//===- llvm/lib/Target/X86/X86CallLowering.cpp - Call lowering ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This file implements the lowering of LLVM calls to machine code calls for /// GlobalISel. // //===----------------------------------------------------------------------===// #include "X86CallLowering.h" #include "X86CallingConv.h" #include "X86ISelLowering.h" #include "X86InstrInfo.h" #include "X86MachineFunctionInfo.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/LowLevelTypeUtils.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGenTypes/LowLevelType.h" #include "llvm/CodeGenTypes/MachineValueType.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCRegisterInfo.h" #include #include using namespace llvm; X86CallLowering::X86CallLowering(const X86TargetLowering &TLI) : CallLowering(&TLI) {} namespace { struct X86OutgoingValueAssigner : public CallLowering::OutgoingValueAssigner { private: uint64_t StackSize = 0; unsigned NumXMMRegs = 0; public: uint64_t getStackSize() { return StackSize; } unsigned getNumXmmRegs() { return NumXMMRegs; } X86OutgoingValueAssigner(CCAssignFn *AssignFn_) : CallLowering::OutgoingValueAssigner(AssignFn_) {} bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags, CCState &State) override { bool Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); StackSize = State.getStackSize(); static const MCPhysReg XMMArgRegs[] = {X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7}; if (!Info.IsFixed) NumXMMRegs = State.getFirstUnallocated(XMMArgRegs); return Res; } }; struct X86OutgoingValueHandler : public CallLowering::OutgoingValueHandler { X86OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, MachineInstrBuilder &MIB) : OutgoingValueHandler(MIRBuilder, MRI), MIB(MIB), DL(MIRBuilder.getMF().getDataLayout()), STI(MIRBuilder.getMF().getSubtarget()) {} Register getStackAddress(uint64_t Size, int64_t Offset, MachinePointerInfo &MPO, ISD::ArgFlagsTy Flags) override { LLT p0 = LLT::pointer(0, DL.getPointerSizeInBits(0)); LLT SType = LLT::scalar(DL.getPointerSizeInBits(0)); auto SPReg = MIRBuilder.buildCopy(p0, STI.getRegisterInfo()->getStackRegister()); auto OffsetReg = MIRBuilder.buildConstant(SType, Offset); auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg); MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset); return AddrReg.getReg(0); } void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA) override { MIB.addUse(PhysReg, RegState::Implicit); Register ExtReg = extendRegister(ValVReg, VA); MIRBuilder.buildCopy(PhysReg, ExtReg); } void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, const MachinePointerInfo &MPO, const CCValAssign &VA) override { MachineFunction &MF = MIRBuilder.getMF(); Register ExtReg = extendRegister(ValVReg, VA); auto *MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, MemTy, inferAlignFromPtrInfo(MF, MPO)); MIRBuilder.buildStore(ExtReg, Addr, *MMO); } protected: MachineInstrBuilder &MIB; const DataLayout &DL; const X86Subtarget &STI; }; } // end anonymous namespace bool X86CallLowering::canLowerReturn( MachineFunction &MF, CallingConv::ID CallConv, SmallVectorImpl &Outs, bool IsVarArg) const { LLVMContext &Context = MF.getFunction().getContext(); SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); return checkReturn(CCInfo, Outs, RetCC_X86); } bool X86CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, const Value *Val, ArrayRef VRegs, FunctionLoweringInfo &FLI) const { assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) && "Return value without a vreg"); MachineFunction &MF = MIRBuilder.getMF(); auto MIB = MIRBuilder.buildInstrNoInsert(X86::RET).addImm(0); auto FuncInfo = MF.getInfo(); const auto &STI = MF.getSubtarget(); Register RetReg = STI.is64Bit() ? X86::RAX : X86::EAX; if (!FLI.CanLowerReturn) { insertSRetStores(MIRBuilder, Val->getType(), VRegs, FLI.DemoteRegister); MIRBuilder.buildCopy(RetReg, FLI.DemoteRegister); MIB.addReg(RetReg); } else if (Register Reg = FuncInfo->getSRetReturnReg()) { MIRBuilder.buildCopy(RetReg, Reg); MIB.addReg(RetReg); } else if (!VRegs.empty()) { const Function &F = MF.getFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); const DataLayout &DL = MF.getDataLayout(); ArgInfo OrigRetInfo(VRegs, Val->getType(), 0); setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F); SmallVector SplitRetInfos; splitToValueTypes(OrigRetInfo, SplitRetInfos, DL, F.getCallingConv()); X86OutgoingValueAssigner Assigner(RetCC_X86); X86OutgoingValueHandler Handler(MIRBuilder, MRI, MIB); if (!determineAndHandleAssignments(Handler, Assigner, SplitRetInfos, MIRBuilder, F.getCallingConv(), F.isVarArg())) return false; } MIRBuilder.insertInstr(MIB); return true; } namespace { struct X86IncomingValueHandler : public CallLowering::IncomingValueHandler { X86IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI) : IncomingValueHandler(MIRBuilder, MRI), DL(MIRBuilder.getMF().getDataLayout()) {} Register getStackAddress(uint64_t Size, int64_t Offset, MachinePointerInfo &MPO, ISD::ArgFlagsTy Flags) override { auto &MFI = MIRBuilder.getMF().getFrameInfo(); // Byval is assumed to be writable memory, but other stack passed arguments // are not. const bool IsImmutable = !Flags.isByVal(); int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); return MIRBuilder .buildFrameIndex(LLT::pointer(0, DL.getPointerSizeInBits(0)), FI) .getReg(0); } void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, const MachinePointerInfo &MPO, const CCValAssign &VA) override { MachineFunction &MF = MIRBuilder.getMF(); auto *MMO = MF.getMachineMemOperand( MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, inferAlignFromPtrInfo(MF, MPO)); MIRBuilder.buildLoad(ValVReg, Addr, *MMO); } void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA) override { markPhysRegUsed(PhysReg); IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); } /// How the physical register gets marked varies between formal /// parameters (it's a basic-block live-in), and a call instruction /// (it's an implicit-def of the BL). virtual void markPhysRegUsed(unsigned PhysReg) = 0; protected: const DataLayout &DL; }; struct FormalArgHandler : public X86IncomingValueHandler { FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI) : X86IncomingValueHandler(MIRBuilder, MRI) {} void markPhysRegUsed(unsigned PhysReg) override { MIRBuilder.getMRI()->addLiveIn(PhysReg); MIRBuilder.getMBB().addLiveIn(PhysReg); } }; struct CallReturnHandler : public X86IncomingValueHandler { CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, MachineInstrBuilder &MIB) : X86IncomingValueHandler(MIRBuilder, MRI), MIB(MIB) {} void markPhysRegUsed(unsigned PhysReg) override { MIB.addDef(PhysReg, RegState::Implicit); } protected: MachineInstrBuilder &MIB; }; } // end anonymous namespace bool X86CallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder, const Function &F, ArrayRef> VRegs, FunctionLoweringInfo &FLI) const { MachineFunction &MF = MIRBuilder.getMF(); MachineRegisterInfo &MRI = MF.getRegInfo(); auto DL = MF.getDataLayout(); auto FuncInfo = MF.getInfo(); SmallVector SplitArgs; if (!FLI.CanLowerReturn) insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); // TODO: handle variadic function if (F.isVarArg()) return false; unsigned Idx = 0; for (const auto &Arg : F.args()) { // TODO: handle not simple cases. if (Arg.hasAttribute(Attribute::ByVal) || Arg.hasAttribute(Attribute::InReg) || Arg.hasAttribute(Attribute::SwiftSelf) || Arg.hasAttribute(Attribute::SwiftError) || Arg.hasAttribute(Attribute::Nest) || VRegs[Idx].size() > 1) return false; if (Arg.hasAttribute(Attribute::StructRet)) { assert(VRegs[Idx].size() == 1 && "Unexpected amount of registers for sret argument."); FuncInfo->setSRetReturnReg(VRegs[Idx][0]); } ArgInfo OrigArg(VRegs[Idx], Arg.getType(), Idx); setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F); splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv()); Idx++; } if (SplitArgs.empty()) return true; MachineBasicBlock &MBB = MIRBuilder.getMBB(); if (!MBB.empty()) MIRBuilder.setInstr(*MBB.begin()); X86OutgoingValueAssigner Assigner(CC_X86); FormalArgHandler Handler(MIRBuilder, MRI); if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder, F.getCallingConv(), F.isVarArg())) return false; // Move back to the end of the basic block. MIRBuilder.setMBB(MBB); return true; } bool X86CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info) const { MachineFunction &MF = MIRBuilder.getMF(); const Function &F = MF.getFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); const DataLayout &DL = F.getDataLayout(); const X86Subtarget &STI = MF.getSubtarget(); const TargetInstrInfo &TII = *STI.getInstrInfo(); const X86RegisterInfo *TRI = STI.getRegisterInfo(); // Handle only Linux C, X86_64_SysV calling conventions for now. if (!STI.isTargetLinux() || !(Info.CallConv == CallingConv::C || Info.CallConv == CallingConv::X86_64_SysV)) return false; unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); auto CallSeqStart = MIRBuilder.buildInstr(AdjStackDown); // Create a temporarily-floating call instruction so we can add the implicit // uses of arg registers. bool Is64Bit = STI.is64Bit(); unsigned CallOpc = Info.Callee.isReg() ? (Is64Bit ? X86::CALL64r : X86::CALL32r) : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); auto MIB = MIRBuilder.buildInstrNoInsert(CallOpc) .add(Info.Callee) .addRegMask(TRI->getCallPreservedMask(MF, Info.CallConv)); SmallVector SplitArgs; for (const auto &OrigArg : Info.OrigArgs) { // TODO: handle not simple cases. if (OrigArg.Flags[0].isByVal()) return false; if (OrigArg.Regs.size() > 1) return false; splitToValueTypes(OrigArg, SplitArgs, DL, Info.CallConv); } // Do the actual argument marshalling. X86OutgoingValueAssigner Assigner(CC_X86); X86OutgoingValueHandler Handler(MIRBuilder, MRI, MIB); if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder, Info.CallConv, Info.IsVarArg)) return false; bool IsFixed = Info.OrigArgs.empty() ? true : Info.OrigArgs.back().IsFixed; if (STI.is64Bit() && !IsFixed && !STI.isCallingConvWin64(Info.CallConv)) { // From AMD64 ABI document: // For calls that may call functions that use varargs or stdargs // (prototype-less calls or calls to functions containing ellipsis (...) in // the declaration) %al is used as hidden argument to specify the number // of SSE registers used. The contents of %al do not need to match exactly // the number of registers, but must be an ubound on the number of SSE // registers used and is in the range 0 - 8 inclusive. MIRBuilder.buildInstr(X86::MOV8ri) .addDef(X86::AL) .addImm(Assigner.getNumXmmRegs()); MIB.addUse(X86::AL, RegState::Implicit); } // Now we can add the actual call instruction to the correct basic block. MIRBuilder.insertInstr(MIB); // If Callee is a reg, since it is used by a target specific // instruction, it must have a register class matching the // constraint of that instruction. if (Info.Callee.isReg()) MIB->getOperand(0).setReg(constrainOperandRegClass( MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(), *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee, 0)); // Finally we can copy the returned value back into its virtual-register. In // symmetry with the arguments, the physical register must be an // implicit-define of the call instruction. if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { if (Info.OrigRet.Regs.size() > 1) return false; SplitArgs.clear(); SmallVector NewRegs; splitToValueTypes(Info.OrigRet, SplitArgs, DL, Info.CallConv); X86OutgoingValueAssigner Assigner(RetCC_X86); CallReturnHandler Handler(MIRBuilder, MRI, MIB); if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder, Info.CallConv, Info.IsVarArg)) return false; if (!NewRegs.empty()) MIRBuilder.buildMergeLikeInstr(Info.OrigRet.Regs[0], NewRegs); } CallSeqStart.addImm(Assigner.getStackSize()) .addImm(0 /* see getFrameTotalSize */) .addImm(0 /* see getFrameAdjustment */); unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); MIRBuilder.buildInstr(AdjStackUp) .addImm(Assigner.getStackSize()) .addImm(0 /* NumBytesForCalleeToPop */); if (!Info.CanLowerReturn) insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, Info.DemoteRegister, Info.DemoteStackIndex); return true; }