//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86IntelInstPrinter.h" #include "MCTargetDesc/X86MCExpr.h" #include "MCTargetDesc/X86MCTargetDesc.h" #include "MCTargetDesc/X86TargetStreamer.h" #include "TargetInfo/X86TargetInfo.h" #include "X86AsmParserCommon.h" #include "X86Operand.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; static cl::opt LVIInlineAsmHardening( "x86-experimental-lvi-inline-asm-hardening", cl::desc("Harden inline assembly code that may be vulnerable to Load Value" " Injection (LVI). This feature is experimental."), cl::Hidden); static bool checkScale(unsigned Scale, StringRef &ErrMsg) { if (Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) { ErrMsg = "scale factor in address must be 1, 2, 4 or 8"; return true; } return false; } namespace { static const char OpPrecedence[] = { 0, // IC_OR 1, // IC_XOR 2, // IC_AND 4, // IC_LSHIFT 4, // IC_RSHIFT 5, // IC_PLUS 5, // IC_MINUS 6, // IC_MULTIPLY 6, // IC_DIVIDE 6, // IC_MOD 7, // IC_NOT 8, // IC_NEG 9, // IC_RPAREN 10, // IC_LPAREN 0, // IC_IMM 0, // IC_REGISTER 3, // IC_EQ 3, // IC_NE 3, // IC_LT 3, // IC_LE 3, // IC_GT 3 // IC_GE }; class X86AsmParser : public MCTargetAsmParser { ParseInstructionInfo *InstInfo; bool Code16GCC; unsigned ForcedDataPrefix = 0; enum VEXEncoding { VEXEncoding_Default, VEXEncoding_VEX, VEXEncoding_VEX2, VEXEncoding_VEX3, VEXEncoding_EVEX, }; VEXEncoding ForcedVEXEncoding = VEXEncoding_Default; enum DispEncoding { DispEncoding_Default, DispEncoding_Disp8, DispEncoding_Disp32, }; DispEncoding ForcedDispEncoding = DispEncoding_Default; private: SMLoc consumeToken() { MCAsmParser &Parser = getParser(); SMLoc Result = Parser.getTok().getLoc(); Parser.Lex(); return Result; } X86TargetStreamer &getTargetStreamer() { assert(getParser().getStreamer().getTargetStreamer() && "do not have a target streamer"); MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); return static_cast(TS); } unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst, uint64_t &ErrorInfo, FeatureBitset &MissingFeatures, bool matchingInlineAsm, unsigned VariantID = 0) { // In Code16GCC mode, match as 32-bit. if (Code16GCC) SwitchMode(X86::Is32Bit); unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, matchingInlineAsm, VariantID); if (Code16GCC) SwitchMode(X86::Is16Bit); return rv; } enum InfixCalculatorTok { IC_OR = 0, IC_XOR, IC_AND, IC_LSHIFT, IC_RSHIFT, IC_PLUS, IC_MINUS, IC_MULTIPLY, IC_DIVIDE, IC_MOD, IC_NOT, IC_NEG, IC_RPAREN, IC_LPAREN, IC_IMM, IC_REGISTER, IC_EQ, IC_NE, IC_LT, IC_LE, IC_GT, IC_GE }; enum IntelOperatorKind { IOK_INVALID = 0, IOK_LENGTH, IOK_SIZE, IOK_TYPE, }; enum MasmOperatorKind { MOK_INVALID = 0, MOK_LENGTHOF, MOK_SIZEOF, MOK_TYPE, }; class InfixCalculator { typedef std::pair< InfixCalculatorTok, int64_t > ICToken; SmallVector InfixOperatorStack; SmallVector PostfixStack; bool isUnaryOperator(InfixCalculatorTok Op) const { return Op == IC_NEG || Op == IC_NOT; } public: int64_t popOperand() { assert (!PostfixStack.empty() && "Poped an empty stack!"); ICToken Op = PostfixStack.pop_back_val(); if (!(Op.first == IC_IMM || Op.first == IC_REGISTER)) return -1; // The invalid Scale value will be caught later by checkScale return Op.second; } void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) { assert ((Op == IC_IMM || Op == IC_REGISTER) && "Unexpected operand!"); PostfixStack.push_back(std::make_pair(Op, Val)); } void popOperator() { InfixOperatorStack.pop_back(); } void pushOperator(InfixCalculatorTok Op) { // Push the new operator if the stack is empty. if (InfixOperatorStack.empty()) { InfixOperatorStack.push_back(Op); return; } // Push the new operator if it has a higher precedence than the operator // on the top of the stack or the operator on the top of the stack is a // left parentheses. unsigned Idx = InfixOperatorStack.size() - 1; InfixCalculatorTok StackOp = InfixOperatorStack[Idx]; if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) { InfixOperatorStack.push_back(Op); return; } // The operator on the top of the stack has higher precedence than the // new operator. unsigned ParenCount = 0; while (true) { // Nothing to process. if (InfixOperatorStack.empty()) break; Idx = InfixOperatorStack.size() - 1; StackOp = InfixOperatorStack[Idx]; if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount)) break; // If we have an even parentheses count and we see a left parentheses, // then stop processing. if (!ParenCount && StackOp == IC_LPAREN) break; if (StackOp == IC_RPAREN) { ++ParenCount; InfixOperatorStack.pop_back(); } else if (StackOp == IC_LPAREN) { --ParenCount; InfixOperatorStack.pop_back(); } else { InfixOperatorStack.pop_back(); PostfixStack.push_back(std::make_pair(StackOp, 0)); } } // Push the new operator. InfixOperatorStack.push_back(Op); } int64_t execute() { // Push any remaining operators onto the postfix stack. while (!InfixOperatorStack.empty()) { InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val(); if (StackOp != IC_LPAREN && StackOp != IC_RPAREN) PostfixStack.push_back(std::make_pair(StackOp, 0)); } if (PostfixStack.empty()) return 0; SmallVector OperandStack; for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) { ICToken Op = PostfixStack[i]; if (Op.first == IC_IMM || Op.first == IC_REGISTER) { OperandStack.push_back(Op); } else if (isUnaryOperator(Op.first)) { assert (OperandStack.size() > 0 && "Too few operands."); ICToken Operand = OperandStack.pop_back_val(); assert (Operand.first == IC_IMM && "Unary operation with a register!"); switch (Op.first) { default: report_fatal_error("Unexpected operator!"); break; case IC_NEG: OperandStack.push_back(std::make_pair(IC_IMM, -Operand.second)); break; case IC_NOT: OperandStack.push_back(std::make_pair(IC_IMM, ~Operand.second)); break; } } else { assert (OperandStack.size() > 1 && "Too few operands."); int64_t Val; ICToken Op2 = OperandStack.pop_back_val(); ICToken Op1 = OperandStack.pop_back_val(); switch (Op.first) { default: report_fatal_error("Unexpected operator!"); break; case IC_PLUS: Val = Op1.second + Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_MINUS: Val = Op1.second - Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_MULTIPLY: assert (Op1.first == IC_IMM && Op2.first == IC_IMM && "Multiply operation with an immediate and a register!"); Val = Op1.second * Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_DIVIDE: assert (Op1.first == IC_IMM && Op2.first == IC_IMM && "Divide operation with an immediate and a register!"); assert (Op2.second != 0 && "Division by zero!"); Val = Op1.second / Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_MOD: assert (Op1.first == IC_IMM && Op2.first == IC_IMM && "Modulo operation with an immediate and a register!"); Val = Op1.second % Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_OR: assert (Op1.first == IC_IMM && Op2.first == IC_IMM && "Or operation with an immediate and a register!"); Val = Op1.second | Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_XOR: assert(Op1.first == IC_IMM && Op2.first == IC_IMM && "Xor operation with an immediate and a register!"); Val = Op1.second ^ Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_AND: assert (Op1.first == IC_IMM && Op2.first == IC_IMM && "And operation with an immediate and a register!"); Val = Op1.second & Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_LSHIFT: assert (Op1.first == IC_IMM && Op2.first == IC_IMM && "Left shift operation with an immediate and a register!"); Val = Op1.second << Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_RSHIFT: assert (Op1.first == IC_IMM && Op2.first == IC_IMM && "Right shift operation with an immediate and a register!"); Val = Op1.second >> Op2.second; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_EQ: assert(Op1.first == IC_IMM && Op2.first == IC_IMM && "Equals operation with an immediate and a register!"); Val = (Op1.second == Op2.second) ? -1 : 0; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_NE: assert(Op1.first == IC_IMM && Op2.first == IC_IMM && "Not-equals operation with an immediate and a register!"); Val = (Op1.second != Op2.second) ? -1 : 0; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_LT: assert(Op1.first == IC_IMM && Op2.first == IC_IMM && "Less-than operation with an immediate and a register!"); Val = (Op1.second < Op2.second) ? -1 : 0; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_LE: assert(Op1.first == IC_IMM && Op2.first == IC_IMM && "Less-than-or-equal operation with an immediate and a " "register!"); Val = (Op1.second <= Op2.second) ? -1 : 0; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_GT: assert(Op1.first == IC_IMM && Op2.first == IC_IMM && "Greater-than operation with an immediate and a register!"); Val = (Op1.second > Op2.second) ? -1 : 0; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; case IC_GE: assert(Op1.first == IC_IMM && Op2.first == IC_IMM && "Greater-than-or-equal operation with an immediate and a " "register!"); Val = (Op1.second >= Op2.second) ? -1 : 0; OperandStack.push_back(std::make_pair(IC_IMM, Val)); break; } } } assert (OperandStack.size() == 1 && "Expected a single result."); return OperandStack.pop_back_val().second; } }; enum IntelExprState { IES_INIT, IES_OR, IES_XOR, IES_AND, IES_EQ, IES_NE, IES_LT, IES_LE, IES_GT, IES_GE, IES_LSHIFT, IES_RSHIFT, IES_PLUS, IES_MINUS, IES_OFFSET, IES_CAST, IES_NOT, IES_MULTIPLY, IES_DIVIDE, IES_MOD, IES_LBRAC, IES_RBRAC, IES_LPAREN, IES_RPAREN, IES_REGISTER, IES_INTEGER, IES_IDENTIFIER, IES_ERROR }; class IntelExprStateMachine { IntelExprState State = IES_INIT, PrevState = IES_ERROR; unsigned BaseReg = 0, IndexReg = 0, TmpReg = 0, Scale = 0; int64_t Imm = 0; const MCExpr *Sym = nullptr; StringRef SymName; InfixCalculator IC; InlineAsmIdentifierInfo Info; short BracCount = 0; bool MemExpr = false; bool OffsetOperator = false; bool AttachToOperandIdx = false; bool IsPIC = false; SMLoc OffsetOperatorLoc; AsmTypeInfo CurType; bool setSymRef(const MCExpr *Val, StringRef ID, StringRef &ErrMsg) { if (Sym) { ErrMsg = "cannot use more than one symbol in memory operand"; return true; } Sym = Val; SymName = ID; return false; } public: IntelExprStateMachine() = default; void addImm(int64_t imm) { Imm += imm; } short getBracCount() const { return BracCount; } bool isMemExpr() const { return MemExpr; } bool isOffsetOperator() const { return OffsetOperator; } SMLoc getOffsetLoc() const { return OffsetOperatorLoc; } unsigned getBaseReg() const { return BaseReg; } unsigned getIndexReg() const { return IndexReg; } unsigned getScale() const { return Scale; } const MCExpr *getSym() const { return Sym; } StringRef getSymName() const { return SymName; } StringRef getType() const { return CurType.Name; } unsigned getSize() const { return CurType.Size; } unsigned getElementSize() const { return CurType.ElementSize; } unsigned getLength() const { return CurType.Length; } int64_t getImm() { return Imm + IC.execute(); } bool isValidEndState() const { return State == IES_RBRAC || State == IES_INTEGER; } // Is the intel expression appended after an operand index. // [OperandIdx][Intel Expression] // This is neccessary for checking if it is an independent // intel expression at back end when parse inline asm. void setAppendAfterOperand() { AttachToOperandIdx = true; } bool isPIC() const { return IsPIC; } void setPIC() { IsPIC = true; } bool hadError() const { return State == IES_ERROR; } const InlineAsmIdentifierInfo &getIdentifierInfo() const { return Info; } bool regsUseUpError(StringRef &ErrMsg) { // This case mostly happen in inline asm, e.g. Arr[BaseReg + IndexReg] // can not intruduce additional register in inline asm in PIC model. if (IsPIC && AttachToOperandIdx) ErrMsg = "Don't use 2 or more regs for mem offset in PIC model!"; else ErrMsg = "BaseReg/IndexReg already set!"; return true; } void onOr() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_OR; IC.pushOperator(IC_OR); break; } PrevState = CurrState; } void onXor() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_XOR; IC.pushOperator(IC_XOR); break; } PrevState = CurrState; } void onAnd() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_AND; IC.pushOperator(IC_AND); break; } PrevState = CurrState; } void onEq() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_EQ; IC.pushOperator(IC_EQ); break; } PrevState = CurrState; } void onNE() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_NE; IC.pushOperator(IC_NE); break; } PrevState = CurrState; } void onLT() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_LT; IC.pushOperator(IC_LT); break; } PrevState = CurrState; } void onLE() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_LE; IC.pushOperator(IC_LE); break; } PrevState = CurrState; } void onGT() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_GT; IC.pushOperator(IC_GT); break; } PrevState = CurrState; } void onGE() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_GE; IC.pushOperator(IC_GE); break; } PrevState = CurrState; } void onLShift() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_LSHIFT; IC.pushOperator(IC_LSHIFT); break; } PrevState = CurrState; } void onRShift() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: State = IES_RSHIFT; IC.pushOperator(IC_RSHIFT); break; } PrevState = CurrState; } bool onPlus(StringRef &ErrMsg) { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: case IES_REGISTER: case IES_OFFSET: State = IES_PLUS; IC.pushOperator(IC_PLUS); if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) { // If we already have a BaseReg, then assume this is the IndexReg with // no explicit scale. if (!BaseReg) { BaseReg = TmpReg; } else { if (IndexReg) return regsUseUpError(ErrMsg); IndexReg = TmpReg; Scale = 0; } } break; } PrevState = CurrState; return false; } bool onMinus(StringRef &ErrMsg) { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_OR: case IES_XOR: case IES_AND: case IES_EQ: case IES_NE: case IES_LT: case IES_LE: case IES_GT: case IES_GE: case IES_LSHIFT: case IES_RSHIFT: case IES_PLUS: case IES_NOT: case IES_MULTIPLY: case IES_DIVIDE: case IES_MOD: case IES_LPAREN: case IES_RPAREN: case IES_LBRAC: case IES_RBRAC: case IES_INTEGER: case IES_REGISTER: case IES_INIT: case IES_OFFSET: State = IES_MINUS; // push minus operator if it is not a negate operator if (CurrState == IES_REGISTER || CurrState == IES_RPAREN || CurrState == IES_INTEGER || CurrState == IES_RBRAC || CurrState == IES_OFFSET) IC.pushOperator(IC_MINUS); else if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) { // We have negate operator for Scale: it's illegal ErrMsg = "Scale can't be negative"; return true; } else IC.pushOperator(IC_NEG); if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) { // If we already have a BaseReg, then assume this is the IndexReg with // no explicit scale. if (!BaseReg) { BaseReg = TmpReg; } else { if (IndexReg) return regsUseUpError(ErrMsg); IndexReg = TmpReg; Scale = 0; } } break; } PrevState = CurrState; return false; } void onNot() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_OR: case IES_XOR: case IES_AND: case IES_EQ: case IES_NE: case IES_LT: case IES_LE: case IES_GT: case IES_GE: case IES_LSHIFT: case IES_RSHIFT: case IES_PLUS: case IES_MINUS: case IES_NOT: case IES_MULTIPLY: case IES_DIVIDE: case IES_MOD: case IES_LPAREN: case IES_LBRAC: case IES_INIT: State = IES_NOT; IC.pushOperator(IC_NOT); break; } PrevState = CurrState; } bool onRegister(unsigned Reg, StringRef &ErrMsg) { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_PLUS: case IES_LPAREN: case IES_LBRAC: State = IES_REGISTER; TmpReg = Reg; IC.pushOperand(IC_REGISTER); break; case IES_MULTIPLY: // Index Register - Scale * Register if (PrevState == IES_INTEGER) { if (IndexReg) return regsUseUpError(ErrMsg); State = IES_REGISTER; IndexReg = Reg; // Get the scale and replace the 'Scale * Register' with '0'. Scale = IC.popOperand(); if (checkScale(Scale, ErrMsg)) return true; IC.pushOperand(IC_IMM); IC.popOperator(); } else { State = IES_ERROR; } break; } PrevState = CurrState; return false; } bool onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName, const InlineAsmIdentifierInfo &IDInfo, const AsmTypeInfo &Type, bool ParsingMSInlineAsm, StringRef &ErrMsg) { // InlineAsm: Treat an enum value as an integer if (ParsingMSInlineAsm) if (IDInfo.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) return onInteger(IDInfo.Enum.EnumVal, ErrMsg); // Treat a symbolic constant like an integer if (auto *CE = dyn_cast(SymRef)) return onInteger(CE->getValue(), ErrMsg); PrevState = State; switch (State) { default: State = IES_ERROR; break; case IES_CAST: case IES_PLUS: case IES_MINUS: case IES_NOT: case IES_INIT: case IES_LBRAC: case IES_LPAREN: if (setSymRef(SymRef, SymRefName, ErrMsg)) return true; MemExpr = true; State = IES_INTEGER; IC.pushOperand(IC_IMM); if (ParsingMSInlineAsm) Info = IDInfo; setTypeInfo(Type); break; } return false; } bool onInteger(int64_t TmpInt, StringRef &ErrMsg) { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_PLUS: case IES_MINUS: case IES_NOT: case IES_OR: case IES_XOR: case IES_AND: case IES_EQ: case IES_NE: case IES_LT: case IES_LE: case IES_GT: case IES_GE: case IES_LSHIFT: case IES_RSHIFT: case IES_DIVIDE: case IES_MOD: case IES_MULTIPLY: case IES_LPAREN: case IES_INIT: case IES_LBRAC: State = IES_INTEGER; if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) { // Index Register - Register * Scale if (IndexReg) return regsUseUpError(ErrMsg); IndexReg = TmpReg; Scale = TmpInt; if (checkScale(Scale, ErrMsg)) return true; // Get the scale and replace the 'Register * Scale' with '0'. IC.popOperator(); } else { IC.pushOperand(IC_IMM, TmpInt); } break; } PrevState = CurrState; return false; } void onStar() { PrevState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_REGISTER: case IES_RPAREN: State = IES_MULTIPLY; IC.pushOperator(IC_MULTIPLY); break; } } void onDivide() { PrevState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: State = IES_DIVIDE; IC.pushOperator(IC_DIVIDE); break; } } void onMod() { PrevState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_RPAREN: State = IES_MOD; IC.pushOperator(IC_MOD); break; } } bool onLBrac() { if (BracCount) return true; PrevState = State; switch (State) { default: State = IES_ERROR; break; case IES_RBRAC: case IES_INTEGER: case IES_RPAREN: State = IES_PLUS; IC.pushOperator(IC_PLUS); CurType.Length = 1; CurType.Size = CurType.ElementSize; break; case IES_INIT: case IES_CAST: assert(!BracCount && "BracCount should be zero on parsing's start"); State = IES_LBRAC; break; } MemExpr = true; BracCount++; return false; } bool onRBrac(StringRef &ErrMsg) { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_OFFSET: case IES_REGISTER: case IES_RPAREN: if (BracCount-- != 1) { ErrMsg = "unexpected bracket encountered"; return true; } State = IES_RBRAC; if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) { // If we already have a BaseReg, then assume this is the IndexReg with // no explicit scale. if (!BaseReg) { BaseReg = TmpReg; } else { if (IndexReg) return regsUseUpError(ErrMsg); IndexReg = TmpReg; Scale = 0; } } break; } PrevState = CurrState; return false; } void onLParen() { IntelExprState CurrState = State; switch (State) { default: State = IES_ERROR; break; case IES_PLUS: case IES_MINUS: case IES_NOT: case IES_OR: case IES_XOR: case IES_AND: case IES_EQ: case IES_NE: case IES_LT: case IES_LE: case IES_GT: case IES_GE: case IES_LSHIFT: case IES_RSHIFT: case IES_MULTIPLY: case IES_DIVIDE: case IES_MOD: case IES_LPAREN: case IES_INIT: case IES_LBRAC: State = IES_LPAREN; IC.pushOperator(IC_LPAREN); break; } PrevState = CurrState; } void onRParen() { PrevState = State; switch (State) { default: State = IES_ERROR; break; case IES_INTEGER: case IES_OFFSET: case IES_REGISTER: case IES_RBRAC: case IES_RPAREN: State = IES_RPAREN; IC.pushOperator(IC_RPAREN); break; } } bool onOffset(const MCExpr *Val, SMLoc OffsetLoc, StringRef ID, const InlineAsmIdentifierInfo &IDInfo, bool ParsingMSInlineAsm, StringRef &ErrMsg) { PrevState = State; switch (State) { default: ErrMsg = "unexpected offset operator expression"; return true; case IES_PLUS: case IES_INIT: case IES_LBRAC: if (setSymRef(Val, ID, ErrMsg)) return true; OffsetOperator = true; OffsetOperatorLoc = OffsetLoc; State = IES_OFFSET; // As we cannot yet resolve the actual value (offset), we retain // the requested semantics by pushing a '0' to the operands stack IC.pushOperand(IC_IMM); if (ParsingMSInlineAsm) { Info = IDInfo; } break; } return false; } void onCast(AsmTypeInfo Info) { PrevState = State; switch (State) { default: State = IES_ERROR; break; case IES_LPAREN: setTypeInfo(Info); State = IES_CAST; break; } } void setTypeInfo(AsmTypeInfo Type) { CurType = Type; } }; bool Error(SMLoc L, const Twine &Msg, SMRange Range = None, bool MatchingInlineAsm = false) { MCAsmParser &Parser = getParser(); if (MatchingInlineAsm) { if (!getLexer().isAtStartOfStatement()) Parser.eatToEndOfStatement(); return false; } return Parser.Error(L, Msg, Range); } bool MatchRegisterByName(unsigned &RegNo, StringRef RegName, SMLoc StartLoc, SMLoc EndLoc); bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, bool RestoreOnFailure); std::unique_ptr DefaultMemSIOperand(SMLoc Loc); std::unique_ptr DefaultMemDIOperand(SMLoc Loc); bool IsSIReg(unsigned Reg); unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg); void AddDefaultSrcDestOperands(OperandVector &Operands, std::unique_ptr &&Src, std::unique_ptr &&Dst); bool VerifyAndAdjustOperands(OperandVector &OrigOperands, OperandVector &FinalOperands); bool parseOperand(OperandVector &Operands, StringRef Name); bool parseATTOperand(OperandVector &Operands); bool parseIntelOperand(OperandVector &Operands, StringRef Name); bool ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID, InlineAsmIdentifierInfo &Info, SMLoc &End); bool ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End); unsigned IdentifyIntelInlineAsmOperator(StringRef Name); unsigned ParseIntelInlineAsmOperator(unsigned OpKind); unsigned IdentifyMasmOperator(StringRef Name); bool ParseMasmOperator(unsigned OpKind, int64_t &Val); bool ParseRoundingModeOp(SMLoc Start, OperandVector &Operands); bool ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM, bool &ParseError, SMLoc &End); bool ParseMasmNamedOperator(StringRef Name, IntelExprStateMachine &SM, bool &ParseError, SMLoc &End); void RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start, SMLoc End); bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End); bool ParseIntelInlineAsmIdentifier(const MCExpr *&Val, StringRef &Identifier, InlineAsmIdentifierInfo &Info, bool IsUnevaluatedOperand, SMLoc &End, bool IsParsingOffsetOperator = false); void tryParseOperandIdx(AsmToken::TokenKind PrevTK, IntelExprStateMachine &SM); bool ParseMemOperand(unsigned SegReg, const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc, OperandVector &Operands); X86::CondCode ParseConditionCode(StringRef CCode); bool ParseIntelMemoryOperandSize(unsigned &Size); bool CreateMemForMSInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg, unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier, const InlineAsmIdentifierInfo &Info, OperandVector &Operands); bool parseDirectiveArch(); bool parseDirectiveNops(SMLoc L); bool parseDirectiveEven(SMLoc L); bool ParseDirectiveCode(StringRef IDVal, SMLoc L); /// CodeView FPO data directives. bool parseDirectiveFPOProc(SMLoc L); bool parseDirectiveFPOSetFrame(SMLoc L); bool parseDirectiveFPOPushReg(SMLoc L); bool parseDirectiveFPOStackAlloc(SMLoc L); bool parseDirectiveFPOStackAlign(SMLoc L); bool parseDirectiveFPOEndPrologue(SMLoc L); bool parseDirectiveFPOEndProc(SMLoc L); /// SEH directives. bool parseSEHRegisterNumber(unsigned RegClassID, unsigned &RegNo); bool parseDirectiveSEHPushReg(SMLoc); bool parseDirectiveSEHSetFrame(SMLoc); bool parseDirectiveSEHSaveReg(SMLoc); bool parseDirectiveSEHSaveXMM(SMLoc); bool parseDirectiveSEHPushFrame(SMLoc); unsigned checkTargetMatchPredicate(MCInst &Inst) override; bool validateInstruction(MCInst &Inst, const OperandVector &Ops); bool processInstruction(MCInst &Inst, const OperandVector &Ops); // Load Value Injection (LVI) Mitigations for machine code void emitWarningForSpecialLVIInstruction(SMLoc Loc); void applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out); void applyLVILoadHardeningMitigation(MCInst &Inst, MCStreamer &Out); /// Wrapper around MCStreamer::emitInstruction(). Possibly adds /// instrumentation around Inst. void emitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out); bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands, MCStreamer &Out, bool MatchingInlineAsm); bool ErrorMissingFeature(SMLoc IDLoc, const FeatureBitset &MissingFeatures, bool MatchingInlineAsm); bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm); bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm); bool OmitRegisterFromClobberLists(unsigned RegNo) override; /// Parses AVX512 specific operand primitives: masked registers ({%k}, {z}) /// and memory broadcasting ({1to}) primitives, updating Operands vector if required. /// return false if no parsing errors occurred, true otherwise. bool HandleAVX512Operand(OperandVector &Operands); bool ParseZ(std::unique_ptr &Z, const SMLoc &StartLoc); bool is64BitMode() const { // FIXME: Can tablegen auto-generate this? return getSTI().getFeatureBits()[X86::Is64Bit]; } bool is32BitMode() const { // FIXME: Can tablegen auto-generate this? return getSTI().getFeatureBits()[X86::Is32Bit]; } bool is16BitMode() const { // FIXME: Can tablegen auto-generate this? return getSTI().getFeatureBits()[X86::Is16Bit]; } void SwitchMode(unsigned mode) { MCSubtargetInfo &STI = copySTI(); FeatureBitset AllModes({X86::Is64Bit, X86::Is32Bit, X86::Is16Bit}); FeatureBitset OldMode = STI.getFeatureBits() & AllModes; FeatureBitset FB = ComputeAvailableFeatures( STI.ToggleFeature(OldMode.flip(mode))); setAvailableFeatures(FB); assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes)); } unsigned getPointerWidth() { if (is16BitMode()) return 16; if (is32BitMode()) return 32; if (is64BitMode()) return 64; llvm_unreachable("invalid mode"); } bool isParsingIntelSyntax() { return getParser().getAssemblerDialect(); } /// @name Auto-generated Matcher Functions /// { #define GET_ASSEMBLER_HEADER #include "X86GenAsmMatcher.inc" /// } public: enum X86MatchResultTy { Match_Unsupported = FIRST_TARGET_MATCH_RESULT_TY, #define GET_OPERAND_DIAGNOSTIC_TYPES #include "X86GenAsmMatcher.inc" }; X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser, const MCInstrInfo &mii, const MCTargetOptions &Options) : MCTargetAsmParser(Options, sti, mii), InstInfo(nullptr), Code16GCC(false) { Parser.addAliasForDirective(".word", ".2byte"); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); } bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseDirective(AsmToken DirectiveID) override; }; } // end anonymous namespace /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } static bool CheckBaseRegAndIndexRegAndScale(unsigned BaseReg, unsigned IndexReg, unsigned Scale, bool Is64BitMode, StringRef &ErrMsg) { // If we have both a base register and an index register make sure they are // both 64-bit or 32-bit registers. // To support VSIB, IndexReg can be 128-bit or 256-bit registers. if (BaseReg != 0 && !(BaseReg == X86::RIP || BaseReg == X86::EIP || X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) || X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) || X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg))) { ErrMsg = "invalid base+index expression"; return true; } if (IndexReg != 0 && !(IndexReg == X86::EIZ || IndexReg == X86::RIZ || X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg))) { ErrMsg = "invalid base+index expression"; return true; } if (((BaseReg == X86::RIP || BaseReg == X86::EIP) && IndexReg != 0) || IndexReg == X86::EIP || IndexReg == X86::RIP || IndexReg == X86::ESP || IndexReg == X86::RSP) { ErrMsg = "invalid base+index expression"; return true; } // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed, // and then only in non-64-bit modes. if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) && (Is64BitMode || (BaseReg != X86::BX && BaseReg != X86::BP && BaseReg != X86::SI && BaseReg != X86::DI))) { ErrMsg = "invalid 16-bit base register"; return true; } if (BaseReg == 0 && X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) { ErrMsg = "16-bit memory operand may not include only index register"; return true; } if (BaseReg != 0 && IndexReg != 0) { if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) && (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) || IndexReg == X86::EIZ)) { ErrMsg = "base register is 64-bit, but index register is not"; return true; } if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) && (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) || IndexReg == X86::RIZ)) { ErrMsg = "base register is 32-bit, but index register is not"; return true; } if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) { if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) { ErrMsg = "base register is 16-bit, but index register is not"; return true; } if ((BaseReg != X86::BX && BaseReg != X86::BP) || (IndexReg != X86::SI && IndexReg != X86::DI)) { ErrMsg = "invalid 16-bit base/index register combination"; return true; } } } // RIP/EIP-relative addressing is only supported in 64-bit mode. if (!Is64BitMode && BaseReg != 0 && (BaseReg == X86::RIP || BaseReg == X86::EIP)) { ErrMsg = "IP-relative addressing requires 64-bit mode"; return true; } return checkScale(Scale, ErrMsg); } bool X86AsmParser::MatchRegisterByName(unsigned &RegNo, StringRef RegName, SMLoc StartLoc, SMLoc EndLoc) { // If we encounter a %, ignore it. This code handles registers with and // without the prefix, unprefixed registers can occur in cfi directives. RegName.consume_front("%"); RegNo = MatchRegisterName(RegName); // If the match failed, try the register name as lowercase. if (RegNo == 0) RegNo = MatchRegisterName(RegName.lower()); // The "flags" and "mxcsr" registers cannot be referenced directly. // Treat it as an identifier instead. if (isParsingMSInlineAsm() && isParsingIntelSyntax() && (RegNo == X86::EFLAGS || RegNo == X86::MXCSR)) RegNo = 0; if (!is64BitMode()) { // FIXME: This should be done using Requires and // Requires so "eiz" usage in 64-bit instructions can be also // checked. if (RegNo == X86::RIZ || RegNo == X86::RIP || X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) || X86II::isX86_64NonExtLowByteReg(RegNo) || X86II::isX86_64ExtendedReg(RegNo)) { return Error(StartLoc, "register %" + RegName + " is only available in 64-bit mode", SMRange(StartLoc, EndLoc)); } } // If this is "db[0-15]", match it as an alias // for dr[0-15]. if (RegNo == 0 && RegName.startswith("db")) { if (RegName.size() == 3) { switch (RegName[2]) { case '0': RegNo = X86::DR0; break; case '1': RegNo = X86::DR1; break; case '2': RegNo = X86::DR2; break; case '3': RegNo = X86::DR3; break; case '4': RegNo = X86::DR4; break; case '5': RegNo = X86::DR5; break; case '6': RegNo = X86::DR6; break; case '7': RegNo = X86::DR7; break; case '8': RegNo = X86::DR8; break; case '9': RegNo = X86::DR9; break; } } else if (RegName.size() == 4 && RegName[2] == '1') { switch (RegName[3]) { case '0': RegNo = X86::DR10; break; case '1': RegNo = X86::DR11; break; case '2': RegNo = X86::DR12; break; case '3': RegNo = X86::DR13; break; case '4': RegNo = X86::DR14; break; case '5': RegNo = X86::DR15; break; } } } if (RegNo == 0) { if (isParsingIntelSyntax()) return true; return Error(StartLoc, "invalid register name", SMRange(StartLoc, EndLoc)); } return false; } bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, bool RestoreOnFailure) { MCAsmParser &Parser = getParser(); MCAsmLexer &Lexer = getLexer(); RegNo = 0; SmallVector Tokens; auto OnFailure = [RestoreOnFailure, &Lexer, &Tokens]() { if (RestoreOnFailure) { while (!Tokens.empty()) { Lexer.UnLex(Tokens.pop_back_val()); } } }; const AsmToken &PercentTok = Parser.getTok(); StartLoc = PercentTok.getLoc(); // If we encounter a %, ignore it. This code handles registers with and // without the prefix, unprefixed registers can occur in cfi directives. if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent)) { Tokens.push_back(PercentTok); Parser.Lex(); // Eat percent token. } const AsmToken &Tok = Parser.getTok(); EndLoc = Tok.getEndLoc(); if (Tok.isNot(AsmToken::Identifier)) { OnFailure(); if (isParsingIntelSyntax()) return true; return Error(StartLoc, "invalid register name", SMRange(StartLoc, EndLoc)); } if (MatchRegisterByName(RegNo, Tok.getString(), StartLoc, EndLoc)) { OnFailure(); return true; } // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. if (RegNo == X86::ST0) { Tokens.push_back(Tok); Parser.Lex(); // Eat 'st' // Check to see if we have '(4)' after %st. if (Lexer.isNot(AsmToken::LParen)) return false; // Lex the paren. Tokens.push_back(Parser.getTok()); Parser.Lex(); const AsmToken &IntTok = Parser.getTok(); if (IntTok.isNot(AsmToken::Integer)) { OnFailure(); return Error(IntTok.getLoc(), "expected stack index"); } switch (IntTok.getIntVal()) { case 0: RegNo = X86::ST0; break; case 1: RegNo = X86::ST1; break; case 2: RegNo = X86::ST2; break; case 3: RegNo = X86::ST3; break; case 4: RegNo = X86::ST4; break; case 5: RegNo = X86::ST5; break; case 6: RegNo = X86::ST6; break; case 7: RegNo = X86::ST7; break; default: OnFailure(); return Error(IntTok.getLoc(), "invalid stack index"); } // Lex IntTok Tokens.push_back(IntTok); Parser.Lex(); if (Lexer.isNot(AsmToken::RParen)) { OnFailure(); return Error(Parser.getTok().getLoc(), "expected ')'"); } EndLoc = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat ')' return false; } EndLoc = Parser.getTok().getEndLoc(); if (RegNo == 0) { OnFailure(); if (isParsingIntelSyntax()) return true; return Error(StartLoc, "invalid register name", SMRange(StartLoc, EndLoc)); } Parser.Lex(); // Eat identifier token. return false; } bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); } OperandMatchResultTy X86AsmParser::tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { bool Result = ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); bool PendingErrors = getParser().hasPendingError(); getParser().clearPendingErrors(); if (PendingErrors) return MatchOperand_ParseFail; if (Result) return MatchOperand_NoMatch; return MatchOperand_Success; } std::unique_ptr X86AsmParser::DefaultMemSIOperand(SMLoc Loc) { bool Parse32 = is32BitMode() || Code16GCC; unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI); const MCExpr *Disp = MCConstantExpr::create(0, getContext()); return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp, /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0); } std::unique_ptr X86AsmParser::DefaultMemDIOperand(SMLoc Loc) { bool Parse32 = is32BitMode() || Code16GCC; unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI); const MCExpr *Disp = MCConstantExpr::create(0, getContext()); return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp, /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0); } bool X86AsmParser::IsSIReg(unsigned Reg) { switch (Reg) { default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!"); case X86::RSI: case X86::ESI: case X86::SI: return true; case X86::RDI: case X86::EDI: case X86::DI: return false; } } unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg) { switch (RegClassID) { default: llvm_unreachable("Unexpected register class"); case X86::GR64RegClassID: return IsSIReg ? X86::RSI : X86::RDI; case X86::GR32RegClassID: return IsSIReg ? X86::ESI : X86::EDI; case X86::GR16RegClassID: return IsSIReg ? X86::SI : X86::DI; } } void X86AsmParser::AddDefaultSrcDestOperands( OperandVector& Operands, std::unique_ptr &&Src, std::unique_ptr &&Dst) { if (isParsingIntelSyntax()) { Operands.push_back(std::move(Dst)); Operands.push_back(std::move(Src)); } else { Operands.push_back(std::move(Src)); Operands.push_back(std::move(Dst)); } } bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands, OperandVector &FinalOperands) { if (OrigOperands.size() > 1) { // Check if sizes match, OrigOperands also contains the instruction name assert(OrigOperands.size() == FinalOperands.size() + 1 && "Operand size mismatch"); SmallVector, 2> Warnings; // Verify types match int RegClassID = -1; for (unsigned int i = 0; i < FinalOperands.size(); ++i) { X86Operand &OrigOp = static_cast(*OrigOperands[i + 1]); X86Operand &FinalOp = static_cast(*FinalOperands[i]); if (FinalOp.isReg() && (!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg())) // Return false and let a normal complaint about bogus operands happen return false; if (FinalOp.isMem()) { if (!OrigOp.isMem()) // Return false and let a normal complaint about bogus operands happen return false; unsigned OrigReg = OrigOp.Mem.BaseReg; unsigned FinalReg = FinalOp.Mem.BaseReg; // If we've already encounterd a register class, make sure all register // bases are of the same register class if (RegClassID != -1 && !X86MCRegisterClasses[RegClassID].contains(OrigReg)) { return Error(OrigOp.getStartLoc(), "mismatching source and destination index registers"); } if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg)) RegClassID = X86::GR64RegClassID; else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg)) RegClassID = X86::GR32RegClassID; else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg)) RegClassID = X86::GR16RegClassID; else // Unexpected register class type // Return false and let a normal complaint about bogus operands happen return false; bool IsSI = IsSIReg(FinalReg); FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI); if (FinalReg != OrigReg) { std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI"; Warnings.push_back(std::make_pair( OrigOp.getStartLoc(), "memory operand is only for determining the size, " + RegName + " will be used for the location")); } FinalOp.Mem.Size = OrigOp.Mem.Size; FinalOp.Mem.SegReg = OrigOp.Mem.SegReg; FinalOp.Mem.BaseReg = FinalReg; } } // Produce warnings only if all the operands passed the adjustment - prevent // legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings for (auto &WarningMsg : Warnings) { Warning(WarningMsg.first, WarningMsg.second); } // Remove old operands for (unsigned int i = 0; i < FinalOperands.size(); ++i) OrigOperands.pop_back(); } // OrigOperands.append(FinalOperands.begin(), FinalOperands.end()); for (unsigned int i = 0; i < FinalOperands.size(); ++i) OrigOperands.push_back(std::move(FinalOperands[i])); return false; } bool X86AsmParser::parseOperand(OperandVector &Operands, StringRef Name) { if (isParsingIntelSyntax()) return parseIntelOperand(Operands, Name); return parseATTOperand(Operands); } bool X86AsmParser::CreateMemForMSInlineAsm( unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg, unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier, const InlineAsmIdentifierInfo &Info, OperandVector &Operands) { // If we found a decl other than a VarDecl, then assume it is a FuncDecl or // some other label reference. if (Info.isKind(InlineAsmIdentifierInfo::IK_Label)) { // Insert an explicit size if the user didn't have one. if (!Size) { Size = getPointerWidth(); InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start, /*Len=*/0, Size); } // Create an absolute memory reference in order to match against // instructions taking a PC relative operand. Operands.push_back(X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size, Identifier, Info.Label.Decl)); return false; } // We either have a direct symbol reference, or an offset from a symbol. The // parser always puts the symbol on the LHS, so look there for size // calculation purposes. unsigned FrontendSize = 0; void *Decl = nullptr; bool IsGlobalLV = false; if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) { // Size is in terms of bits in this context. FrontendSize = Info.Var.Type * 8; Decl = Info.Var.Decl; IsGlobalLV = Info.Var.IsGlobalLV; } // It is widely common for MS InlineAsm to use a global variable and one/two // registers in a mmory expression, and though unaccessible via rip/eip. if (IsGlobalLV && (BaseReg || IndexReg)) { Operands.push_back(X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size, Identifier, Decl, 0, BaseReg && IndexReg)); return false; } // Otherwise, we set the base register to a non-zero value // if we don't know the actual value at this time. This is necessary to // get the matching correct in some cases. BaseReg = BaseReg ? BaseReg : 1; Operands.push_back(X86Operand::CreateMem( getPointerWidth(), SegReg, Disp, BaseReg, IndexReg, Scale, Start, End, Size, /*DefaultBaseReg=*/X86::RIP, Identifier, Decl, FrontendSize)); return false; } // Some binary bitwise operators have a named synonymous // Query a candidate string for being such a named operator // and if so - invoke the appropriate handler bool X86AsmParser::ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM, bool &ParseError, SMLoc &End) { // A named operator should be either lower or upper case, but not a mix... // except in MASM, which uses full case-insensitivity. if (Name.compare(Name.lower()) && Name.compare(Name.upper()) && !getParser().isParsingMasm()) return false; if (Name.equals_insensitive("not")) { SM.onNot(); } else if (Name.equals_insensitive("or")) { SM.onOr(); } else if (Name.equals_insensitive("shl")) { SM.onLShift(); } else if (Name.equals_insensitive("shr")) { SM.onRShift(); } else if (Name.equals_insensitive("xor")) { SM.onXor(); } else if (Name.equals_insensitive("and")) { SM.onAnd(); } else if (Name.equals_insensitive("mod")) { SM.onMod(); } else if (Name.equals_insensitive("offset")) { SMLoc OffsetLoc = getTok().getLoc(); const MCExpr *Val = nullptr; StringRef ID; InlineAsmIdentifierInfo Info; ParseError = ParseIntelOffsetOperator(Val, ID, Info, End); if (ParseError) return true; StringRef ErrMsg; ParseError = SM.onOffset(Val, OffsetLoc, ID, Info, isParsingMSInlineAsm(), ErrMsg); if (ParseError) return Error(SMLoc::getFromPointer(Name.data()), ErrMsg); } else { return false; } if (!Name.equals_insensitive("offset")) End = consumeToken(); return true; } bool X86AsmParser::ParseMasmNamedOperator(StringRef Name, IntelExprStateMachine &SM, bool &ParseError, SMLoc &End) { if (Name.equals_insensitive("eq")) { SM.onEq(); } else if (Name.equals_insensitive("ne")) { SM.onNE(); } else if (Name.equals_insensitive("lt")) { SM.onLT(); } else if (Name.equals_insensitive("le")) { SM.onLE(); } else if (Name.equals_insensitive("gt")) { SM.onGT(); } else if (Name.equals_insensitive("ge")) { SM.onGE(); } else { return false; } End = consumeToken(); return true; } // Check if current intel expression append after an operand. // Like: [Operand][Intel Expression] void X86AsmParser::tryParseOperandIdx(AsmToken::TokenKind PrevTK, IntelExprStateMachine &SM) { if (PrevTK != AsmToken::RBrac) return; SM.setAppendAfterOperand(); } bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) { MCAsmParser &Parser = getParser(); StringRef ErrMsg; AsmToken::TokenKind PrevTK = AsmToken::Error; if (getContext().getObjectFileInfo()->isPositionIndependent()) SM.setPIC(); bool Done = false; while (!Done) { // Get a fresh reference on each loop iteration in case the previous // iteration moved the token storage during UnLex(). const AsmToken &Tok = Parser.getTok(); bool UpdateLocLex = true; AsmToken::TokenKind TK = getLexer().getKind(); switch (TK) { default: if ((Done = SM.isValidEndState())) break; return Error(Tok.getLoc(), "unknown token in expression"); case AsmToken::Error: return Error(getLexer().getErrLoc(), getLexer().getErr()); break; case AsmToken::EndOfStatement: Done = true; break; case AsmToken::Real: // DotOperator: [ebx].0 UpdateLocLex = false; if (ParseIntelDotOperator(SM, End)) return true; break; case AsmToken::Dot: if (!Parser.isParsingMasm()) { if ((Done = SM.isValidEndState())) break; return Error(Tok.getLoc(), "unknown token in expression"); } // MASM allows spaces around the dot operator (e.g., "var . x") Lex(); UpdateLocLex = false; if (ParseIntelDotOperator(SM, End)) return true; break; case AsmToken::Dollar: if (!Parser.isParsingMasm()) { if ((Done = SM.isValidEndState())) break; return Error(Tok.getLoc(), "unknown token in expression"); } LLVM_FALLTHROUGH; case AsmToken::String: { if (Parser.isParsingMasm()) { // MASM parsers handle strings in expressions as constants. SMLoc ValueLoc = Tok.getLoc(); int64_t Res; const MCExpr *Val; if (Parser.parsePrimaryExpr(Val, End, nullptr)) return true; UpdateLocLex = false; if (!Val->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) return Error(ValueLoc, "expected absolute value"); if (SM.onInteger(Res, ErrMsg)) return Error(ValueLoc, ErrMsg); break; } LLVM_FALLTHROUGH; } case AsmToken::At: case AsmToken::Identifier: { SMLoc IdentLoc = Tok.getLoc(); StringRef Identifier = Tok.getString(); UpdateLocLex = false; if (Parser.isParsingMasm()) { size_t DotOffset = Identifier.find_first_of('.'); if (DotOffset != StringRef::npos) { consumeToken(); StringRef LHS = Identifier.slice(0, DotOffset); StringRef Dot = Identifier.slice(DotOffset, DotOffset + 1); StringRef RHS = Identifier.slice(DotOffset + 1, StringRef::npos); if (!RHS.empty()) { getLexer().UnLex(AsmToken(AsmToken::Identifier, RHS)); } getLexer().UnLex(AsmToken(AsmToken::Dot, Dot)); if (!LHS.empty()) { getLexer().UnLex(AsmToken(AsmToken::Identifier, LHS)); } break; } } // (MASM only) PTR operator if (Parser.isParsingMasm()) { const AsmToken &NextTok = getLexer().peekTok(); if (NextTok.is(AsmToken::Identifier) && NextTok.getIdentifier().equals_insensitive("ptr")) { AsmTypeInfo Info; if (Parser.lookUpType(Identifier, Info)) return Error(Tok.getLoc(), "unknown type"); SM.onCast(Info); // Eat type and PTR. consumeToken(); End = consumeToken(); break; } } // Register, or (MASM only) . unsigned Reg; if (Tok.is(AsmToken::Identifier)) { if (!ParseRegister(Reg, IdentLoc, End, /*RestoreOnFailure=*/true)) { if (SM.onRegister(Reg, ErrMsg)) return Error(IdentLoc, ErrMsg); break; } if (Parser.isParsingMasm()) { const std::pair IDField = Tok.getString().split('.'); const StringRef ID = IDField.first, Field = IDField.second; SMLoc IDEndLoc = SMLoc::getFromPointer(ID.data() + ID.size()); if (!Field.empty() && !MatchRegisterByName(Reg, ID, IdentLoc, IDEndLoc)) { if (SM.onRegister(Reg, ErrMsg)) return Error(IdentLoc, ErrMsg); AsmFieldInfo Info; SMLoc FieldStartLoc = SMLoc::getFromPointer(Field.data()); if (Parser.lookUpField(Field, Info)) return Error(FieldStartLoc, "unknown offset"); else if (SM.onPlus(ErrMsg)) return Error(getTok().getLoc(), ErrMsg); else if (SM.onInteger(Info.Offset, ErrMsg)) return Error(IdentLoc, ErrMsg); SM.setTypeInfo(Info.Type); End = consumeToken(); break; } } } // Operator synonymous ("not", "or" etc.) bool ParseError = false; if (ParseIntelNamedOperator(Identifier, SM, ParseError, End)) { if (ParseError) return true; break; } if (Parser.isParsingMasm() && ParseMasmNamedOperator(Identifier, SM, ParseError, End)) { if (ParseError) return true; break; } // Symbol reference, when parsing assembly content InlineAsmIdentifierInfo Info; AsmFieldInfo FieldInfo; const MCExpr *Val; if (isParsingMSInlineAsm() || Parser.isParsingMasm()) { // MS Dot Operator expression if (Identifier.count('.') && (PrevTK == AsmToken::RBrac || PrevTK == AsmToken::RParen)) { if (ParseIntelDotOperator(SM, End)) return true; break; } } if (isParsingMSInlineAsm()) { // MS InlineAsm operators (TYPE/LENGTH/SIZE) if (unsigned OpKind = IdentifyIntelInlineAsmOperator(Identifier)) { if (int64_t Val = ParseIntelInlineAsmOperator(OpKind)) { if (SM.onInteger(Val, ErrMsg)) return Error(IdentLoc, ErrMsg); } else { return true; } break; } // MS InlineAsm identifier // Call parseIdentifier() to combine @ with the identifier behind it. if (TK == AsmToken::At && Parser.parseIdentifier(Identifier)) return Error(IdentLoc, "expected identifier"); if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, false, End)) return true; else if (SM.onIdentifierExpr(Val, Identifier, Info, FieldInfo.Type, true, ErrMsg)) return Error(IdentLoc, ErrMsg); break; } if (Parser.isParsingMasm()) { if (unsigned OpKind = IdentifyMasmOperator(Identifier)) { int64_t Val; if (ParseMasmOperator(OpKind, Val)) return true; if (SM.onInteger(Val, ErrMsg)) return Error(IdentLoc, ErrMsg); break; } if (!getParser().lookUpType(Identifier, FieldInfo.Type)) { // Field offset immediate; . Lex(); // eat type bool EndDot = parseOptionalToken(AsmToken::Dot); while (EndDot || (getTok().is(AsmToken::Identifier) && getTok().getString().startswith("."))) { getParser().parseIdentifier(Identifier); if (!EndDot) Identifier.consume_front("."); EndDot = Identifier.consume_back("."); if (getParser().lookUpField(FieldInfo.Type.Name, Identifier, FieldInfo)) { SMLoc IDEnd = SMLoc::getFromPointer(Identifier.data() + Identifier.size()); return Error(IdentLoc, "Unable to lookup field reference!", SMRange(IdentLoc, IDEnd)); } if (!EndDot) EndDot = parseOptionalToken(AsmToken::Dot); } if (SM.onInteger(FieldInfo.Offset, ErrMsg)) return Error(IdentLoc, ErrMsg); break; } } if (getParser().parsePrimaryExpr(Val, End, &FieldInfo.Type)) { return Error(Tok.getLoc(), "Unexpected identifier!"); } else if (SM.onIdentifierExpr(Val, Identifier, Info, FieldInfo.Type, false, ErrMsg)) { return Error(IdentLoc, ErrMsg); } break; } case AsmToken::Integer: { // Look for 'b' or 'f' following an Integer as a directional label SMLoc Loc = getTok().getLoc(); int64_t IntVal = getTok().getIntVal(); End = consumeToken(); UpdateLocLex = false; if (getLexer().getKind() == AsmToken::Identifier) { StringRef IDVal = getTok().getString(); if (IDVal == "f" || IDVal == "b") { MCSymbol *Sym = getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b"); MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; const MCExpr *Val = MCSymbolRefExpr::create(Sym, Variant, getContext()); if (IDVal == "b" && Sym->isUndefined()) return Error(Loc, "invalid reference to undefined symbol"); StringRef Identifier = Sym->getName(); InlineAsmIdentifierInfo Info; AsmTypeInfo Type; if (SM.onIdentifierExpr(Val, Identifier, Info, Type, isParsingMSInlineAsm(), ErrMsg)) return Error(Loc, ErrMsg); End = consumeToken(); } else { if (SM.onInteger(IntVal, ErrMsg)) return Error(Loc, ErrMsg); } } else { if (SM.onInteger(IntVal, ErrMsg)) return Error(Loc, ErrMsg); } break; } case AsmToken::Plus: if (SM.onPlus(ErrMsg)) return Error(getTok().getLoc(), ErrMsg); break; case AsmToken::Minus: if (SM.onMinus(ErrMsg)) return Error(getTok().getLoc(), ErrMsg); break; case AsmToken::Tilde: SM.onNot(); break; case AsmToken::Star: SM.onStar(); break; case AsmToken::Slash: SM.onDivide(); break; case AsmToken::Percent: SM.onMod(); break; case AsmToken::Pipe: SM.onOr(); break; case AsmToken::Caret: SM.onXor(); break; case AsmToken::Amp: SM.onAnd(); break; case AsmToken::LessLess: SM.onLShift(); break; case AsmToken::GreaterGreater: SM.onRShift(); break; case AsmToken::LBrac: if (SM.onLBrac()) return Error(Tok.getLoc(), "unexpected bracket encountered"); tryParseOperandIdx(PrevTK, SM); break; case AsmToken::RBrac: if (SM.onRBrac(ErrMsg)) { return Error(Tok.getLoc(), ErrMsg); } break; case AsmToken::LParen: SM.onLParen(); break; case AsmToken::RParen: SM.onRParen(); break; } if (SM.hadError()) return Error(Tok.getLoc(), "unknown token in expression"); if (!Done && UpdateLocLex) End = consumeToken(); PrevTK = TK; } return false; } void X86AsmParser::RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start, SMLoc End) { SMLoc Loc = Start; unsigned ExprLen = End.getPointer() - Start.getPointer(); // Skip everything before a symbol displacement (if we have one) if (SM.getSym() && !SM.isOffsetOperator()) { StringRef SymName = SM.getSymName(); if (unsigned Len = SymName.data() - Start.getPointer()) InstInfo->AsmRewrites->emplace_back(AOK_Skip, Start, Len); Loc = SMLoc::getFromPointer(SymName.data() + SymName.size()); ExprLen = End.getPointer() - (SymName.data() + SymName.size()); // If we have only a symbol than there's no need for complex rewrite, // simply skip everything after it if (!(SM.getBaseReg() || SM.getIndexReg() || SM.getImm())) { if (ExprLen) InstInfo->AsmRewrites->emplace_back(AOK_Skip, Loc, ExprLen); return; } } // Build an Intel Expression rewrite StringRef BaseRegStr; StringRef IndexRegStr; StringRef OffsetNameStr; if (SM.getBaseReg()) BaseRegStr = X86IntelInstPrinter::getRegisterName(SM.getBaseReg()); if (SM.getIndexReg()) IndexRegStr = X86IntelInstPrinter::getRegisterName(SM.getIndexReg()); if (SM.isOffsetOperator()) OffsetNameStr = SM.getSymName(); // Emit it IntelExpr Expr(BaseRegStr, IndexRegStr, SM.getScale(), OffsetNameStr, SM.getImm(), SM.isMemExpr()); InstInfo->AsmRewrites->emplace_back(Loc, ExprLen, Expr); } // Inline assembly may use variable names with namespace alias qualifiers. bool X86AsmParser::ParseIntelInlineAsmIdentifier( const MCExpr *&Val, StringRef &Identifier, InlineAsmIdentifierInfo &Info, bool IsUnevaluatedOperand, SMLoc &End, bool IsParsingOffsetOperator) { MCAsmParser &Parser = getParser(); assert(isParsingMSInlineAsm() && "Expected to be parsing inline assembly."); Val = nullptr; StringRef LineBuf(Identifier.data()); SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand); const AsmToken &Tok = Parser.getTok(); SMLoc Loc = Tok.getLoc(); // Advance the token stream until the end of the current token is // after the end of what the frontend claimed. const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size(); do { End = Tok.getEndLoc(); getLexer().Lex(); } while (End.getPointer() < EndPtr); Identifier = LineBuf; // The frontend should end parsing on an assembler token boundary, unless it // failed parsing. assert((End.getPointer() == EndPtr || Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) && "frontend claimed part of a token?"); // If the identifier lookup was unsuccessful, assume that we are dealing with // a label. if (Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) { StringRef InternalName = SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(), Loc, false); assert(InternalName.size() && "We should have an internal name here."); // Push a rewrite for replacing the identifier name with the internal name, // unless we are parsing the operand of an offset operator if (!IsParsingOffsetOperator) InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(), InternalName); else Identifier = InternalName; } else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) return false; // Create the symbol reference. MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier); MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext()); return false; } //ParseRoundingModeOp - Parse AVX-512 rounding mode operand bool X86AsmParser::ParseRoundingModeOp(SMLoc Start, OperandVector &Operands) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); // Eat "{" and mark the current place. const SMLoc consumedToken = consumeToken(); if (Tok.isNot(AsmToken::Identifier)) return Error(Tok.getLoc(), "Expected an identifier after {"); if (Tok.getIdentifier().startswith("r")){ int rndMode = StringSwitch(Tok.getIdentifier()) .Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT) .Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF) .Case("ru", X86::STATIC_ROUNDING::TO_POS_INF) .Case("rz", X86::STATIC_ROUNDING::TO_ZERO) .Default(-1); if (-1 == rndMode) return Error(Tok.getLoc(), "Invalid rounding mode."); Parser.Lex(); // Eat "r*" of r*-sae if (!getLexer().is(AsmToken::Minus)) return Error(Tok.getLoc(), "Expected - at this point"); Parser.Lex(); // Eat "-" Parser.Lex(); // Eat the sae if (!getLexer().is(AsmToken::RCurly)) return Error(Tok.getLoc(), "Expected } at this point"); SMLoc End = Tok.getEndLoc(); Parser.Lex(); // Eat "}" const MCExpr *RndModeOp = MCConstantExpr::create(rndMode, Parser.getContext()); Operands.push_back(X86Operand::CreateImm(RndModeOp, Start, End)); return false; } if(Tok.getIdentifier().equals("sae")){ Parser.Lex(); // Eat the sae if (!getLexer().is(AsmToken::RCurly)) return Error(Tok.getLoc(), "Expected } at this point"); Parser.Lex(); // Eat "}" Operands.push_back(X86Operand::CreateToken("{sae}", consumedToken)); return false; } return Error(Tok.getLoc(), "unknown token in expression"); } /// Parse the '.' operator. bool X86AsmParser::ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End) { const AsmToken &Tok = getTok(); AsmFieldInfo Info; // Drop the optional '.'. StringRef DotDispStr = Tok.getString(); if (DotDispStr.startswith(".")) DotDispStr = DotDispStr.drop_front(1); StringRef TrailingDot; // .Imm gets lexed as a real. if (Tok.is(AsmToken::Real)) { APInt DotDisp; DotDispStr.getAsInteger(10, DotDisp); Info.Offset = DotDisp.getZExtValue(); } else if ((isParsingMSInlineAsm() || getParser().isParsingMasm()) && Tok.is(AsmToken::Identifier)) { if (DotDispStr.endswith(".")) { TrailingDot = DotDispStr.substr(DotDispStr.size() - 1); DotDispStr = DotDispStr.drop_back(1); } const std::pair BaseMember = DotDispStr.split('.'); const StringRef Base = BaseMember.first, Member = BaseMember.second; if (getParser().lookUpField(SM.getType(), DotDispStr, Info) && getParser().lookUpField(SM.getSymName(), DotDispStr, Info) && getParser().lookUpField(DotDispStr, Info) && (!SemaCallback || SemaCallback->LookupInlineAsmField(Base, Member, Info.Offset))) return Error(Tok.getLoc(), "Unable to lookup field reference!"); } else { return Error(Tok.getLoc(), "Unexpected token type!"); } // Eat the DotExpression and update End End = SMLoc::getFromPointer(DotDispStr.data()); const char *DotExprEndLoc = DotDispStr.data() + DotDispStr.size(); while (Tok.getLoc().getPointer() < DotExprEndLoc) Lex(); if (!TrailingDot.empty()) getLexer().UnLex(AsmToken(AsmToken::Dot, TrailingDot)); SM.addImm(Info.Offset); SM.setTypeInfo(Info.Type); return false; } /// Parse the 'offset' operator. /// This operator is used to specify the location of a given operand bool X86AsmParser::ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID, InlineAsmIdentifierInfo &Info, SMLoc &End) { // Eat offset, mark start of identifier. SMLoc Start = Lex().getLoc(); ID = getTok().getString(); if (!isParsingMSInlineAsm()) { if ((getTok().isNot(AsmToken::Identifier) && getTok().isNot(AsmToken::String)) || getParser().parsePrimaryExpr(Val, End, nullptr)) return Error(Start, "unexpected token!"); } else if (ParseIntelInlineAsmIdentifier(Val, ID, Info, false, End, true)) { return Error(Start, "unable to lookup expression"); } else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) { return Error(Start, "offset operator cannot yet handle constants"); } return false; } // Query a candidate string for being an Intel assembly operator // Report back its kind, or IOK_INVALID if does not evaluated as a known one unsigned X86AsmParser::IdentifyIntelInlineAsmOperator(StringRef Name) { return StringSwitch(Name) .Cases("TYPE","type",IOK_TYPE) .Cases("SIZE","size",IOK_SIZE) .Cases("LENGTH","length",IOK_LENGTH) .Default(IOK_INVALID); } /// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator /// returns the number of elements in an array. It returns the value 1 for /// non-array variables. The SIZE operator returns the size of a C or C++ /// variable. A variable's size is the product of its LENGTH and TYPE. The /// TYPE operator returns the size of a C or C++ type or variable. If the /// variable is an array, TYPE returns the size of a single element. unsigned X86AsmParser::ParseIntelInlineAsmOperator(unsigned OpKind) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); Parser.Lex(); // Eat operator. const MCExpr *Val = nullptr; InlineAsmIdentifierInfo Info; SMLoc Start = Tok.getLoc(), End; StringRef Identifier = Tok.getString(); if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, /*IsUnevaluatedOperand=*/true, End)) return 0; if (!Info.isKind(InlineAsmIdentifierInfo::IK_Var)) { Error(Start, "unable to lookup expression"); return 0; } unsigned CVal = 0; switch(OpKind) { default: llvm_unreachable("Unexpected operand kind!"); case IOK_LENGTH: CVal = Info.Var.Length; break; case IOK_SIZE: CVal = Info.Var.Size; break; case IOK_TYPE: CVal = Info.Var.Type; break; } return CVal; } // Query a candidate string for being an Intel assembly operator // Report back its kind, or IOK_INVALID if does not evaluated as a known one unsigned X86AsmParser::IdentifyMasmOperator(StringRef Name) { return StringSwitch(Name.lower()) .Case("type", MOK_TYPE) .Cases("size", "sizeof", MOK_SIZEOF) .Cases("length", "lengthof", MOK_LENGTHOF) .Default(MOK_INVALID); } /// Parse the 'LENGTHOF', 'SIZEOF', and 'TYPE' operators. The LENGTHOF operator /// returns the number of elements in an array. It returns the value 1 for /// non-array variables. The SIZEOF operator returns the size of a type or /// variable in bytes. A variable's size is the product of its LENGTH and TYPE. /// The TYPE operator returns the size of a variable. If the variable is an /// array, TYPE returns the size of a single element. bool X86AsmParser::ParseMasmOperator(unsigned OpKind, int64_t &Val) { MCAsmParser &Parser = getParser(); SMLoc OpLoc = Parser.getTok().getLoc(); Parser.Lex(); // Eat operator. Val = 0; if (OpKind == MOK_SIZEOF || OpKind == MOK_TYPE) { // Check for SIZEOF() and TYPE(). bool InParens = Parser.getTok().is(AsmToken::LParen); const AsmToken &IDTok = InParens ? getLexer().peekTok() : Parser.getTok(); AsmTypeInfo Type; if (IDTok.is(AsmToken::Identifier) && !Parser.lookUpType(IDTok.getIdentifier(), Type)) { Val = Type.Size; // Eat tokens. if (InParens) parseToken(AsmToken::LParen); parseToken(AsmToken::Identifier); if (InParens) parseToken(AsmToken::RParen); } } if (!Val) { IntelExprStateMachine SM; SMLoc End, Start = Parser.getTok().getLoc(); if (ParseIntelExpression(SM, End)) return true; switch (OpKind) { default: llvm_unreachable("Unexpected operand kind!"); case MOK_SIZEOF: Val = SM.getSize(); break; case MOK_LENGTHOF: Val = SM.getLength(); break; case MOK_TYPE: Val = SM.getElementSize(); break; } if (!Val) return Error(OpLoc, "expression has unknown type", SMRange(Start, End)); } return false; } bool X86AsmParser::ParseIntelMemoryOperandSize(unsigned &Size) { Size = StringSwitch(getTok().getString()) .Cases("BYTE", "byte", 8) .Cases("WORD", "word", 16) .Cases("DWORD", "dword", 32) .Cases("FLOAT", "float", 32) .Cases("LONG", "long", 32) .Cases("FWORD", "fword", 48) .Cases("DOUBLE", "double", 64) .Cases("QWORD", "qword", 64) .Cases("MMWORD","mmword", 64) .Cases("XWORD", "xword", 80) .Cases("TBYTE", "tbyte", 80) .Cases("XMMWORD", "xmmword", 128) .Cases("YMMWORD", "ymmword", 256) .Cases("ZMMWORD", "zmmword", 512) .Default(0); if (Size) { const AsmToken &Tok = Lex(); // Eat operand size (e.g., byte, word). if (!(Tok.getString().equals("PTR") || Tok.getString().equals("ptr"))) return Error(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!"); Lex(); // Eat ptr. } return false; } bool X86AsmParser::parseIntelOperand(OperandVector &Operands, StringRef Name) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = Parser.getTok(); SMLoc Start, End; // Parse optional Size directive. unsigned Size; if (ParseIntelMemoryOperandSize(Size)) return true; bool PtrInOperand = bool(Size); Start = Tok.getLoc(); // Rounding mode operand. if (getLexer().is(AsmToken::LCurly)) return ParseRoundingModeOp(Start, Operands); // Register operand. unsigned RegNo = 0; if (Tok.is(AsmToken::Identifier) && !ParseRegister(RegNo, Start, End)) { if (RegNo == X86::RIP) return Error(Start, "rip can only be used as a base register"); // A Register followed by ':' is considered a segment override if (Tok.isNot(AsmToken::Colon)) { if (PtrInOperand) return Error(Start, "expected memory operand after 'ptr', " "found register operand instead"); Operands.push_back(X86Operand::CreateReg(RegNo, Start, End)); return false; } // An alleged segment override. check if we have a valid segment register if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo)) return Error(Start, "invalid segment register"); // Eat ':' and update Start location Start = Lex().getLoc(); } // Immediates and Memory IntelExprStateMachine SM; if (ParseIntelExpression(SM, End)) return true; if (isParsingMSInlineAsm()) RewriteIntelExpression(SM, Start, Tok.getLoc()); int64_t Imm = SM.getImm(); const MCExpr *Disp = SM.getSym(); const MCExpr *ImmDisp = MCConstantExpr::create(Imm, getContext()); if (Disp && Imm) Disp = MCBinaryExpr::createAdd(Disp, ImmDisp, getContext()); if (!Disp) Disp = ImmDisp; // RegNo != 0 specifies a valid segment register, // and we are parsing a segment override if (!SM.isMemExpr() && !RegNo) { if (isParsingMSInlineAsm() && SM.isOffsetOperator()) { const InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo(); if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) { // Disp includes the address of a variable; make sure this is recorded // for later handling. Operands.push_back(X86Operand::CreateImm(Disp, Start, End, SM.getSymName(), Info.Var.Decl, Info.Var.IsGlobalLV)); return false; } } Operands.push_back(X86Operand::CreateImm(Disp, Start, End)); return false; } StringRef ErrMsg; unsigned BaseReg = SM.getBaseReg(); unsigned IndexReg = SM.getIndexReg(); if (IndexReg && BaseReg == X86::RIP) BaseReg = 0; unsigned Scale = SM.getScale(); if (!PtrInOperand) Size = SM.getElementSize() << 3; if (Scale == 0 && BaseReg != X86::ESP && BaseReg != X86::RSP && (IndexReg == X86::ESP || IndexReg == X86::RSP)) std::swap(BaseReg, IndexReg); // If BaseReg is a vector register and IndexReg is not, swap them unless // Scale was specified in which case it would be an error. if (Scale == 0 && !(X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg)) && (X86MCRegisterClasses[X86::VR128XRegClassID].contains(BaseReg) || X86MCRegisterClasses[X86::VR256XRegClassID].contains(BaseReg) || X86MCRegisterClasses[X86::VR512RegClassID].contains(BaseReg))) std::swap(BaseReg, IndexReg); if (Scale != 0 && X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) return Error(Start, "16-bit addresses cannot have a scale"); // If there was no explicit scale specified, change it to 1. if (Scale == 0) Scale = 1; // If this is a 16-bit addressing mode with the base and index in the wrong // order, swap them so CheckBaseRegAndIndexRegAndScale doesn't fail. It is // shared with att syntax where order matters. if ((BaseReg == X86::SI || BaseReg == X86::DI) && (IndexReg == X86::BX || IndexReg == X86::BP)) std::swap(BaseReg, IndexReg); if ((BaseReg || IndexReg) && CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(), ErrMsg)) return Error(Start, ErrMsg); if (isParsingMSInlineAsm()) return CreateMemForMSInlineAsm(RegNo, Disp, BaseReg, IndexReg, Scale, Start, End, Size, SM.getSymName(), SM.getIdentifierInfo(), Operands); // When parsing x64 MS-style assembly, all non-absolute references to a named // variable default to RIP-relative. unsigned DefaultBaseReg = X86::NoRegister; bool MaybeDirectBranchDest = true; if (Parser.isParsingMasm()) { bool IsUnconditionalBranch = Name.equals_insensitive("jmp") || Name.equals_insensitive("call"); if (is64BitMode() && SM.getElementSize() > 0) { DefaultBaseReg = X86::RIP; } if (IsUnconditionalBranch) { if (PtrInOperand) { MaybeDirectBranchDest = false; if (is64BitMode()) DefaultBaseReg = X86::RIP; } else if (!BaseReg && !IndexReg && Disp && Disp->getKind() == MCExpr::SymbolRef) { if (is64BitMode()) { if (SM.getSize() == 8) { MaybeDirectBranchDest = false; DefaultBaseReg = X86::RIP; } } else { if (SM.getSize() == 4 || SM.getSize() == 2) MaybeDirectBranchDest = false; } } } } if ((BaseReg || IndexReg || RegNo || DefaultBaseReg != X86::NoRegister)) Operands.push_back(X86Operand::CreateMem( getPointerWidth(), RegNo, Disp, BaseReg, IndexReg, Scale, Start, End, Size, DefaultBaseReg, /*SymName=*/StringRef(), /*OpDecl=*/nullptr, /*FrontendSize=*/0, /*UseUpRegs=*/false, MaybeDirectBranchDest)); else Operands.push_back(X86Operand::CreateMem( getPointerWidth(), Disp, Start, End, Size, /*SymName=*/StringRef(), /*OpDecl=*/nullptr, /*FrontendSize=*/0, /*UseUpRegs=*/false, MaybeDirectBranchDest)); return false; } bool X86AsmParser::parseATTOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); switch (getLexer().getKind()) { case AsmToken::Dollar: { // $42 or $ID -> immediate. SMLoc Start = Parser.getTok().getLoc(), End; Parser.Lex(); const MCExpr *Val; // This is an immediate, so we should not parse a register. Do a precheck // for '%' to supercede intra-register parse errors. SMLoc L = Parser.getTok().getLoc(); if (check(getLexer().is(AsmToken::Percent), L, "expected immediate expression") || getParser().parseExpression(Val, End) || check(isa(Val), L, "expected immediate expression")) return true; Operands.push_back(X86Operand::CreateImm(Val, Start, End)); return false; } case AsmToken::LCurly: { SMLoc Start = Parser.getTok().getLoc(); return ParseRoundingModeOp(Start, Operands); } default: { // This a memory operand or a register. We have some parsing complications // as a '(' may be part of an immediate expression or the addressing mode // block. This is complicated by the fact that an assembler-level variable // may refer either to a register or an immediate expression. SMLoc Loc = Parser.getTok().getLoc(), EndLoc; const MCExpr *Expr = nullptr; unsigned Reg = 0; if (getLexer().isNot(AsmToken::LParen)) { // No '(' so this is either a displacement expression or a register. if (Parser.parseExpression(Expr, EndLoc)) return true; if (auto *RE = dyn_cast(Expr)) { // Segment Register. Reset Expr and copy value to register. Expr = nullptr; Reg = RE->getRegNo(); // Check the register. if (Reg == X86::EIZ || Reg == X86::RIZ) return Error( Loc, "%eiz and %riz can only be used as index registers", SMRange(Loc, EndLoc)); if (Reg == X86::RIP) return Error(Loc, "%rip can only be used as a base register", SMRange(Loc, EndLoc)); // Return register that are not segment prefixes immediately. if (!Parser.parseOptionalToken(AsmToken::Colon)) { Operands.push_back(X86Operand::CreateReg(Reg, Loc, EndLoc)); return false; } if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(Reg)) return Error(Loc, "invalid segment register"); // Accept a '*' absolute memory reference after the segment. Place it // before the full memory operand. if (getLexer().is(AsmToken::Star)) Operands.push_back(X86Operand::CreateToken("*", consumeToken())); } } // This is a Memory operand. return ParseMemOperand(Reg, Expr, Loc, EndLoc, Operands); } } } // X86::COND_INVALID if not a recognized condition code or alternate mnemonic, // otherwise the EFLAGS Condition Code enumerator. X86::CondCode X86AsmParser::ParseConditionCode(StringRef CC) { return StringSwitch(CC) .Case("o", X86::COND_O) // Overflow .Case("no", X86::COND_NO) // No Overflow .Cases("b", "nae", X86::COND_B) // Below/Neither Above nor Equal .Cases("ae", "nb", X86::COND_AE) // Above or Equal/Not Below .Cases("e", "z", X86::COND_E) // Equal/Zero .Cases("ne", "nz", X86::COND_NE) // Not Equal/Not Zero .Cases("be", "na", X86::COND_BE) // Below or Equal/Not Above .Cases("a", "nbe", X86::COND_A) // Above/Neither Below nor Equal .Case("s", X86::COND_S) // Sign .Case("ns", X86::COND_NS) // No Sign .Cases("p", "pe", X86::COND_P) // Parity/Parity Even .Cases("np", "po", X86::COND_NP) // No Parity/Parity Odd .Cases("l", "nge", X86::COND_L) // Less/Neither Greater nor Equal .Cases("ge", "nl", X86::COND_GE) // Greater or Equal/Not Less .Cases("le", "ng", X86::COND_LE) // Less or Equal/Not Greater .Cases("g", "nle", X86::COND_G) // Greater/Neither Less nor Equal .Default(X86::COND_INVALID); } // true on failure, false otherwise // If no {z} mark was found - Parser doesn't advance bool X86AsmParser::ParseZ(std::unique_ptr &Z, const SMLoc &StartLoc) { MCAsmParser &Parser = getParser(); // Assuming we are just pass the '{' mark, quering the next token // Searched for {z}, but none was found. Return false, as no parsing error was // encountered if (!(getLexer().is(AsmToken::Identifier) && (getLexer().getTok().getIdentifier() == "z"))) return false; Parser.Lex(); // Eat z // Query and eat the '}' mark if (!getLexer().is(AsmToken::RCurly)) return Error(getLexer().getLoc(), "Expected } at this point"); Parser.Lex(); // Eat '}' // Assign Z with the {z} mark operand Z = X86Operand::CreateToken("{z}", StartLoc); return false; } // true on failure, false otherwise bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); if (getLexer().is(AsmToken::LCurly)) { // Eat "{" and mark the current place. const SMLoc consumedToken = consumeToken(); // Distinguish {1to} from {%k}. if(getLexer().is(AsmToken::Integer)) { // Parse memory broadcasting ({1to}). if (getLexer().getTok().getIntVal() != 1) return TokError("Expected 1to at this point"); StringRef Prefix = getLexer().getTok().getString(); Parser.Lex(); // Eat first token of 1to8 if (!getLexer().is(AsmToken::Identifier)) return TokError("Expected 1to at this point"); // Recognize only reasonable suffixes. SmallVector BroadcastVector; StringRef BroadcastString = (Prefix + getLexer().getTok().getIdentifier()) .toStringRef(BroadcastVector); if (!BroadcastString.startswith("1to")) return TokError("Expected 1to at this point"); const char *BroadcastPrimitive = StringSwitch(BroadcastString) .Case("1to2", "{1to2}") .Case("1to4", "{1to4}") .Case("1to8", "{1to8}") .Case("1to16", "{1to16}") .Case("1to32", "{1to32}") .Default(nullptr); if (!BroadcastPrimitive) return TokError("Invalid memory broadcast primitive."); Parser.Lex(); // Eat trailing token of 1toN if (!getLexer().is(AsmToken::RCurly)) return TokError("Expected } at this point"); Parser.Lex(); // Eat "}" Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive, consumedToken)); // No AVX512 specific primitives can pass // after memory broadcasting, so return. return false; } else { // Parse either {k}{z}, {z}{k}, {k} or {z} // last one have no meaning, but GCC accepts it // Currently, we're just pass a '{' mark std::unique_ptr Z; if (ParseZ(Z, consumedToken)) return true; // Reaching here means that parsing of the allegadly '{z}' mark yielded // no errors. // Query for the need of further parsing for a {%k} mark if (!Z || getLexer().is(AsmToken::LCurly)) { SMLoc StartLoc = Z ? consumeToken() : consumedToken; // Parse an op-mask register mark ({%k}), which is now to be // expected unsigned RegNo; SMLoc RegLoc; if (!ParseRegister(RegNo, RegLoc, StartLoc) && X86MCRegisterClasses[X86::VK1RegClassID].contains(RegNo)) { if (RegNo == X86::K0) return Error(RegLoc, "Register k0 can't be used as write mask"); if (!getLexer().is(AsmToken::RCurly)) return Error(getLexer().getLoc(), "Expected } at this point"); Operands.push_back(X86Operand::CreateToken("{", StartLoc)); Operands.push_back( X86Operand::CreateReg(RegNo, StartLoc, StartLoc)); Operands.push_back(X86Operand::CreateToken("}", consumeToken())); } else return Error(getLexer().getLoc(), "Expected an op-mask register at this point"); // {%k} mark is found, inquire for {z} if (getLexer().is(AsmToken::LCurly) && !Z) { // Have we've found a parsing error, or found no (expected) {z} mark // - report an error if (ParseZ(Z, consumeToken()) || !Z) return Error(getLexer().getLoc(), "Expected a {z} mark at this point"); } // '{z}' on its own is meaningless, hence should be ignored. // on the contrary - have it been accompanied by a K register, // allow it. if (Z) Operands.push_back(std::move(Z)); } } } return false; } /// ParseMemOperand: 'seg : disp(basereg, indexreg, scale)'. The '%ds:' prefix /// has already been parsed if present. disp may be provided as well. bool X86AsmParser::ParseMemOperand(unsigned SegReg, const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc, OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc Loc; // Based on the initial passed values, we may be in any of these cases, we are // in one of these cases (with current position (*)): // 1. seg : * disp (base-index-scale-expr) // 2. seg : *(disp) (base-index-scale-expr) // 3. seg : *(base-index-scale-expr) // 4. disp *(base-index-scale-expr) // 5. *(disp) (base-index-scale-expr) // 6. *(base-index-scale-expr) // 7. disp * // 8. *(disp) // If we do not have an displacement yet, check if we're in cases 4 or 6 by // checking if the first object after the parenthesis is a register (or an // identifier referring to a register) and parse the displacement or default // to 0 as appropriate. auto isAtMemOperand = [this]() { if (this->getLexer().isNot(AsmToken::LParen)) return false; AsmToken Buf[2]; StringRef Id; auto TokCount = this->getLexer().peekTokens(Buf, true); if (TokCount == 0) return false; switch (Buf[0].getKind()) { case AsmToken::Percent: case AsmToken::Comma: return true; // These lower cases are doing a peekIdentifier. case AsmToken::At: case AsmToken::Dollar: if ((TokCount > 1) && (Buf[1].is(AsmToken::Identifier) || Buf[1].is(AsmToken::String)) && (Buf[0].getLoc().getPointer() + 1 == Buf[1].getLoc().getPointer())) Id = StringRef(Buf[0].getLoc().getPointer(), Buf[1].getIdentifier().size() + 1); break; case AsmToken::Identifier: case AsmToken::String: Id = Buf[0].getIdentifier(); break; default: return false; } // We have an ID. Check if it is bound to a register. if (!Id.empty()) { MCSymbol *Sym = this->getContext().getOrCreateSymbol(Id); if (Sym->isVariable()) { auto V = Sym->getVariableValue(/*SetUsed*/ false); return isa(V); } } return false; }; if (!Disp) { // Parse immediate if we're not at a mem operand yet. if (!isAtMemOperand()) { if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(Disp, EndLoc)) return true; assert(!isa(Disp) && "Expected non-register here."); } else { // Disp is implicitly zero if we haven't parsed it yet. Disp = MCConstantExpr::create(0, Parser.getContext()); } } // We are now either at the end of the operand or at the '(' at the start of a // base-index-scale-expr. if (!parseOptionalToken(AsmToken::LParen)) { if (SegReg == 0) Operands.push_back( X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc)); else Operands.push_back(X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1, StartLoc, EndLoc)); return false; } // If we reached here, then eat the '(' and Process // the rest of the memory operand. unsigned BaseReg = 0, IndexReg = 0, Scale = 1; SMLoc BaseLoc = getLexer().getLoc(); const MCExpr *E; StringRef ErrMsg; // Parse BaseReg if one is provided. if (getLexer().isNot(AsmToken::Comma) && getLexer().isNot(AsmToken::RParen)) { if (Parser.parseExpression(E, EndLoc) || check(!isa(E), BaseLoc, "expected register here")) return true; // Check the register. BaseReg = cast(E)->getRegNo(); if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) return Error(BaseLoc, "eiz and riz can only be used as index registers", SMRange(BaseLoc, EndLoc)); } if (parseOptionalToken(AsmToken::Comma)) { // Following the comma we should have either an index register, or a scale // value. We don't support the later form, but we want to parse it // correctly. // // Even though it would be completely consistent to support syntax like // "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. if (getLexer().isNot(AsmToken::RParen)) { if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(E, EndLoc)) return true; if (!isa(E)) { // We've parsed an unexpected Scale Value instead of an index // register. Interpret it as an absolute. int64_t ScaleVal; if (!E->evaluateAsAbsolute(ScaleVal, getStreamer().getAssemblerPtr())) return Error(Loc, "expected absolute expression"); if (ScaleVal != 1) Warning(Loc, "scale factor without index register is ignored"); Scale = 1; } else { // IndexReg Found. IndexReg = cast(E)->getRegNo(); if (BaseReg == X86::RIP) return Error(Loc, "%rip as base register can not have an index register"); if (IndexReg == X86::RIP) return Error(Loc, "%rip is not allowed as an index register"); if (parseOptionalToken(AsmToken::Comma)) { // Parse the scale amount: // ::= ',' [scale-expression] // A scale amount without an index is ignored. if (getLexer().isNot(AsmToken::RParen)) { int64_t ScaleVal; if (Parser.parseTokenLoc(Loc) || Parser.parseAbsoluteExpression(ScaleVal)) return Error(Loc, "expected scale expression"); Scale = (unsigned)ScaleVal; // Validate the scale amount. if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) && Scale != 1) return Error(Loc, "scale factor in 16-bit address must be 1"); if (checkScale(Scale, ErrMsg)) return Error(Loc, ErrMsg); } } } } } // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. if (parseToken(AsmToken::RParen, "unexpected token in memory operand")) return true; // This is to support otherwise illegal operand (%dx) found in various // unofficial manuals examples (e.g. "out[s]?[bwl]? %al, (%dx)") and must now // be supported. Mark such DX variants separately fix only in special cases. if (BaseReg == X86::DX && IndexReg == 0 && Scale == 1 && SegReg == 0 && isa(Disp) && cast(Disp)->getValue() == 0) { Operands.push_back(X86Operand::CreateDXReg(BaseLoc, BaseLoc)); return false; } if (CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(), ErrMsg)) return Error(BaseLoc, ErrMsg); if (SegReg || BaseReg || IndexReg) Operands.push_back(X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg, IndexReg, Scale, StartLoc, EndLoc)); else Operands.push_back( X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc)); return false; } // Parse either a standard primary expression or a register. bool X86AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) { MCAsmParser &Parser = getParser(); // See if this is a register first. if (getTok().is(AsmToken::Percent) || (isParsingIntelSyntax() && getTok().is(AsmToken::Identifier) && MatchRegisterName(Parser.getTok().getString()))) { SMLoc StartLoc = Parser.getTok().getLoc(); unsigned RegNo; if (ParseRegister(RegNo, StartLoc, EndLoc)) return true; Res = X86MCExpr::create(RegNo, Parser.getContext()); return false; } return Parser.parsePrimaryExpr(Res, EndLoc, nullptr); } bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { MCAsmParser &Parser = getParser(); InstInfo = &Info; // Reset the forced VEX encoding. ForcedVEXEncoding = VEXEncoding_Default; ForcedDispEncoding = DispEncoding_Default; // Parse pseudo prefixes. while (true) { if (Name == "{") { if (getLexer().isNot(AsmToken::Identifier)) return Error(Parser.getTok().getLoc(), "Unexpected token after '{'"); std::string Prefix = Parser.getTok().getString().lower(); Parser.Lex(); // Eat identifier. if (getLexer().isNot(AsmToken::RCurly)) return Error(Parser.getTok().getLoc(), "Expected '}'"); Parser.Lex(); // Eat curly. if (Prefix == "vex") ForcedVEXEncoding = VEXEncoding_VEX; else if (Prefix == "vex2") ForcedVEXEncoding = VEXEncoding_VEX2; else if (Prefix == "vex3") ForcedVEXEncoding = VEXEncoding_VEX3; else if (Prefix == "evex") ForcedVEXEncoding = VEXEncoding_EVEX; else if (Prefix == "disp8") ForcedDispEncoding = DispEncoding_Disp8; else if (Prefix == "disp32") ForcedDispEncoding = DispEncoding_Disp32; else return Error(NameLoc, "unknown prefix"); NameLoc = Parser.getTok().getLoc(); if (getLexer().is(AsmToken::LCurly)) { Parser.Lex(); Name = "{"; } else { if (getLexer().isNot(AsmToken::Identifier)) return Error(Parser.getTok().getLoc(), "Expected identifier"); // FIXME: The mnemonic won't match correctly if its not in lower case. Name = Parser.getTok().getString(); Parser.Lex(); } continue; } // Parse MASM style pseudo prefixes. if (isParsingMSInlineAsm()) { if (Name.equals_insensitive("vex")) ForcedVEXEncoding = VEXEncoding_VEX; else if (Name.equals_insensitive("vex2")) ForcedVEXEncoding = VEXEncoding_VEX2; else if (Name.equals_insensitive("vex3")) ForcedVEXEncoding = VEXEncoding_VEX3; else if (Name.equals_insensitive("evex")) ForcedVEXEncoding = VEXEncoding_EVEX; if (ForcedVEXEncoding != VEXEncoding_Default) { if (getLexer().isNot(AsmToken::Identifier)) return Error(Parser.getTok().getLoc(), "Expected identifier"); // FIXME: The mnemonic won't match correctly if its not in lower case. Name = Parser.getTok().getString(); NameLoc = Parser.getTok().getLoc(); Parser.Lex(); } } break; } // Support the suffix syntax for overriding displacement size as well. if (Name.consume_back(".d32")) { ForcedDispEncoding = DispEncoding_Disp32; } else if (Name.consume_back(".d8")) { ForcedDispEncoding = DispEncoding_Disp8; } StringRef PatchedName = Name; // Hack to skip "short" following Jcc. if (isParsingIntelSyntax() && (PatchedName == "jmp" || PatchedName == "jc" || PatchedName == "jnc" || PatchedName == "jcxz" || PatchedName == "jecxz" || (PatchedName.startswith("j") && ParseConditionCode(PatchedName.substr(1)) != X86::COND_INVALID))) { StringRef NextTok = Parser.getTok().getString(); if (Parser.isParsingMasm() ? NextTok.equals_insensitive("short") : NextTok == "short") { SMLoc NameEndLoc = NameLoc.getFromPointer(NameLoc.getPointer() + Name.size()); // Eat the short keyword. Parser.Lex(); // MS and GAS ignore the short keyword; they both determine the jmp type // based on the distance of the label. (NASM does emit different code with // and without "short," though.) InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc, NextTok.size() + 1); } } // FIXME: Hack to recognize setneb as setne. if (PatchedName.startswith("set") && PatchedName.endswith("b") && PatchedName != "setb" && PatchedName != "setnb") PatchedName = PatchedName.substr(0, Name.size()-1); unsigned ComparisonPredicate = ~0U; // FIXME: Hack to recognize cmp{sh,ss,sd,ph,ps,pd}. if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && (PatchedName.endswith("ss") || PatchedName.endswith("sd") || PatchedName.endswith("sh") || PatchedName.endswith("ph") || PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { bool IsVCMP = PatchedName[0] == 'v'; unsigned CCIdx = IsVCMP ? 4 : 3; unsigned CC = StringSwitch( PatchedName.slice(CCIdx, PatchedName.size() - 2)) .Case("eq", 0x00) .Case("eq_oq", 0x00) .Case("lt", 0x01) .Case("lt_os", 0x01) .Case("le", 0x02) .Case("le_os", 0x02) .Case("unord", 0x03) .Case("unord_q", 0x03) .Case("neq", 0x04) .Case("neq_uq", 0x04) .Case("nlt", 0x05) .Case("nlt_us", 0x05) .Case("nle", 0x06) .Case("nle_us", 0x06) .Case("ord", 0x07) .Case("ord_q", 0x07) /* AVX only from here */ .Case("eq_uq", 0x08) .Case("nge", 0x09) .Case("nge_us", 0x09) .Case("ngt", 0x0A) .Case("ngt_us", 0x0A) .Case("false", 0x0B) .Case("false_oq", 0x0B) .Case("neq_oq", 0x0C) .Case("ge", 0x0D) .Case("ge_os", 0x0D) .Case("gt", 0x0E) .Case("gt_os", 0x0E) .Case("true", 0x0F) .Case("true_uq", 0x0F) .Case("eq_os", 0x10) .Case("lt_oq", 0x11) .Case("le_oq", 0x12) .Case("unord_s", 0x13) .Case("neq_us", 0x14) .Case("nlt_uq", 0x15) .Case("nle_uq", 0x16) .Case("ord_s", 0x17) .Case("eq_us", 0x18) .Case("nge_uq", 0x19) .Case("ngt_uq", 0x1A) .Case("false_os", 0x1B) .Case("neq_os", 0x1C) .Case("ge_oq", 0x1D) .Case("gt_oq", 0x1E) .Case("true_us", 0x1F) .Default(~0U); if (CC != ~0U && (IsVCMP || CC < 8) && (IsVCMP || PatchedName.back() != 'h')) { if (PatchedName.endswith("ss")) PatchedName = IsVCMP ? "vcmpss" : "cmpss"; else if (PatchedName.endswith("sd")) PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; else if (PatchedName.endswith("ps")) PatchedName = IsVCMP ? "vcmpps" : "cmpps"; else if (PatchedName.endswith("pd")) PatchedName = IsVCMP ? "vcmppd" : "cmppd"; else if (PatchedName.endswith("sh")) PatchedName = "vcmpsh"; else if (PatchedName.endswith("ph")) PatchedName = "vcmpph"; else llvm_unreachable("Unexpected suffix!"); ComparisonPredicate = CC; } } // FIXME: Hack to recognize vpcmp{ub,uw,ud,uq,b,w,d,q}. if (PatchedName.startswith("vpcmp") && (PatchedName.back() == 'b' || PatchedName.back() == 'w' || PatchedName.back() == 'd' || PatchedName.back() == 'q')) { unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1; unsigned CC = StringSwitch( PatchedName.slice(5, PatchedName.size() - SuffixSize)) .Case("eq", 0x0) // Only allowed on unsigned. Checked below. .Case("lt", 0x1) .Case("le", 0x2) //.Case("false", 0x3) // Not a documented alias. .Case("neq", 0x4) .Case("nlt", 0x5) .Case("nle", 0x6) //.Case("true", 0x7) // Not a documented alias. .Default(~0U); if (CC != ~0U && (CC != 0 || SuffixSize == 2)) { switch (PatchedName.back()) { default: llvm_unreachable("Unexpected character!"); case 'b': PatchedName = SuffixSize == 2 ? "vpcmpub" : "vpcmpb"; break; case 'w': PatchedName = SuffixSize == 2 ? "vpcmpuw" : "vpcmpw"; break; case 'd': PatchedName = SuffixSize == 2 ? "vpcmpud" : "vpcmpd"; break; case 'q': PatchedName = SuffixSize == 2 ? "vpcmpuq" : "vpcmpq"; break; } // Set up the immediate to push into the operands later. ComparisonPredicate = CC; } } // FIXME: Hack to recognize vpcom{ub,uw,ud,uq,b,w,d,q}. if (PatchedName.startswith("vpcom") && (PatchedName.back() == 'b' || PatchedName.back() == 'w' || PatchedName.back() == 'd' || PatchedName.back() == 'q')) { unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1; unsigned CC = StringSwitch( PatchedName.slice(5, PatchedName.size() - SuffixSize)) .Case("lt", 0x0) .Case("le", 0x1) .Case("gt", 0x2) .Case("ge", 0x3) .Case("eq", 0x4) .Case("neq", 0x5) .Case("false", 0x6) .Case("true", 0x7) .Default(~0U); if (CC != ~0U) { switch (PatchedName.back()) { default: llvm_unreachable("Unexpected character!"); case 'b': PatchedName = SuffixSize == 2 ? "vpcomub" : "vpcomb"; break; case 'w': PatchedName = SuffixSize == 2 ? "vpcomuw" : "vpcomw"; break; case 'd': PatchedName = SuffixSize == 2 ? "vpcomud" : "vpcomd"; break; case 'q': PatchedName = SuffixSize == 2 ? "vpcomuq" : "vpcomq"; break; } // Set up the immediate to push into the operands later. ComparisonPredicate = CC; } } // Determine whether this is an instruction prefix. // FIXME: // Enhance prefixes integrity robustness. for example, following forms // are currently tolerated: // repz repnz ; GAS errors for the use of two similar prefixes // lock addq %rax, %rbx ; Destination operand must be of memory type // xacquire ; xacquire must be accompanied by 'lock' bool IsPrefix = StringSwitch(Name) .Cases("cs", "ds", "es", "fs", "gs", "ss", true) .Cases("rex64", "data32", "data16", "addr32", "addr16", true) .Cases("xacquire", "xrelease", true) .Cases("acquire", "release", isParsingIntelSyntax()) .Default(false); auto isLockRepeatNtPrefix = [](StringRef N) { return StringSwitch(N) .Cases("lock", "rep", "repe", "repz", "repne", "repnz", "notrack", true) .Default(false); }; bool CurlyAsEndOfStatement = false; unsigned Flags = X86::IP_NO_PREFIX; while (isLockRepeatNtPrefix(Name.lower())) { unsigned Prefix = StringSwitch(Name) .Cases("lock", "lock", X86::IP_HAS_LOCK) .Cases("rep", "repe", "repz", X86::IP_HAS_REPEAT) .Cases("repne", "repnz", X86::IP_HAS_REPEAT_NE) .Cases("notrack", "notrack", X86::IP_HAS_NOTRACK) .Default(X86::IP_NO_PREFIX); // Invalid prefix (impossible) Flags |= Prefix; if (getLexer().is(AsmToken::EndOfStatement)) { // We don't have real instr with the given prefix // let's use the prefix as the instr. // TODO: there could be several prefixes one after another Flags = X86::IP_NO_PREFIX; break; } // FIXME: The mnemonic won't match correctly if its not in lower case. Name = Parser.getTok().getString(); Parser.Lex(); // eat the prefix // Hack: we could have something like "rep # some comment" or // "lock; cmpxchg16b $1" or "lock\0A\09incl" or "lock/incl" while (Name.startswith(";") || Name.startswith("\n") || Name.startswith("#") || Name.startswith("\t") || Name.startswith("/")) { // FIXME: The mnemonic won't match correctly if its not in lower case. Name = Parser.getTok().getString(); Parser.Lex(); // go to next prefix or instr } } if (Flags) PatchedName = Name; // Hacks to handle 'data16' and 'data32' if (PatchedName == "data16" && is16BitMode()) { return Error(NameLoc, "redundant data16 prefix"); } if (PatchedName == "data32") { if (is32BitMode()) return Error(NameLoc, "redundant data32 prefix"); if (is64BitMode()) return Error(NameLoc, "'data32' is not supported in 64-bit mode"); // Hack to 'data16' for the table lookup. PatchedName = "data16"; if (getLexer().isNot(AsmToken::EndOfStatement)) { StringRef Next = Parser.getTok().getString(); getLexer().Lex(); // data32 effectively changes the instruction suffix. // TODO Generalize. if (Next == "callw") Next = "calll"; if (Next == "ljmpw") Next = "ljmpl"; Name = Next; PatchedName = Name; ForcedDataPrefix = X86::Is32Bit; IsPrefix = false; } } Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); // Push the immediate if we extracted one from the mnemonic. if (ComparisonPredicate != ~0U && !isParsingIntelSyntax()) { const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate, getParser().getContext()); Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc)); } // This does the actual operand parsing. Don't parse any more if we have a // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we // just want to parse the "lock" as the first instruction and the "incl" as // the next one. if (getLexer().isNot(AsmToken::EndOfStatement) && !IsPrefix) { // Parse '*' modifier. if (getLexer().is(AsmToken::Star)) Operands.push_back(X86Operand::CreateToken("*", consumeToken())); // Read the operands. while (true) { if (parseOperand(Operands, Name)) return true; if (HandleAVX512Operand(Operands)) return true; // check for comma and eat it if (getLexer().is(AsmToken::Comma)) Parser.Lex(); else break; } // In MS inline asm curly braces mark the beginning/end of a block, // therefore they should be interepreted as end of statement CurlyAsEndOfStatement = isParsingIntelSyntax() && isParsingMSInlineAsm() && (getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly)); if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement) return TokError("unexpected token in argument list"); } // Push the immediate if we extracted one from the mnemonic. if (ComparisonPredicate != ~0U && isParsingIntelSyntax()) { const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate, getParser().getContext()); Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc)); } // Consume the EndOfStatement or the prefix separator Slash if (getLexer().is(AsmToken::EndOfStatement) || (IsPrefix && getLexer().is(AsmToken::Slash))) Parser.Lex(); else if (CurlyAsEndOfStatement) // Add an actual EndOfStatement before the curly brace Info.AsmRewrites->emplace_back(AOK_EndOfStatement, getLexer().getTok().getLoc(), 0); // This is for gas compatibility and cannot be done in td. // Adding "p" for some floating point with no argument. // For example: fsub --> fsubp bool IsFp = Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr"; if (IsFp && Operands.size() == 1) { const char *Repl = StringSwitch(Name) .Case("fsub", "fsubp") .Case("fdiv", "fdivp") .Case("fsubr", "fsubrp") .Case("fdivr", "fdivrp"); static_cast(*Operands[0]).setTokenValue(Repl); } if ((Name == "mov" || Name == "movw" || Name == "movl") && (Operands.size() == 3)) { X86Operand &Op1 = (X86Operand &)*Operands[1]; X86Operand &Op2 = (X86Operand &)*Operands[2]; SMLoc Loc = Op1.getEndLoc(); // Moving a 32 or 16 bit value into a segment register has the same // behavior. Modify such instructions to always take shorter form. if (Op1.isReg() && Op2.isReg() && X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains( Op2.getReg()) && (X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) || X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) { // Change instruction name to match new instruction. if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) { Name = is16BitMode() ? "movw" : "movl"; Operands[0] = X86Operand::CreateToken(Name, NameLoc); } // Select the correct equivalent 16-/32-bit source register. unsigned Reg = getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32); Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc); } } // This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" -> // "outb %al, %dx". Out doesn't take a memory form, but this is a widely // documented form in various unofficial manuals, so a lot of code uses it. if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" || Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") && Operands.size() == 3) { X86Operand &Op = (X86Operand &)*Operands.back(); if (Op.isDXReg()) Operands.back() = X86Operand::CreateReg(X86::DX, Op.getStartLoc(), Op.getEndLoc()); } // Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al". if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" || Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") && Operands.size() == 3) { X86Operand &Op = (X86Operand &)*Operands[1]; if (Op.isDXReg()) Operands[1] = X86Operand::CreateReg(X86::DX, Op.getStartLoc(), Op.getEndLoc()); } SmallVector, 2> TmpOperands; bool HadVerifyError = false; // Append default arguments to "ins[bwld]" if (Name.startswith("ins") && (Operands.size() == 1 || Operands.size() == 3) && (Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" || Name == "ins")) { AddDefaultSrcDestOperands(TmpOperands, X86Operand::CreateReg(X86::DX, NameLoc, NameLoc), DefaultMemDIOperand(NameLoc)); HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); } // Append default arguments to "outs[bwld]" if (Name.startswith("outs") && (Operands.size() == 1 || Operands.size() == 3) && (Name == "outsb" || Name == "outsw" || Name == "outsl" || Name == "outsd" || Name == "outs")) { AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc), X86Operand::CreateReg(X86::DX, NameLoc, NameLoc)); HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); } // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate // values of $SIREG according to the mode. It would be nice if this // could be achieved with InstAlias in the tables. if (Name.startswith("lods") && (Operands.size() == 1 || Operands.size() == 2) && (Name == "lods" || Name == "lodsb" || Name == "lodsw" || Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) { TmpOperands.push_back(DefaultMemSIOperand(NameLoc)); HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); } // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate // values of $DIREG according to the mode. It would be nice if this // could be achieved with InstAlias in the tables. if (Name.startswith("stos") && (Operands.size() == 1 || Operands.size() == 2) && (Name == "stos" || Name == "stosb" || Name == "stosw" || Name == "stosl" || Name == "stosd" || Name == "stosq")) { TmpOperands.push_back(DefaultMemDIOperand(NameLoc)); HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); } // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate // values of $DIREG according to the mode. It would be nice if this // could be achieved with InstAlias in the tables. if (Name.startswith("scas") && (Operands.size() == 1 || Operands.size() == 2) && (Name == "scas" || Name == "scasb" || Name == "scasw" || Name == "scasl" || Name == "scasd" || Name == "scasq")) { TmpOperands.push_back(DefaultMemDIOperand(NameLoc)); HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); } // Add default SI and DI operands to "cmps[bwlq]". if (Name.startswith("cmps") && (Operands.size() == 1 || Operands.size() == 3) && (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" || Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) { AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc), DefaultMemSIOperand(NameLoc)); HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); } // Add default SI and DI operands to "movs[bwlq]". if (((Name.startswith("movs") && (Name == "movs" || Name == "movsb" || Name == "movsw" || Name == "movsl" || Name == "movsd" || Name == "movsq")) || (Name.startswith("smov") && (Name == "smov" || Name == "smovb" || Name == "smovw" || Name == "smovl" || Name == "smovd" || Name == "smovq"))) && (Operands.size() == 1 || Operands.size() == 3)) { if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax()) Operands.back() = X86Operand::CreateToken("movsl", NameLoc); AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc), DefaultMemDIOperand(NameLoc)); HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); } // Check if we encountered an error for one the string insturctions if (HadVerifyError) { return HadVerifyError; } // Transforms "xlat mem8" into "xlatb" if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) { X86Operand &Op1 = static_cast(*Operands[1]); if (Op1.isMem8()) { Warning(Op1.getStartLoc(), "memory operand is only for determining the " "size, (R|E)BX will be used for the location"); Operands.pop_back(); static_cast(*Operands[0]).setTokenValue("xlatb"); } } if (Flags) Operands.push_back(X86Operand::CreatePrefix(Flags, NameLoc, NameLoc)); return false; } bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) { const MCRegisterInfo *MRI = getContext().getRegisterInfo(); switch (Inst.getOpcode()) { default: return false; case X86::JMP_1: // {disp32} forces a larger displacement as if the instruction was relaxed. // NOTE: 16-bit mode uses 16-bit displacement even though it says {disp32}. // This matches GNU assembler. if (ForcedDispEncoding == DispEncoding_Disp32) { Inst.setOpcode(is16BitMode() ? X86::JMP_2 : X86::JMP_4); return true; } return false; case X86::JCC_1: // {disp32} forces a larger displacement as if the instruction was relaxed. // NOTE: 16-bit mode uses 16-bit displacement even though it says {disp32}. // This matches GNU assembler. if (ForcedDispEncoding == DispEncoding_Disp32) { Inst.setOpcode(is16BitMode() ? X86::JCC_2 : X86::JCC_4); return true; } return false; case X86::VMOVZPQILo2PQIrr: case X86::VMOVAPDrr: case X86::VMOVAPDYrr: case X86::VMOVAPSrr: case X86::VMOVAPSYrr: case X86::VMOVDQArr: case X86::VMOVDQAYrr: case X86::VMOVDQUrr: case X86::VMOVDQUYrr: case X86::VMOVUPDrr: case X86::VMOVUPDYrr: case X86::VMOVUPSrr: case X86::VMOVUPSYrr: { // We can get a smaller encoding by using VEX.R instead of VEX.B if one of // the registers is extended, but other isn't. if (ForcedVEXEncoding == VEXEncoding_VEX3 || MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 || MRI->getEncodingValue(Inst.getOperand(1).getReg()) < 8) return false; unsigned NewOpc; switch (Inst.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break; case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break; case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break; case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break; case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break; case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break; case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break; case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break; case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break; case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break; case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break; case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break; case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break; } Inst.setOpcode(NewOpc); return true; } case X86::VMOVSDrr: case X86::VMOVSSrr: { // We can get a smaller encoding by using VEX.R instead of VEX.B if one of // the registers is extended, but other isn't. if (ForcedVEXEncoding == VEXEncoding_VEX3 || MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 || MRI->getEncodingValue(Inst.getOperand(2).getReg()) < 8) return false; unsigned NewOpc; switch (Inst.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; } Inst.setOpcode(NewOpc); return true; } case X86::RCR8ri: case X86::RCR16ri: case X86::RCR32ri: case X86::RCR64ri: case X86::RCL8ri: case X86::RCL16ri: case X86::RCL32ri: case X86::RCL64ri: case X86::ROR8ri: case X86::ROR16ri: case X86::ROR32ri: case X86::ROR64ri: case X86::ROL8ri: case X86::ROL16ri: case X86::ROL32ri: case X86::ROL64ri: case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri: case X86::SAR64ri: case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri: case X86::SHR64ri: case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri: case X86::SHL64ri: { // Optimize s{hr,ar,hl} $1, to "shift ". Similar for rotate. // FIXME: It would be great if we could just do this with an InstAlias. if (!Inst.getOperand(2).isImm() || Inst.getOperand(2).getImm() != 1) return false; unsigned NewOpc; switch (Inst.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::RCR8ri: NewOpc = X86::RCR8r1; break; case X86::RCR16ri: NewOpc = X86::RCR16r1; break; case X86::RCR32ri: NewOpc = X86::RCR32r1; break; case X86::RCR64ri: NewOpc = X86::RCR64r1; break; case X86::RCL8ri: NewOpc = X86::RCL8r1; break; case X86::RCL16ri: NewOpc = X86::RCL16r1; break; case X86::RCL32ri: NewOpc = X86::RCL32r1; break; case X86::RCL64ri: NewOpc = X86::RCL64r1; break; case X86::ROR8ri: NewOpc = X86::ROR8r1; break; case X86::ROR16ri: NewOpc = X86::ROR16r1; break; case X86::ROR32ri: NewOpc = X86::ROR32r1; break; case X86::ROR64ri: NewOpc = X86::ROR64r1; break; case X86::ROL8ri: NewOpc = X86::ROL8r1; break; case X86::ROL16ri: NewOpc = X86::ROL16r1; break; case X86::ROL32ri: NewOpc = X86::ROL32r1; break; case X86::ROL64ri: NewOpc = X86::ROL64r1; break; case X86::SAR8ri: NewOpc = X86::SAR8r1; break; case X86::SAR16ri: NewOpc = X86::SAR16r1; break; case X86::SAR32ri: NewOpc = X86::SAR32r1; break; case X86::SAR64ri: NewOpc = X86::SAR64r1; break; case X86::SHR8ri: NewOpc = X86::SHR8r1; break; case X86::SHR16ri: NewOpc = X86::SHR16r1; break; case X86::SHR32ri: NewOpc = X86::SHR32r1; break; case X86::SHR64ri: NewOpc = X86::SHR64r1; break; case X86::SHL8ri: NewOpc = X86::SHL8r1; break; case X86::SHL16ri: NewOpc = X86::SHL16r1; break; case X86::SHL32ri: NewOpc = X86::SHL32r1; break; case X86::SHL64ri: NewOpc = X86::SHL64r1; break; } MCInst TmpInst; TmpInst.setOpcode(NewOpc); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); Inst = TmpInst; return true; } case X86::RCR8mi: case X86::RCR16mi: case X86::RCR32mi: case X86::RCR64mi: case X86::RCL8mi: case X86::RCL16mi: case X86::RCL32mi: case X86::RCL64mi: case X86::ROR8mi: case X86::ROR16mi: case X86::ROR32mi: case X86::ROR64mi: case X86::ROL8mi: case X86::ROL16mi: case X86::ROL32mi: case X86::ROL64mi: case X86::SAR8mi: case X86::SAR16mi: case X86::SAR32mi: case X86::SAR64mi: case X86::SHR8mi: case X86::SHR16mi: case X86::SHR32mi: case X86::SHR64mi: case X86::SHL8mi: case X86::SHL16mi: case X86::SHL32mi: case X86::SHL64mi: { // Optimize s{hr,ar,hl} $1, to "shift ". Similar for rotate. // FIXME: It would be great if we could just do this with an InstAlias. if (!Inst.getOperand(X86::AddrNumOperands).isImm() || Inst.getOperand(X86::AddrNumOperands).getImm() != 1) return false; unsigned NewOpc; switch (Inst.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case X86::RCR8mi: NewOpc = X86::RCR8m1; break; case X86::RCR16mi: NewOpc = X86::RCR16m1; break; case X86::RCR32mi: NewOpc = X86::RCR32m1; break; case X86::RCR64mi: NewOpc = X86::RCR64m1; break; case X86::RCL8mi: NewOpc = X86::RCL8m1; break; case X86::RCL16mi: NewOpc = X86::RCL16m1; break; case X86::RCL32mi: NewOpc = X86::RCL32m1; break; case X86::RCL64mi: NewOpc = X86::RCL64m1; break; case X86::ROR8mi: NewOpc = X86::ROR8m1; break; case X86::ROR16mi: NewOpc = X86::ROR16m1; break; case X86::ROR32mi: NewOpc = X86::ROR32m1; break; case X86::ROR64mi: NewOpc = X86::ROR64m1; break; case X86::ROL8mi: NewOpc = X86::ROL8m1; break; case X86::ROL16mi: NewOpc = X86::ROL16m1; break; case X86::ROL32mi: NewOpc = X86::ROL32m1; break; case X86::ROL64mi: NewOpc = X86::ROL64m1; break; case X86::SAR8mi: NewOpc = X86::SAR8m1; break; case X86::SAR16mi: NewOpc = X86::SAR16m1; break; case X86::SAR32mi: NewOpc = X86::SAR32m1; break; case X86::SAR64mi: NewOpc = X86::SAR64m1; break; case X86::SHR8mi: NewOpc = X86::SHR8m1; break; case X86::SHR16mi: NewOpc = X86::SHR16m1; break; case X86::SHR32mi: NewOpc = X86::SHR32m1; break; case X86::SHR64mi: NewOpc = X86::SHR64m1; break; case X86::SHL8mi: NewOpc = X86::SHL8m1; break; case X86::SHL16mi: NewOpc = X86::SHL16m1; break; case X86::SHL32mi: NewOpc = X86::SHL32m1; break; case X86::SHL64mi: NewOpc = X86::SHL64m1; break; } MCInst TmpInst; TmpInst.setOpcode(NewOpc); for (int i = 0; i != X86::AddrNumOperands; ++i) TmpInst.addOperand(Inst.getOperand(i)); Inst = TmpInst; return true; } case X86::INT: { // Transforms "int $3" into "int3" as a size optimization. We can't write an // instalias with an immediate operand yet. if (!Inst.getOperand(0).isImm() || Inst.getOperand(0).getImm() != 3) return false; MCInst TmpInst; TmpInst.setOpcode(X86::INT3); Inst = TmpInst; return true; } } } bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) { using namespace X86; const MCRegisterInfo *MRI = getContext().getRegisterInfo(); unsigned Opcode = Inst.getOpcode(); uint64_t TSFlags = MII.get(Opcode).TSFlags; if (isVFCMADDCPH(Opcode) || isVFCMADDCSH(Opcode) || isVFMADDCPH(Opcode) || isVFMADDCSH(Opcode)) { unsigned Dest = Inst.getOperand(0).getReg(); for (unsigned i = 2; i < Inst.getNumOperands(); i++) if (Inst.getOperand(i).isReg() && Dest == Inst.getOperand(i).getReg()) return Warning(Ops[0]->getStartLoc(), "Destination register should be " "distinct from source registers"); } else if (isVFCMULCPH(Opcode) || isVFCMULCSH(Opcode) || isVFMULCPH(Opcode) || isVFMULCSH(Opcode)) { unsigned Dest = Inst.getOperand(0).getReg(); for (unsigned i = 1; i < Inst.getNumOperands(); i++) if (Inst.getOperand(i).isReg() && Dest == Inst.getOperand(i).getReg()) return Warning(Ops[0]->getStartLoc(), "Destination register should be " "distinct from source registers"); } else if (isV4FMADDPS(Opcode) || isV4FMADDSS(Opcode) || isV4FNMADDPS(Opcode) || isV4FNMADDSS(Opcode) || isVP4DPWSSDS(Opcode) || isVP4DPWSSD(Opcode)) { unsigned Src2 = Inst.getOperand(Inst.getNumOperands() - X86::AddrNumOperands - 1).getReg(); unsigned Src2Enc = MRI->getEncodingValue(Src2); if (Src2Enc % 4 != 0) { StringRef RegName = X86IntelInstPrinter::getRegisterName(Src2); unsigned GroupStart = (Src2Enc / 4) * 4; unsigned GroupEnd = GroupStart + 3; return Warning(Ops[0]->getStartLoc(), "source register '" + RegName + "' implicitly denotes '" + RegName.take_front(3) + Twine(GroupStart) + "' to '" + RegName.take_front(3) + Twine(GroupEnd) + "' source group"); } } else if (isVGATHERDPD(Opcode) || isVGATHERDPS(Opcode) || isVGATHERQPD(Opcode) || isVGATHERQPS(Opcode) || isVPGATHERDD(Opcode) || isVPGATHERDQ(Opcode) || isVPGATHERQD(Opcode) || isVPGATHERQQ(Opcode)) { bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX; if (HasEVEX) { unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg()); unsigned Index = MRI->getEncodingValue( Inst.getOperand(4 + X86::AddrIndexReg).getReg()); if (Dest == Index) return Warning(Ops[0]->getStartLoc(), "index and destination registers " "should be distinct"); } else { unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg()); unsigned Mask = MRI->getEncodingValue(Inst.getOperand(1).getReg()); unsigned Index = MRI->getEncodingValue( Inst.getOperand(3 + X86::AddrIndexReg).getReg()); if (Dest == Mask || Dest == Index || Mask == Index) return Warning(Ops[0]->getStartLoc(), "mask, index, and destination " "registers should be distinct"); } } // Check that we aren't mixing AH/BH/CH/DH with REX prefix. We only need to // check this with the legacy encoding, VEX/EVEX/XOP don't use REX. if ((TSFlags & X86II::EncodingMask) == 0) { MCPhysReg HReg = X86::NoRegister; bool UsesRex = TSFlags & X86II::REX_W; unsigned NumOps = Inst.getNumOperands(); for (unsigned i = 0; i != NumOps; ++i) { const MCOperand &MO = Inst.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) HReg = Reg; if (X86II::isX86_64NonExtLowByteReg(Reg) || X86II::isX86_64ExtendedReg(Reg)) UsesRex = true; } if (UsesRex && HReg != X86::NoRegister) { StringRef RegName = X86IntelInstPrinter::getRegisterName(HReg); return Error(Ops[0]->getStartLoc(), "can't encode '" + RegName + "' in an instruction requiring " "REX prefix"); } } return false; } static const char *getSubtargetFeatureName(uint64_t Val); void X86AsmParser::emitWarningForSpecialLVIInstruction(SMLoc Loc) { Warning(Loc, "Instruction may be vulnerable to LVI and " "requires manual mitigation"); Note(SMLoc(), "See https://software.intel.com/" "security-software-guidance/insights/" "deep-dive-load-value-injection#specialinstructions" " for more information"); } /// RET instructions and also instructions that indirect calls/jumps from memory /// combine a load and a branch within a single instruction. To mitigate these /// instructions against LVI, they must be decomposed into separate load and /// branch instructions, with an LFENCE in between. For more details, see: /// - X86LoadValueInjectionRetHardening.cpp /// - X86LoadValueInjectionIndirectThunks.cpp /// - https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection /// /// Returns `true` if a mitigation was applied or warning was emitted. void X86AsmParser::applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out) { // Information on control-flow instructions that require manual mitigation can // be found here: // https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions switch (Inst.getOpcode()) { case X86::RET16: case X86::RET32: case X86::RET64: case X86::RETI16: case X86::RETI32: case X86::RETI64: { MCInst ShlInst, FenceInst; bool Parse32 = is32BitMode() || Code16GCC; unsigned Basereg = is64BitMode() ? X86::RSP : (Parse32 ? X86::ESP : X86::SP); const MCExpr *Disp = MCConstantExpr::create(0, getContext()); auto ShlMemOp = X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp, /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1, SMLoc{}, SMLoc{}, 0); ShlInst.setOpcode(X86::SHL64mi); ShlMemOp->addMemOperands(ShlInst, 5); ShlInst.addOperand(MCOperand::createImm(0)); FenceInst.setOpcode(X86::LFENCE); Out.emitInstruction(ShlInst, getSTI()); Out.emitInstruction(FenceInst, getSTI()); return; } case X86::JMP16m: case X86::JMP32m: case X86::JMP64m: case X86::CALL16m: case X86::CALL32m: case X86::CALL64m: emitWarningForSpecialLVIInstruction(Inst.getLoc()); return; } } /// To mitigate LVI, every instruction that performs a load can be followed by /// an LFENCE instruction to squash any potential mis-speculation. There are /// some instructions that require additional considerations, and may requre /// manual mitigation. For more details, see: /// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection /// /// Returns `true` if a mitigation was applied or warning was emitted. void X86AsmParser::applyLVILoadHardeningMitigation(MCInst &Inst, MCStreamer &Out) { auto Opcode = Inst.getOpcode(); auto Flags = Inst.getFlags(); if ((Flags & X86::IP_HAS_REPEAT) || (Flags & X86::IP_HAS_REPEAT_NE)) { // Information on REP string instructions that require manual mitigation can // be found here: // https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions switch (Opcode) { case X86::CMPSB: case X86::CMPSW: case X86::CMPSL: case X86::CMPSQ: case X86::SCASB: case X86::SCASW: case X86::SCASL: case X86::SCASQ: emitWarningForSpecialLVIInstruction(Inst.getLoc()); return; } } else if (Opcode == X86::REP_PREFIX || Opcode == X86::REPNE_PREFIX) { // If a REP instruction is found on its own line, it may or may not be // followed by a vulnerable instruction. Emit a warning just in case. emitWarningForSpecialLVIInstruction(Inst.getLoc()); return; } const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); // Can't mitigate after terminators or calls. A control flow change may have // already occurred. if (MCID.isTerminator() || MCID.isCall()) return; // LFENCE has the mayLoad property, don't double fence. if (MCID.mayLoad() && Inst.getOpcode() != X86::LFENCE) { MCInst FenceInst; FenceInst.setOpcode(X86::LFENCE); Out.emitInstruction(FenceInst, getSTI()); } } void X86AsmParser::emitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out) { if (LVIInlineAsmHardening && getSTI().getFeatureBits()[X86::FeatureLVIControlFlowIntegrity]) applyLVICFIMitigation(Inst, Out); Out.emitInstruction(Inst, getSTI()); if (LVIInlineAsmHardening && getSTI().getFeatureBits()[X86::FeatureLVILoadHardening]) applyLVILoadHardeningMitigation(Inst, Out); } bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { if (isParsingIntelSyntax()) return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo, MatchingInlineAsm); return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo, MatchingInlineAsm); } void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands, MCStreamer &Out, bool MatchingInlineAsm) { // FIXME: This should be replaced with a real .td file alias mechanism. // Also, MatchInstructionImpl should actually *do* the EmitInstruction // call. const char *Repl = StringSwitch(Op.getToken()) .Case("finit", "fninit") .Case("fsave", "fnsave") .Case("fstcw", "fnstcw") .Case("fstcww", "fnstcw") .Case("fstenv", "fnstenv") .Case("fstsw", "fnstsw") .Case("fstsww", "fnstsw") .Case("fclex", "fnclex") .Default(nullptr); if (Repl) { MCInst Inst; Inst.setOpcode(X86::WAIT); Inst.setLoc(IDLoc); if (!MatchingInlineAsm) emitInstruction(Inst, Operands, Out); Operands[0] = X86Operand::CreateToken(Repl, IDLoc); } } bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, const FeatureBitset &MissingFeatures, bool MatchingInlineAsm) { assert(MissingFeatures.any() && "Unknown missing feature!"); SmallString<126> Msg; raw_svector_ostream OS(Msg); OS << "instruction requires:"; for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) { if (MissingFeatures[i]) OS << ' ' << getSubtargetFeatureName(i); } return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm); } static unsigned getPrefixes(OperandVector &Operands) { unsigned Result = 0; X86Operand &Prefix = static_cast(*Operands.back()); if (Prefix.isPrefix()) { Result = Prefix.getPrefix(); Operands.pop_back(); } return Result; } unsigned X86AsmParser::checkTargetMatchPredicate(MCInst &Inst) { unsigned Opc = Inst.getOpcode(); const MCInstrDesc &MCID = MII.get(Opc); if (ForcedVEXEncoding == VEXEncoding_EVEX && (MCID.TSFlags & X86II::EncodingMask) != X86II::EVEX) return Match_Unsupported; if ((ForcedVEXEncoding == VEXEncoding_VEX || ForcedVEXEncoding == VEXEncoding_VEX2 || ForcedVEXEncoding == VEXEncoding_VEX3) && (MCID.TSFlags & X86II::EncodingMask) != X86II::VEX) return Match_Unsupported; // These instructions are only available with {vex}, {vex2} or {vex3} prefix if (MCID.TSFlags & X86II::ExplicitVEXPrefix && (ForcedVEXEncoding != VEXEncoding_VEX && ForcedVEXEncoding != VEXEncoding_VEX2 && ForcedVEXEncoding != VEXEncoding_VEX3)) return Match_Unsupported; return Match_Success; } bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { assert(!Operands.empty() && "Unexpect empty operand list!"); assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!"); SMRange EmptyRange = None; // First, handle aliases that expand to multiple instructions. MatchFPUWaitAlias(IDLoc, static_cast(*Operands[0]), Operands, Out, MatchingInlineAsm); X86Operand &Op = static_cast(*Operands[0]); unsigned Prefixes = getPrefixes(Operands); MCInst Inst; // If VEX/EVEX encoding is forced, we need to pass the USE_* flag to the // encoder and printer. if (ForcedVEXEncoding == VEXEncoding_VEX) Prefixes |= X86::IP_USE_VEX; else if (ForcedVEXEncoding == VEXEncoding_VEX2) Prefixes |= X86::IP_USE_VEX2; else if (ForcedVEXEncoding == VEXEncoding_VEX3) Prefixes |= X86::IP_USE_VEX3; else if (ForcedVEXEncoding == VEXEncoding_EVEX) Prefixes |= X86::IP_USE_EVEX; // Set encoded flags for {disp8} and {disp32}. if (ForcedDispEncoding == DispEncoding_Disp8) Prefixes |= X86::IP_USE_DISP8; else if (ForcedDispEncoding == DispEncoding_Disp32) Prefixes |= X86::IP_USE_DISP32; if (Prefixes) Inst.setFlags(Prefixes); // In 16-bit mode, if data32 is specified, temporarily switch to 32-bit mode // when matching the instruction. if (ForcedDataPrefix == X86::Is32Bit) SwitchMode(X86::Is32Bit); // First, try a direct match. FeatureBitset MissingFeatures; unsigned OriginalError = MatchInstruction(Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm, isParsingIntelSyntax()); if (ForcedDataPrefix == X86::Is32Bit) { SwitchMode(X86::Is16Bit); ForcedDataPrefix = 0; } switch (OriginalError) { default: llvm_unreachable("Unexpected match result!"); case Match_Success: if (!MatchingInlineAsm && validateInstruction(Inst, Operands)) return true; // Some instructions need post-processing to, for example, tweak which // encoding is selected. Loop on it while changes happen so the // individual transformations can chain off each other. if (!MatchingInlineAsm) while (processInstruction(Inst, Operands)) ; Inst.setLoc(IDLoc); if (!MatchingInlineAsm) emitInstruction(Inst, Operands, Out); Opcode = Inst.getOpcode(); return false; case Match_InvalidImmUnsignedi4: { SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; return Error(ErrorLoc, "immediate must be an integer in range [0, 15]", EmptyRange, MatchingInlineAsm); } case Match_MissingFeature: return ErrorMissingFeature(IDLoc, MissingFeatures, MatchingInlineAsm); case Match_InvalidOperand: case Match_MnemonicFail: case Match_Unsupported: break; } if (Op.getToken().empty()) { Error(IDLoc, "instruction must have size higher than 0", EmptyRange, MatchingInlineAsm); return true; } // FIXME: Ideally, we would only attempt suffix matches for things which are // valid prefixes, and we could just infer the right unambiguous // type. However, that requires substantially more matcher support than the // following hack. // Change the operand to point to a temporary token. StringRef Base = Op.getToken(); SmallString<16> Tmp; Tmp += Base; Tmp += ' '; Op.setTokenValue(Tmp); // If this instruction starts with an 'f', then it is a floating point stack // instruction. These come in up to three forms for 32-bit, 64-bit, and // 80-bit floating point, which use the suffixes s,l,t respectively. // // Otherwise, we assume that this may be an integer instruction, which comes // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively. const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0"; // MemSize corresponding to Suffixes. { 8, 16, 32, 64 } { 32, 64, 80, 0 } const char *MemSize = Base[0] != 'f' ? "\x08\x10\x20\x40" : "\x20\x40\x50\0"; // Check for the various suffix matches. uint64_t ErrorInfoIgnore; FeatureBitset ErrorInfoMissingFeatures; // Init suppresses compiler warnings. unsigned Match[4]; // Some instruction like VPMULDQ is NOT the variant of VPMULD but a new one. // So we should make sure the suffix matcher only works for memory variant // that has the same size with the suffix. // FIXME: This flag is a workaround for legacy instructions that didn't // declare non suffix variant assembly. bool HasVectorReg = false; X86Operand *MemOp = nullptr; for (const auto &Op : Operands) { X86Operand *X86Op = static_cast(Op.get()); if (X86Op->isVectorReg()) HasVectorReg = true; else if (X86Op->isMem()) { MemOp = X86Op; assert(MemOp->Mem.Size == 0 && "Memory size always 0 under ATT syntax"); // Have we found an unqualified memory operand, // break. IA allows only one memory operand. break; } } for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) { Tmp.back() = Suffixes[I]; if (MemOp && HasVectorReg) MemOp->Mem.Size = MemSize[I]; Match[I] = Match_MnemonicFail; if (MemOp || !HasVectorReg) { Match[I] = MatchInstruction(Operands, Inst, ErrorInfoIgnore, MissingFeatures, MatchingInlineAsm, isParsingIntelSyntax()); // If this returned as a missing feature failure, remember that. if (Match[I] == Match_MissingFeature) ErrorInfoMissingFeatures = MissingFeatures; } } // Restore the old token. Op.setTokenValue(Base); // If exactly one matched, then we treat that as a successful match (and the // instruction will already have been filled in correctly, since the failing // matches won't have modified it). unsigned NumSuccessfulMatches = llvm::count(Match, Match_Success); if (NumSuccessfulMatches == 1) { if (!MatchingInlineAsm && validateInstruction(Inst, Operands)) return true; // Some instructions need post-processing to, for example, tweak which // encoding is selected. Loop on it while changes happen so the // individual transformations can chain off each other. if (!MatchingInlineAsm) while (processInstruction(Inst, Operands)) ; Inst.setLoc(IDLoc); if (!MatchingInlineAsm) emitInstruction(Inst, Operands, Out); Opcode = Inst.getOpcode(); return false; } // Otherwise, the match failed, try to produce a decent error message. // If we had multiple suffix matches, then identify this as an ambiguous // match. if (NumSuccessfulMatches > 1) { char MatchChars[4]; unsigned NumMatches = 0; for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) if (Match[I] == Match_Success) MatchChars[NumMatches++] = Suffixes[I]; SmallString<126> Msg; raw_svector_ostream OS(Msg); OS << "ambiguous instructions require an explicit suffix (could be "; for (unsigned i = 0; i != NumMatches; ++i) { if (i != 0) OS << ", "; if (i + 1 == NumMatches) OS << "or "; OS << "'" << Base << MatchChars[i] << "'"; } OS << ")"; Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm); return true; } // Okay, we know that none of the variants matched successfully. // If all of the instructions reported an invalid mnemonic, then the original // mnemonic was invalid. if (llvm::count(Match, Match_MnemonicFail) == 4) { if (OriginalError == Match_MnemonicFail) return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'", Op.getLocRange(), MatchingInlineAsm); if (OriginalError == Match_Unsupported) return Error(IDLoc, "unsupported instruction", EmptyRange, MatchingInlineAsm); assert(OriginalError == Match_InvalidOperand && "Unexpected error"); // Recover location info for the operand if we know which was the problem. if (ErrorInfo != ~0ULL) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction", EmptyRange, MatchingInlineAsm); X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo]; if (Operand.getStartLoc().isValid()) { SMRange OperandRange = Operand.getLocRange(); return Error(Operand.getStartLoc(), "invalid operand for instruction", OperandRange, MatchingInlineAsm); } } return Error(IDLoc, "invalid operand for instruction", EmptyRange, MatchingInlineAsm); } // If one instruction matched as unsupported, report this as unsupported. if (llvm::count(Match, Match_Unsupported) == 1) { return Error(IDLoc, "unsupported instruction", EmptyRange, MatchingInlineAsm); } // If one instruction matched with a missing feature, report this as a // missing feature. if (llvm::count(Match, Match_MissingFeature) == 1) { ErrorInfo = Match_MissingFeature; return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures, MatchingInlineAsm); } // If one instruction matched with an invalid operand, report this as an // operand failure. if (llvm::count(Match, Match_InvalidOperand) == 1) { return Error(IDLoc, "invalid operand for instruction", EmptyRange, MatchingInlineAsm); } // If all of these were an outright failure, report it in a useless way. Error(IDLoc, "unknown use of instruction mnemonic without a size suffix", EmptyRange, MatchingInlineAsm); return true; } bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { assert(!Operands.empty() && "Unexpect empty operand list!"); assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!"); StringRef Mnemonic = (static_cast(*Operands[0])).getToken(); SMRange EmptyRange = None; StringRef Base = (static_cast(*Operands[0])).getToken(); unsigned Prefixes = getPrefixes(Operands); // First, handle aliases that expand to multiple instructions. MatchFPUWaitAlias(IDLoc, static_cast(*Operands[0]), Operands, Out, MatchingInlineAsm); X86Operand &Op = static_cast(*Operands[0]); MCInst Inst; // If VEX/EVEX encoding is forced, we need to pass the USE_* flag to the // encoder and printer. if (ForcedVEXEncoding == VEXEncoding_VEX) Prefixes |= X86::IP_USE_VEX; else if (ForcedVEXEncoding == VEXEncoding_VEX2) Prefixes |= X86::IP_USE_VEX2; else if (ForcedVEXEncoding == VEXEncoding_VEX3) Prefixes |= X86::IP_USE_VEX3; else if (ForcedVEXEncoding == VEXEncoding_EVEX) Prefixes |= X86::IP_USE_EVEX; // Set encoded flags for {disp8} and {disp32}. if (ForcedDispEncoding == DispEncoding_Disp8) Prefixes |= X86::IP_USE_DISP8; else if (ForcedDispEncoding == DispEncoding_Disp32) Prefixes |= X86::IP_USE_DISP32; if (Prefixes) Inst.setFlags(Prefixes); // Find one unsized memory operand, if present. X86Operand *UnsizedMemOp = nullptr; for (const auto &Op : Operands) { X86Operand *X86Op = static_cast(Op.get()); if (X86Op->isMemUnsized()) { UnsizedMemOp = X86Op; // Have we found an unqualified memory operand, // break. IA allows only one memory operand. break; } } // Allow some instructions to have implicitly pointer-sized operands. This is // compatible with gas. if (UnsizedMemOp) { static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"}; for (const char *Instr : PtrSizedInstrs) { if (Mnemonic == Instr) { UnsizedMemOp->Mem.Size = getPointerWidth(); break; } } } SmallVector Match; FeatureBitset ErrorInfoMissingFeatures; FeatureBitset MissingFeatures; // If unsized push has immediate operand we should default the default pointer // size for the size. if (Mnemonic == "push" && Operands.size() == 2) { auto *X86Op = static_cast(Operands[1].get()); if (X86Op->isImm()) { // If it's not a constant fall through and let remainder take care of it. const auto *CE = dyn_cast(X86Op->getImm()); unsigned Size = getPointerWidth(); if (CE && (isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) { SmallString<16> Tmp; Tmp += Base; Tmp += (is64BitMode()) ? "q" : (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " "; Op.setTokenValue(Tmp); // Do match in ATT mode to allow explicit suffix usage. Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm, false /*isParsingIntelSyntax()*/)); Op.setTokenValue(Base); } } } // If an unsized memory operand is present, try to match with each memory // operand size. In Intel assembly, the size is not part of the instruction // mnemonic. if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) { static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512}; for (unsigned Size : MopSizes) { UnsizedMemOp->Mem.Size = Size; uint64_t ErrorInfoIgnore; unsigned LastOpcode = Inst.getOpcode(); unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore, MissingFeatures, MatchingInlineAsm, isParsingIntelSyntax()); if (Match.empty() || LastOpcode != Inst.getOpcode()) Match.push_back(M); // If this returned as a missing feature failure, remember that. if (Match.back() == Match_MissingFeature) ErrorInfoMissingFeatures = MissingFeatures; } // Restore the size of the unsized memory operand if we modified it. UnsizedMemOp->Mem.Size = 0; } // If we haven't matched anything yet, this is not a basic integer or FPU // operation. There shouldn't be any ambiguity in our mnemonic table, so try // matching with the unsized operand. if (Match.empty()) { Match.push_back(MatchInstruction( Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm, isParsingIntelSyntax())); // If this returned as a missing feature failure, remember that. if (Match.back() == Match_MissingFeature) ErrorInfoMissingFeatures = MissingFeatures; } // Restore the size of the unsized memory operand if we modified it. if (UnsizedMemOp) UnsizedMemOp->Mem.Size = 0; // If it's a bad mnemonic, all results will be the same. if (Match.back() == Match_MnemonicFail) { return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'", Op.getLocRange(), MatchingInlineAsm); } unsigned NumSuccessfulMatches = llvm::count(Match, Match_Success); // If matching was ambiguous and we had size information from the frontend, // try again with that. This handles cases like "movxz eax, m8/m16". if (UnsizedMemOp && NumSuccessfulMatches > 1 && UnsizedMemOp->getMemFrontendSize()) { UnsizedMemOp->Mem.Size = UnsizedMemOp->getMemFrontendSize(); unsigned M = MatchInstruction( Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm, isParsingIntelSyntax()); if (M == Match_Success) NumSuccessfulMatches = 1; // Add a rewrite that encodes the size information we used from the // frontend. InstInfo->AsmRewrites->emplace_back( AOK_SizeDirective, UnsizedMemOp->getStartLoc(), /*Len=*/0, UnsizedMemOp->getMemFrontendSize()); } // If exactly one matched, then we treat that as a successful match (and the // instruction will already have been filled in correctly, since the failing // matches won't have modified it). if (NumSuccessfulMatches == 1) { if (!MatchingInlineAsm && validateInstruction(Inst, Operands)) return true; // Some instructions need post-processing to, for example, tweak which // encoding is selected. Loop on it while changes happen so the individual // transformations can chain off each other. if (!MatchingInlineAsm) while (processInstruction(Inst, Operands)) ; Inst.setLoc(IDLoc); if (!MatchingInlineAsm) emitInstruction(Inst, Operands, Out); Opcode = Inst.getOpcode(); return false; } else if (NumSuccessfulMatches > 1) { assert(UnsizedMemOp && "multiple matches only possible with unsized memory operands"); return Error(UnsizedMemOp->getStartLoc(), "ambiguous operand size for instruction '" + Mnemonic + "\'", UnsizedMemOp->getLocRange()); } // If one instruction matched as unsupported, report this as unsupported. if (llvm::count(Match, Match_Unsupported) == 1) { return Error(IDLoc, "unsupported instruction", EmptyRange, MatchingInlineAsm); } // If one instruction matched with a missing feature, report this as a // missing feature. if (llvm::count(Match, Match_MissingFeature) == 1) { ErrorInfo = Match_MissingFeature; return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures, MatchingInlineAsm); } // If one instruction matched with an invalid operand, report this as an // operand failure. if (llvm::count(Match, Match_InvalidOperand) == 1) { return Error(IDLoc, "invalid operand for instruction", EmptyRange, MatchingInlineAsm); } if (llvm::count(Match, Match_InvalidImmUnsignedi4) == 1) { SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; return Error(ErrorLoc, "immediate must be an integer in range [0, 15]", EmptyRange, MatchingInlineAsm); } // If all of these were an outright failure, report it in a useless way. return Error(IDLoc, "unknown instruction mnemonic", EmptyRange, MatchingInlineAsm); } bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) { return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo); } bool X86AsmParser::ParseDirective(AsmToken DirectiveID) { MCAsmParser &Parser = getParser(); StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal.startswith(".arch")) return parseDirectiveArch(); if (IDVal.startswith(".code")) return ParseDirectiveCode(IDVal, DirectiveID.getLoc()); else if (IDVal.startswith(".att_syntax")) { if (getLexer().isNot(AsmToken::EndOfStatement)) { if (Parser.getTok().getString() == "prefix") Parser.Lex(); else if (Parser.getTok().getString() == "noprefix") return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not " "supported: registers must have a " "'%' prefix in .att_syntax"); } getParser().setAssemblerDialect(0); return false; } else if (IDVal.startswith(".intel_syntax")) { getParser().setAssemblerDialect(1); if (getLexer().isNot(AsmToken::EndOfStatement)) { if (Parser.getTok().getString() == "noprefix") Parser.Lex(); else if (Parser.getTok().getString() == "prefix") return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not " "supported: registers must not have " "a '%' prefix in .intel_syntax"); } return false; } else if (IDVal == ".nops") return parseDirectiveNops(DirectiveID.getLoc()); else if (IDVal == ".even") return parseDirectiveEven(DirectiveID.getLoc()); else if (IDVal == ".cv_fpo_proc") return parseDirectiveFPOProc(DirectiveID.getLoc()); else if (IDVal == ".cv_fpo_setframe") return parseDirectiveFPOSetFrame(DirectiveID.getLoc()); else if (IDVal == ".cv_fpo_pushreg") return parseDirectiveFPOPushReg(DirectiveID.getLoc()); else if (IDVal == ".cv_fpo_stackalloc") return parseDirectiveFPOStackAlloc(DirectiveID.getLoc()); else if (IDVal == ".cv_fpo_stackalign") return parseDirectiveFPOStackAlign(DirectiveID.getLoc()); else if (IDVal == ".cv_fpo_endprologue") return parseDirectiveFPOEndPrologue(DirectiveID.getLoc()); else if (IDVal == ".cv_fpo_endproc") return parseDirectiveFPOEndProc(DirectiveID.getLoc()); else if (IDVal == ".seh_pushreg" || (Parser.isParsingMasm() && IDVal.equals_insensitive(".pushreg"))) return parseDirectiveSEHPushReg(DirectiveID.getLoc()); else if (IDVal == ".seh_setframe" || (Parser.isParsingMasm() && IDVal.equals_insensitive(".setframe"))) return parseDirectiveSEHSetFrame(DirectiveID.getLoc()); else if (IDVal == ".seh_savereg" || (Parser.isParsingMasm() && IDVal.equals_insensitive(".savereg"))) return parseDirectiveSEHSaveReg(DirectiveID.getLoc()); else if (IDVal == ".seh_savexmm" || (Parser.isParsingMasm() && IDVal.equals_insensitive(".savexmm128"))) return parseDirectiveSEHSaveXMM(DirectiveID.getLoc()); else if (IDVal == ".seh_pushframe" || (Parser.isParsingMasm() && IDVal.equals_insensitive(".pushframe"))) return parseDirectiveSEHPushFrame(DirectiveID.getLoc()); return true; } bool X86AsmParser::parseDirectiveArch() { // Ignore .arch for now. getParser().parseStringToEndOfStatement(); return false; } /// parseDirectiveNops /// ::= .nops size[, control] bool X86AsmParser::parseDirectiveNops(SMLoc L) { int64_t NumBytes = 0, Control = 0; SMLoc NumBytesLoc, ControlLoc; const MCSubtargetInfo& STI = getSTI(); NumBytesLoc = getTok().getLoc(); if (getParser().checkForValidSection() || getParser().parseAbsoluteExpression(NumBytes)) return true; if (parseOptionalToken(AsmToken::Comma)) { ControlLoc = getTok().getLoc(); if (getParser().parseAbsoluteExpression(Control)) return true; } if (getParser().parseEOL()) return true; if (NumBytes <= 0) { Error(NumBytesLoc, "'.nops' directive with non-positive size"); return false; } if (Control < 0) { Error(ControlLoc, "'.nops' directive with negative NOP size"); return false; } /// Emit nops getParser().getStreamer().emitNops(NumBytes, Control, L, STI); return false; } /// parseDirectiveEven /// ::= .even bool X86AsmParser::parseDirectiveEven(SMLoc L) { if (parseEOL()) return false; const MCSection *Section = getStreamer().getCurrentSectionOnly(); if (!Section) { getStreamer().initSections(false, getSTI()); Section = getStreamer().getCurrentSectionOnly(); } if (Section->useCodeAlign()) getStreamer().emitCodeAlignment(2, &getSTI(), 0); else getStreamer().emitValueToAlignment(2, 0, 1, 0); return false; } /// ParseDirectiveCode /// ::= .code16 | .code32 | .code64 bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) { MCAsmParser &Parser = getParser(); Code16GCC = false; if (IDVal == ".code16") { Parser.Lex(); if (!is16BitMode()) { SwitchMode(X86::Is16Bit); getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); } } else if (IDVal == ".code16gcc") { // .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode. Parser.Lex(); Code16GCC = true; if (!is16BitMode()) { SwitchMode(X86::Is16Bit); getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); } } else if (IDVal == ".code32") { Parser.Lex(); if (!is32BitMode()) { SwitchMode(X86::Is32Bit); getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); } } else if (IDVal == ".code64") { Parser.Lex(); if (!is64BitMode()) { SwitchMode(X86::Is64Bit); getParser().getStreamer().emitAssemblerFlag(MCAF_Code64); } } else { Error(L, "unknown directive " + IDVal); return false; } return false; } // .cv_fpo_proc foo bool X86AsmParser::parseDirectiveFPOProc(SMLoc L) { MCAsmParser &Parser = getParser(); StringRef ProcName; int64_t ParamsSize; if (Parser.parseIdentifier(ProcName)) return Parser.TokError("expected symbol name"); if (Parser.parseIntToken(ParamsSize, "expected parameter byte count")) return true; if (!isUIntN(32, ParamsSize)) return Parser.TokError("parameters size out of range"); if (parseEOL()) return true; MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName); return getTargetStreamer().emitFPOProc(ProcSym, ParamsSize, L); } // .cv_fpo_setframe ebp bool X86AsmParser::parseDirectiveFPOSetFrame(SMLoc L) { unsigned Reg; SMLoc DummyLoc; if (ParseRegister(Reg, DummyLoc, DummyLoc) || parseEOL()) return true; return getTargetStreamer().emitFPOSetFrame(Reg, L); } // .cv_fpo_pushreg ebx bool X86AsmParser::parseDirectiveFPOPushReg(SMLoc L) { unsigned Reg; SMLoc DummyLoc; if (ParseRegister(Reg, DummyLoc, DummyLoc) || parseEOL()) return true; return getTargetStreamer().emitFPOPushReg(Reg, L); } // .cv_fpo_stackalloc 20 bool X86AsmParser::parseDirectiveFPOStackAlloc(SMLoc L) { MCAsmParser &Parser = getParser(); int64_t Offset; if (Parser.parseIntToken(Offset, "expected offset") || parseEOL()) return true; return getTargetStreamer().emitFPOStackAlloc(Offset, L); } // .cv_fpo_stackalign 8 bool X86AsmParser::parseDirectiveFPOStackAlign(SMLoc L) { MCAsmParser &Parser = getParser(); int64_t Offset; if (Parser.parseIntToken(Offset, "expected offset") || parseEOL()) return true; return getTargetStreamer().emitFPOStackAlign(Offset, L); } // .cv_fpo_endprologue bool X86AsmParser::parseDirectiveFPOEndPrologue(SMLoc L) { MCAsmParser &Parser = getParser(); if (Parser.parseEOL()) return true; return getTargetStreamer().emitFPOEndPrologue(L); } // .cv_fpo_endproc bool X86AsmParser::parseDirectiveFPOEndProc(SMLoc L) { MCAsmParser &Parser = getParser(); if (Parser.parseEOL()) return true; return getTargetStreamer().emitFPOEndProc(L); } bool X86AsmParser::parseSEHRegisterNumber(unsigned RegClassID, unsigned &RegNo) { SMLoc startLoc = getLexer().getLoc(); const MCRegisterInfo *MRI = getContext().getRegisterInfo(); // Try parsing the argument as a register first. if (getLexer().getTok().isNot(AsmToken::Integer)) { SMLoc endLoc; if (ParseRegister(RegNo, startLoc, endLoc)) return true; if (!X86MCRegisterClasses[RegClassID].contains(RegNo)) { return Error(startLoc, "register is not supported for use with this directive"); } } else { // Otherwise, an integer number matching the encoding of the desired // register may appear. int64_t EncodedReg; if (getParser().parseAbsoluteExpression(EncodedReg)) return true; // The SEH register number is the same as the encoding register number. Map // from the encoding back to the LLVM register number. RegNo = 0; for (MCPhysReg Reg : X86MCRegisterClasses[RegClassID]) { if (MRI->getEncodingValue(Reg) == EncodedReg) { RegNo = Reg; break; } } if (RegNo == 0) { return Error(startLoc, "incorrect register number for use with this directive"); } } return false; } bool X86AsmParser::parseDirectiveSEHPushReg(SMLoc Loc) { unsigned Reg = 0; if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg)) return true; if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in directive"); getParser().Lex(); getStreamer().emitWinCFIPushReg(Reg, Loc); return false; } bool X86AsmParser::parseDirectiveSEHSetFrame(SMLoc Loc) { unsigned Reg = 0; int64_t Off; if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg)) return true; if (getLexer().isNot(AsmToken::Comma)) return TokError("you must specify a stack pointer offset"); getParser().Lex(); if (getParser().parseAbsoluteExpression(Off)) return true; if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in directive"); getParser().Lex(); getStreamer().emitWinCFISetFrame(Reg, Off, Loc); return false; } bool X86AsmParser::parseDirectiveSEHSaveReg(SMLoc Loc) { unsigned Reg = 0; int64_t Off; if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg)) return true; if (getLexer().isNot(AsmToken::Comma)) return TokError("you must specify an offset on the stack"); getParser().Lex(); if (getParser().parseAbsoluteExpression(Off)) return true; if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in directive"); getParser().Lex(); getStreamer().emitWinCFISaveReg(Reg, Off, Loc); return false; } bool X86AsmParser::parseDirectiveSEHSaveXMM(SMLoc Loc) { unsigned Reg = 0; int64_t Off; if (parseSEHRegisterNumber(X86::VR128XRegClassID, Reg)) return true; if (getLexer().isNot(AsmToken::Comma)) return TokError("you must specify an offset on the stack"); getParser().Lex(); if (getParser().parseAbsoluteExpression(Off)) return true; if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in directive"); getParser().Lex(); getStreamer().emitWinCFISaveXMM(Reg, Off, Loc); return false; } bool X86AsmParser::parseDirectiveSEHPushFrame(SMLoc Loc) { bool Code = false; StringRef CodeID; if (getLexer().is(AsmToken::At)) { SMLoc startLoc = getLexer().getLoc(); getParser().Lex(); if (!getParser().parseIdentifier(CodeID)) { if (CodeID != "code") return Error(startLoc, "expected @code"); Code = true; } } if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in directive"); getParser().Lex(); getStreamer().emitWinCFIPushFrame(Code, Loc); return false; } // Force static initialization. extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86AsmParser() { RegisterMCAsmParser X(getTheX86_32Target()); RegisterMCAsmParser Y(getTheX86_64Target()); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #define GET_SUBTARGET_FEATURE_NAME #include "X86GenAsmMatcher.inc"