//===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file includes code for rendering MCInst instances as AT&T-style // assembly. // //===----------------------------------------------------------------------===// #include "X86ATTInstPrinter.h" #include "X86BaseInfo.h" #include "X86InstComments.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "asm-printer" // Include the auto-generated portion of the assembly writer. #define PRINT_ALIAS_INSTR #include "X86GenAsmWriter.inc" void X86ATTInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const { OS << markup(""); } void X86ATTInstPrinter::printInst(const MCInst *MI, uint64_t Address, StringRef Annot, const MCSubtargetInfo &STI, raw_ostream &OS) { // If verbose assembly is enabled, we can print some informative comments. if (CommentStream) HasCustomInstComment = EmitAnyX86InstComments(MI, *CommentStream, MII); printInstFlags(MI, OS, STI); // Output CALLpcrel32 as "callq" in 64-bit mode. // In Intel annotation it's always emitted as "call". // // TODO: Probably this hack should be redesigned via InstAlias in // InstrInfo.td as soon as Requires clause is supported properly // for InstAlias. if (MI->getOpcode() == X86::CALLpcrel32 && (STI.getFeatureBits()[X86::Is64Bit])) { OS << "\tcallq\t"; printPCRelImm(MI, Address, 0, OS); } // data16 and data32 both have the same encoding of 0x66. While data32 is // valid only in 16 bit systems, data16 is valid in the rest. // There seems to be some lack of support of the Requires clause that causes // 0x66 to be interpreted as "data16" by the asm printer. // Thus we add an adjustment here in order to print the "right" instruction. else if (MI->getOpcode() == X86::DATA16_PREFIX && STI.getFeatureBits()[X86::Is16Bit]) { OS << "\tdata32"; } // Try to print any aliases first. else if (!printAliasInstr(MI, Address, OS) && !printVecCompareInstr(MI, OS)) printInstruction(MI, Address, OS); // Next always print the annotation. printAnnotation(OS, Annot); } bool X86ATTInstPrinter::printVecCompareInstr(const MCInst *MI, raw_ostream &OS) { if (MI->getNumOperands() == 0 || !MI->getOperand(MI->getNumOperands() - 1).isImm()) return false; int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm(); const MCInstrDesc &Desc = MII.get(MI->getOpcode()); // Custom print the vector compare instructions to get the immediate // translated into the mnemonic. switch (MI->getOpcode()) { case X86::CMPPDrmi: case X86::CMPPDrri: case X86::CMPPSrmi: case X86::CMPPSrri: case X86::CMPSDrm: case X86::CMPSDrr: case X86::CMPSDrm_Int: case X86::CMPSDrr_Int: case X86::CMPSSrm: case X86::CMPSSrr: case X86::CMPSSrm_Int: case X86::CMPSSrr_Int: if (Imm >= 0 && Imm <= 7) { OS << '\t'; printCMPMnemonic(MI, /*IsVCMP*/false, OS); if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) { if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS) printdwordmem(MI, 2, OS); else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD) printqwordmem(MI, 2, OS); else printxmmwordmem(MI, 2, OS); } else printOperand(MI, 2, OS); // Skip operand 1 as its tied to the dest. OS << ", "; printOperand(MI, 0, OS); return true; } break; case X86::VCMPPDrmi: case X86::VCMPPDrri: case X86::VCMPPDYrmi: case X86::VCMPPDYrri: case X86::VCMPPDZ128rmi: case X86::VCMPPDZ128rri: case X86::VCMPPDZ256rmi: case X86::VCMPPDZ256rri: case X86::VCMPPDZrmi: case X86::VCMPPDZrri: case X86::VCMPPSrmi: case X86::VCMPPSrri: case X86::VCMPPSYrmi: case X86::VCMPPSYrri: case X86::VCMPPSZ128rmi: case X86::VCMPPSZ128rri: case X86::VCMPPSZ256rmi: case X86::VCMPPSZ256rri: case X86::VCMPPSZrmi: case X86::VCMPPSZrri: case X86::VCMPSDrm: case X86::VCMPSDrr: case X86::VCMPSDZrm: case X86::VCMPSDZrr: case X86::VCMPSDrm_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrm_Int: case X86::VCMPSDZrr_Int: case X86::VCMPSSrm: case X86::VCMPSSrr: case X86::VCMPSSZrm: case X86::VCMPSSZrr: case X86::VCMPSSrm_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrm_Int: case X86::VCMPSSZrr_Int: case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik: case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik: case X86::VCMPPDZrmik: case X86::VCMPPDZrrik: case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik: case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik: case X86::VCMPPSZrmik: case X86::VCMPPSZrrik: case X86::VCMPSDZrm_Intk: case X86::VCMPSDZrr_Intk: case X86::VCMPSSZrm_Intk: case X86::VCMPSSZrr_Intk: case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik: case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik: case X86::VCMPPDZrmbi: case X86::VCMPPDZrmbik: case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik: case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik: case X86::VCMPPSZrmbi: case X86::VCMPPSZrmbik: case X86::VCMPPDZrrib: case X86::VCMPPDZrribk: case X86::VCMPPSZrrib: case X86::VCMPPSZrribk: case X86::VCMPSDZrrb_Int: case X86::VCMPSDZrrb_Intk: case X86::VCMPSSZrrb_Int: case X86::VCMPSSZrrb_Intk: case X86::VCMPPHZ128rmi: case X86::VCMPPHZ128rri: case X86::VCMPPHZ256rmi: case X86::VCMPPHZ256rri: case X86::VCMPPHZrmi: case X86::VCMPPHZrri: case X86::VCMPSHZrm: case X86::VCMPSHZrr: case X86::VCMPSHZrm_Int: case X86::VCMPSHZrr_Int: case X86::VCMPPHZ128rmik: case X86::VCMPPHZ128rrik: case X86::VCMPPHZ256rmik: case X86::VCMPPHZ256rrik: case X86::VCMPPHZrmik: case X86::VCMPPHZrrik: case X86::VCMPSHZrm_Intk: case X86::VCMPSHZrr_Intk: case X86::VCMPPHZ128rmbi: case X86::VCMPPHZ128rmbik: case X86::VCMPPHZ256rmbi: case X86::VCMPPHZ256rmbik: case X86::VCMPPHZrmbi: case X86::VCMPPHZrmbik: case X86::VCMPPHZrrib: case X86::VCMPPHZrribk: case X86::VCMPSHZrrb_Int: case X86::VCMPSHZrrb_Intk: if (Imm >= 0 && Imm <= 31) { OS << '\t'; printCMPMnemonic(MI, /*IsVCMP*/true, OS); unsigned CurOp = (Desc.TSFlags & X86II::EVEX_K) ? 3 : 2; if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) { if (Desc.TSFlags & X86II::EVEX_B) { // Broadcast form. // Load size is word for TA map. Otherwise it is based on W-bit. if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) { assert(!(Desc.TSFlags & X86II::VEX_W) && "Unknown W-bit value!"); printwordmem(MI, CurOp--, OS); } else if (Desc.TSFlags & X86II::VEX_W) { printqwordmem(MI, CurOp--, OS); } else { printdwordmem(MI, CurOp--, OS); } // Print the number of elements broadcasted. unsigned NumElts; if (Desc.TSFlags & X86II::EVEX_L2) NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16; else if (Desc.TSFlags & X86II::VEX_L) NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8; else NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4; if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) { assert(!(Desc.TSFlags & X86II::VEX_W) && "Unknown W-bit value!"); NumElts *= 2; } OS << "{1to" << NumElts << "}"; } else { if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS) { if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) printwordmem(MI, CurOp--, OS); else printdwordmem(MI, CurOp--, OS); } else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD) { assert((Desc.TSFlags & X86II::OpMapMask) != X86II::TA && "Unexpected op map!"); printqwordmem(MI, CurOp--, OS); } else if (Desc.TSFlags & X86II::EVEX_L2) { printzmmwordmem(MI, CurOp--, OS); } else if (Desc.TSFlags & X86II::VEX_L) { printymmwordmem(MI, CurOp--, OS); } else { printxmmwordmem(MI, CurOp--, OS); } } } else { if (Desc.TSFlags & X86II::EVEX_B) OS << "{sae}, "; printOperand(MI, CurOp--, OS); } OS << ", "; printOperand(MI, CurOp--, OS); OS << ", "; printOperand(MI, 0, OS); if (CurOp > 0) { // Print mask operand. OS << " {"; printOperand(MI, CurOp--, OS); OS << "}"; } return true; } break; case X86::VPCOMBmi: case X86::VPCOMBri: case X86::VPCOMDmi: case X86::VPCOMDri: case X86::VPCOMQmi: case X86::VPCOMQri: case X86::VPCOMUBmi: case X86::VPCOMUBri: case X86::VPCOMUDmi: case X86::VPCOMUDri: case X86::VPCOMUQmi: case X86::VPCOMUQri: case X86::VPCOMUWmi: case X86::VPCOMUWri: case X86::VPCOMWmi: case X86::VPCOMWri: if (Imm >= 0 && Imm <= 7) { OS << '\t'; printVPCOMMnemonic(MI, OS); if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) printxmmwordmem(MI, 2, OS); else printOperand(MI, 2, OS); OS << ", "; printOperand(MI, 1, OS); OS << ", "; printOperand(MI, 0, OS); return true; } break; case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rri: case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rri: case X86::VPCMPBZrmi: case X86::VPCMPBZrri: case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rri: case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rri: case X86::VPCMPDZrmi: case X86::VPCMPDZrri: case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rri: case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rri: case X86::VPCMPQZrmi: case X86::VPCMPQZrri: case X86::VPCMPUBZ128rmi: case X86::VPCMPUBZ128rri: case X86::VPCMPUBZ256rmi: case X86::VPCMPUBZ256rri: case X86::VPCMPUBZrmi: case X86::VPCMPUBZrri: case X86::VPCMPUDZ128rmi: case X86::VPCMPUDZ128rri: case X86::VPCMPUDZ256rmi: case X86::VPCMPUDZ256rri: case X86::VPCMPUDZrmi: case X86::VPCMPUDZrri: case X86::VPCMPUQZ128rmi: case X86::VPCMPUQZ128rri: case X86::VPCMPUQZ256rmi: case X86::VPCMPUQZ256rri: case X86::VPCMPUQZrmi: case X86::VPCMPUQZrri: case X86::VPCMPUWZ128rmi: case X86::VPCMPUWZ128rri: case X86::VPCMPUWZ256rmi: case X86::VPCMPUWZ256rri: case X86::VPCMPUWZrmi: case X86::VPCMPUWZrri: case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rri: case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rri: case X86::VPCMPWZrmi: case X86::VPCMPWZrri: case X86::VPCMPBZ128rmik: case X86::VPCMPBZ128rrik: case X86::VPCMPBZ256rmik: case X86::VPCMPBZ256rrik: case X86::VPCMPBZrmik: case X86::VPCMPBZrrik: case X86::VPCMPDZ128rmik: case X86::VPCMPDZ128rrik: case X86::VPCMPDZ256rmik: case X86::VPCMPDZ256rrik: case X86::VPCMPDZrmik: case X86::VPCMPDZrrik: case X86::VPCMPQZ128rmik: case X86::VPCMPQZ128rrik: case X86::VPCMPQZ256rmik: case X86::VPCMPQZ256rrik: case X86::VPCMPQZrmik: case X86::VPCMPQZrrik: case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik: case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik: case X86::VPCMPUBZrmik: case X86::VPCMPUBZrrik: case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik: case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik: case X86::VPCMPUDZrmik: case X86::VPCMPUDZrrik: case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik: case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik: case X86::VPCMPUQZrmik: case X86::VPCMPUQZrrik: case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik: case X86::VPCMPUWZ256rmik: case X86::VPCMPUWZ256rrik: case X86::VPCMPUWZrmik: case X86::VPCMPUWZrrik: case X86::VPCMPWZ128rmik: case X86::VPCMPWZ128rrik: case X86::VPCMPWZ256rmik: case X86::VPCMPWZ256rrik: case X86::VPCMPWZrmik: case X86::VPCMPWZrrik: case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk: case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk: case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk: case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk: case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk: case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk: case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk: case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk: case X86::VPCMPUDZrmib: case X86::VPCMPUDZrmibk: case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk: case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk: case X86::VPCMPUQZrmib: case X86::VPCMPUQZrmibk: if ((Imm >= 0 && Imm <= 2) || (Imm >= 4 && Imm <= 6)) { OS << '\t'; printVPCMPMnemonic(MI, OS); unsigned CurOp = (Desc.TSFlags & X86II::EVEX_K) ? 3 : 2; if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) { if (Desc.TSFlags & X86II::EVEX_B) { // Broadcast form. // Load size is based on W-bit as only D and Q are supported. if (Desc.TSFlags & X86II::VEX_W) printqwordmem(MI, CurOp--, OS); else printdwordmem(MI, CurOp--, OS); // Print the number of elements broadcasted. unsigned NumElts; if (Desc.TSFlags & X86II::EVEX_L2) NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16; else if (Desc.TSFlags & X86II::VEX_L) NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8; else NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4; OS << "{1to" << NumElts << "}"; } else { if (Desc.TSFlags & X86II::EVEX_L2) printzmmwordmem(MI, CurOp--, OS); else if (Desc.TSFlags & X86II::VEX_L) printymmwordmem(MI, CurOp--, OS); else printxmmwordmem(MI, CurOp--, OS); } } else { printOperand(MI, CurOp--, OS); } OS << ", "; printOperand(MI, CurOp--, OS); OS << ", "; printOperand(MI, 0, OS); if (CurOp > 0) { // Print mask operand. OS << " {"; printOperand(MI, CurOp--, OS); OS << "}"; } return true; } break; } return false; } void X86ATTInstPrinter::printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) { const MCOperand &Op = MI->getOperand(OpNo); if (Op.isReg()) { printRegName(O, Op.getReg()); } else if (Op.isImm()) { // Print immediates as signed values. int64_t Imm = Op.getImm(); O << markup(""); // TODO: This should be in a helper function in the base class, so it can // be used by other printers. // If there are no instruction-specific comments, add a comment clarifying // the hex value of the immediate operand when it isn't in the range // [-256,255]. if (CommentStream && !HasCustomInstComment && (Imm > 255 || Imm < -256)) { // Don't print unnecessary hex sign bits. if (Imm == (int16_t)(Imm)) *CommentStream << format("imm = 0x%" PRIX16 "\n", (uint16_t)Imm); else if (Imm == (int32_t)(Imm)) *CommentStream << format("imm = 0x%" PRIX32 "\n", (uint32_t)Imm); else *CommentStream << format("imm = 0x%" PRIX64 "\n", (uint64_t)Imm); } } else { assert(Op.isExpr() && "unknown operand kind in printOperand"); O << markup("print(O, &MAI); O << markup(">"); } } void X86ATTInstPrinter::printMemReference(const MCInst *MI, unsigned Op, raw_ostream &O) { // Do not print the exact form of the memory operand if it references a known // binary object. if (SymbolizeOperands && MIA) { uint64_t Target; if (MIA->evaluateBranch(*MI, 0, 0, Target)) return; if (MIA->evaluateMemoryOperandAddress(*MI, /*STI=*/nullptr, 0, 0)) return; } const MCOperand &BaseReg = MI->getOperand(Op + X86::AddrBaseReg); const MCOperand &IndexReg = MI->getOperand(Op + X86::AddrIndexReg); const MCOperand &DispSpec = MI->getOperand(Op + X86::AddrDisp); O << markup("print(O, &MAI); } if (IndexReg.getReg() || BaseReg.getReg()) { O << '('; if (BaseReg.getReg()) printOperand(MI, Op + X86::AddrBaseReg, O); if (IndexReg.getReg()) { O << ','; printOperand(MI, Op + X86::AddrIndexReg, O); unsigned ScaleVal = MI->getOperand(Op + X86::AddrScaleAmt).getImm(); if (ScaleVal != 1) { O << ',' << markup(""); } } O << ')'; } O << markup(">"); } void X86ATTInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op, raw_ostream &O) { O << markup(""); } void X86ATTInstPrinter::printDstIdx(const MCInst *MI, unsigned Op, raw_ostream &O) { O << markup(""); } void X86ATTInstPrinter::printMemOffset(const MCInst *MI, unsigned Op, raw_ostream &O) { const MCOperand &DispSpec = MI->getOperand(Op); O << markup("print(O, &MAI); } O << markup(">"); } void X86ATTInstPrinter::printU8Imm(const MCInst *MI, unsigned Op, raw_ostream &O) { if (MI->getOperand(Op).isExpr()) return printOperand(MI, Op, O); O << markup("getOperand(Op).getImm() & 0xff) << markup(">"); } void X86ATTInstPrinter::printSTiRegOperand(const MCInst *MI, unsigned OpNo, raw_ostream &OS) { const MCOperand &Op = MI->getOperand(OpNo); unsigned Reg = Op.getReg(); // Override the default printing to print st(0) instead st. if (Reg == X86::ST0) OS << markup(""); else printRegName(OS, Reg); }