//==- WebAssemblyAsmParser.cpp - Assembler for WebAssembly -*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file is part of the WebAssembly Assembler. /// /// It contains code to translate a parsed .s file into MCInsts. /// //===----------------------------------------------------------------------===// #include "AsmParser/WebAssemblyAsmTypeCheck.h" #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" #include "MCTargetDesc/WebAssemblyTargetStreamer.h" #include "TargetInfo/WebAssemblyTargetInfo.h" #include "Utils/WebAssemblyTypeUtilities.h" #include "Utils/WebAssemblyUtilities.h" #include "WebAssembly.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCSectionWasm.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCSymbolWasm.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Endian.h" #include "llvm/Support/SourceMgr.h" using namespace llvm; #define DEBUG_TYPE "wasm-asm-parser" static const char *getSubtargetFeatureName(uint64_t Val); namespace { /// WebAssemblyOperand - Instances of this class represent the operands in a /// parsed Wasm machine instruction. struct WebAssemblyOperand : public MCParsedAsmOperand { enum KindTy { Token, Integer, Float, Symbol, BrList } Kind; SMLoc StartLoc, EndLoc; struct TokOp { StringRef Tok; }; struct IntOp { int64_t Val; }; struct FltOp { double Val; }; struct SymOp { const MCExpr *Exp; }; struct BrLOp { std::vector List; }; union { struct TokOp Tok; struct IntOp Int; struct FltOp Flt; struct SymOp Sym; struct BrLOp BrL; }; WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End, TokOp T) : Kind(K), StartLoc(Start), EndLoc(End), Tok(T) {} WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End, IntOp I) : Kind(K), StartLoc(Start), EndLoc(End), Int(I) {} WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End, FltOp F) : Kind(K), StartLoc(Start), EndLoc(End), Flt(F) {} WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End, SymOp S) : Kind(K), StartLoc(Start), EndLoc(End), Sym(S) {} WebAssemblyOperand(KindTy K, SMLoc Start, SMLoc End) : Kind(K), StartLoc(Start), EndLoc(End), BrL() {} ~WebAssemblyOperand() { if (isBrList()) BrL.~BrLOp(); } bool isToken() const override { return Kind == Token; } bool isImm() const override { return Kind == Integer || Kind == Symbol; } bool isFPImm() const { return Kind == Float; } bool isMem() const override { return false; } bool isReg() const override { return false; } bool isBrList() const { return Kind == BrList; } unsigned getReg() const override { llvm_unreachable("Assembly inspects a register operand"); return 0; } StringRef getToken() const { assert(isToken()); return Tok.Tok; } SMLoc getStartLoc() const override { return StartLoc; } SMLoc getEndLoc() const override { return EndLoc; } void addRegOperands(MCInst &, unsigned) const { // Required by the assembly matcher. llvm_unreachable("Assembly matcher creates register operands"); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (Kind == Integer) Inst.addOperand(MCOperand::createImm(Int.Val)); else if (Kind == Symbol) Inst.addOperand(MCOperand::createExpr(Sym.Exp)); else llvm_unreachable("Should be integer immediate or symbol!"); } void addFPImmf32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (Kind == Float) Inst.addOperand( MCOperand::createSFPImm(bit_cast(float(Flt.Val)))); else llvm_unreachable("Should be float immediate!"); } void addFPImmf64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (Kind == Float) Inst.addOperand(MCOperand::createDFPImm(bit_cast(Flt.Val))); else llvm_unreachable("Should be float immediate!"); } void addBrListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && isBrList() && "Invalid BrList!"); for (auto Br : BrL.List) Inst.addOperand(MCOperand::createImm(Br)); } void print(raw_ostream &OS) const override { switch (Kind) { case Token: OS << "Tok:" << Tok.Tok; break; case Integer: OS << "Int:" << Int.Val; break; case Float: OS << "Flt:" << Flt.Val; break; case Symbol: OS << "Sym:" << Sym.Exp; break; case BrList: OS << "BrList:" << BrL.List.size(); break; } } }; // Perhaps this should go somewhere common. static wasm::WasmLimits DefaultLimits() { return {wasm::WASM_LIMITS_FLAG_NONE, 0, 0}; } static MCSymbolWasm *GetOrCreateFunctionTableSymbol(MCContext &Ctx, const StringRef &Name) { MCSymbolWasm *Sym = cast_or_null(Ctx.lookupSymbol(Name)); if (Sym) { if (!Sym->isFunctionTable()) Ctx.reportError(SMLoc(), "symbol is not a wasm funcref table"); } else { Sym = cast(Ctx.getOrCreateSymbol(Name)); Sym->setFunctionTable(); // The default function table is synthesized by the linker. Sym->setUndefined(); } return Sym; } class WebAssemblyAsmParser final : public MCTargetAsmParser { MCAsmParser &Parser; MCAsmLexer &Lexer; // Much like WebAssemblyAsmPrinter in the backend, we have to own these. std::vector> Signatures; std::vector> Names; // Order of labels, directives and instructions in a .s file have no // syntactical enforcement. This class is a callback from the actual parser, // and yet we have to be feeding data to the streamer in a very particular // order to ensure a correct binary encoding that matches the regular backend // (the streamer does not enforce this). This "state machine" enum helps // guarantee that correct order. enum ParserState { FileStart, FunctionStart, FunctionLocals, Instructions, EndFunction, DataSection, } CurrentState = FileStart; // For ensuring blocks are properly nested. enum NestingType { Function, Block, Loop, Try, CatchAll, If, Else, Undefined, }; struct Nested { NestingType NT; wasm::WasmSignature Sig; }; std::vector NestingStack; MCSymbolWasm *DefaultFunctionTable = nullptr; MCSymbol *LastFunctionLabel = nullptr; bool is64; WebAssemblyAsmTypeCheck TC; // Don't type check if -no-type-check was set. bool SkipTypeCheck; public: WebAssemblyAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, STI, MII), Parser(Parser), Lexer(Parser.getLexer()), is64(STI.getTargetTriple().isArch64Bit()), TC(Parser, MII, is64), SkipTypeCheck(Options.MCNoTypeCheck) { setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); // Don't type check if this is inline asm, since that is a naked sequence of // instructions without a function/locals decl. auto &SM = Parser.getSourceManager(); auto BufferName = SM.getBufferInfo(SM.getMainFileID()).Buffer->getBufferIdentifier(); if (BufferName == "") SkipTypeCheck = true; } void Initialize(MCAsmParser &Parser) override { MCAsmParserExtension::Initialize(Parser); DefaultFunctionTable = GetOrCreateFunctionTableSymbol( getContext(), "__indirect_function_table"); if (!STI->checkFeatures("+reference-types")) DefaultFunctionTable->setOmitFromLinkingSection(); } #define GET_ASSEMBLER_HEADER #include "WebAssemblyGenAsmMatcher.inc" // TODO: This is required to be implemented, but appears unused. bool ParseRegister(unsigned & /*RegNo*/, SMLoc & /*StartLoc*/, SMLoc & /*EndLoc*/) override { llvm_unreachable("ParseRegister is not implemented."); } OperandMatchResultTy tryParseRegister(unsigned & /*RegNo*/, SMLoc & /*StartLoc*/, SMLoc & /*EndLoc*/) override { llvm_unreachable("tryParseRegister is not implemented."); } bool error(const Twine &Msg, const AsmToken &Tok) { return Parser.Error(Tok.getLoc(), Msg + Tok.getString()); } bool error(const Twine &Msg) { return Parser.Error(Lexer.getTok().getLoc(), Msg); } void addSignature(std::unique_ptr &&Sig) { Signatures.push_back(std::move(Sig)); } StringRef storeName(StringRef Name) { std::unique_ptr N = std::make_unique(Name); Names.push_back(std::move(N)); return *Names.back(); } std::pair nestingString(NestingType NT) { switch (NT) { case Function: return {"function", "end_function"}; case Block: return {"block", "end_block"}; case Loop: return {"loop", "end_loop"}; case Try: return {"try", "end_try/delegate"}; case CatchAll: return {"catch_all", "end_try"}; case If: return {"if", "end_if"}; case Else: return {"else", "end_if"}; default: llvm_unreachable("unknown NestingType"); } } void push(NestingType NT) { NestingStack.push_back({NT, wasm::WasmSignature()}); } bool pop(StringRef Ins, NestingType NT1, NestingType NT2 = Undefined) { if (NestingStack.empty()) return error(Twine("End of block construct with no start: ") + Ins); auto Top = NestingStack.back(); if (Top.NT != NT1 && Top.NT != NT2) return error(Twine("Block construct type mismatch, expected: ") + nestingString(Top.NT).second + ", instead got: " + Ins); TC.setLastSig(Top.Sig); NestingStack.pop_back(); return false; } bool ensureEmptyNestingStack() { auto Err = !NestingStack.empty(); while (!NestingStack.empty()) { error(Twine("Unmatched block construct(s) at function end: ") + nestingString(NestingStack.back().NT).first); NestingStack.pop_back(); } return Err; } bool isNext(AsmToken::TokenKind Kind) { auto Ok = Lexer.is(Kind); if (Ok) Parser.Lex(); return Ok; } bool expect(AsmToken::TokenKind Kind, const char *KindName) { if (!isNext(Kind)) return error(std::string("Expected ") + KindName + ", instead got: ", Lexer.getTok()); return false; } StringRef expectIdent() { if (!Lexer.is(AsmToken::Identifier)) { error("Expected identifier, got: ", Lexer.getTok()); return StringRef(); } auto Name = Lexer.getTok().getString(); Parser.Lex(); return Name; } bool parseRegTypeList(SmallVectorImpl &Types) { while (Lexer.is(AsmToken::Identifier)) { auto Type = WebAssembly::parseType(Lexer.getTok().getString()); if (!Type) return error("unknown type: ", Lexer.getTok()); Types.push_back(*Type); Parser.Lex(); if (!isNext(AsmToken::Comma)) break; } return false; } void parseSingleInteger(bool IsNegative, OperandVector &Operands) { auto &Int = Lexer.getTok(); int64_t Val = Int.getIntVal(); if (IsNegative) Val = -Val; Operands.push_back(std::make_unique( WebAssemblyOperand::Integer, Int.getLoc(), Int.getEndLoc(), WebAssemblyOperand::IntOp{Val})); Parser.Lex(); } bool parseSingleFloat(bool IsNegative, OperandVector &Operands) { auto &Flt = Lexer.getTok(); double Val; if (Flt.getString().getAsDouble(Val, false)) return error("Cannot parse real: ", Flt); if (IsNegative) Val = -Val; Operands.push_back(std::make_unique( WebAssemblyOperand::Float, Flt.getLoc(), Flt.getEndLoc(), WebAssemblyOperand::FltOp{Val})); Parser.Lex(); return false; } bool parseSpecialFloatMaybe(bool IsNegative, OperandVector &Operands) { if (Lexer.isNot(AsmToken::Identifier)) return true; auto &Flt = Lexer.getTok(); auto S = Flt.getString(); double Val; if (S.compare_insensitive("infinity") == 0) { Val = std::numeric_limits::infinity(); } else if (S.compare_insensitive("nan") == 0) { Val = std::numeric_limits::quiet_NaN(); } else { return true; } if (IsNegative) Val = -Val; Operands.push_back(std::make_unique( WebAssemblyOperand::Float, Flt.getLoc(), Flt.getEndLoc(), WebAssemblyOperand::FltOp{Val})); Parser.Lex(); return false; } bool checkForP2AlignIfLoadStore(OperandVector &Operands, StringRef InstName) { // FIXME: there is probably a cleaner way to do this. auto IsLoadStore = InstName.contains(".load") || InstName.contains(".store") || InstName.contains("prefetch"); auto IsAtomic = InstName.contains("atomic."); if (IsLoadStore || IsAtomic) { // Parse load/store operands of the form: offset:p2align=align if (IsLoadStore && isNext(AsmToken::Colon)) { auto Id = expectIdent(); if (Id != "p2align") return error("Expected p2align, instead got: " + Id); if (expect(AsmToken::Equal, "=")) return true; if (!Lexer.is(AsmToken::Integer)) return error("Expected integer constant"); parseSingleInteger(false, Operands); } else { // v128.{load,store}{8,16,32,64}_lane has both a memarg and a lane // index. We need to avoid parsing an extra alignment operand for the // lane index. auto IsLoadStoreLane = InstName.contains("_lane"); if (IsLoadStoreLane && Operands.size() == 4) return false; // Alignment not specified (or atomics, must use default alignment). // We can't just call WebAssembly::GetDefaultP2Align since we don't have // an opcode until after the assembly matcher, so set a default to fix // up later. auto Tok = Lexer.getTok(); Operands.push_back(std::make_unique( WebAssemblyOperand::Integer, Tok.getLoc(), Tok.getEndLoc(), WebAssemblyOperand::IntOp{-1})); } } return false; } void addBlockTypeOperand(OperandVector &Operands, SMLoc NameLoc, WebAssembly::BlockType BT) { if (BT != WebAssembly::BlockType::Void) { wasm::WasmSignature Sig({static_cast(BT)}, {}); TC.setLastSig(Sig); NestingStack.back().Sig = Sig; } Operands.push_back(std::make_unique( WebAssemblyOperand::Integer, NameLoc, NameLoc, WebAssemblyOperand::IntOp{static_cast(BT)})); } bool parseLimits(wasm::WasmLimits *Limits) { auto Tok = Lexer.getTok(); if (!Tok.is(AsmToken::Integer)) return error("Expected integer constant, instead got: ", Tok); int64_t Val = Tok.getIntVal(); assert(Val >= 0); Limits->Minimum = Val; Parser.Lex(); if (isNext(AsmToken::Comma)) { Limits->Flags |= wasm::WASM_LIMITS_FLAG_HAS_MAX; auto Tok = Lexer.getTok(); if (!Tok.is(AsmToken::Integer)) return error("Expected integer constant, instead got: ", Tok); int64_t Val = Tok.getIntVal(); assert(Val >= 0); Limits->Maximum = Val; Parser.Lex(); } return false; } bool parseFunctionTableOperand(std::unique_ptr *Op) { if (STI->checkFeatures("+reference-types")) { // If the reference-types feature is enabled, there is an explicit table // operand. To allow the same assembly to be compiled with or without // reference types, we allow the operand to be omitted, in which case we // default to __indirect_function_table. auto &Tok = Lexer.getTok(); if (Tok.is(AsmToken::Identifier)) { auto *Sym = GetOrCreateFunctionTableSymbol(getContext(), Tok.getString()); const auto *Val = MCSymbolRefExpr::create(Sym, getContext()); *Op = std::make_unique( WebAssemblyOperand::Symbol, Tok.getLoc(), Tok.getEndLoc(), WebAssemblyOperand::SymOp{Val}); Parser.Lex(); return expect(AsmToken::Comma, ","); } else { const auto *Val = MCSymbolRefExpr::create(DefaultFunctionTable, getContext()); *Op = std::make_unique( WebAssemblyOperand::Symbol, SMLoc(), SMLoc(), WebAssemblyOperand::SymOp{Val}); return false; } } else { // For the MVP there is at most one table whose number is 0, but we can't // write a table symbol or issue relocations. Instead we just ensure the // table is live and write a zero. getStreamer().emitSymbolAttribute(DefaultFunctionTable, MCSA_NoDeadStrip); *Op = std::make_unique(WebAssemblyOperand::Integer, SMLoc(), SMLoc(), WebAssemblyOperand::IntOp{0}); return false; } } bool ParseInstruction(ParseInstructionInfo & /*Info*/, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override { // Note: Name does NOT point into the sourcecode, but to a local, so // use NameLoc instead. Name = StringRef(NameLoc.getPointer(), Name.size()); // WebAssembly has instructions with / in them, which AsmLexer parses // as separate tokens, so if we find such tokens immediately adjacent (no // whitespace), expand the name to include them: for (;;) { auto &Sep = Lexer.getTok(); if (Sep.getLoc().getPointer() != Name.end() || Sep.getKind() != AsmToken::Slash) break; // Extend name with / Name = StringRef(Name.begin(), Name.size() + Sep.getString().size()); Parser.Lex(); // We must now find another identifier, or error. auto &Id = Lexer.getTok(); if (Id.getKind() != AsmToken::Identifier || Id.getLoc().getPointer() != Name.end()) return error("Incomplete instruction name: ", Id); Name = StringRef(Name.begin(), Name.size() + Id.getString().size()); Parser.Lex(); } // Now construct the name as first operand. Operands.push_back(std::make_unique( WebAssemblyOperand::Token, NameLoc, SMLoc::getFromPointer(Name.end()), WebAssemblyOperand::TokOp{Name})); // If this instruction is part of a control flow structure, ensure // proper nesting. bool ExpectBlockType = false; bool ExpectFuncType = false; std::unique_ptr FunctionTable; if (Name == "block") { push(Block); ExpectBlockType = true; } else if (Name == "loop") { push(Loop); ExpectBlockType = true; } else if (Name == "try") { push(Try); ExpectBlockType = true; } else if (Name == "if") { push(If); ExpectBlockType = true; } else if (Name == "else") { if (pop(Name, If)) return true; push(Else); } else if (Name == "catch") { if (pop(Name, Try)) return true; push(Try); } else if (Name == "catch_all") { if (pop(Name, Try)) return true; push(CatchAll); } else if (Name == "end_if") { if (pop(Name, If, Else)) return true; } else if (Name == "end_try") { if (pop(Name, Try, CatchAll)) return true; } else if (Name == "delegate") { if (pop(Name, Try)) return true; } else if (Name == "end_loop") { if (pop(Name, Loop)) return true; } else if (Name == "end_block") { if (pop(Name, Block)) return true; } else if (Name == "end_function") { ensureLocals(getStreamer()); CurrentState = EndFunction; if (pop(Name, Function) || ensureEmptyNestingStack()) return true; } else if (Name == "call_indirect" || Name == "return_call_indirect") { // These instructions have differing operand orders in the text format vs // the binary formats. The MC instructions follow the binary format, so // here we stash away the operand and append it later. if (parseFunctionTableOperand(&FunctionTable)) return true; ExpectFuncType = true; } if (ExpectFuncType || (ExpectBlockType && Lexer.is(AsmToken::LParen))) { // This has a special TYPEINDEX operand which in text we // represent as a signature, such that we can re-build this signature, // attach it to an anonymous symbol, which is what WasmObjectWriter // expects to be able to recreate the actual unique-ified type indices. auto Loc = Parser.getTok(); auto Signature = std::make_unique(); if (parseSignature(Signature.get())) return true; // Got signature as block type, don't need more ExpectBlockType = false; TC.setLastSig(*Signature.get()); if (ExpectBlockType) NestingStack.back().Sig = *Signature.get(); auto &Ctx = getContext(); // The "true" here will cause this to be a nameless symbol. MCSymbol *Sym = Ctx.createTempSymbol("typeindex", true); auto *WasmSym = cast(Sym); WasmSym->setSignature(Signature.get()); addSignature(std::move(Signature)); WasmSym->setType(wasm::WASM_SYMBOL_TYPE_FUNCTION); const MCExpr *Expr = MCSymbolRefExpr::create( WasmSym, MCSymbolRefExpr::VK_WASM_TYPEINDEX, Ctx); Operands.push_back(std::make_unique( WebAssemblyOperand::Symbol, Loc.getLoc(), Loc.getEndLoc(), WebAssemblyOperand::SymOp{Expr})); } while (Lexer.isNot(AsmToken::EndOfStatement)) { auto &Tok = Lexer.getTok(); switch (Tok.getKind()) { case AsmToken::Identifier: { if (!parseSpecialFloatMaybe(false, Operands)) break; auto &Id = Lexer.getTok(); if (ExpectBlockType) { // Assume this identifier is a block_type. auto BT = WebAssembly::parseBlockType(Id.getString()); if (BT == WebAssembly::BlockType::Invalid) return error("Unknown block type: ", Id); addBlockTypeOperand(Operands, NameLoc, BT); Parser.Lex(); } else { // Assume this identifier is a label. const MCExpr *Val; SMLoc Start = Id.getLoc(); SMLoc End; if (Parser.parseExpression(Val, End)) return error("Cannot parse symbol: ", Lexer.getTok()); Operands.push_back(std::make_unique( WebAssemblyOperand::Symbol, Start, End, WebAssemblyOperand::SymOp{Val})); if (checkForP2AlignIfLoadStore(Operands, Name)) return true; } break; } case AsmToken::Minus: Parser.Lex(); if (Lexer.is(AsmToken::Integer)) { parseSingleInteger(true, Operands); if (checkForP2AlignIfLoadStore(Operands, Name)) return true; } else if(Lexer.is(AsmToken::Real)) { if (parseSingleFloat(true, Operands)) return true; } else if (!parseSpecialFloatMaybe(true, Operands)) { } else { return error("Expected numeric constant instead got: ", Lexer.getTok()); } break; case AsmToken::Integer: parseSingleInteger(false, Operands); if (checkForP2AlignIfLoadStore(Operands, Name)) return true; break; case AsmToken::Real: { if (parseSingleFloat(false, Operands)) return true; break; } case AsmToken::LCurly: { Parser.Lex(); auto Op = std::make_unique( WebAssemblyOperand::BrList, Tok.getLoc(), Tok.getEndLoc()); if (!Lexer.is(AsmToken::RCurly)) for (;;) { Op->BrL.List.push_back(Lexer.getTok().getIntVal()); expect(AsmToken::Integer, "integer"); if (!isNext(AsmToken::Comma)) break; } expect(AsmToken::RCurly, "}"); Operands.push_back(std::move(Op)); break; } default: return error("Unexpected token in operand: ", Tok); } if (Lexer.isNot(AsmToken::EndOfStatement)) { if (expect(AsmToken::Comma, ",")) return true; } } if (ExpectBlockType && Operands.size() == 1) { // Support blocks with no operands as default to void. addBlockTypeOperand(Operands, NameLoc, WebAssembly::BlockType::Void); } if (FunctionTable) Operands.push_back(std::move(FunctionTable)); Parser.Lex(); return false; } bool parseSignature(wasm::WasmSignature *Signature) { if (expect(AsmToken::LParen, "(")) return true; if (parseRegTypeList(Signature->Params)) return true; if (expect(AsmToken::RParen, ")")) return true; if (expect(AsmToken::MinusGreater, "->")) return true; if (expect(AsmToken::LParen, "(")) return true; if (parseRegTypeList(Signature->Returns)) return true; if (expect(AsmToken::RParen, ")")) return true; return false; } bool CheckDataSection() { if (CurrentState != DataSection) { auto WS = cast(getStreamer().getCurrentSection().first); if (WS && WS->getKind().isText()) return error("data directive must occur in a data segment: ", Lexer.getTok()); } CurrentState = DataSection; return false; } // This function processes wasm-specific directives streamed to // WebAssemblyTargetStreamer, all others go to the generic parser // (see WasmAsmParser). bool ParseDirective(AsmToken DirectiveID) override { // This function has a really weird return value behavior that is different // from all the other parsing functions: // - return true && no tokens consumed -> don't know this directive / let // the generic parser handle it. // - return true && tokens consumed -> a parsing error occurred. // - return false -> processed this directive successfully. assert(DirectiveID.getKind() == AsmToken::Identifier); auto &Out = getStreamer(); auto &TOut = reinterpret_cast(*Out.getTargetStreamer()); auto &Ctx = Out.getContext(); // TODO: any time we return an error, at least one token must have been // consumed, otherwise this will not signal an error to the caller. if (DirectiveID.getString() == ".globaltype") { auto SymName = expectIdent(); if (SymName.empty()) return true; if (expect(AsmToken::Comma, ",")) return true; auto TypeTok = Lexer.getTok(); auto TypeName = expectIdent(); if (TypeName.empty()) return true; auto Type = WebAssembly::parseType(TypeName); if (!Type) return error("Unknown type in .globaltype directive: ", TypeTok); // Optional mutable modifier. Default to mutable for historical reasons. // Ideally we would have gone with immutable as the default and used `mut` // as the modifier to match the `.wat` format. bool Mutable = true; if (isNext(AsmToken::Comma)) { TypeTok = Lexer.getTok(); auto Id = expectIdent(); if (Id == "immutable") Mutable = false; else // Should we also allow `mutable` and `mut` here for clarity? return error("Unknown type in .globaltype modifier: ", TypeTok); } // Now set this symbol with the correct type. auto WasmSym = cast(Ctx.getOrCreateSymbol(SymName)); WasmSym->setType(wasm::WASM_SYMBOL_TYPE_GLOBAL); WasmSym->setGlobalType(wasm::WasmGlobalType{uint8_t(*Type), Mutable}); // And emit the directive again. TOut.emitGlobalType(WasmSym); return expect(AsmToken::EndOfStatement, "EOL"); } if (DirectiveID.getString() == ".tabletype") { // .tabletype SYM, ELEMTYPE[, MINSIZE[, MAXSIZE]] auto SymName = expectIdent(); if (SymName.empty()) return true; if (expect(AsmToken::Comma, ",")) return true; auto ElemTypeTok = Lexer.getTok(); auto ElemTypeName = expectIdent(); if (ElemTypeName.empty()) return true; Optional ElemType = WebAssembly::parseType(ElemTypeName); if (!ElemType) return error("Unknown type in .tabletype directive: ", ElemTypeTok); wasm::WasmLimits Limits = DefaultLimits(); if (isNext(AsmToken::Comma) && parseLimits(&Limits)) return true; // Now that we have the name and table type, we can actually create the // symbol auto WasmSym = cast(Ctx.getOrCreateSymbol(SymName)); WasmSym->setType(wasm::WASM_SYMBOL_TYPE_TABLE); wasm::WasmTableType Type = {uint8_t(*ElemType), Limits}; WasmSym->setTableType(Type); TOut.emitTableType(WasmSym); return expect(AsmToken::EndOfStatement, "EOL"); } if (DirectiveID.getString() == ".functype") { // This code has to send things to the streamer similar to // WebAssemblyAsmPrinter::EmitFunctionBodyStart. // TODO: would be good to factor this into a common function, but the // assembler and backend really don't share any common code, and this code // parses the locals separately. auto SymName = expectIdent(); if (SymName.empty()) return true; auto WasmSym = cast(Ctx.getOrCreateSymbol(SymName)); if (WasmSym->isDefined()) { // This .functype indicates a start of a function. if (ensureEmptyNestingStack()) return true; CurrentState = FunctionStart; LastFunctionLabel = WasmSym; push(Function); } auto Signature = std::make_unique(); if (parseSignature(Signature.get())) return true; TC.funcDecl(*Signature); WasmSym->setSignature(Signature.get()); addSignature(std::move(Signature)); WasmSym->setType(wasm::WASM_SYMBOL_TYPE_FUNCTION); TOut.emitFunctionType(WasmSym); // TODO: backend also calls TOut.emitIndIdx, but that is not implemented. return expect(AsmToken::EndOfStatement, "EOL"); } if (DirectiveID.getString() == ".export_name") { auto SymName = expectIdent(); if (SymName.empty()) return true; if (expect(AsmToken::Comma, ",")) return true; auto ExportName = expectIdent(); auto WasmSym = cast(Ctx.getOrCreateSymbol(SymName)); WasmSym->setExportName(storeName(ExportName)); TOut.emitExportName(WasmSym, ExportName); } if (DirectiveID.getString() == ".import_module") { auto SymName = expectIdent(); if (SymName.empty()) return true; if (expect(AsmToken::Comma, ",")) return true; auto ImportModule = expectIdent(); auto WasmSym = cast(Ctx.getOrCreateSymbol(SymName)); WasmSym->setImportModule(storeName(ImportModule)); TOut.emitImportModule(WasmSym, ImportModule); } if (DirectiveID.getString() == ".import_name") { auto SymName = expectIdent(); if (SymName.empty()) return true; if (expect(AsmToken::Comma, ",")) return true; auto ImportName = expectIdent(); auto WasmSym = cast(Ctx.getOrCreateSymbol(SymName)); WasmSym->setImportName(storeName(ImportName)); TOut.emitImportName(WasmSym, ImportName); } if (DirectiveID.getString() == ".tagtype") { auto SymName = expectIdent(); if (SymName.empty()) return true; auto WasmSym = cast(Ctx.getOrCreateSymbol(SymName)); auto Signature = std::make_unique(); if (parseRegTypeList(Signature->Params)) return true; WasmSym->setSignature(Signature.get()); addSignature(std::move(Signature)); WasmSym->setType(wasm::WASM_SYMBOL_TYPE_TAG); TOut.emitTagType(WasmSym); // TODO: backend also calls TOut.emitIndIdx, but that is not implemented. return expect(AsmToken::EndOfStatement, "EOL"); } if (DirectiveID.getString() == ".local") { if (CurrentState != FunctionStart) return error(".local directive should follow the start of a function: ", Lexer.getTok()); SmallVector Locals; if (parseRegTypeList(Locals)) return true; TC.localDecl(Locals); TOut.emitLocal(Locals); CurrentState = FunctionLocals; return expect(AsmToken::EndOfStatement, "EOL"); } if (DirectiveID.getString() == ".int8" || DirectiveID.getString() == ".int16" || DirectiveID.getString() == ".int32" || DirectiveID.getString() == ".int64") { if (CheckDataSection()) return true; const MCExpr *Val; SMLoc End; if (Parser.parseExpression(Val, End)) return error("Cannot parse .int expression: ", Lexer.getTok()); size_t NumBits = 0; DirectiveID.getString().drop_front(4).getAsInteger(10, NumBits); Out.emitValue(Val, NumBits / 8, End); return expect(AsmToken::EndOfStatement, "EOL"); } if (DirectiveID.getString() == ".asciz") { if (CheckDataSection()) return true; std::string S; if (Parser.parseEscapedString(S)) return error("Cannot parse string constant: ", Lexer.getTok()); Out.emitBytes(StringRef(S.c_str(), S.length() + 1)); return expect(AsmToken::EndOfStatement, "EOL"); } return true; // We didn't process this directive. } // Called either when the first instruction is parsed of the function ends. void ensureLocals(MCStreamer &Out) { if (CurrentState == FunctionStart) { // We haven't seen a .local directive yet. The streamer requires locals to // be encoded as a prelude to the instructions, so emit an empty list of // locals here. auto &TOut = reinterpret_cast( *Out.getTargetStreamer()); TOut.emitLocal(SmallVector()); CurrentState = FunctionLocals; } } bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned & /*Opcode*/, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override { MCInst Inst; Inst.setLoc(IDLoc); FeatureBitset MissingFeatures; unsigned MatchResult = MatchInstructionImpl( Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm); switch (MatchResult) { case Match_Success: { ensureLocals(Out); // Fix unknown p2align operands. auto Align = WebAssembly::GetDefaultP2AlignAny(Inst.getOpcode()); if (Align != -1U) { auto &Op0 = Inst.getOperand(0); if (Op0.getImm() == -1) Op0.setImm(Align); } if (is64) { // Upgrade 32-bit loads/stores to 64-bit. These mostly differ by having // an offset64 arg instead of offset32, but to the assembler matcher // they're both immediates so don't get selected for. auto Opc64 = WebAssembly::getWasm64Opcode( static_cast(Inst.getOpcode())); if (Opc64 >= 0) { Inst.setOpcode(Opc64); } } if (!SkipTypeCheck && TC.typeCheck(IDLoc, Inst, Operands)) return true; Out.emitInstruction(Inst, getSTI()); if (CurrentState == EndFunction) { onEndOfFunction(IDLoc); } else { CurrentState = Instructions; } return false; } case Match_MissingFeature: { assert(MissingFeatures.count() > 0 && "Expected missing features"); SmallString<128> Message; raw_svector_ostream OS(Message); OS << "instruction requires:"; for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) if (MissingFeatures.test(i)) OS << ' ' << getSubtargetFeatureName(i); return Parser.Error(IDLoc, Message); } case Match_MnemonicFail: return Parser.Error(IDLoc, "invalid instruction"); case Match_NearMisses: return Parser.Error(IDLoc, "ambiguous instruction"); case Match_InvalidTiedOperand: case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0ULL) { if (ErrorInfo >= Operands.size()) return Parser.Error(IDLoc, "too few operands for instruction"); ErrorLoc = Operands[ErrorInfo]->getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Parser.Error(ErrorLoc, "invalid operand for instruction"); } } llvm_unreachable("Implement any new match types added!"); } void doBeforeLabelEmit(MCSymbol *Symbol) override { // Code below only applies to labels in text sections. auto CWS = cast(getStreamer().getCurrentSection().first); if (!CWS || !CWS->getKind().isText()) return; auto WasmSym = cast(Symbol); // Unlike other targets, we don't allow data in text sections (labels // declared with .type @object). if (WasmSym->getType() == wasm::WASM_SYMBOL_TYPE_DATA) { Parser.Error(Parser.getTok().getLoc(), "Wasm doesn\'t support data symbols in text sections"); return; } // Start a new section for the next function automatically, since our // object writer expects each function to have its own section. This way // The user can't forget this "convention". auto SymName = Symbol->getName(); if (SymName.startswith(".L")) return; // Local Symbol. // TODO: If the user explicitly creates a new function section, we ignore // its name when we create this one. It would be nice to honor their // choice, while still ensuring that we create one if they forget. // (that requires coordination with WasmAsmParser::parseSectionDirective) auto SecName = ".text." + SymName; auto *Group = CWS->getGroup(); // If the current section is a COMDAT, also set the flag on the symbol. // TODO: Currently the only place that the symbols' comdat flag matters is // for importing comdat functions. But there's no way to specify that in // assembly currently. if (Group) WasmSym->setComdat(true); auto *WS = getContext().getWasmSection(SecName, SectionKind::getText(), 0, Group, MCContext::GenericSectionID, nullptr); getStreamer().switchSection(WS); // Also generate DWARF for this section if requested. if (getContext().getGenDwarfForAssembly()) getContext().addGenDwarfSection(WS); } void onEndOfFunction(SMLoc ErrorLoc) { if (!SkipTypeCheck) TC.endOfFunction(ErrorLoc); // Reset the type checker state. TC.Clear(); // Automatically output a .size directive, so it becomes optional for the // user. if (!LastFunctionLabel) return; auto TempSym = getContext().createLinkerPrivateTempSymbol(); getStreamer().emitLabel(TempSym); auto Start = MCSymbolRefExpr::create(LastFunctionLabel, getContext()); auto End = MCSymbolRefExpr::create(TempSym, getContext()); auto Expr = MCBinaryExpr::create(MCBinaryExpr::Sub, End, Start, getContext()); getStreamer().emitELFSize(LastFunctionLabel, Expr); } void onEndOfFile() override { ensureEmptyNestingStack(); } }; } // end anonymous namespace // Force static initialization. extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeWebAssemblyAsmParser() { RegisterMCAsmParser X(getTheWebAssemblyTarget32()); RegisterMCAsmParser Y(getTheWebAssemblyTarget64()); } #define GET_REGISTER_MATCHER #define GET_SUBTARGET_FEATURE_NAME #define GET_MATCHER_IMPLEMENTATION #include "WebAssemblyGenAsmMatcher.inc" StringRef GetMnemonic(unsigned Opc) { // FIXME: linear search! for (auto &ME : MatchTable0) { if (ME.Opcode == Opc) { return ME.getMnemonic(); } } assert(false && "mnemonic not found"); return StringRef(); }