//=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the WebAssemblyTargetLowering class. /// //===----------------------------------------------------------------------===// #include "WebAssemblyISelLowering.h" #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" #include "Utils/WebAssemblyTypeUtilities.h" #include "Utils/WebAssemblyUtilities.h" #include "WebAssemblyMachineFunctionInfo.h" #include "WebAssemblySubtarget.h" #include "WebAssemblyTargetMachine.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/Function.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsWebAssembly.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define DEBUG_TYPE "wasm-lower" WebAssemblyTargetLowering::WebAssemblyTargetLowering( const TargetMachine &TM, const WebAssemblySubtarget &STI) : TargetLowering(TM), Subtarget(&STI) { auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; // Booleans always contain 0 or 1. setBooleanContents(ZeroOrOneBooleanContent); // Except in SIMD vectors setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // We don't know the microarchitecture here, so just reduce register pressure. setSchedulingPreference(Sched::RegPressure); // Tell ISel that we have a stack pointer. setStackPointerRegisterToSaveRestore( Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); // Set up the register classes. addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); if (Subtarget->hasSIMD128()) { addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); } if (Subtarget->hasReferenceTypes()) { addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); } // Compute derived properties from the register classes. computeRegisterProperties(Subtarget->getRegisterInfo()); // Transform loads and stores to pointers in address space 1 to loads and // stores to WebAssembly global variables, outside linear memory. for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { setOperationAction(ISD::LOAD, T, Custom); setOperationAction(ISD::STORE, T, Custom); } if (Subtarget->hasSIMD128()) { for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, MVT::v2f64}) { setOperationAction(ISD::LOAD, T, Custom); setOperationAction(ISD::STORE, T, Custom); } } if (Subtarget->hasReferenceTypes()) { // We need custom load and store lowering for both externref, funcref and // Other. The MVT::Other here represents tables of reference types. for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { setOperationAction(ISD::LOAD, T, Custom); setOperationAction(ISD::STORE, T, Custom); } } setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); setOperationAction(ISD::JumpTable, MVTPtr, Custom); setOperationAction(ISD::BlockAddress, MVTPtr, Custom); setOperationAction(ISD::BRIND, MVT::Other, Custom); // Take the default expansion for va_arg, va_copy, and va_end. There is no // default action for va_start, so we do that custom. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAEND, MVT::Other, Expand); for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { // Don't expand the floating-point types to constant pools. setOperationAction(ISD::ConstantFP, T, Legal); // Expand floating-point comparisons. for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) setCondCodeAction(CC, T, Expand); // Expand floating-point library function operators. for (auto Op : {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) setOperationAction(Op, T, Expand); // Note supported floating-point library function operators that otherwise // default to expand. for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) setOperationAction(Op, T, Legal); // Support minimum and maximum, which otherwise default to expand. setOperationAction(ISD::FMINIMUM, T, Legal); setOperationAction(ISD::FMAXIMUM, T, Legal); // WebAssembly currently has no builtin f16 support. setOperationAction(ISD::FP16_TO_FP, T, Expand); setOperationAction(ISD::FP_TO_FP16, T, Expand); setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); setTruncStoreAction(T, MVT::f16, Expand); } // Expand unavailable integer operations. for (auto Op : {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { for (auto T : {MVT::i32, MVT::i64}) setOperationAction(Op, T, Expand); if (Subtarget->hasSIMD128()) for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) setOperationAction(Op, T, Expand); } if (Subtarget->hasNontrappingFPToInt()) for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) for (auto T : {MVT::i32, MVT::i64}) setOperationAction(Op, T, Custom); // SIMD-specific configuration if (Subtarget->hasSIMD128()) { // Hoist bitcasts out of shuffles setTargetDAGCombine(ISD::VECTOR_SHUFFLE); // Combine extends of extract_subvectors into widening ops setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}); // Combine int_to_fp or fp_extend of extract_vectors and vice versa into // conversions ops setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND, ISD::EXTRACT_SUBVECTOR}); // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa // into conversion ops setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, ISD::FP_ROUND, ISD::CONCAT_VECTORS}); setTargetDAGCombine(ISD::TRUNCATE); // Support saturating add for i8x16 and i16x8 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) for (auto T : {MVT::v16i8, MVT::v8i16}) setOperationAction(Op, T, Legal); // Support integer abs for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) setOperationAction(ISD::ABS, T, Legal); // Custom lower BUILD_VECTORs to minimize number of replace_lanes for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, MVT::v2f64}) setOperationAction(ISD::BUILD_VECTOR, T, Custom); // We have custom shuffle lowering to expose the shuffle mask for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, MVT::v2f64}) setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); // Support splatting for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, MVT::v2f64}) setOperationAction(ISD::SPLAT_VECTOR, T, Legal); // Custom lowering since wasm shifts must have a scalar shift amount for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) setOperationAction(Op, T, Custom); // Custom lower lane accesses to expand out variable indices for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, MVT::v2f64}) setOperationAction(Op, T, Custom); // There is no i8x16.mul instruction setOperationAction(ISD::MUL, MVT::v16i8, Expand); // There is no vector conditional select instruction for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, MVT::v2f64}) setOperationAction(ISD::SELECT_CC, T, Expand); // Expand integer operations supported for scalars but not SIMD for (auto Op : {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) setOperationAction(Op, T, Expand); // But we do have integer min and max operations for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) setOperationAction(Op, T, Legal); // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); // Custom lower bit counting operations for other types to scalarize them. for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) setOperationAction(Op, T, Custom); // Expand float operations supported for scalars but not SIMD for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FRINT}) for (auto T : {MVT::v4f32, MVT::v2f64}) setOperationAction(Op, T, Expand); // Unsigned comparison operations are unavailable for i64x2 vectors. for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) setCondCodeAction(CC, MVT::v2i64, Custom); // 64x2 conversions are not in the spec for (auto Op : {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) for (auto T : {MVT::v2i64, MVT::v2f64}) setOperationAction(Op, T, Expand); // But saturating fp_to_int converstions are for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) setOperationAction(Op, MVT::v4i32, Custom); } // As a special case, these operators use the type to mean the type to // sign-extend from. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (!Subtarget->hasSignExt()) { // Sign extends are legal only when extending a vector extract auto Action = Subtarget->hasSIMD128() ? Custom : Expand; for (auto T : {MVT::i8, MVT::i16, MVT::i32}) setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); } for (auto T : MVT::integer_fixedlen_vector_valuetypes()) setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); // Dynamic stack allocation: use the default expansion. setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); setOperationAction(ISD::FrameIndex, MVT::i32, Custom); setOperationAction(ISD::FrameIndex, MVT::i64, Custom); setOperationAction(ISD::CopyToReg, MVT::Other, Custom); // Expand these forms; we pattern-match the forms that we can handle in isel. for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) setOperationAction(Op, T, Expand); // We have custom switch handling. setOperationAction(ISD::BR_JT, MVT::Other, Custom); // WebAssembly doesn't have: // - Floating-point extending loads. // - Floating-point truncating stores. // - i1 extending loads. // - truncating SIMD stores and most extending loads setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); for (auto T : MVT::integer_valuetypes()) for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) setLoadExtAction(Ext, T, MVT::i1, Promote); if (Subtarget->hasSIMD128()) { for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64}) { for (auto MemT : MVT::fixedlen_vector_valuetypes()) { if (MVT(T) != MemT) { setTruncStoreAction(T, MemT, Expand); for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) setLoadExtAction(Ext, T, MemT, Expand); } } } // But some vector extending loads are legal for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); } setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); } // Don't do anything clever with build_pairs setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); // Trap lowers to wasm unreachable setOperationAction(ISD::TRAP, MVT::Other, Legal); setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); // Exception handling intrinsics setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); setMaxAtomicSizeInBitsSupported(64); // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is // consistent with the f64 and f128 names. setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); // Define the emscripten name for return address helper. // TODO: when implementing other Wasm backends, make this generic or only do // this on emscripten depending on what they end up doing. setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); // Always convert switches to br_tables unless there is only one case, which // is equivalent to a simple branch. This reduces code size for wasm, and we // defer possible jump table optimizations to the VM. setMinimumJumpTableEntries(2); } MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, uint32_t AS) const { if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) return MVT::externref; if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) return MVT::funcref; return TargetLowering::getPointerTy(DL, AS); } MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, uint32_t AS) const { if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) return MVT::externref; if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) return MVT::funcref; return TargetLowering::getPointerMemTy(DL, AS); } TargetLowering::AtomicExpansionKind WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { // We have wasm instructions for these switch (AI->getOperation()) { case AtomicRMWInst::Add: case AtomicRMWInst::Sub: case AtomicRMWInst::And: case AtomicRMWInst::Or: case AtomicRMWInst::Xor: case AtomicRMWInst::Xchg: return AtomicExpansionKind::None; default: break; } return AtomicExpansionKind::CmpXChg; } bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { // Implementation copied from X86TargetLowering. unsigned Opc = VecOp.getOpcode(); // Assume target opcodes can't be scalarized. // TODO - do we have any exceptions? if (Opc >= ISD::BUILTIN_OP_END) return false; // If the vector op is not supported, try to convert to scalar. EVT VecVT = VecOp.getValueType(); if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) return true; // If the vector op is supported, but the scalar op is not, the transform may // not be worthwhile. EVT ScalarVT = VecVT.getScalarType(); return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); } FastISel *WebAssemblyTargetLowering::createFastISel( FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { return WebAssembly::createFastISel(FuncInfo, LibInfo); } MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, EVT VT) const { unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); if (BitWidth > 1 && BitWidth < 8) BitWidth = 8; if (BitWidth > 64) { // The shift will be lowered to a libcall, and compiler-rt libcalls expect // the count to be an i32. BitWidth = 32; assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && "32-bit shift counts ought to be enough for anyone"); } MVT Result = MVT::getIntegerVT(BitWidth); assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && "Unable to represent scalar shift amount type"); return Result; } // Lower an fp-to-int conversion operator from the LLVM opcode, which has an // undefined result on invalid/overflow, to the WebAssembly opcode, which // traps on invalid/overflow. static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool IsUnsigned, bool Int64, bool Float64, unsigned LoweredOpcode) { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); Register OutReg = MI.getOperand(0).getReg(); Register InReg = MI.getOperand(1).getReg(); unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; unsigned Eqz = WebAssembly::EQZ_I32; unsigned And = WebAssembly::AND_I32; int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; int64_t Substitute = IsUnsigned ? 0 : Limit; double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; auto &Context = BB->getParent()->getFunction().getContext(); Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); const BasicBlock *LLVMBB = BB->getBasicBlock(); MachineFunction *F = BB->getParent(); MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); MachineFunction::iterator It = ++BB->getIterator(); F->insert(It, FalseMBB); F->insert(It, TrueMBB); F->insert(It, DoneMBB); // Transfer the remainder of BB and its successor edges to DoneMBB. DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); DoneMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(TrueMBB); BB->addSuccessor(FalseMBB); TrueMBB->addSuccessor(DoneMBB); FalseMBB->addSuccessor(DoneMBB); unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); MI.eraseFromParent(); // For signed numbers, we can do a single comparison to determine whether // fabs(x) is within range. if (IsUnsigned) { Tmp0 = InReg; } else { BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); } BuildMI(BB, DL, TII.get(FConst), Tmp1) .addFPImm(cast(ConstantFP::get(Ty, CmpVal))); BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); // For unsigned numbers, we have to do a separate comparison with zero. if (IsUnsigned) { Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); Register SecondCmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); BuildMI(BB, DL, TII.get(FConst), Tmp1) .addFPImm(cast(ConstantFP::get(Ty, 0.0))); BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); CmpReg = AndReg; } BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); // Create the CFG diamond to select between doing the conversion or using // the substitute value. BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) .addReg(FalseReg) .addMBB(FalseMBB) .addReg(TrueReg) .addMBB(TrueMBB); return DoneMBB; } static MachineBasicBlock * LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, const WebAssemblySubtarget *Subtarget, const TargetInstrInfo &TII) { MachineInstr &CallParams = *CallResults.getPrevNode(); assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); bool IsIndirect = CallParams.getOperand(0).isReg(); bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; bool IsFuncrefCall = false; if (IsIndirect) { Register Reg = CallParams.getOperand(0).getReg(); const MachineFunction *MF = BB->getParent(); const MachineRegisterInfo &MRI = MF->getRegInfo(); const TargetRegisterClass *TRC = MRI.getRegClass(Reg); IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); } unsigned CallOp; if (IsIndirect && IsRetCall) { CallOp = WebAssembly::RET_CALL_INDIRECT; } else if (IsIndirect) { CallOp = WebAssembly::CALL_INDIRECT; } else if (IsRetCall) { CallOp = WebAssembly::RET_CALL; } else { CallOp = WebAssembly::CALL; } MachineFunction &MF = *BB->getParent(); const MCInstrDesc &MCID = TII.get(CallOp); MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); // See if we must truncate the function pointer. // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers // as 64-bit for uniformity with other pointer types. // See also: WebAssemblyFastISel::selectCall if (IsIndirect && MF.getSubtarget().hasAddr64()) { Register Reg32 = MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); auto &FnPtr = CallParams.getOperand(0); BuildMI(*BB, CallResults.getIterator(), DL, TII.get(WebAssembly::I32_WRAP_I64), Reg32) .addReg(FnPtr.getReg()); FnPtr.setReg(Reg32); } // Move the function pointer to the end of the arguments for indirect calls if (IsIndirect) { auto FnPtr = CallParams.getOperand(0); CallParams.removeOperand(0); // For funcrefs, call_indirect is done through __funcref_call_table and the // funcref is always installed in slot 0 of the table, therefore instead of // having the function pointer added at the end of the params list, a zero // (the index in // __funcref_call_table is added). if (IsFuncrefCall) { Register RegZero = MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); MachineInstrBuilder MIBC0 = BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); BB->insert(CallResults.getIterator(), MIBC0); MachineInstrBuilder(MF, CallParams).addReg(RegZero); } else CallParams.addOperand(FnPtr); } for (auto Def : CallResults.defs()) MIB.add(Def); if (IsIndirect) { // Placeholder for the type index. MIB.addImm(0); // The table into which this call_indirect indexes. MCSymbolWasm *Table = IsFuncrefCall ? WebAssembly::getOrCreateFuncrefCallTableSymbol( MF.getContext(), Subtarget) : WebAssembly::getOrCreateFunctionTableSymbol( MF.getContext(), Subtarget); if (Subtarget->hasReferenceTypes()) { MIB.addSym(Table); } else { // For the MVP there is at most one table whose number is 0, but we can't // write a table symbol or issue relocations. Instead we just ensure the // table is live and write a zero. Table->setNoStrip(); MIB.addImm(0); } } for (auto Use : CallParams.uses()) MIB.add(Use); BB->insert(CallResults.getIterator(), MIB); CallParams.eraseFromParent(); CallResults.eraseFromParent(); // If this is a funcref call, to avoid hidden GC roots, we need to clear the // table slot with ref.null upon call_indirect return. // // This generates the following code, which comes right after a call_indirect // of a funcref: // // i32.const 0 // ref.null func // table.set __funcref_call_table if (IsIndirect && IsFuncrefCall) { MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( MF.getContext(), Subtarget); Register RegZero = MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); MachineInstr *Const0 = BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); BB->insertAfter(MIB.getInstr()->getIterator(), Const0); Register RegFuncref = MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); MachineInstr *RefNull = BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); BB->insertAfter(Const0->getIterator(), RefNull); MachineInstr *TableSet = BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) .addSym(Table) .addReg(RegZero) .addReg(RegFuncref); BB->insertAfter(RefNull->getIterator(), TableSet); } return BB; } MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); switch (MI.getOpcode()) { default: llvm_unreachable("Unexpected instr type to insert"); case WebAssembly::FP_TO_SINT_I32_F32: return LowerFPToInt(MI, DL, BB, TII, false, false, false, WebAssembly::I32_TRUNC_S_F32); case WebAssembly::FP_TO_UINT_I32_F32: return LowerFPToInt(MI, DL, BB, TII, true, false, false, WebAssembly::I32_TRUNC_U_F32); case WebAssembly::FP_TO_SINT_I64_F32: return LowerFPToInt(MI, DL, BB, TII, false, true, false, WebAssembly::I64_TRUNC_S_F32); case WebAssembly::FP_TO_UINT_I64_F32: return LowerFPToInt(MI, DL, BB, TII, true, true, false, WebAssembly::I64_TRUNC_U_F32); case WebAssembly::FP_TO_SINT_I32_F64: return LowerFPToInt(MI, DL, BB, TII, false, false, true, WebAssembly::I32_TRUNC_S_F64); case WebAssembly::FP_TO_UINT_I32_F64: return LowerFPToInt(MI, DL, BB, TII, true, false, true, WebAssembly::I32_TRUNC_U_F64); case WebAssembly::FP_TO_SINT_I64_F64: return LowerFPToInt(MI, DL, BB, TII, false, true, true, WebAssembly::I64_TRUNC_S_F64); case WebAssembly::FP_TO_UINT_I64_F64: return LowerFPToInt(MI, DL, BB, TII, true, true, true, WebAssembly::I64_TRUNC_U_F64); case WebAssembly::CALL_RESULTS: case WebAssembly::RET_CALL_RESULTS: return LowerCallResults(MI, DL, BB, Subtarget, TII); } } const char * WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (static_cast(Opcode)) { case WebAssemblyISD::FIRST_NUMBER: case WebAssemblyISD::FIRST_MEM_OPCODE: break; #define HANDLE_NODETYPE(NODE) \ case WebAssemblyISD::NODE: \ return "WebAssemblyISD::" #NODE; #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) #include "WebAssemblyISD.def" #undef HANDLE_MEM_NODETYPE #undef HANDLE_NODETYPE } return nullptr; } std::pair WebAssemblyTargetLowering::getRegForInlineAsmConstraint( const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { // First, see if this is a constraint that directly corresponds to a // WebAssembly register class. if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': assert(VT != MVT::iPTR && "Pointer MVT not expected here"); if (Subtarget->hasSIMD128() && VT.isVector()) { if (VT.getSizeInBits() == 128) return std::make_pair(0U, &WebAssembly::V128RegClass); } if (VT.isInteger() && !VT.isVector()) { if (VT.getSizeInBits() <= 32) return std::make_pair(0U, &WebAssembly::I32RegClass); if (VT.getSizeInBits() <= 64) return std::make_pair(0U, &WebAssembly::I64RegClass); } if (VT.isFloatingPoint() && !VT.isVector()) { switch (VT.getSizeInBits()) { case 32: return std::make_pair(0U, &WebAssembly::F32RegClass); case 64: return std::make_pair(0U, &WebAssembly::F64RegClass); default: break; } } break; default: break; } } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { // Assume ctz is a relatively cheap operation. return true; } bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { // Assume clz is a relatively cheap operation. return true; } bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // WebAssembly offsets are added as unsigned without wrapping. The // isLegalAddressingMode gives us no way to determine if wrapping could be // happening, so we approximate this by accepting only non-negative offsets. if (AM.BaseOffs < 0) return false; // WebAssembly has no scale register operands. if (AM.Scale != 0) return false; // Everything else is legal. return true; } bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const { // WebAssembly supports unaligned accesses, though it should be declared // with the p2align attribute on loads and stores which do so, and there // may be a performance impact. We tell LLVM they're "fast" because // for the kinds of things that LLVM uses this for (merging adjacent stores // of constants, etc.), WebAssembly implementations will either want the // unaligned access or they'll split anyway. if (Fast) *Fast = 1; return true; } bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { // The current thinking is that wasm engines will perform this optimization, // so we can save on code size. return true; } bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { EVT ExtT = ExtVal.getValueType(); EVT MemT = cast(ExtVal->getOperand(0))->getValueType(0); return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || (ExtT == MVT::v2i64 && MemT == MVT::v2i32); } bool WebAssemblyTargetLowering::isOffsetFoldingLegal( const GlobalAddressSDNode *GA) const { // Wasm doesn't support function addresses with offsets const GlobalValue *GV = GA->getGlobal(); return isa(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); } EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, EVT VT) const { if (VT.isVector()) return VT.changeVectorElementTypeToInteger(); // So far, all branch instructions in Wasm take an I32 condition. // The default TargetLowering::getSetCCResultType returns the pointer size, // which would be useful to reduce instruction counts when testing // against 64-bit pointers/values if at some point Wasm supports that. return EVT::getIntegerVT(C, 32); } bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const { switch (Intrinsic) { case Intrinsic::wasm_memory_atomic_notify: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(4); // atomic.notify instruction does not really load the memory specified with // this argument, but MachineMemOperand should either be load or store, so // we set this to a load. // FIXME Volatile isn't really correct, but currently all LLVM atomic // instructions are treated as volatiles in the backend, so we should be // consistent. The same applies for wasm_atomic_wait intrinsics too. Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; return true; case Intrinsic::wasm_memory_atomic_wait32: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(4); Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; return true; case Intrinsic::wasm_memory_atomic_wait64: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i64; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(8); Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; return true; default: return false; } } void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { switch (Op.getOpcode()) { default: break; case ISD::INTRINSIC_WO_CHAIN: { unsigned IntNo = Op.getConstantOperandVal(0); switch (IntNo) { default: break; case Intrinsic::wasm_bitmask: { unsigned BitWidth = Known.getBitWidth(); EVT VT = Op.getOperand(1).getSimpleValueType(); unsigned PossibleBits = VT.getVectorNumElements(); APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); Known.Zero |= ZeroMask; break; } } } } } TargetLoweringBase::LegalizeTypeAction WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { if (VT.isFixedLengthVector()) { MVT EltVT = VT.getVectorElementType(); // We have legal vector types with these lane types, so widening the // vector would let us use some of the lanes directly without having to // extend or truncate values. if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) return TypeWidenVector; } return TargetLoweringBase::getPreferredVectorAction(VT); } bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts( SDValue Op, const TargetLoweringOpt &TLO) const { // ISel process runs DAGCombiner after legalization; this step is called // SelectionDAG optimization phase. This post-legalization combining process // runs DAGCombiner on each node, and if there was a change to be made, // re-runs legalization again on it and its user nodes to make sure // everythiing is in a legalized state. // // The legalization calls lowering routines, and we do our custom lowering for // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements // into zeros. But there is a set of routines in DAGCombiner that turns unused // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts // turns unused vector elements into undefs. But this routine does not work // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This // combination can result in a infinite loop, in which undefs are converted to // zeros in legalization and back to undefs in combining. // // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from // running for build_vectors. if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys) return false; return true; } //===----------------------------------------------------------------------===// // WebAssembly Lowering private implementation. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { MachineFunction &MF = DAG.getMachineFunction(); DAG.getContext()->diagnose( DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); } // Test whether the given calling convention is supported. static bool callingConvSupported(CallingConv::ID CallConv) { // We currently support the language-independent target-independent // conventions. We don't yet have a way to annotate calls with properties like // "cold", and we don't have any call-clobbered registers, so these are mostly // all handled the same. return CallConv == CallingConv::C || CallConv == CallingConv::Fast || CallConv == CallingConv::Cold || CallConv == CallingConv::PreserveMost || CallConv == CallingConv::PreserveAll || CallConv == CallingConv::CXX_FAST_TLS || CallConv == CallingConv::WASM_EmscriptenInvoke || CallConv == CallingConv::Swift; } SDValue WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc DL = CLI.DL; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; MachineFunction &MF = DAG.getMachineFunction(); auto Layout = MF.getDataLayout(); CallingConv::ID CallConv = CLI.CallConv; if (!callingConvSupported(CallConv)) fail(DL, DAG, "WebAssembly doesn't support language-specific or target-specific " "calling conventions yet"); if (CLI.IsPatchPoint) fail(DL, DAG, "WebAssembly doesn't support patch point yet"); if (CLI.IsTailCall) { auto NoTail = [&](const char *Msg) { if (CLI.CB && CLI.CB->isMustTailCall()) fail(DL, DAG, Msg); CLI.IsTailCall = false; }; if (!Subtarget->hasTailCall()) NoTail("WebAssembly 'tail-call' feature not enabled"); // Varargs calls cannot be tail calls because the buffer is on the stack if (CLI.IsVarArg) NoTail("WebAssembly does not support varargs tail calls"); // Do not tail call unless caller and callee return types match const Function &F = MF.getFunction(); const TargetMachine &TM = getTargetMachine(); Type *RetTy = F.getReturnType(); SmallVector CallerRetTys; SmallVector CalleeRetTys; computeLegalValueVTs(F, TM, RetTy, CallerRetTys); computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && std::equal(CallerRetTys.begin(), CallerRetTys.end(), CalleeRetTys.begin()); if (!TypesMatch) NoTail("WebAssembly tail call requires caller and callee return types to " "match"); // If pointers to local stack values are passed, we cannot tail call if (CLI.CB) { for (auto &Arg : CLI.CB->args()) { Value *Val = Arg.get(); // Trace the value back through pointer operations while (true) { Value *Src = Val->stripPointerCastsAndAliases(); if (auto *GEP = dyn_cast(Src)) Src = GEP->getPointerOperand(); if (Val == Src) break; Val = Src; } if (isa(Val)) { NoTail( "WebAssembly does not support tail calling with stack arguments"); break; } } } } SmallVectorImpl &Ins = CLI.Ins; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; // The generic code may have added an sret argument. If we're lowering an // invoke function, the ABI requires that the function pointer be the first // argument, so we may have to swap the arguments. if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && Outs[0].Flags.isSRet()) { std::swap(Outs[0], Outs[1]); std::swap(OutVals[0], OutVals[1]); } bool HasSwiftSelfArg = false; bool HasSwiftErrorArg = false; unsigned NumFixedArgs = 0; for (unsigned I = 0; I < Outs.size(); ++I) { const ISD::OutputArg &Out = Outs[I]; SDValue &OutVal = OutVals[I]; HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); HasSwiftErrorArg |= Out.Flags.isSwiftError(); if (Out.Flags.isNest()) fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); if (Out.Flags.isInAlloca()) fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); if (Out.Flags.isInConsecutiveRegs()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); if (Out.Flags.isInConsecutiveRegsLast()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { auto &MFI = MF.getFrameInfo(); int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), Out.Flags.getNonZeroByValAlign(), /*isSS=*/false); SDValue SizeNode = DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); Chain = DAG.getMemcpy( Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), /*isVolatile*/ false, /*AlwaysInline=*/false, /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); OutVal = FINode; } // Count the number of fixed args *after* legalization. NumFixedArgs += Out.IsFixed; } bool IsVarArg = CLI.IsVarArg; auto PtrVT = getPointerTy(Layout); // For swiftcc, emit additional swiftself and swifterror arguments // if there aren't. These additional arguments are also added for callee // signature They are necessary to match callee and caller signature for // indirect call. if (CallConv == CallingConv::Swift) { if (!HasSwiftSelfArg) { NumFixedArgs++; ISD::OutputArg Arg; Arg.Flags.setSwiftSelf(); CLI.Outs.push_back(Arg); SDValue ArgVal = DAG.getUNDEF(PtrVT); CLI.OutVals.push_back(ArgVal); } if (!HasSwiftErrorArg) { NumFixedArgs++; ISD::OutputArg Arg; Arg.Flags.setSwiftError(); CLI.Outs.push_back(Arg); SDValue ArgVal = DAG.getUNDEF(PtrVT); CLI.OutVals.push_back(ArgVal); } } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); if (IsVarArg) { // Outgoing non-fixed arguments are placed in a buffer. First // compute their offsets and the total amount of buffer space needed. for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { const ISD::OutputArg &Out = Outs[I]; SDValue &Arg = OutVals[I]; EVT VT = Arg.getValueType(); assert(VT != MVT::iPTR && "Legalized args should be concrete"); Type *Ty = VT.getTypeForEVT(*DAG.getContext()); Align Alignment = std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), Offset, VT.getSimpleVT(), CCValAssign::Full)); } } unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); SDValue FINode; if (IsVarArg && NumBytes) { // For non-fixed arguments, next emit stores to store the argument values // to the stack buffer at the offsets computed above. int FI = MF.getFrameInfo().CreateStackObject(NumBytes, Layout.getStackAlignment(), /*isSS=*/false); unsigned ValNo = 0; SmallVector Chains; for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { assert(ArgLocs[ValNo].getValNo() == ValNo && "ArgLocs should remain in order and only hold varargs args"); unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, DAG.getConstant(Offset, DL, PtrVT)); Chains.push_back( DAG.getStore(Chain, DL, Arg, Add, MachinePointerInfo::getFixedStack(MF, FI, Offset))); } if (!Chains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } else if (IsVarArg) { FINode = DAG.getIntPtrConstant(0, DL); } if (Callee->getOpcode() == ISD::GlobalAddress) { // If the callee is a GlobalAddress node (quite common, every direct call // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress // doesn't at MO_GOT which is not needed for direct calls. GlobalAddressSDNode *GA = cast(Callee); Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), GA->getOffset()); Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, getPointerTy(DAG.getDataLayout()), Callee); } // Compute the operands for the CALLn node. SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs // isn't reliable. Ops.append(OutVals.begin(), IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); // Add a pointer to the vararg buffer. if (IsVarArg) Ops.push_back(FINode); SmallVector InTys; for (const auto &In : Ins) { assert(!In.Flags.isByVal() && "byval is not valid for return values"); assert(!In.Flags.isNest() && "nest is not valid for return values"); if (In.Flags.isInAlloca()) fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); if (In.Flags.isInConsecutiveRegs()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); if (In.Flags.isInConsecutiveRegsLast()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs last return values"); // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in // registers. InTys.push_back(In.VT); } // Lastly, if this is a call to a funcref we need to add an instruction // table.set to the chain and transform the call. if (CLI.CB && WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) { // In the absence of function references proposal where a funcref call is // lowered to call_ref, using reference types we generate a table.set to set // the funcref to a special table used solely for this purpose, followed by // a call_indirect. Here we just generate the table set, and return the // SDValue of the table.set so that LowerCall can finalize the lowering by // generating the call_indirect. SDValue Chain = Ops[0]; MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( MF.getContext(), Subtarget); SDValue Sym = DAG.getMCSymbol(Table, PtrVT); SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; SDValue TableSet = DAG.getMemIntrinsicNode( WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, MVT::funcref, // Machine Mem Operand args MachinePointerInfo( WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), MachineMemOperand::MOStore); Ops[0] = TableSet; // The new chain is the TableSet itself } if (CLI.IsTailCall) { // ret_calls do not return values to the current frame SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); } InTys.push_back(MVT::Other); SDVTList InTyList = DAG.getVTList(InTys); SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); for (size_t I = 0; I < Ins.size(); ++I) InVals.push_back(Res.getValue(I)); // Return the chain return Res.getValue(Ins.size()); } bool WebAssemblyTargetLowering::CanLowerReturn( CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, const SmallVectorImpl &Outs, LLVMContext & /*Context*/) const { // WebAssembly can only handle returning tuples with multivalue enabled return Subtarget->hasMultivalue() || Outs.size() <= 1; } SDValue WebAssemblyTargetLowering::LowerReturn( SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && "MVP WebAssembly can only return up to one value"); if (!callingConvSupported(CallConv)) fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); SmallVector RetOps(1, Chain); RetOps.append(OutVals.begin(), OutVals.end()); Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); // Record the number and types of the return values. for (const ISD::OutputArg &Out : Outs) { assert(!Out.Flags.isByVal() && "byval is not valid for return values"); assert(!Out.Flags.isNest() && "nest is not valid for return values"); assert(Out.IsFixed && "non-fixed return value is not valid"); if (Out.Flags.isInAlloca()) fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); if (Out.Flags.isInConsecutiveRegs()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); if (Out.Flags.isInConsecutiveRegsLast()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); } return Chain; } SDValue WebAssemblyTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { if (!callingConvSupported(CallConv)) fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); MachineFunction &MF = DAG.getMachineFunction(); auto *MFI = MF.getInfo(); // Set up the incoming ARGUMENTS value, which serves to represent the liveness // of the incoming values before they're represented by virtual registers. MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); bool HasSwiftErrorArg = false; bool HasSwiftSelfArg = false; for (const ISD::InputArg &In : Ins) { HasSwiftSelfArg |= In.Flags.isSwiftSelf(); HasSwiftErrorArg |= In.Flags.isSwiftError(); if (In.Flags.isInAlloca()) fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); if (In.Flags.isNest()) fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); if (In.Flags.isInConsecutiveRegs()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); if (In.Flags.isInConsecutiveRegsLast()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in // registers. InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, DAG.getTargetConstant(InVals.size(), DL, MVT::i32)) : DAG.getUNDEF(In.VT)); // Record the number and types of arguments. MFI->addParam(In.VT); } // For swiftcc, emit additional swiftself and swifterror arguments // if there aren't. These additional arguments are also added for callee // signature They are necessary to match callee and caller signature for // indirect call. auto PtrVT = getPointerTy(MF.getDataLayout()); if (CallConv == CallingConv::Swift) { if (!HasSwiftSelfArg) { MFI->addParam(PtrVT); } if (!HasSwiftErrorArg) { MFI->addParam(PtrVT); } } // Varargs are copied into a buffer allocated by the caller, and a pointer to // the buffer is passed as an argument. if (IsVarArg) { MVT PtrVT = getPointerTy(MF.getDataLayout()); Register VarargVreg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); MFI->setVarargBufferVreg(VarargVreg); Chain = DAG.getCopyToReg( Chain, DL, VarargVreg, DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); MFI->addParam(PtrVT); } // Record the number and types of arguments and results. SmallVector Params; SmallVector Results; computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), MF.getFunction(), DAG.getTarget(), Params, Results); for (MVT VT : Results) MFI->addResult(VT); // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify // the param logic here with ComputeSignatureVTs assert(MFI->getParams().size() == Params.size() && std::equal(MFI->getParams().begin(), MFI->getParams().end(), Params.begin())); return Chain; } void WebAssemblyTargetLowering::ReplaceNodeResults( SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { case ISD::SIGN_EXTEND_INREG: // Do not add any results, signifying that N should not be custom lowered // after all. This happens because simd128 turns on custom lowering for // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an // illegal type. break; default: llvm_unreachable( "ReplaceNodeResults not implemented for this op for WebAssembly!"); } } //===----------------------------------------------------------------------===// // Custom lowering hooks. //===----------------------------------------------------------------------===// SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); switch (Op.getOpcode()) { default: llvm_unreachable("unimplemented operation lowering"); return SDValue(); case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::BlockAddress: case ISD::BRIND: fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); return SDValue(); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::CopyToReg: return LowerCopyToReg(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: case ISD::INSERT_VECTOR_ELT: return LowerAccessVectorElement(Op, DAG); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_W_CHAIN: return LowerIntrinsic(Op, DAG); case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::SHL: case ISD::SRA: case ISD::SRL: return LowerShift(Op, DAG); case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: return LowerFP_TO_INT_SAT(Op, DAG); case ISD::LOAD: return LowerLoad(Op, DAG); case ISD::STORE: return LowerStore(Op, DAG); case ISD::CTPOP: case ISD::CTLZ: case ISD::CTTZ: return DAG.UnrollVectorOp(Op.getNode()); } } static bool IsWebAssemblyGlobal(SDValue Op) { if (const GlobalAddressSDNode *GA = dyn_cast(Op)) return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); return false; } static std::optional IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { const FrameIndexSDNode *FI = dyn_cast(Op); if (!FI) return std::nullopt; auto &MF = DAG.getMachineFunction(); return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); } SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); StoreSDNode *SN = cast(Op.getNode()); const SDValue &Value = SN->getValue(); const SDValue &Base = SN->getBasePtr(); const SDValue &Offset = SN->getOffset(); if (IsWebAssemblyGlobal(Base)) { if (!Offset->isUndef()) report_fatal_error("unexpected offset when storing to webassembly global", false); SDVTList Tys = DAG.getVTList(MVT::Other); SDValue Ops[] = {SN->getChain(), Value, Base}; return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, SN->getMemoryVT(), SN->getMemOperand()); } if (std::optional Local = IsWebAssemblyLocal(Base, DAG)) { if (!Offset->isUndef()) report_fatal_error("unexpected offset when storing to webassembly local", false); SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. SDValue Ops[] = {SN->getChain(), Idx, Value}; return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); } if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace())) report_fatal_error( "Encountered an unlowerable store to the wasm_var address space", false); return Op; } SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); LoadSDNode *LN = cast(Op.getNode()); const SDValue &Base = LN->getBasePtr(); const SDValue &Offset = LN->getOffset(); if (IsWebAssemblyGlobal(Base)) { if (!Offset->isUndef()) report_fatal_error( "unexpected offset when loading from webassembly global", false); SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); SDValue Ops[] = {LN->getChain(), Base}; return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, LN->getMemoryVT(), LN->getMemOperand()); } if (std::optional Local = IsWebAssemblyLocal(Base, DAG)) { if (!Offset->isUndef()) report_fatal_error( "unexpected offset when loading from webassembly local", false); SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); EVT LocalVT = LN->getValueType(0); SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, {LN->getChain(), Idx}); SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); return Result; } if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace())) report_fatal_error( "Encountered an unlowerable load from the wasm_var address space", false); return Op; } SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(2); if (isa(Src.getNode())) { // CopyToReg nodes don't support FrameIndex operands. Other targets select // the FI to some LEA-like instruction, but since we don't have that, we // need to insert some kind of instruction that can take an FI operand and // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy // local.copy between Op and its FI operand. SDValue Chain = Op.getOperand(0); SDLoc DL(Op); Register Reg = cast(Op.getOperand(1))->getReg(); EVT VT = Src.getValueType(); SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 : WebAssembly::COPY_I64, DL, VT, Src), 0); return Op.getNode()->getNumValues() == 1 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) : DAG.getCopyToReg(Chain, DL, Reg, Copy, Op.getNumOperands() == 4 ? Op.getOperand(3) : SDValue()); } return SDValue(); } SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const { int FI = cast(Op)->getIndex(); return DAG.getTargetFrameIndex(FI, Op.getValueType()); } SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); if (!Subtarget->getTargetTriple().isOSEmscripten()) { fail(DL, DAG, "Non-Emscripten WebAssembly hasn't implemented " "__builtin_return_address"); return SDValue(); } if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); unsigned Depth = Op.getConstantOperandVal(0); MakeLibCallOptions CallOptions; return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) .first; } SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { // Non-zero depths are not supported by WebAssembly currently. Use the // legalizer's default expansion, which is to return 0 (what this function is // documented to do). if (Op.getConstantOperandVal(0) > 0) return SDValue(); DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); Register FP = Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); } SDValue WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const auto *GA = cast(Op); MachineFunction &MF = DAG.getMachineFunction(); if (!MF.getSubtarget().hasBulkMemory()) report_fatal_error("cannot use thread-local storage without bulk memory", false); const GlobalValue *GV = GA->getGlobal(); // Currently only Emscripten supports dynamic linking with threads. Therefore, // on other targets, if we have thread-local storage, only the local-exec // model is possible. auto model = Subtarget->getTargetTriple().isOSEmscripten() ? GV->getThreadLocalMode() : GlobalValue::LocalExecTLSModel; // Unsupported TLS modes assert(model != GlobalValue::NotThreadLocal); assert(model != GlobalValue::InitialExecTLSModel); if (model == GlobalValue::LocalExecTLSModel || model == GlobalValue::LocalDynamicTLSModel || (model == GlobalValue::GeneralDynamicTLSModel && getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { // For DSO-local TLS variables we use offset from __tls_base MVT PtrVT = getPointerTy(DAG.getDataLayout()); auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 : WebAssembly::GLOBAL_GET_I32; const char *BaseName = MF.createExternalSymbolName("__tls_base"); SDValue BaseAddr( DAG.getMachineNode(GlobalGet, DL, PtrVT, DAG.getTargetExternalSymbol(BaseName, PtrVT)), 0); SDValue TLSOffset = DAG.getTargetGlobalAddress( GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); SDValue SymOffset = DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); } assert(model == GlobalValue::GeneralDynamicTLSModel); EVT VT = Op.getValueType(); return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), WebAssemblyII::MO_GOT_TLS)); } SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const auto *GA = cast(Op); EVT VT = Op.getValueType(); assert(GA->getTargetFlags() == 0 && "Unexpected target flags on generic GlobalAddressSDNode"); if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) fail(DL, DAG, "Invalid address space for WebAssembly target"); unsigned OperandFlags = 0; if (isPositionIndependent()) { const GlobalValue *GV = GA->getGlobal(); if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { MachineFunction &MF = DAG.getMachineFunction(); MVT PtrVT = getPointerTy(MF.getDataLayout()); const char *BaseName; if (GV->getValueType()->isFunctionTy()) { BaseName = MF.createExternalSymbolName("__table_base"); OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; } else { BaseName = MF.createExternalSymbolName("__memory_base"); OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; } SDValue BaseAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, DAG.getTargetExternalSymbol(BaseName, PtrVT)); SDValue SymAddr = DAG.getNode( WebAssemblyISD::WrapperREL, DL, VT, DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), OperandFlags)); return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); } OperandFlags = WebAssemblyII::MO_GOT; } return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), OperandFlags)); } SDValue WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const auto *ES = cast(Op); EVT VT = Op.getValueType(); assert(ES->getTargetFlags() == 0 && "Unexpected target flags on generic ExternalSymbolSDNode"); return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); } SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { // There's no need for a Wrapper node because we always incorporate a jump // table operand into a BR_TABLE instruction, rather than ever // materializing it in a register. const JumpTableSDNode *JT = cast(Op); return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), JT->getTargetFlags()); } SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Chain = Op.getOperand(0); const auto *JT = cast(Op.getOperand(1)); SDValue Index = Op.getOperand(2); assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Index); MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; // Add an operand for each case. for (auto *MBB : MBBs) Ops.push_back(DAG.getBasicBlock(MBB)); // Add the first MBB as a dummy default target for now. This will be replaced // with the proper default target (and the preceding range check eliminated) // if possible by WebAssemblyFixBrTableDefaults. Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); } SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); auto *MFI = DAG.getMachineFunction().getInfo(); const Value *SV = cast(Op.getOperand(2))->getValue(); SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, MFI->getVarargBufferVreg(), PtrVT); return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), MachinePointerInfo(SV)); } SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); unsigned IntNo; switch (Op.getOpcode()) { case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: IntNo = Op.getConstantOperandVal(1); break; case ISD::INTRINSIC_WO_CHAIN: IntNo = Op.getConstantOperandVal(0); break; default: llvm_unreachable("Invalid intrinsic"); } SDLoc DL(Op); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::wasm_lsda: { auto PtrVT = getPointerTy(MF.getDataLayout()); const char *SymName = MF.createExternalSymbolName( "GCC_except_table" + std::to_string(MF.getFunctionNumber())); if (isPositionIndependent()) { SDValue Node = DAG.getTargetExternalSymbol( SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); const char *BaseName = MF.createExternalSymbolName("__memory_base"); SDValue BaseAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, DAG.getTargetExternalSymbol(BaseName, PtrVT)); SDValue SymAddr = DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); } SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); } case Intrinsic::wasm_shuffle: { // Drop in-chain and replace undefs, but otherwise pass through unchanged SDValue Ops[18]; size_t OpIdx = 0; Ops[OpIdx++] = Op.getOperand(1); Ops[OpIdx++] = Op.getOperand(2); while (OpIdx < 18) { const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); if (MaskIdx.isUndef() || cast(MaskIdx.getNode())->getZExtValue() >= 32) { Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); } else { Ops[OpIdx++] = MaskIdx; } } return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); } } } SDValue WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); // If sign extension operations are disabled, allow sext_inreg only if operand // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign // extension operations, but allowing sext_inreg in this context lets us have // simple patterns to select extract_lane_s instructions. Expanding sext_inreg // everywhere would be simpler in this file, but would necessitate large and // brittle patterns to undo the expansion and select extract_lane_s // instructions. assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); const SDValue &Extract = Op.getOperand(0); MVT VecT = Extract.getOperand(0).getSimpleValueType(); if (VecT.getVectorElementType().getSizeInBits() > 32) return SDValue(); MVT ExtractedLaneT = cast(Op.getOperand(1).getNode())->getVT().getSimpleVT(); MVT ExtractedVecT = MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); if (ExtractedVecT == VecT) return Op; // Bitcast vector to appropriate type to ensure ISel pattern coverage const SDNode *Index = Extract.getOperand(1).getNode(); if (!isa(Index)) return SDValue(); unsigned IndexVal = cast(Index)->getZExtValue(); unsigned Scale = ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); assert(Scale > 1); SDValue NewIndex = DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); SDValue NewExtract = DAG.getNode( ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, Op.getOperand(1)); } static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); if (Op.getValueType() != MVT::v2f64) return SDValue(); auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, unsigned &Index) -> bool { switch (Op.getOpcode()) { case ISD::SINT_TO_FP: Opcode = WebAssemblyISD::CONVERT_LOW_S; break; case ISD::UINT_TO_FP: Opcode = WebAssemblyISD::CONVERT_LOW_U; break; case ISD::FP_EXTEND: Opcode = WebAssemblyISD::PROMOTE_LOW; break; default: return false; } auto ExtractVector = Op.getOperand(0); if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return false; if (!isa(ExtractVector.getOperand(1).getNode())) return false; SrcVec = ExtractVector.getOperand(0); Index = ExtractVector.getConstantOperandVal(1); return true; }; unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; SDValue LHSSrcVec, RHSSrcVec; if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) return SDValue(); if (LHSOpcode != RHSOpcode) return SDValue(); MVT ExpectedSrcVT; switch (LHSOpcode) { case WebAssemblyISD::CONVERT_LOW_S: case WebAssemblyISD::CONVERT_LOW_U: ExpectedSrcVT = MVT::v4i32; break; case WebAssemblyISD::PROMOTE_LOW: ExpectedSrcVT = MVT::v4f32; break; } if (LHSSrcVec.getValueType() != ExpectedSrcVT) return SDValue(); auto Src = LHSSrcVec; if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { // Shuffle the source vector so that the converted lanes are the low lanes. Src = DAG.getVectorShuffle( ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, {static_cast(LHSIndex), static_cast(RHSIndex) + 4, -1, -1}); } return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); } SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { if (auto ConvertLow = LowerConvertLow(Op, DAG)) return ConvertLow; SDLoc DL(Op); const EVT VecT = Op.getValueType(); const EVT LaneT = Op.getOperand(0).getValueType(); const size_t Lanes = Op.getNumOperands(); bool CanSwizzle = VecT == MVT::v16i8; // BUILD_VECTORs are lowered to the instruction that initializes the highest // possible number of lanes at once followed by a sequence of replace_lane // instructions to individually initialize any remaining lanes. // TODO: Tune this. For example, lanewise swizzling is very expensive, so // swizzled lanes should be given greater weight. // TODO: Investigate looping rather than always extracting/replacing specific // lanes to fill gaps. auto IsConstant = [](const SDValue &V) { return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; }; // Returns the source vector and index vector pair if they exist. Checks for: // (extract_vector_elt // $src, // (sign_extend_inreg (extract_vector_elt $indices, $i)) // ) auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { auto Bail = std::make_pair(SDValue(), SDValue()); if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return Bail; const SDValue &SwizzleSrc = Lane->getOperand(0); const SDValue &IndexExt = Lane->getOperand(1); if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) return Bail; const SDValue &Index = IndexExt->getOperand(0); if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return Bail; const SDValue &SwizzleIndices = Index->getOperand(0); if (SwizzleSrc.getValueType() != MVT::v16i8 || SwizzleIndices.getValueType() != MVT::v16i8 || Index->getOperand(1)->getOpcode() != ISD::Constant || Index->getConstantOperandVal(1) != I) return Bail; return std::make_pair(SwizzleSrc, SwizzleIndices); }; // If the lane is extracted from another vector at a constant index, return // that vector. The source vector must not have more lanes than the dest // because the shufflevector indices are in terms of the destination lanes and // would not be able to address the smaller individual source lanes. auto GetShuffleSrc = [&](const SDValue &Lane) { if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); if (!isa(Lane->getOperand(1).getNode())) return SDValue(); if (Lane->getOperand(0).getValueType().getVectorNumElements() > VecT.getVectorNumElements()) return SDValue(); return Lane->getOperand(0); }; using ValueEntry = std::pair; SmallVector SplatValueCounts; using SwizzleEntry = std::pair, size_t>; SmallVector SwizzleCounts; using ShuffleEntry = std::pair; SmallVector ShuffleCounts; auto AddCount = [](auto &Counts, const auto &Val) { auto CountIt = llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); if (CountIt == Counts.end()) { Counts.emplace_back(Val, 1); } else { CountIt->second++; } }; auto GetMostCommon = [](auto &Counts) { auto CommonIt = std::max_element(Counts.begin(), Counts.end(), llvm::less_second()); assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); return *CommonIt; }; size_t NumConstantLanes = 0; // Count eligible lanes for each type of vector creation op for (size_t I = 0; I < Lanes; ++I) { const SDValue &Lane = Op->getOperand(I); if (Lane.isUndef()) continue; AddCount(SplatValueCounts, Lane); if (IsConstant(Lane)) NumConstantLanes++; if (auto ShuffleSrc = GetShuffleSrc(Lane)) AddCount(ShuffleCounts, ShuffleSrc); if (CanSwizzle) { auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); if (SwizzleSrcs.first) AddCount(SwizzleCounts, SwizzleSrcs); } } SDValue SplatValue; size_t NumSplatLanes; std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); SDValue SwizzleSrc; SDValue SwizzleIndices; size_t NumSwizzleLanes = 0; if (SwizzleCounts.size()) std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), NumSwizzleLanes) = GetMostCommon(SwizzleCounts); // Shuffles can draw from up to two vectors, so find the two most common // sources. SDValue ShuffleSrc1, ShuffleSrc2; size_t NumShuffleLanes = 0; if (ShuffleCounts.size()) { std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); llvm::erase_if(ShuffleCounts, [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); } if (ShuffleCounts.size()) { size_t AdditionalShuffleLanes; std::tie(ShuffleSrc2, AdditionalShuffleLanes) = GetMostCommon(ShuffleCounts); NumShuffleLanes += AdditionalShuffleLanes; } // Predicate returning true if the lane is properly initialized by the // original instruction std::function IsLaneConstructed; SDValue Result; // Prefer swizzles over shuffles over vector consts over splats if (NumSwizzleLanes >= NumShuffleLanes && NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, SwizzleIndices); auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { return Swizzled == GetSwizzleSrcs(I, Lane); }; } else if (NumShuffleLanes >= NumConstantLanes && NumShuffleLanes >= NumSplatLanes) { size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; size_t DestLaneCount = VecT.getVectorNumElements(); size_t Scale1 = 1; size_t Scale2 = 1; SDValue Src1 = ShuffleSrc1; SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); if (Src1.getValueType() != VecT) { size_t LaneSize = Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; assert(LaneSize > DestLaneSize); Scale1 = LaneSize / DestLaneSize; Src1 = DAG.getBitcast(VecT, Src1); } if (Src2.getValueType() != VecT) { size_t LaneSize = Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; assert(LaneSize > DestLaneSize); Scale2 = LaneSize / DestLaneSize; Src2 = DAG.getBitcast(VecT, Src2); } int Mask[16]; assert(DestLaneCount <= 16); for (size_t I = 0; I < DestLaneCount; ++I) { const SDValue &Lane = Op->getOperand(I); SDValue Src = GetShuffleSrc(Lane); if (Src == ShuffleSrc1) { Mask[I] = Lane->getConstantOperandVal(1) * Scale1; } else if (Src && Src == ShuffleSrc2) { Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; } else { Mask[I] = -1; } } ArrayRef MaskRef(Mask, DestLaneCount); Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); IsLaneConstructed = [&](size_t, const SDValue &Lane) { auto Src = GetShuffleSrc(Lane); return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); }; } else if (NumConstantLanes >= NumSplatLanes) { SmallVector ConstLanes; for (const SDValue &Lane : Op->op_values()) { if (IsConstant(Lane)) { // Values may need to be fixed so that they will sign extend to be // within the expected range during ISel. Check whether the value is in // bounds based on the lane bit width and if it is out of bounds, lop // off the extra bits and subtract 2^n to reflect giving the high bit // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it // cannot possibly be out of range. auto *Const = dyn_cast(Lane.getNode()); int64_t Val = Const ? Const->getSExtValue() : 0; uint64_t LaneBits = 128 / Lanes; assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && "Unexpected out of bounds negative value"); if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); } else { ConstLanes.push_back(Lane); } } else if (LaneT.isFloatingPoint()) { ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); } else { ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); } } Result = DAG.getBuildVector(VecT, DL, ConstLanes); IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { return IsConstant(Lane); }; } else { // Use a splat (which might be selected as a load splat) Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { return Lane == SplatValue; }; } assert(Result); assert(IsLaneConstructed); // Add replace_lane instructions for any unhandled values for (size_t I = 0; I < Lanes; ++I) { const SDValue &Lane = Op->getOperand(I); if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, DAG.getConstant(I, DL, MVT::i32)); } return Result; } SDValue WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); ArrayRef Mask = cast(Op.getNode())->getMask(); MVT VecType = Op.getOperand(0).getSimpleValueType(); assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; // Space for two vector args and sixteen mask indices SDValue Ops[18]; size_t OpIdx = 0; Ops[OpIdx++] = Op.getOperand(0); Ops[OpIdx++] = Op.getOperand(1); // Expand mask indices to byte indices and materialize them as operands for (int M : Mask) { for (size_t J = 0; J < LaneBytes; ++J) { // Lower undefs (represented by -1 in mask) to {0..J}, which use a // whole lane of vector input, to allow further reduction at VM. E.g. // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle. uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J; Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); } } return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); } SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); // The legalizer does not know how to expand the unsupported comparison modes // of i64x2 vectors, so we manually unroll them here. assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); SmallVector LHS, RHS; DAG.ExtractVectorElements(Op->getOperand(0), LHS); DAG.ExtractVectorElements(Op->getOperand(1), RHS); const SDValue &CC = Op->getOperand(2); auto MakeLane = [&](unsigned I) { return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], DAG.getConstant(uint64_t(-1), DL, MVT::i64), DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); }; return DAG.getBuildVector(Op->getValueType(0), DL, {MakeLane(0), MakeLane(1)}); } SDValue WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, SelectionDAG &DAG) const { // Allow constant lane indices, expand variable lane indices SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); if (isa(IdxNode) || IdxNode->isUndef()) { // Ensure the index type is i32 to match the tablegen patterns uint64_t Idx = cast(IdxNode)->getZExtValue(); SmallVector Ops(Op.getNode()->ops()); Ops[Op.getNumOperands() - 1] = DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32); return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops); } // Perform default expansion return SDValue(); } static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { EVT LaneT = Op.getSimpleValueType().getVectorElementType(); // 32-bit and 64-bit unrolled shifts will have proper semantics if (LaneT.bitsGE(MVT::i32)) return DAG.UnrollVectorOp(Op.getNode()); // Otherwise mask the shift value to get proper semantics from 32-bit shift SDLoc DL(Op); size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); unsigned ShiftOpcode = Op.getOpcode(); SmallVector ShiftedElements; DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); SmallVector ShiftElements; DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); SmallVector UnrolledOps; for (size_t i = 0; i < NumLanes; ++i) { SDValue MaskedShiftValue = DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); SDValue ShiftedValue = ShiftedElements[i]; if (ShiftOpcode == ISD::SRA) ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, ShiftedValue, DAG.getValueType(LaneT)); UnrolledOps.push_back( DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); } return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); } SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); // Only manually lower vector shifts assert(Op.getSimpleValueType().isVector()); auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); if (!ShiftVal) return unrollVectorShift(Op, DAG); // Use anyext because none of the high bits can affect the shift ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); unsigned Opcode; switch (Op.getOpcode()) { case ISD::SHL: Opcode = WebAssemblyISD::VEC_SHL; break; case ISD::SRA: Opcode = WebAssemblyISD::VEC_SHR_S; break; case ISD::SRL: Opcode = WebAssemblyISD::VEC_SHR_U; break; default: llvm_unreachable("unexpected opcode"); } return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); } SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT ResT = Op.getValueType(); EVT SatVT = cast(Op.getOperand(1))->getVT(); if ((ResT == MVT::i32 || ResT == MVT::i64) && (SatVT == MVT::i32 || SatVT == MVT::i64)) return Op; if (ResT == MVT::v4i32 && SatVT == MVT::i32) return Op; return SDValue(); } //===----------------------------------------------------------------------===// // Custom DAG combine hooks //===----------------------------------------------------------------------===// static SDValue performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { auto &DAG = DCI.DAG; auto Shuffle = cast(N); // Hoist vector bitcasts that don't change the number of lanes out of unary // shuffles, where they are less likely to get in the way of other combines. // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) SDValue Bitcast = N->getOperand(0); if (Bitcast.getOpcode() != ISD::BITCAST) return SDValue(); if (!N->getOperand(1).isUndef()) return SDValue(); SDValue CastOp = Bitcast.getOperand(0); MVT SrcType = CastOp.getSimpleValueType(); MVT DstType = Bitcast.getSimpleValueType(); if (!SrcType.is128BitVector() || SrcType.getVectorNumElements() != DstType.getVectorNumElements()) return SDValue(); SDValue NewShuffle = DAG.getVectorShuffle( SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); return DAG.getBitcast(DstType, NewShuffle); } /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get /// split up into scalar instructions during legalization, and the vector /// extending instructions are selected in performVectorExtendCombine below. static SDValue performVectorExtendToFPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { auto &DAG = DCI.DAG; assert(N->getOpcode() == ISD::UINT_TO_FP || N->getOpcode() == ISD::SINT_TO_FP); EVT InVT = N->getOperand(0)->getValueType(0); EVT ResVT = N->getValueType(0); MVT ExtVT; if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8)) ExtVT = MVT::v4i32; else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8)) ExtVT = MVT::v2i32; else return SDValue(); unsigned Op = N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0)); return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv); } static SDValue performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { auto &DAG = DCI.DAG; assert(N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND); // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if // possible before the extract_subvector can be expanded. auto Extract = N->getOperand(0); if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) return SDValue(); auto Source = Extract.getOperand(0); auto *IndexNode = dyn_cast(Extract.getOperand(1)); if (IndexNode == nullptr) return SDValue(); auto Index = IndexNode->getZExtValue(); // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the // extracted subvector is the low or high half of its source. EVT ResVT = N->getValueType(0); if (ResVT == MVT::v8i16) { if (Extract.getValueType() != MVT::v8i8 || Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) return SDValue(); } else if (ResVT == MVT::v4i32) { if (Extract.getValueType() != MVT::v4i16 || Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) return SDValue(); } else if (ResVT == MVT::v2i64) { if (Extract.getValueType() != MVT::v2i32 || Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) return SDValue(); } else { return SDValue(); } bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; bool IsLow = Index == 0; unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S : WebAssemblyISD::EXTEND_HIGH_S) : (IsLow ? WebAssemblyISD::EXTEND_LOW_U : WebAssemblyISD::EXTEND_HIGH_U); return DAG.getNode(Op, SDLoc(N), ResVT, Source); } static SDValue performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { auto &DAG = DCI.DAG; auto GetWasmConversionOp = [](unsigned Op) { switch (Op) { case ISD::FP_TO_SINT_SAT: return WebAssemblyISD::TRUNC_SAT_ZERO_S; case ISD::FP_TO_UINT_SAT: return WebAssemblyISD::TRUNC_SAT_ZERO_U; case ISD::FP_ROUND: return WebAssemblyISD::DEMOTE_ZERO; } llvm_unreachable("unexpected op"); }; auto IsZeroSplat = [](SDValue SplatVal) { auto *Splat = dyn_cast(SplatVal.getNode()); APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; return Splat && Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs) && SplatValue == 0; }; if (N->getOpcode() == ISD::CONCAT_VECTORS) { // Combine this: // // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) // // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). // // Or this: // // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) // // into (f32x4.demote_zero_f64x2 $x). EVT ResVT; EVT ExpectedConversionType; auto Conversion = N->getOperand(0); auto ConversionOp = Conversion.getOpcode(); switch (ConversionOp) { case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: ResVT = MVT::v4i32; ExpectedConversionType = MVT::v2i32; break; case ISD::FP_ROUND: ResVT = MVT::v4f32; ExpectedConversionType = MVT::v2f32; break; default: return SDValue(); } if (N->getValueType(0) != ResVT) return SDValue(); if (Conversion.getValueType() != ExpectedConversionType) return SDValue(); auto Source = Conversion.getOperand(0); if (Source.getValueType() != MVT::v2f64) return SDValue(); if (!IsZeroSplat(N->getOperand(1)) || N->getOperand(1).getValueType() != ExpectedConversionType) return SDValue(); unsigned Op = GetWasmConversionOp(ConversionOp); return DAG.getNode(Op, SDLoc(N), ResVT, Source); } // Combine this: // // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) // // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). // // Or this: // // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) // // into (f32x4.demote_zero_f64x2 $x). EVT ResVT; auto ConversionOp = N->getOpcode(); switch (ConversionOp) { case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: ResVT = MVT::v4i32; break; case ISD::FP_ROUND: ResVT = MVT::v4f32; break; default: llvm_unreachable("unexpected op"); } if (N->getValueType(0) != ResVT) return SDValue(); auto Concat = N->getOperand(0); if (Concat.getValueType() != MVT::v4f64) return SDValue(); auto Source = Concat.getOperand(0); if (Source.getValueType() != MVT::v2f64) return SDValue(); if (!IsZeroSplat(Concat.getOperand(1)) || Concat.getOperand(1).getValueType() != MVT::v2f64) return SDValue(); unsigned Op = GetWasmConversionOp(ConversionOp); return DAG.getNode(Op, SDLoc(N), ResVT, Source); } // Helper to extract VectorWidth bits from Vec, starting from IdxVal. static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, const SDLoc &DL, unsigned VectorWidth) { EVT VT = Vec.getValueType(); EVT ElVT = VT.getVectorElementType(); unsigned Factor = VT.getSizeInBits() / VectorWidth; EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, VT.getVectorNumElements() / Factor); // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); // This is the index of the first element of the VectorWidth-bit chunk // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. IdxVal &= ~(ElemsPerChunk - 1); // If the input is a buildvector just emit a smaller one. if (Vec.getOpcode() == ISD::BUILD_VECTOR) return DAG.getBuildVector(ResultVT, DL, Vec->ops().slice(IdxVal, ElemsPerChunk)); SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); } // Helper to recursively truncate vector elements in half with NARROW_U. DstVT // is the expected destination value type after recursion. In is the initial // input. Note that the input should have enough leading zero bits to prevent // NARROW_U from saturating results. static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, SelectionDAG &DAG) { EVT SrcVT = In.getValueType(); // No truncation required, we might get here due to recursive calls. if (SrcVT == DstVT) return In; unsigned SrcSizeInBits = SrcVT.getSizeInBits(); unsigned NumElems = SrcVT.getVectorNumElements(); if (!isPowerOf2_32(NumElems)) return SDValue(); assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); LLVMContext &Ctx = *DAG.getContext(); EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); // Narrow to the largest type possible: // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. EVT InVT = MVT::i16, OutVT = MVT::i8; if (SrcVT.getScalarSizeInBits() > 16) { InVT = MVT::i32; OutVT = MVT::i16; } unsigned SubSizeInBits = SrcSizeInBits / 2; InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); // Split lower/upper subvectors. SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { Lo = DAG.getBitcast(InVT, Lo); Hi = DAG.getBitcast(InVT, Hi); SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); return DAG.getBitcast(DstVT, Res); } // Recursively narrow lower/upper subvectors, concat result and narrow again. EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); return truncateVectorWithNARROW(DstVT, Res, DL, DAG); } static SDValue performTruncateCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { auto &DAG = DCI.DAG; SDValue In = N->getOperand(0); EVT InVT = In.getValueType(); if (!InVT.isSimple()) return SDValue(); EVT OutVT = N->getValueType(0); if (!OutVT.isVector()) return SDValue(); EVT OutSVT = OutVT.getVectorElementType(); EVT InSVT = InVT.getVectorElementType(); // Currently only cover truncate to v16i8 or v8i16. if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) return SDValue(); SDLoc DL(N); APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), OutVT.getScalarSizeInBits()); In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); return truncateVectorWithNARROW(OutVT, In, DL, DAG); } SDValue WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch (N->getOpcode()) { default: return SDValue(); case ISD::VECTOR_SHUFFLE: return performVECTOR_SHUFFLECombine(N, DCI); case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: return performVectorExtendCombine(N, DCI); case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: return performVectorExtendToFPCombine(N, DCI); case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: case ISD::FP_ROUND: case ISD::CONCAT_VECTORS: return performVectorTruncZeroCombine(N, DCI); case ISD::TRUNCATE: return performTruncateCombine(N, DCI); } }