded // in bits[7:4] of a immediate byte. assert(I8RegNum < 16 && "Register encoding out of range"); I8RegNum <<= 4; if (CurOp != NumOps) { unsigned Val = MI.getOperand(CurOp++).getImm(); assert(Val < 16 && "Immediate operand value out of range"); I8RegNum |= Val; } emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups); } else { // If there is a remaining operand, it must be a trailing immediate. Emit it // according to the right size for the instruction. Some instructions // (SSE4a extrq and insertq) have two trailing immediates. while (CurOp != NumOps && NumOps - CurOp <= 2) { emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), StartByte, CB, Fixups); } } if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) emitByte(X86II::getBaseOpcodeFor(TSFlags), CB); assert(CB.size() - StartByte <= 15 && "The size of instruction must be no longer than 15."); #ifndef NDEBUG // FIXME: Verify. if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { errs() << "Cannot encode all operands of: "; MI.dump(); errs() << '\n'; abort(); } #endif } MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, MCContext &Ctx) { return new X86MCCodeEmitter(MCII, Ctx); }