//===-- VEInstrInfo.td - Target Description for VE Target -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the VE instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "VEInstrFormats.td" //===----------------------------------------------------------------------===// // Helper functions to retrieve target constants. // // VE instructions have a space to hold following immediates // $sy has 7 bits to represent simm7, uimm7, simm7fp, or uimm7fp. // $sz also has 7 bits to represent mimm or mimmfp. // $disp has 32 bits to represent simm32. // // The mimm is a special immediate value of sequential bit stream of 0 or 1. // `(m)0`: Represents 0 sequence then 1 sequence like 0b00...0011...11, // where `m` is equal to the number of leading zeros. // `(m)1`: Represents 1 sequence then 0 sequence like 0b11...1100...00, // where `m` is equal to the number of leading ones. // Each bit of mimm's 7 bits is used like below: // bit 6 : If `(m)0`, this bit is 1. Otherwise, this bit is 0. // bit 5-0: Represents the m (0-63). // Use `!add(m, 64)` to generates an immediate value in pattern matchings. // // The floating point immediate value is not something like compacted value. // It is simple integer representation, so it works rarely. // e.g. 0.0 (0x00000000) or -2.0 (0xC0000000=(2)1). //===----------------------------------------------------------------------===// def ULO7 : SDNodeXFormgetTargetConstant(N->getZExtValue() & 0x7f, SDLoc(N), MVT::i32); }]>; def LO7 : SDNodeXFormgetTargetConstant(SignExtend32(N->getSExtValue(), 7), SDLoc(N), MVT::i32); }]>; def MIMM : SDNodeXFormgetTargetConstant(val2MImm(getImmVal(N)), SDLoc(N), MVT::i32); }]>; def LO32 : SDNodeXFormgetTargetConstant(Lo_32(N->getZExtValue()), SDLoc(N), MVT::i32); }]>; def HI32 : SDNodeXFormgetTargetConstant(Hi_32(N->getZExtValue()), SDLoc(N), MVT::i32); }]>; def LO7FP : SDNodeXFormgetTargetConstant(SignExtend32(Val, 7), SDLoc(N), MVT::i32); }]>; def MIMMFP : SDNodeXFormgetTargetConstant(val2MImm(getFpImmVal(N)), SDLoc(N), MVT::i32); }]>; def LOFP32 : SDNodeXFormgetTargetConstant(Lo_32(getFpImmVal(N) & 0xffffffff), SDLoc(N), MVT::i32); }]>; def HIFP32 : SDNodeXFormgetTargetConstant(Hi_32(getFpImmVal(N)), SDLoc(N), MVT::i32); }]>; def icond2cc : SDNodeXFormget()); return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32); }]>; def icond2ccSwap : SDNodeXFormget()); VECC::CondCode VECC = intCondCode2Icc(CC); return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32); }]>; def fcond2cc : SDNodeXFormget()); return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32); }]>; def fcond2ccSwap : SDNodeXFormget()); VECC::CondCode VECC = fpCondCode2Fcc(CC); return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32); }]>; def CCOP : SDNodeXFormgetTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32); }]>; //===----------------------------------------------------------------------===// // Feature predicates. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction Pattern Stuff //===----------------------------------------------------------------------===// // zero def ZeroAsmOperand : AsmOperandClass { let Name = "Zero"; } def zero : Operand, PatLeaf<(imm), [{ return N->getSExtValue() == 0; }]> { let ParserMatchClass = ZeroAsmOperand; } // uimm0to2 - Special immediate value represents 0, 1, and 2. def UImm0to2AsmOperand : AsmOperandClass { let Name = "UImm0to2"; } def uimm0to2 : Operand, PatLeaf<(imm), [{ return N->getZExtValue() < 3; }], ULO7> { let ParserMatchClass = UImm0to2AsmOperand; } // uimm1 - Generic immediate value. def UImm1AsmOperand : AsmOperandClass { let Name = "UImm1"; } def uimm1 : Operand, PatLeaf<(imm), [{ return isUInt<1>(N->getZExtValue()); }], ULO7> { let ParserMatchClass = UImm1AsmOperand; } // uimm2 - Generic immediate value. def UImm2AsmOperand : AsmOperandClass { let Name = "UImm2"; } def uimm2 : Operand, PatLeaf<(imm), [{ return isUInt<2>(N->getZExtValue()); }], ULO7> { let ParserMatchClass = UImm2AsmOperand; } // uimm3 - Generic immediate value. def UImm3AsmOperand : AsmOperandClass { let Name = "UImm3"; } def uimm3 : Operand, PatLeaf<(imm), [{ return isUInt<3>(N->getZExtValue()); }], ULO7> { let ParserMatchClass = UImm3AsmOperand; } // uimm4 - Generic immediate value. def UImm4AsmOperand : AsmOperandClass { let Name = "UImm4"; } def uimm4 : Operand, PatLeaf<(imm), [{ return isUInt<4>(N->getZExtValue()); }], ULO7> { let ParserMatchClass = UImm4AsmOperand; } // uimm6 - Generic immediate value. def UImm6AsmOperand : AsmOperandClass { let Name = "UImm6"; } def uimm6 : Operand, PatLeaf<(imm), [{ return isUInt<6>(N->getZExtValue()); }], ULO7> { let ParserMatchClass = UImm6AsmOperand; } // uimm7 - Generic immediate value. def UImm7AsmOperand : AsmOperandClass { let Name = "UImm7"; } def uimm7 : Operand, PatLeaf<(imm), [{ return isUInt<7>(N->getZExtValue()); }], ULO7> { let ParserMatchClass = UImm7AsmOperand; } // simm7 - Generic immediate value. def SImm7AsmOperand : AsmOperandClass { let Name = "SImm7"; } def simm7 : Operand, PatLeaf<(imm), [{ return isInt<7>(N->getSExtValue()); }], LO7> { let ParserMatchClass = SImm7AsmOperand; let DecoderMethod = "DecodeSIMM7"; } // mimm - Special immediate value of sequential bit stream of 0 or 1. def MImmAsmOperand : AsmOperandClass { let Name = "MImm"; let ParserMethod = "parseMImmOperand"; } def mimm : Operand, PatLeaf<(imm), [{ return isMImmVal(getImmVal(N)); }], MIMM> { let ParserMatchClass = MImmAsmOperand; let PrintMethod = "printMImmOperand"; } // zerofp - Generic fp immediate zero value. def zerofp : Operand, PatLeaf<(fpimm), [{ return getFpImmVal(N) == 0; }]> { let ParserMatchClass = ZeroAsmOperand; } // simm7fp - Generic fp immediate value. def simm7fp : Operand, PatLeaf<(fpimm), [{ return isInt<7>(getFpImmVal(N)); }], LO7FP> { let ParserMatchClass = SImm7AsmOperand; let DecoderMethod = "DecodeSIMM7"; } // mimmfp - Special fp immediate value of sequential bit stream of 0 or 1. def mimmfp : Operand, PatLeaf<(fpimm), [{ return isMImmVal(getFpImmVal(N)); }], MIMMFP> { let ParserMatchClass = MImmAsmOperand; let PrintMethod = "printMImmOperand"; } // mimmfp32 - 32 bit width mimmfp // Float value places at higher bits, so ignore lower 32 bits. def mimmfp32 : Operand, PatLeaf<(fpimm), [{ return isMImm32Val(getFpImmVal(N) >> 32); }], MIMMFP> { let ParserMatchClass = MImmAsmOperand; let PrintMethod = "printMImmOperand"; } // other generic patterns to use in pattern matchings def simm32 : PatLeaf<(imm), [{ return isInt<32>(N->getSExtValue()); }]>; def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>; def lomsbzero : PatLeaf<(imm), [{ return (N->getZExtValue() & 0x80000000) == 0; }]>; def lozero : PatLeaf<(imm), [{ return (N->getZExtValue() & 0xffffffff) == 0; }]>; def fplomsbzero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0x80000000) == 0; }]>; def fplozero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0xffffffff) == 0; }]>; def nonzero : PatLeaf<(imm), [{ return N->getSExtValue() !=0 ; }]>; def CCSIOp : PatLeaf<(cond), [{ switch (N->get()) { default: return true; case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: return false; } }]>; def CCUIOp : PatLeaf<(cond), [{ switch (N->get()) { default: return true; case ISD::SETLT: case ISD::SETLE: case ISD::SETGT: case ISD::SETGE: return false; } }]>; //===----------------------------------------------------------------------===// // Addressing modes. // SX-Aurora has following fields. // sz: register or 0 // sy: register or immediate (-64 to 63) // disp: immediate (-2147483648 to 2147483647) // // There are two kinds of instruction. // ASX format uses sz + sy + disp. // AS format uses sz + disp. // // Moreover, there are four kinds of assembly instruction format. // ASX format uses "disp", "disp(, sz)", "disp(sy)", "disp(sy, sz)", // "(, sz)", "(sy)", or "(sy, sz)". // AS format uses "disp", "disp(, sz)", or "(, sz)" in general. // AS format in RRM format uses "disp", "disp(sz)", or "(sz)". // AS format in RRM format for host memory access uses "sz", "(sz)", // or "disp(sz)". // // We defined them below. // // ASX format: // MEMrri, MEMrii, MEMzri, MEMzii // AS format: // MEMriASX, MEMziASX : simple AS format // MEMriRRM, MEMziRRM : AS format in RRM format // MEMriHM, MEMziHM : AS format in RRM format for host memory access //===----------------------------------------------------------------------===// // DAG selections for both ASX and AS formats. def ADDRrri : ComplexPattern; def ADDRrii : ComplexPattern; def ADDRzri : ComplexPattern; def ADDRzii : ComplexPattern; def ADDRri : ComplexPattern; def ADDRzi : ComplexPattern; // ASX format. def VEMEMrriAsmOperand : AsmOperandClass { let Name = "MEMrri"; let ParserMethod = "parseMEMOperand"; } def VEMEMriiAsmOperand : AsmOperandClass { let Name = "MEMrii"; let ParserMethod = "parseMEMOperand"; } def VEMEMzriAsmOperand : AsmOperandClass { let Name = "MEMzri"; let ParserMethod = "parseMEMOperand"; } def VEMEMziiAsmOperand : AsmOperandClass { let Name = "MEMzii"; let ParserMethod = "parseMEMOperand"; } // ASX format uses single assembly instruction format. def MEMrri : Operand { let PrintMethod = "printMemASXOperand"; let MIOperandInfo = (ops ptr_rc, ptr_rc, i64imm); let ParserMatchClass = VEMEMrriAsmOperand; } def MEMrii : Operand { let PrintMethod = "printMemASXOperand"; let MIOperandInfo = (ops ptr_rc, i32imm, i64imm); let ParserMatchClass = VEMEMriiAsmOperand; } def MEMzri : Operand { let PrintMethod = "printMemASXOperand"; let MIOperandInfo = (ops i32imm /* = 0 */, ptr_rc, i64imm); let ParserMatchClass = VEMEMzriAsmOperand; } def MEMzii : Operand { let PrintMethod = "printMemASXOperand"; let MIOperandInfo = (ops i32imm /* = 0 */, i32imm, i64imm); let ParserMatchClass = VEMEMziiAsmOperand; } // AS format. def VEMEMriAsmOperand : AsmOperandClass { let Name = "MEMri"; let ParserMethod = "parseMEMAsOperand"; } def VEMEMziAsmOperand : AsmOperandClass { let Name = "MEMzi"; let ParserMethod = "parseMEMAsOperand"; } // AS format uses multiple assembly instruction formats // 1. AS generic assembly instruction format: def MEMriASX : Operand { let PrintMethod = "printMemASOperandASX"; let MIOperandInfo = (ops ptr_rc, i32imm); let ParserMatchClass = VEMEMriAsmOperand; } def MEMziASX : Operand { let PrintMethod = "printMemASOperandASX"; let MIOperandInfo = (ops i32imm /* = 0 */, i32imm); let ParserMatchClass = VEMEMziAsmOperand; } // 2. AS RRM style assembly instruction format: def MEMriRRM : Operand { let PrintMethod = "printMemASOperandRRM"; let MIOperandInfo = (ops ptr_rc, i32imm); let ParserMatchClass = VEMEMriAsmOperand; } def MEMziRRM : Operand { let PrintMethod = "printMemASOperandRRM"; let MIOperandInfo = (ops i32imm /* = 0 */, i32imm); let ParserMatchClass = VEMEMziAsmOperand; } // 3. AS HM style assembly instruction format: def MEMriHM : Operand { let PrintMethod = "printMemASOperandHM"; let MIOperandInfo = (ops ptr_rc, i32imm); let ParserMatchClass = VEMEMriAsmOperand; } def MEMziHM : Operand { let PrintMethod = "printMemASOperandHM"; let MIOperandInfo = (ops i32imm /* = 0 */, i32imm); let ParserMatchClass = VEMEMziAsmOperand; } //===----------------------------------------------------------------------===// // Other operands. //===----------------------------------------------------------------------===// // Branch targets have OtherVT type. def brtarget32 : Operand { let EncoderMethod = "getBranchTargetOpValue"; let DecoderMethod = "DecodeSIMM32"; } // Operand for printing out a condition code. def CCOpAsmOperand : AsmOperandClass { let Name = "CCOp"; } def CCOp : Operand, ImmLeaf= 0 && Imm < 22; }], CCOP> { let PrintMethod = "printCCOperand"; let DecoderMethod = "DecodeCCOperand"; let EncoderMethod = "getCCOpValue"; let ParserMatchClass = CCOpAsmOperand; } // Operand for a rounding mode code. def RDOpAsmOperand : AsmOperandClass { let Name = "RDOp"; } def RDOp : Operand { let PrintMethod = "printRDOperand"; let DecoderMethod = "DecodeRDOperand"; let EncoderMethod = "getRDOpValue"; let ParserMatchClass = RDOpAsmOperand; } def VEhi : SDNode<"VEISD::Hi", SDTIntUnaryOp>; def VElo : SDNode<"VEISD::Lo", SDTIntUnaryOp>; // These are target-independent nodes, but have target-specific formats. def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64>, SDTCisVT<1, i64> ]>; def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i64>, SDTCisVT<1, i64> ]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i64>]>; def call : SDNode<"VEISD::CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def retglue : SDNode<"VEISD::RET_GLUE", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def getGOT : Operand; // Comparisons def cmpi : SDNode<"VEISD::CMPI", SDTIntBinOp>; def cmpu : SDNode<"VEISD::CMPU", SDTIntBinOp>; def cmpf : SDNode<"VEISD::CMPF", SDTFPBinOp>; def SDT_Cmpq : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>, SDTCisFP<0>, SDTCisFP<2>]>; def cmpq : SDNode<"VEISD::CMPQ", SDT_Cmpq>; // res = cmov cmp, t, f, cond def SDT_Cmov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>, SDTCisVT<4, i32>]>; def cmov : SDNode<"VEISD::CMOV", SDT_Cmov>; def VEeh_sjlj_setjmp: SDNode<"VEISD::EH_SJLJ_SETJMP", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>, [SDNPHasChain, SDNPSideEffect]>; def VEeh_sjlj_longjmp: SDNode<"VEISD::EH_SJLJ_LONGJMP", SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>, [SDNPHasChain, SDNPSideEffect]>; def VEeh_sjlj_setup_dispatch: SDNode<"VEISD::EH_SJLJ_SETUP_DISPATCH", SDTypeProfile<0, 0, []>, [SDNPHasChain, SDNPSideEffect]>; // GETFUNPLT for PIC def GetFunPLT : SDNode<"VEISD::GETFUNPLT", SDTIntUnaryOp>; // GETTLSADDR for TLS def GetTLSAddr : SDNode<"VEISD::GETTLSADDR", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; // GETSTACKTOP def GetStackTop : SDNode<"VEISD::GETSTACKTOP", SDTNone, [SDNPHasChain, SDNPSideEffect]>; // TS1AM def SDT_TS1AM : SDTypeProfile<1, 3, [SDTCisSameAs<0, 3>, SDTCisPtrTy<1>, SDTCisVT<2, i32>, SDTCisInt<3>]>; def ts1am : SDNode<"VEISD::TS1AM", SDT_TS1AM, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; //===----------------------------------------------------------------------===// // VE Flag Conditions //===----------------------------------------------------------------------===// // Note that these values must be kept in sync with the CCOp::CondCode enum // values. class CC_VAL : PatLeaf<(i32 N)>; def CC_IG : CC_VAL< 0>; // Greater def CC_IL : CC_VAL< 1>; // Less def CC_INE : CC_VAL< 2>; // Not Equal def CC_IEQ : CC_VAL< 3>; // Equal def CC_IGE : CC_VAL< 4>; // Greater or Equal def CC_ILE : CC_VAL< 5>; // Less or Equal def CC_AF : CC_VAL< 6>; // Always false def CC_G : CC_VAL< 7>; // Greater def CC_L : CC_VAL< 8>; // Less def CC_NE : CC_VAL< 9>; // Not Equal def CC_EQ : CC_VAL<10>; // Equal def CC_GE : CC_VAL<11>; // Greater or Equal def CC_LE : CC_VAL<12>; // Less or Equal def CC_NUM : CC_VAL<13>; // Number def CC_NAN : CC_VAL<14>; // NaN def CC_GNAN : CC_VAL<15>; // Greater or NaN def CC_LNAN : CC_VAL<16>; // Less or NaN def CC_NENAN : CC_VAL<17>; // Not Equal or NaN def CC_EQNAN : CC_VAL<18>; // Equal or NaN def CC_GENAN : CC_VAL<19>; // Greater or Equal or NaN def CC_LENAN : CC_VAL<20>; // Less or Equal or NaN def CC_AT : CC_VAL<21>; // Always true //===----------------------------------------------------------------------===// // VE Rounding Mode //===----------------------------------------------------------------------===// // Note that these values must be kept in sync with the VERD::RoundingMode enum // values. class RD_VAL : PatLeaf<(i32 N)>; def RD_NONE : RD_VAL< 0>; // According to PSW def RD_RZ : RD_VAL< 8>; // Round toward Zero def RD_RP : RD_VAL< 9>; // Round toward Plus infinity def RD_RM : RD_VAL<10>; // Round toward Minus infinity def RD_RN : RD_VAL<11>; // Round to Nearest (ties to Even) def RD_RA : RD_VAL<12>; // Round to Nearest (ties to Away) //===----------------------------------------------------------------------===// // VE Multiclasses for common instruction formats //===----------------------------------------------------------------------===// // Multiclass for generic RR type instructions let hasSideEffects = 0 in multiclass RRbmopc, RegisterClass RCo, ValueType Tyo, RegisterClass RCi, ValueType Tyi, SDPatternOperator OpNode = null_frag, Operand immOp = simm7, Operand mOp = mimm, bit MoveImm = 0> { def rr : RR; // VE calculates (OpNode $sy, $sz), but llvm requires to have immediate // in RHS, so we use following definition. let cy = 0 in def ri : RR; let cz = 0 in def rm : RR; let cy = 0, cz = 0 in def im : RR { // VE uses ORim as a move immediate instruction, so declare it here. // An instruction declared as MoveImm will be optimized in FoldImmediate // later. let isMoveImm = MoveImm; } } // Multiclass for non-commutative RR type instructions let hasSideEffects = 0 in multiclass RRNCbmopc, RegisterClass RCo, ValueType Tyo, RegisterClass RCi, ValueType Tyi, SDPatternOperator OpNode = null_frag, Operand immOp = simm7, Operand mOp = mimm> { def rr : RR; let cy = 0 in def ir : RR; let cz = 0 in def rm : RR; let cy = 0, cz = 0 in def im : RR; } // Generic RR multiclass with 2 arguments. // e.g. ADDUL, ADDSWSX, ADDSWZX, and etc. multiclass RRmopc, RegisterClass RC, ValueType Ty, SDPatternOperator OpNode = null_frag, Operand immOp = simm7, Operand mOp = mimm, bit MoveImm = 0> : RRbm; // Generic RR multiclass for non-commutative instructions with 2 arguments. // e.g. SUBUL, SUBUW, SUBSWSX, and etc. multiclass RRNCmopc, RegisterClass RC, ValueType Ty, SDPatternOperator OpNode = null_frag, Operand immOp = simm7, Operand mOp = mimm> : RRNCbm; // Generic RR multiclass for floating point instructions with 2 arguments. // e.g. FADDD, FADDS, FSUBD, and etc. multiclass RRFmopc, RegisterClass RC, ValueType Ty, SDPatternOperator OpNode = null_frag, Operand immOp = simm7fp, Operand mOp = mimmfp> : RRNCbm; // Generic RR multiclass for shift instructions with 2 arguments. // e.g. SLL, SRL, SLAWSX, and etc. let hasSideEffects = 0 in multiclass RRImopc, RegisterClass RC, ValueType Ty, SDPatternOperator OpNode = null_frag> { def rr : RR; let cz = 0 in def mr : RR; let cy = 0 in def ri : RR; let cy = 0, cz = 0 in def mi : RR; } // Special RR multiclass for 128 bits shift left instruction. // e.g. SLD let Constraints = "$hi = $sx", DisableEncoding = "$hi", hasSideEffects = 0 in multiclass RRILDmopc, RegisterClass RC> { def rrr : RR; let cz = 0 in def rmr : RR; let cy = 0 in def rri : RR; let cy = 0, cz = 0 in def rmi : RR; } // Special RR multiclass for 128 bits shift right instruction. // e.g. SRD let Constraints = "$low = $sx", DisableEncoding = "$low", hasSideEffects = 0 in multiclass RRIRDmopc, RegisterClass RC> { def rrr : RR; let cz = 0 in def mrr : RR; let cy = 0 in def rri : RR; let cy = 0, cz = 0 in def mri : RR; } // Generic RR multiclass with an argument. // e.g. LDZ, PCNT, and BRV let cy = 0, sy = 0, hasSideEffects = 0 in multiclass RRI1mopc, RegisterClass RC, ValueType Ty, SDPatternOperator OpNode = null_frag> { def r : RR; let cz = 0 in def m : RR; } // Special RR multiclass for MRG instruction. // e.g. MRG let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0 in multiclass RRMRGmopc, RegisterClass RC> { def rr : RR; let cy = 0 in def ir : RR; let cz = 0 in def rm : RR; let cy = 0, cz = 0 in def im : RR; } // Special RR multiclass for BSWP instruction. // e.g. BSWP let hasSideEffects = 0 in multiclass RRSWPmopc, RegisterClass RC, ValueType Ty, SDPatternOperator OpNode = null_frag> { let cy = 0 in def ri : RR; let cy = 0, cz = 0 in def mi : RR; } // Multiclass for CMOV instructions. // e.g. CMOVL, CMOVW, CMOVD, and etc. let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0, cfw = ? in multiclass RRCMOVmopc, RegisterClass RC, ValueType Ty, SDPatternOperator OpNode = null_frag, Operand immOp = simm7> { def rr : RR; let cy = 0 in def ir : RR; let cz = 0 in def rm : RR; let cy = 0, cz = 0 in def im : RR; } // Multiclass for floating point conversion instructions. // e.g. CVTWDSX, CVTWDZX, CVTWSSX, and etc. // sz{3-0} = rounding mode let cz = 0, hasSideEffects = 0 in multiclass CVTRDm opc, RegisterClass RCo, RegisterClass RCi> { def r : RR { bits<4> rd; let sz{6-4} = 0; let sz{3-0} = rd; } let cy = 0 in def i : RR { bits<4> rd; let sz{6-4} = 0; let sz{3-0} = rd; } } // Multiclass for floating point conversion instructions. // e.g. CVTDW, CVTSW, CVTDL, and etc. let cz = 0, sz = 0, hasSideEffects = 0 in multiclass CVTm opc, RegisterClass RCo, ValueType Tyo, RegisterClass RCi, ValueType Tyi, SDPatternOperator OpNode = null_frag> { def r : RR; let cy = 0 in def i : RR; } // Multiclass for PFCH instructions. // e.g. PFCH let sx = 0, hasSideEffects = 0 in multiclass PFCHmopc> { def rri : RM; let cy = 0 in def rii : RM; let cz = 0 in def zri : RM; let cy = 0, cz = 0 in def zii : RM; } // Multiclass for CAS instructions. // e.g. TS1AML, TS1AMW, TS2AM, and etc. let Constraints = "$sx = $sd", DisableEncoding = "$sd", mayStore=1, mayLoad = 1, hasSideEffects = 0 in multiclass RRCAStgmopc, RegisterClass RC, ValueType Ty, Operand immOp, Operand MEM, ComplexPattern ADDR, SDPatternOperator OpNode = null_frag> { def r : RRM; let cy = 0 in def i : RRM; } multiclass RRCASmopc, RegisterClass RC, ValueType Ty, Operand immOp, SDPatternOperator OpNode = null_frag> { defm ri : RRCAStgm; let cz = 0 in defm zi : RRCAStgm; } // Multiclass for branch instructions // e.g. BCFL, BCFW, BCFD, and etc. let isBranch = 1, isTerminator = 1, isIndirectBranch = 1, hasSideEffects = 0 in multiclass BCbpfm opc, dag cond, Operand ADDR> { let bpf = 0 /* NONE */ in def "" : CF; let bpf = 2 /* NOT TAKEN */ in def _nt : CF; let bpf = 3 /* TAKEN */ in def _t : CF; } multiclass BCtgm opc, dag cond> { defm ri : BCbpfm; let cz = 0 in defm zi : BCbpfm; } multiclass BCm opc, RegisterClass RC, Operand immOp> { let DecoderMethod = "DecodeBranchCondition" in defm r : BCtgm; let DecoderMethod = "DecodeBranchCondition", cy = 0 in defm i : BCtgm; let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0, cond = 15 /* AT */, isBarrier = 1 in defm a : BCtgm; let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0, cond = 0 /* AF */ in defm na : BCtgm; } // Multiclass for relative branch instructions // e.g. BRCFL, BRCFW, BRCFD, and etc. let isBranch = 1, isTerminator = 1, hasSideEffects = 0 in multiclass BCRbpfm opc, dag cond> { let bpf = 0 /* NONE */ in def "" : CF; let bpf = 2 /* NOT TAKEN */ in def _nt : CF; let bpf = 3 /* TAKEN */ in def _t : CF; } multiclass BCRm opc, RegisterClass RC, Operand immOp, Operand zeroOp> { defm rr : BCRbpfm; let cy = 0 in defm ir : BCRbpfm; let cz = 0 in defm rz : BCRbpfm; let cy = 0, cz = 0 in defm iz : BCRbpfm; let cy = 0, sy = 0, cz = 0, sz = 0, cond = 15 /* AT */, isBarrier = 1 in defm a : BCRbpfm; let cy = 0, sy = 0, cz = 0, sz = 0, cond = 0 /* AF */ in defm na : BCRbpfm; } // Multiclass for communication register instructions. // e.g. LCR let hasSideEffects = 1 in multiclass LOADCRmopc, RegisterClass RC> { def rr : RR; let cy = 0 in def ir : RR; let cz = 0 in def rz : RR; let cy = 0, cz = 0 in def iz : RR; } // Multiclass for communication register instructions. // e.g. SCR let hasSideEffects = 1 in multiclass STORECRmopc, RegisterClass RC> { def rrr : RR; let cy = 0 in def irr : RR; let cz = 0 in def rzr : RR; let cy = 0, cz = 0 in def izr : RR; } let hasSideEffects = 1, Constraints = "$sx = $sx_in", DisableEncoding = "$sx_in" in multiclass TSCRmopc, RegisterClass RC> { def rrr : RR; let cy = 0 in def irr : RR; let cz = 0 in def rzr : RR; let cy = 0, cz = 0 in def izr : RR; } // Multiclass for communication register instructions. // e.g. FIDCR let cz = 0, hasSideEffects = 1 in multiclass FIDCRmopc, RegisterClass RC> { def ri : RR; let cy = 0 in def ii : RR; } // Multiclass for LHM instruction. let mayLoad = 1, hasSideEffects = 0 in multiclass LHMm opc, RegisterClass RC> { def ri : RRMHM; let cz = 0 in def zi : RRMHM; } // Multiclass for SHM instruction. let mayStore = 1, hasSideEffects = 0 in multiclass SHMm opc, RegisterClass RC> { def ri : RRMHM; let cz = 0 in def zi : RRMHM; } //===----------------------------------------------------------------------===// // Instructions // // Define all scalar instructions defined in SX-Aurora TSUBASA Architecture // Guide here. As those mnemonics, we use mnemonics defined in Vector Engine // Assembly Language Reference Manual. //===----------------------------------------------------------------------===// //----------------------------------------------------------------------------- // Section 8.2 - Load/Store instructions //----------------------------------------------------------------------------- // Multiclass for generic RM instructions multiclass RMmopc, RegisterClass RC, bit MoveImm = 0> { def rri : RM; let cy = 0 in def rii : RM; let cz = 0 in def zri : RM; let cy = 0, cz = 0 in def zii : RM { // VE uses LEAzii and LEASLzii as a move immediate instruction, so declare // it here. An instruction declared as MoveImm will be optimized in // FoldImmediate later. let isMoveImm = MoveImm; } } // Section 8.2.1 - LEA let isReMaterializable = 1, isAsCheapAsAMove = 1, DecoderMethod = "DecodeLoadI64" in { let cx = 0 in defm LEA : RMm<"lea", 0x06, I64, /* MoveImm */ 1>; let cx = 1 in defm LEASL : RMm<"lea.sl", 0x06, I64, /* MoveImm */ 1>; } // LEA basic patterns. // Need to be defined here to prioritize LEA over ADX. def : Pat<(iPTR ADDRrri:$addr), (LEArri MEMrri:$addr)>; def : Pat<(iPTR ADDRrii:$addr), (LEArii MEMrii:$addr)>; def : Pat<(add I64:$base, simm32:$disp), (LEArii $base, 0, (LO32 $disp))>; def : Pat<(add I64:$base, lozero:$disp), (LEASLrii $base, 0, (HI32 $disp))>; // Multiclass for load instructions. let mayLoad = 1, hasSideEffects = 0 in multiclass LOADm opc, RegisterClass RC, ValueType Ty, SDPatternOperator OpNode = null_frag> { def rri : RM; let cy = 0 in def rii : RM; let cz = 0 in def zri : RM; let cy = 0, cz = 0 in def zii : RM; } // Section 8.2.2 - LDS let DecoderMethod = "DecodeLoadI64" in defm LD : LOADm<"ld", 0x01, I64, i64, load>; def : Pat<(f64 (load ADDRrri:$addr)), (LDrri MEMrri:$addr)>; def : Pat<(f64 (load ADDRrii:$addr)), (LDrii MEMrii:$addr)>; def : Pat<(f64 (load ADDRzri:$addr)), (LDzri MEMzri:$addr)>; def : Pat<(f64 (load ADDRzii:$addr)), (LDzii MEMzii:$addr)>; // Section 8.2.3 - LDU let DecoderMethod = "DecodeLoadF32" in defm LDU : LOADm<"ldu", 0x02, F32, f32, load>; // Section 8.2.4 - LDL let DecoderMethod = "DecodeLoadI32" in defm LDLSX : LOADm<"ldl.sx", 0x03, I32, i32, load>; let cx = 1, DecoderMethod = "DecodeLoadI32" in defm LDLZX : LOADm<"ldl.zx", 0x03, I32, i32, load>; // Section 8.2.5 - LD2B let DecoderMethod = "DecodeLoadI32" in defm LD2BSX : LOADm<"ld2b.sx", 0x04, I32, i32, sextloadi16>; let cx = 1, DecoderMethod = "DecodeLoadI32" in defm LD2BZX : LOADm<"ld2b.zx", 0x04, I32, i32, zextloadi16>; // Section 8.2.6 - LD1B let DecoderMethod = "DecodeLoadI32" in defm LD1BSX : LOADm<"ld1b.sx", 0x05, I32, i32, sextloadi8>; let cx = 1, DecoderMethod = "DecodeLoadI32" in defm LD1BZX : LOADm<"ld1b.zx", 0x05, I32, i32, zextloadi8>; // LDQ pseudo instructions let mayLoad = 1, hasSideEffects = 0 in { def LDQrii : Pseudo<(outs F128:$dest), (ins MEMrii:$addr), "# pseudo ldq $dest, $addr", [(set f128:$dest, (load ADDRrii:$addr))]>; } // Multiclass for store instructions. let mayStore = 1 in multiclass STOREm opc, RegisterClass RC, ValueType Ty, SDPatternOperator OpNode = null_frag> { def rri : RM; let cy = 0 in def rii : RM; let cz = 0 in def zri : RM; let cy = 0, cz = 0 in def zii : RM; } // Section 8.2.7 - STS let DecoderMethod = "DecodeStoreI64" in defm ST : STOREm<"st", 0x11, I64, i64, store>; def : Pat<(store f64:$src, ADDRrri:$addr), (STrri MEMrri:$addr, $src)>; def : Pat<(store f64:$src, ADDRrii:$addr), (STrii MEMrii:$addr, $src)>; def : Pat<(store f64:$src, ADDRzri:$addr), (STzri MEMzri:$addr, $src)>; def : Pat<(store f64:$src, ADDRzii:$addr), (STzii MEMzii:$addr, $src)>; // Section 8.2.8 - STU let DecoderMethod = "DecodeStoreF32" in defm STU : STOREm<"stu", 0x12, F32, f32, store>; // Section 8.2.9 - STL let DecoderMethod = "DecodeStoreI32" in defm STL : STOREm<"stl", 0x13, I32, i32, store>; // Section 8.2.10 - ST2B let DecoderMethod = "DecodeStoreI32" in defm ST2B : STOREm<"st2b", 0x14, I32, i32, truncstorei16>; // Section 8.2.11 - ST1B let DecoderMethod = "DecodeStoreI32" in defm ST1B : STOREm<"st1b", 0x15, I32, i32, truncstorei8>; // STQ pseudo instructions let mayStore = 1, hasSideEffects = 0 in { def STQrii : Pseudo<(outs), (ins MEMrii:$addr, F128:$sx), "# pseudo stq $sx, $addr", [(store f128:$sx, ADDRrii:$addr)]>; } // Section 8.2.12 - DLDS let DecoderMethod = "DecodeLoadI64" in defm DLD : LOADm<"dld", 0x09, I64, i64, load>; // Section 8.2.13 - DLDU let DecoderMethod = "DecodeLoadF32" in defm DLDU : LOADm<"dldu", 0x0a, F32, f32, load>; // Section 8.2.14 - DLDL let DecoderMethod = "DecodeLoadI32" in defm DLDLSX : LOADm<"dldl.sx", 0x0b, I32, i32, load>; let cx = 1, DecoderMethod = "DecodeLoadI32" in defm DLDLZX : LOADm<"dldl.zx", 0x0b, I32, i32, load>; // Section 8.2.15 - PFCH let DecoderMethod = "DecodeASX" in defm PFCH : PFCHm<"pfch", 0x0c>; // Section 8.2.16 - TS1AM (Test and Set 1 AM) let DecoderMethod = "DecodeTS1AMI64" in defm TS1AML : RRCASm<"ts1am.l", 0x42, I64, i64, uimm7>; let DecoderMethod = "DecodeTS1AMI32", cx = 1 in defm TS1AMW : RRCASm<"ts1am.w", 0x42, I32, i32, uimm7>; // Section 8.2.17 - TS2AM (Test and Set 2 AM) let DecoderMethod = "DecodeTS1AMI64" in defm TS2AM : RRCASm<"ts2am", 0x43, I64, i64, uimm7>; // Section 8.2.18 - TS3AM (Test and Set 3 AM) let DecoderMethod = "DecodeTS1AMI64" in defm TS3AM : RRCASm<"ts3am", 0x52, I64, i64, uimm1>; // Section 8.2.19 - ATMAM (Atomic AM) let DecoderMethod = "DecodeTS1AMI64" in defm ATMAM : RRCASm<"atmam", 0x53, I64, i64, uimm0to2>; // Section 8.2.20 - CAS (Compare and Swap) let DecoderMethod = "DecodeCASI64" in defm CASL : RRCASm<"cas.l", 0x62, I64, i64, simm7, atomic_cmp_swap_64>; let DecoderMethod = "DecodeCASI32", cx = 1 in defm CASW : RRCASm<"cas.w", 0x62, I32, i32, simm7, atomic_cmp_swap_32>; //----------------------------------------------------------------------------- // Section 8.3 - Transfer Control Instructions //----------------------------------------------------------------------------- // Section 8.3.1 - FENCE (Fence) let hasSideEffects = 1 in { let avo = 1 in def FENCEI : RRFENCE<0x20, (outs), (ins), "fencei">; def FENCEM : RRFENCE<0x20, (outs), (ins uimm2:$kind), "fencem $kind"> { bits<2> kind; let lf = kind{1}; let sf = kind{0}; } def FENCEC : RRFENCE<0x20, (outs), (ins uimm3:$kind), "fencec $kind"> { bits<3> kind; let c2 = kind{2}; let c1 = kind{1}; let c0 = kind{0}; } } // Section 8.3.2 - SVOB (Set Vector Out-of-order memory access Boundary) let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in def SVOB : RR<0x30, (outs), (ins), "svob">; //----------------------------------------------------------------------------- // Section 8.4 - Fixed-point Operation Instructions //----------------------------------------------------------------------------- // Section 8.4.1 - ADD (Add) defm ADDUL : RRm<"addu.l", 0x48, I64, i64>; let cx = 1 in defm ADDUW : RRm<"addu.w", 0x48, I32, i32>; // Section 8.4.2 - ADS (Add Single) defm ADDSWSX : RRm<"adds.w.sx", 0x4A, I32, i32, add>; let cx = 1 in defm ADDSWZX : RRm<"adds.w.zx", 0x4A, I32, i32>; // Section 8.4.3 - ADX (Add) defm ADDSL : RRm<"adds.l", 0x59, I64, i64, add>; // Section 8.4.4 - SUB (Subtract) defm SUBUL : RRNCm<"subu.l", 0x58, I64, i64>; let cx = 1 in defm SUBUW : RRNCm<"subu.w", 0x58, I32, i32>; // Section 8.4.5 - SBS (Subtract Single) defm SUBSWSX : RRNCm<"subs.w.sx", 0x5A, I32, i32, sub>; let cx = 1 in defm SUBSWZX : RRNCm<"subs.w.zx", 0x5A, I32, i32>; // Section 8.4.6 - SBX (Subtract) defm SUBSL : RRNCm<"subs.l", 0x5B, I64, i64, sub>; // Section 8.4.7 - MPY (Multiply) defm MULUL : RRm<"mulu.l", 0x49, I64, i64>; let cx = 1 in defm MULUW : RRm<"mulu.w", 0x49, I32, i32>; // Section 8.4.8 - MPS (Multiply Single) defm MULSWSX : RRm<"muls.w.sx", 0x4B, I32, i32, mul>; let cx = 1 in defm MULSWZX : RRm<"muls.w.zx", 0x4B, I32, i32>; // Section 8.4.9 - MPX (Multiply) defm MULSL : RRm<"muls.l", 0x6E, I64, i64, mul>; // Section 8.4.10 - MPD (Multiply) defm MULSLW : RRbm<"muls.l.w", 0x6B, I64, i64, I32, i32>; // Section 8.4.11 - DIV (Divide) defm DIVUL : RRNCm<"divu.l", 0x6F, I64, i64, udiv>; let cx = 1 in defm DIVUW : RRNCm<"divu.w", 0x6F, I32, i32, udiv>; // Section 8.4.12 - DVS (Divide Single) defm DIVSWSX : RRNCm<"divs.w.sx", 0x7B, I32, i32, sdiv>; let cx = 1 in defm DIVSWZX : RRNCm<"divs.w.zx", 0x7B, I32, i32>; // Section 8.4.13 - DVX (Divide) defm DIVSL : RRNCm<"divs.l", 0x7F, I64, i64, sdiv>; // Section 8.4.14 - CMP (Compare) defm CMPUL : RRNCm<"cmpu.l", 0x55, I64, i64, cmpu>; let cx = 1 in defm CMPUW : RRNCm<"cmpu.w", 0x55, I32, i32, cmpu>; // Section 8.4.15 - CPS (Compare Single) defm CMPSWSX : RRNCm<"cmps.w.sx", 0x7A, I32, i32>; let cx = 1 in defm CMPSWZX : RRNCm<"cmps.w.zx", 0x7A, I32, i32, cmpi>; // Section 8.4.16 - CPX (Compare) defm CMPSL : RRNCm<"cmps.l", 0x6A, I64, i64, cmpi>; // Section 8.4.17 - CMS (Compare and Select Maximum/Minimum Single) // cx: sx/zx, cw: max/min defm MAXSWSX : RRm<"maxs.w.sx", 0x78, I32, i32, smax>; let cx = 1 in defm MAXSWZX : RRm<"maxs.w.zx", 0x78, I32, i32>; let cw = 1 in defm MINSWSX : RRm<"mins.w.sx", 0x78, I32, i32, smin>; let cx = 1, cw = 1 in defm MINSWZX : RRm<"mins.w.zx", 0x78, I32, i32>; // Section 8.4.18 - CMX (Compare and Select Maximum/Minimum) defm MAXSL : RRm<"maxs.l", 0x68, I64, i64, smax>; let cw = 1 in defm MINSL : RRm<"mins.l", 0x68, I64, i64, smin>; //----------------------------------------------------------------------------- // Section 8.5 - Logical Operation Instructions //----------------------------------------------------------------------------- // Section 8.5.1 - AND (AND) defm AND : RRm<"and", 0x44, I64, i64, and>; // Section 8.5.2 - OR (OR) let isReMaterializable = 1, isAsCheapAsAMove = 1 in defm OR : RRm<"or", 0x45, I64, i64, or, simm7, mimm, /* MoveImm */ 1>; // Section 8.5.3 - XOR (Exclusive OR) defm XOR : RRm<"xor", 0x46, I64, i64, xor>; // Section 8.5.4 - EQV (Equivalence) defm EQV : RRm<"eqv", 0x47, I64, i64>; // Section 8.5.5 - NND (Negate AND) def and_not : PatFrags<(ops node:$x, node:$y), [(and (not node:$x), node:$y)]>; defm NND : RRNCm<"nnd", 0x54, I64, i64, and_not>; // Section 8.5.6 - MRG (Merge) defm MRG : RRMRGm<"mrg", 0x56, I64>; // Section 8.5.7 - LDZ (Leading Zero Count) def ctlz_pat : PatFrags<(ops node:$src), [(ctlz node:$src), (ctlz_zero_undef node:$src)]>; defm LDZ : RRI1m<"ldz", 0x67, I64, i64, ctlz_pat>; // Section 8.5.8 - PCNT (Population Count) defm PCNT : RRI1m<"pcnt", 0x38, I64, i64, ctpop>; // Section 8.5.9 - BRV (Bit Reverse) defm BRV : RRI1m<"brv", 0x39, I64, i64, bitreverse>; // Section 8.5.10 - BSWP (Byte Swap) defm BSWP : RRSWPm<"bswp", 0x2B, I64, i64>; def : Pat<(i64 (bswap i64:$src)), (BSWPri $src, 0)>; def : Pat<(i64 (bswap (i64 mimm:$src))), (BSWPmi (MIMM $src), 0)>; def : Pat<(i32 (bswap i32:$src)), (EXTRACT_SUBREG (BSWPri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub_i32), 1), sub_i32)>; def : Pat<(i32 (bswap (i32 mimm:$src))), (EXTRACT_SUBREG (BSWPmi (MIMM $src), 1), sub_i32)>; // Section 8.5.11 - CMOV (Conditional Move) let cw = 0, cw2 = 0 in defm CMOVL : RRCMOVm<"cmov.l.${cfw}", 0x3B, I64, i64, cmov>; let cw = 1, cw2 = 0 in defm CMOVW : RRCMOVm<"cmov.w.${cfw}", 0x3B, I32, i32, cmov>; let cw = 0, cw2 = 1 in defm CMOVD : RRCMOVm<"cmov.d.${cfw}", 0x3B, I64, f64, cmov, simm7fp>; let cw = 1, cw2 = 1 in defm CMOVS : RRCMOVm<"cmov.s.${cfw}", 0x3B, F32, f32, cmov, simm7fp>; def : MnemonicAlias<"cmov.l", "cmov.l.at">; def : MnemonicAlias<"cmov.w", "cmov.w.at">; def : MnemonicAlias<"cmov.d", "cmov.d.at">; def : MnemonicAlias<"cmov.s", "cmov.s.at">; //----------------------------------------------------------------------------- // Section 8.6 - Shift Operation Instructions //----------------------------------------------------------------------------- // Section 8.6.1 - SLL (Shift Left Logical) defm SLL : RRIm<"sll", 0x65, I64, i64, shl>; // Section 8.6.2 - SLD (Shift Left Double) defm SLD : RRILDm<"sld", 0x64, I64>; // Section 8.6.3 - SRL (Shift Right Logical) defm SRL : RRIm<"srl", 0x75, I64, i64, srl>; // Section 8.6.4 - SRD (Shift Right Double) defm SRD : RRIRDm<"srd", 0x74, I64>; // Section 8.6.5 - SLA (Shift Left Arithmetic) defm SLAWSX : RRIm<"sla.w.sx", 0x66, I32, i32, shl>; let cx = 1 in defm SLAWZX : RRIm<"sla.w.zx", 0x66, I32, i32>; // Section 8.6.6 - SLAX (Shift Left Arithmetic) defm SLAL : RRIm<"sla.l", 0x57, I64, i64>; // Section 8.6.7 - SRA (Shift Right Arithmetic) defm SRAWSX : RRIm<"sra.w.sx", 0x76, I32, i32, sra>; let cx = 1 in defm SRAWZX : RRIm<"sra.w.zx", 0x76, I32, i32>; // Section 8.6.8 - SRAX (Shift Right Arithmetic) defm SRAL : RRIm<"sra.l", 0x77, I64, i64, sra>; def : Pat<(i32 (srl i32:$src, (i32 simm7:$val))), (EXTRACT_SUBREG (SRLri (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub_i32), !add(32, 64)), imm:$val), sub_i32)>; def : Pat<(i32 (srl i32:$src, i32:$val)), (EXTRACT_SUBREG (SRLrr (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub_i32), !add(32, 64)), $val), sub_i32)>; //----------------------------------------------------------------------------- // Section 8.7 - Floating-point Arithmetic Instructions //----------------------------------------------------------------------------- // Section 8.7.1 - FAD (Floating Add) defm FADDD : RRFm<"fadd.d", 0x4C, I64, f64, fadd>; let cx = 1 in defm FADDS : RRFm<"fadd.s", 0x4C, F32, f32, fadd, simm7fp, mimmfp32>; // Section 8.7.2 - FSB (Floating Subtract) defm FSUBD : RRFm<"fsub.d", 0x5C, I64, f64, fsub>; let cx = 1 in defm FSUBS : RRFm<"fsub.s", 0x5C, F32, f32, fsub, simm7fp, mimmfp32>; // Section 8.7.3 - FMP (Floating Multiply) defm FMULD : RRFm<"fmul.d", 0x4D, I64, f64, fmul>; let cx = 1 in defm FMULS : RRFm<"fmul.s", 0x4D, F32, f32, fmul, simm7fp, mimmfp32>; // Section 8.7.4 - FDV (Floating Divide) defm FDIVD : RRFm<"fdiv.d", 0x5D, I64, f64, fdiv>; let cx = 1 in defm FDIVS : RRFm<"fdiv.s", 0x5D, F32, f32, fdiv, simm7fp, mimmfp32>; // Section 8.7.5 - FCP (Floating Compare) defm FCMPD : RRFm<"fcmp.d", 0x7E, I64, f64, cmpf>; let cx = 1 in defm FCMPS : RRFm<"fcmp.s", 0x7E, F32, f32, cmpf, simm7fp, mimmfp32>; // Section 8.7.6 - CMS (Compare and Select Maximum/Minimum Single) // cx: double/float, cw: max/min let cw = 0, cx = 0 in defm FMAXD : RRFm<"fmax.d", 0x3E, I64, f64, fmaxnum>; let cw = 0, cx = 1 in defm FMAXS : RRFm<"fmax.s", 0x3E, F32, f32, fmaxnum, simm7fp, mimmfp32>; let cw = 1, cx = 0 in defm FMIND : RRFm<"fmin.d", 0x3E, I64, f64, fminnum>; let cw = 1, cx = 1 in defm FMINS : RRFm<"fmin.s", 0x3E, F32, f32, fminnum, simm7fp, mimmfp32>; // Section 8.7.7 - FAQ (Floating Add Quadruple) defm FADDQ : RRFm<"fadd.q", 0x6C, F128, f128, fadd>; // Section 8.7.8 - FSQ (Floating Subtract Quadruple) defm FSUBQ : RRFm<"fsub.q", 0x7C, F128, f128, fsub>; // Section 8.7.9 - FMQ (Floating Subtract Quadruple) defm FMULQ : RRFm<"fmul.q", 0x6D, F128, f128, fmul>; // Section 8.7.10 - FCQ (Floating Compare Quadruple) defm FCMPQ : RRNCbm<"fcmp.q", 0x7D, I64, f64, F128, f128, cmpq, simm7fp, mimmfp>; // Section 8.7.11 - FIX (Convert to Fixed Point) // cx: double/float, cw: sx/zx, sz{0-3} = round let cx = 0, cw = 0 /* sign extend */ in defm CVTWDSX : CVTRDm<"cvt.w.d.sx", 0x4E, I32, I64>; let cx = 0, cw = 1 /* zero extend */ in defm CVTWDZX : CVTRDm<"cvt.w.d.zx", 0x4E, I32, I64>; let cx = 1, cw = 0 /* sign extend */ in defm CVTWSSX : CVTRDm<"cvt.w.s.sx", 0x4E, I32, F32>; let cx = 1, cw = 1 /* zero extend */ in defm CVTWSZX : CVTRDm<"cvt.w.s.zx", 0x4E, I32, F32>; // Section 8.7.12 - FIXX (Convert to Fixed Point) defm CVTLD : CVTRDm<"cvt.l.d", 0x4F, I64, I64>; // Section 8.7.13 - FLT (Convert to Floating Point) defm CVTDW : CVTm<"cvt.d.w", 0x5E, I64, f64, I32, i32, sint_to_fp>; let cx = 1 in defm CVTSW : CVTm<"cvt.s.w", 0x5E, F32, f32, I32, i32, sint_to_fp>; // Section 8.7.14 - FLTX (Convert to Floating Point) defm CVTDL : CVTm<"cvt.d.l", 0x5F, I64, f64, I64, i64, sint_to_fp>; // Section 8.7.15 - CVS (Convert to Single-format) defm CVTSD : CVTm<"cvt.s.d", 0x1F, F32, f32, I64, f64, fpround>; let cx = 1 in defm CVTSQ : CVTm<"cvt.s.q", 0x1F, F32, f32, F128, f128, fpround>; // Section 8.7.16 - CVD (Convert to Double-format) defm CVTDS : CVTm<"cvt.d.s", 0x0F, I64, f64, F32, f32, fpextend>; let cx = 1 in defm CVTDQ : CVTm<"cvt.d.q", 0x0F, I64, f64, F128, f128, fpround>; // Section 8.7.17 - CVQ (Convert to Single-format) defm CVTQD : CVTm<"cvt.q.d", 0x2D, F128, f128, I64, f64, fpextend>; let cx = 1 in defm CVTQS : CVTm<"cvt.q.s", 0x2D, F128, f128, F32, f32, fpextend>; //----------------------------------------------------------------------------- // Section 8.8 - Branch instructions //----------------------------------------------------------------------------- // Section 8.8.1 - BC (Branch on Codition) defm BCFL : BCm<"b${cond}.l", "b.l", "baf.l", 0x19, I64, simm7>; // Indirect branch aliases def : Pat<(brind I64:$reg), (BCFLari_t $reg, 0)>; def : Pat<(brind tblockaddress:$imm), (BCFLazi_t 0, $imm)>; // Return instruction is a special case of jump. let Uses = [SX10], bpf = 3 /* TAKEN */, cond = 15 /* AT */, cy = 0, sy = 0, sz = 10 /* SX10 */, imm32 = 0, isReturn = 1, isTerminator = 1, isBarrier = 1, isCodeGenOnly = 1, hasSideEffects = 0 in def RET : CF<0x19, (outs), (ins), "b.l.t (, %s10)", [(retglue)]>; // Section 8.8.2 - BCS (Branch on Condition Single) defm BCFW : BCm<"b${cond}.w", "b.w", "baf.w", 0x1B, I32, simm7>; // Section 8.8.3 - BCF (Branch on Condition Floating Point) defm BCFD : BCm<"b${cond}.d", "b.d", "baf.d", 0x1C, I64, simm7fp>; let cx = 1 in defm BCFS : BCm<"b${cond}.s", "b.s", "baf.s", 0x1C, F32, simm7fp>; // Section 8.8.4 - BCR (Branch on Condition Relative) let cx = 0, cx2 = 0 in defm BRCFL : BCRm<"br${cond}.l", "br.l", "braf.l", 0x18, I64, simm7, zero>; let cx = 1, cx2 = 0 in defm BRCFW : BCRm<"br${cond}.w", "br.w", "braf.w", 0x18, I32, simm7, zero>; let cx = 0, cx2 = 1 in defm BRCFD : BCRm<"br${cond}.d", "br.d", "braf.d", 0x18, I64, simm7fp, zerofp>; let cx = 1, cx2 = 1 in defm BRCFS : BCRm<"br${cond}.s", "br.s", "braf.s", 0x18, F32, simm7fp, zerofp>; // Section 8.8.5 - BSIC (Branch and Save IC) let isCall = 1, hasSideEffects = 0, DecoderMethod = "DecodeCall" in defm BSIC : RMm<"bsic", 0x08, I64>; // Call instruction is a special case of BSIC. let Defs = [SX10], sx = 10 /* SX10 */, cy = 0, sy = 0, imm32 = 0, isCall = 1, isCodeGenOnly = 1, hasSideEffects = 0 in def CALLr : RM<0x08, (outs), (ins I64:$sz, variable_ops), "bsic %s10, (, $sz)", [(call i64:$sz)]>; //----------------------------------------------------------------------------- // Section 8.19 - Control Instructions //----------------------------------------------------------------------------- // Section 8.19.1 - SIC (Save Instruction Counter) let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [IC] in def SIC : RR<0x28, (outs I32:$sx), (ins), "sic $sx">; // Section 8.19.2 - LPM (Load Program Mode Flags) let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in def LPM : RR<0x3a, (outs), (ins I64:$sy), "lpm $sy">; // Section 8.19.3 - SPM (Save Program Mode Flags) let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in def SPM : RR<0x2a, (outs I64:$sx), (ins), "spm $sx">; // Section 8.19.4 - LFR (Load Flag Register) let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in { def LFRr : RR<0x69, (outs), (ins I64:$sy), "lfr $sy">; let cy = 0 in def LFRi : RR<0x69, (outs), (ins uimm6:$sy), "lfr $sy">; } // Section 8.19.5 - SFR (Save Flag Register) let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in def SFR : RR<0x29, (outs I64:$sx), (ins), "sfr $sx">; // Section 8.19.6 - SMIR (Save Miscellaneous Register) let cy = 0, cz = 0, sz = 0, hasSideEffects = 1 in { def SMIR : RR<0x22, (outs I64:$sx), (ins MISC:$sy), "smir $sx, $sy">; } // Section 8.19.7 - NOP (No Operation) let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 0 in def NOP : RR<0x79, (outs), (ins), "nop">; // Section 8.19.8 - MONC (Monitor Call) let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in { def MONC : RR<0x3F, (outs), (ins), "monc">; let cx = 1, isTrap = 1 in def MONCHDB : RR<0x3F, (outs), (ins), "monc.hdb">; } // Section 8.19.9 - LCR (Load Communication Register) defm LCR : LOADCRm<"lcr", 0x40, I64>; // Section 8.19.10 - SCR (Save Communication Register) defm SCR : STORECRm<"scr", 0x50, I64>; // Section 8.19.11 - TSCR (Test & Set Communication Register) defm TSCR : TSCRm<"tscr", 0x41, I64>; // Section 8.19.12 - FIDCR (Fetch & Increment/Decrement CR) defm FIDCR : FIDCRm<"fidcr", 0x51, I64>; //----------------------------------------------------------------------------- // Section 8.20 - Host Memory Access Instructions //----------------------------------------------------------------------------- // Section 8.20.1 - LHM (Load Host Memory) let ry = 3, DecoderMethod = "DecodeLoadASI64" in defm LHML : LHMm<"lhm.l", 0x21, I64>; let ry = 2, DecoderMethod = "DecodeLoadASI64" in defm LHMW : LHMm<"lhm.w", 0x21, I64>; let ry = 1, DecoderMethod = "DecodeLoadASI64" in defm LHMH : LHMm<"lhm.h", 0x21, I64>; let ry = 0, DecoderMethod = "DecodeLoadASI64" in defm LHMB : LHMm<"lhm.b", 0x21, I64>; // Section 8.20.2 - SHM (Store Host Memory) let ry = 3, DecoderMethod = "DecodeStoreASI64" in defm SHML : SHMm<"shm.l", 0x31, I64>; let ry = 2, DecoderMethod = "DecodeStoreASI64" in defm SHMW : SHMm<"shm.w", 0x31, I64>; let ry = 1, DecoderMethod = "DecodeStoreASI64" in defm SHMH : SHMm<"shm.h", 0x31, I64>; let ry = 0, DecoderMethod = "DecodeStoreASI64" in defm SHMB : SHMm<"shm.b", 0x31, I64>; //===----------------------------------------------------------------------===// // Instructions for CodeGenOnly //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Pattern Matchings //===----------------------------------------------------------------------===// // Basic cast between registers. This is often used in ISel patterns, so make // them as OutPatFrag. def i2l : OutPatFrag<(ops node:$exp), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $exp, sub_i32)>; def l2i : OutPatFrag<(ops node:$exp), (EXTRACT_SUBREG $exp, sub_i32)>; def f2l : OutPatFrag<(ops node:$exp), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $exp, sub_f32)>; def l2f : OutPatFrag<(ops node:$exp), (EXTRACT_SUBREG $exp, sub_f32)>; // Zero out subregisters. def zero_i32 : OutPatFrag<(ops node:$expr), (ANDrm $expr, 32)>; def zero_f32 : OutPatFrag<(ops node:$expr), (ANDrm $expr, !add(32, 64))>; // Small immediates. def : Pat<(i32 simm7:$val), (l2i (ORim (LO7 $val), 0))>; def : Pat<(i64 simm7:$val), (ORim (LO7 $val), 0)>; // Medium immediates. def : Pat<(i32 simm32:$val), (l2i (LEAzii 0, 0, (LO32 $val)))>; def : Pat<(i64 simm32:$val), (LEAzii 0, 0, (LO32 $val))>; def : Pat<(i64 uimm32:$val), (zero_f32 (LEAzii 0, 0, (LO32 $val)))>; // Arbitrary immediates. def : Pat<(i64 lozero:$val), (LEASLzii 0, 0, (HI32 imm:$val))>; def : Pat<(i64 lomsbzero:$val), (LEASLrii (LEAzii 0, 0, (LO32 imm:$val)), 0, (HI32 imm:$val))>; def : Pat<(i64 imm:$val), (LEASLrii (ANDrm (LEAzii 0, 0, (LO32 imm:$val)), !add(32, 64)), 0, (HI32 imm:$val))>; // LEA patterns def lea_add : PatFrags<(ops node:$base, node:$idx, node:$disp), [(add (add node:$base, node:$idx), node:$disp), (add (add node:$base, node:$disp), node:$idx), (add node:$base, (add $idx, $disp))]>; def : Pat<(lea_add I64:$base, simm7:$idx, simm32:$disp), (LEArii $base, (LO7 $idx), (LO32 $disp))>; def : Pat<(lea_add I64:$base, I64:$idx, simm32:$disp), (LEArri $base, $idx, (LO32 $disp))>; def : Pat<(lea_add I64:$base, simm7:$idx, lozero:$disp), (LEASLrii $base, (LO7 $idx), (HI32 $disp))>; def : Pat<(lea_add I64:$base, I64:$idx, lozero:$disp), (LEASLrri $base, $idx, (HI32 $disp))>; // Address calculation patterns and optimizations // // Generate following instructions: // 1. LEA %reg, label@LO32 // AND %reg, %reg, (32)0 // 2. LEASL %reg, label@HI32 // 3. (LEA %reg, label@LO32) // (AND %reg, %reg, (32)0) // LEASL %reg, label@HI32(, %reg) // 4. (LEA %reg, label@LO32) // (AND %reg, %reg, (32)0) // LEASL %reg, label@HI32(%reg, %got) // def velo_only : OutPatFrag<(ops node:$lo), (ANDrm (LEAzii 0, 0, $lo), !add(32, 64))>; def vehi_only : OutPatFrag<(ops node:$hi), (LEASLzii 0, 0, $hi)>; def vehi_lo : OutPatFrag<(ops node:$hi, node:$lo), (LEASLrii $lo, 0, $hi)>; def vehi_lo_imm : OutPatFrag<(ops node:$hi, node:$lo, node:$idx), (LEASLrii $lo, $idx, $hi)>; def vehi_baselo : OutPatFrag<(ops node:$base, node:$hi, node:$lo), (LEASLrri $base, $lo, $hi)>; foreach type = [ "tblockaddress", "tconstpool", "texternalsym", "tglobaladdr", "tglobaltlsaddr", "tjumptable" ] in { def : Pat<(VElo !cast(type):$lo), (velo_only $lo)>; def : Pat<(VEhi !cast(type):$hi), (vehi_only $hi)>; def : Pat<(add (VEhi !cast(type):$hi), I64:$lo), (vehi_lo $hi, $lo)>; def : Pat<(add (add (VEhi !cast(type):$hi), I64:$lo), simm7:$val), (vehi_lo_imm $hi, $lo, (LO7 $val))>; def : Pat<(add I64:$base, (add (VEhi !cast(type):$hi), I64:$lo)), (vehi_baselo $base, $hi, $lo)>; } // floating point def : Pat<(f32 fpimm:$val), (EXTRACT_SUBREG (LEASLzii 0, 0, (HIFP32 $val)), sub_f32)>; def : Pat<(f64 fplozero:$val), (LEASLzii 0, 0, (HIFP32 $val))>; def : Pat<(f64 fplomsbzero:$val), (LEASLrii (LEAzii 0, 0, (LOFP32 $val)), 0, (HIFP32 $val))>; def : Pat<(f64 fpimm:$val), (LEASLrii (ANDrm (LEAzii 0, 0, (LOFP32 $val)), !add(32, 64)), 0, (HIFP32 $val))>; // The same integer registers are used for i32 and i64 values. // When registers hold i32 values, the high bits are unused. // TODO Use standard expansion for shift-based lowering of sext_inreg // Cast to i1 def : Pat<(sext_inreg I32:$src, i1), (SRAWSXri (SLAWSXri $src, 31), 31)>; def : Pat<(sext_inreg I64:$src, i1), (SRALri (SLLri $src, 63), 63)>; // Cast to i8 def : Pat<(sext_inreg I32:$src, i8), (SRAWSXri (SLAWSXri $src, 24), 24)>; def : Pat<(sext_inreg I64:$src, i8), (SRALri (SLLri $src, 56), 56)>; def : Pat<(sext_inreg (i32 (trunc i64:$src)), i8), (EXTRACT_SUBREG (SRALri (SLLri $src, 56), 56), sub_i32)>; def : Pat<(i32 (and (trunc i64:$src), 0xff)), (EXTRACT_SUBREG (ANDrm $src, !add(56, 64)), sub_i32)>; // Cast to i16 def : Pat<(sext_inreg I32:$src, i16), (SRAWSXri (SLAWSXri $src, 16), 16)>; def : Pat<(sext_inreg I64:$src, i16), (SRALri (SLLri $src, 48), 48)>; def : Pat<(sext_inreg (i32 (trunc i64:$src)), i16), (EXTRACT_SUBREG (SRALri (SLLri $src, 48), 48), sub_i32)>; def : Pat<(i32 (and (trunc i64:$src), 0xffff)), (EXTRACT_SUBREG (ANDrm $src, !add(48, 64)), sub_i32)>; // Cast to i32 def : Pat<(i32 (trunc i64:$src)), (l2i (zero_f32 $src))>; def : Pat<(i32 (fp_to_sint f32:$src)), (CVTWSSXr RD_RZ, $src)>; def : Pat<(i32 (fp_to_sint f64:$src)), (CVTWDSXr RD_RZ, $src)>; def : Pat<(i32 (fp_to_sint f128:$src)), (CVTWDSXr RD_RZ, (CVTDQr $src))>; // Cast to i64 def : Pat<(sext_inreg i64:$src, i32), (i2l (ADDSWSXrm (l2i $src), 0))>; def : Pat<(i64 (sext i32:$src)), (i2l (ADDSWSXrm $src, 0))>; def : Pat<(i64 (zext i32:$src)), (i2l (ADDSWZXrm $src, 0))>; def : Pat<(i64 (anyext i32:$sy)), (i2l $sy)>; def : Pat<(i64 (fp_to_sint f32:$src)), (CVTLDr RD_RZ, (CVTDSr $src))>; def : Pat<(i64 (fp_to_sint f64:$src)), (CVTLDr RD_RZ, $src)>; def : Pat<(i64 (fp_to_sint f128:$src)), (CVTLDr RD_RZ, (CVTDQr $src))>; // Cast to f32 def : Pat<(f32 (sint_to_fp i64:$src)), (CVTSDr (CVTDLr i64:$src))>; // Cast to f128 def : Pat<(f128 (sint_to_fp i32:$src)), (CVTQDr (CVTDWr $src))>; def : Pat<(f128 (sint_to_fp i64:$src)), (CVTQDr (CVTDLr $src))>; // extload, sextload and zextload stuff multiclass EXT64m { def : Pat<(i64 (from ADDRrri:$addr)), (i2l (torri MEMrri:$addr))>; def : Pat<(i64 (from ADDRrii:$addr)), (i2l (torii MEMrii:$addr))>; def : Pat<(i64 (from ADDRzri:$addr)), (i2l (tozri MEMzri:$addr))>; def : Pat<(i64 (from ADDRzii:$addr)), (i2l (tozii MEMzii:$addr))>; } defm : EXT64m; defm : EXT64m; defm : EXT64m; defm : EXT64m; defm : EXT64m; defm : EXT64m; defm : EXT64m; defm : EXT64m; defm : EXT64m; // anyextload multiclass EXT32m { def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>; def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>; def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>; def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>; } defm : EXT32m; defm : EXT32m; // truncstore multiclass TRUNC64m { def : Pat<(from i64:$src, ADDRrri:$addr), (torri MEMrri:$addr, (l2i $src))>; def : Pat<(from i64:$src, ADDRrii:$addr), (torii MEMrii:$addr, (l2i $src))>; def : Pat<(from i64:$src, ADDRzri:$addr), (tozri MEMzri:$addr, (l2i $src))>; def : Pat<(from i64:$src, ADDRzii:$addr), (tozii MEMzii:$addr, (l2i $src))>; } defm : TRUNC64m; defm : TRUNC64m; defm : TRUNC64m; // Atomic loads multiclass ATMLDm { def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>; def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>; def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>; def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>; } defm : ATMLDm; defm : ATMLDm; defm : ATMLDm; defm : ATMLDm; // Optimized atomic loads with sext multiclass SXATMLDm { def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRrri:$addr))), TY)), (i2l (torri MEMrri:$addr))>; def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRrii:$addr))), TY)), (i2l (torii MEMrii:$addr))>; def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRzri:$addr))), TY)), (i2l (tozri MEMzri:$addr))>; def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRzii:$addr))), TY)), (i2l (tozii MEMzii:$addr))>; } multiclass SXATMLD32m { def : Pat<(i64 (sext (from ADDRrri:$addr))), (i2l (torri MEMrri:$addr))>; def : Pat<(i64 (sext (from ADDRrii:$addr))), (i2l (torii MEMrii:$addr))>; def : Pat<(i64 (sext (from ADDRzri:$addr))), (i2l (tozri MEMzri:$addr))>; def : Pat<(i64 (sext (from ADDRzii:$addr))), (i2l (tozii MEMzii:$addr))>; } defm : SXATMLDm; defm : SXATMLDm; defm : SXATMLD32m; // Optimized atomic loads with zext multiclass ZXATMLDm { def : Pat<(i64 (and (anyext (from ADDRrri:$addr)), VAL)), (i2l (torri MEMrri:$addr))>; def : Pat<(i64 (and (anyext (from ADDRrii:$addr)), VAL)), (i2l (torii MEMrii:$addr))>; def : Pat<(i64 (and (anyext (from ADDRzri:$addr)), VAL)), (i2l (tozri MEMzri:$addr))>; def : Pat<(i64 (and (anyext (from ADDRzii:$addr)), VAL)), (i2l (tozii MEMzii:$addr))>; } multiclass ZXATMLD32m { def : Pat<(i64 (zext (from ADDRrri:$addr))), (i2l (torri MEMrri:$addr))>; def : Pat<(i64 (zext (from ADDRrii:$addr))), (i2l (torii MEMrii:$addr))>; def : Pat<(i64 (zext (from ADDRzri:$addr))), (i2l (tozri MEMzri:$addr))>; def : Pat<(i64 (zext (from ADDRzii:$addr))), (i2l (tozii MEMzii:$addr))>; } defm : ZXATMLDm; defm : ZXATMLDm; defm : ZXATMLD32m; // Atomic stores multiclass ATMSTm { def : Pat<(from ty:$src, ADDRrri:$addr), (torri MEMrri:$addr, $src)>; def : Pat<(from ty:$src, ADDRrii:$addr), (torii MEMrii:$addr, $src)>; def : Pat<(from ty:$src, ADDRzri:$addr), (tozri MEMzri:$addr, $src)>; def : Pat<(from ty:$src, ADDRzii:$addr), (tozii MEMzii:$addr, $src)>; } defm : ATMSTm; defm : ATMSTm; defm : ATMSTm; defm : ATMSTm; // Optimized atomic stores with truncate multiclass TRATMSTm { def : Pat<(from (i32 (trunc i64:$src)), ADDRrri:$addr), (torri MEMrri:$addr, (EXTRACT_SUBREG $src, sub_i32))>; def : Pat<(from (i32 (trunc i64:$src)), ADDRrii:$addr), (torii MEMrii:$addr, (EXTRACT_SUBREG $src, sub_i32))>; def : Pat<(from (i32 (trunc i64:$src)), ADDRzri:$addr), (tozri MEMzri:$addr, (EXTRACT_SUBREG $src, sub_i32))>; def : Pat<(from (i32 (trunc i64:$src)), ADDRzii:$addr), (tozii MEMzii:$addr, (EXTRACT_SUBREG $src, sub_i32))>; } defm : TRATMSTm; defm : TRATMSTm; defm : TRATMSTm; // Atomic swaps def : Pat<(i32 (ts1am i64:$src, i32:$flag, i32:$new)), (TS1AMWrir $src, 0, $flag, $new)>; def : Pat<(i32 (atomic_swap_32 ADDRri:$src, i32:$new)), (TS1AMWrii MEMriRRM:$src, 15, $new)>; def : Pat<(i64 (atomic_swap_64 ADDRri:$src, i64:$new)), (TS1AMLrir MEMriRRM:$src, (LEAzii 0, 0, 255), i64:$new)>; //===----------------------------------------------------------------------===// // SJLJ Exception handling patterns //===----------------------------------------------------------------------===// let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in { let isTerminator = 1 in def EH_SjLj_LongJmp : Pseudo<(outs), (ins I64:$buf), "# EH_SJLJ_LONGJMP", [(VEeh_sjlj_longjmp I64:$buf)]>; def EH_SjLj_SetJmp : Pseudo<(outs I32:$dst), (ins I64:$buf), "# EH_SJLJ_SETJMP", [(set I32:$dst, (VEeh_sjlj_setjmp I64:$buf))]>; def EH_SjLj_Setup_Dispatch : Pseudo<(outs), (ins), "# EH_SJLJ_SETUP_DISPATCH", [(VEeh_sjlj_setup_dispatch)]>; } let isTerminator = 1, isBranch = 1, isCodeGenOnly = 1 in def EH_SjLj_Setup : Pseudo<(outs), (ins brtarget32:$dst), "# EH_SJlJ_SETUP $dst">; //===----------------------------------------------------------------------===// // Branch related patterns //===----------------------------------------------------------------------===// // Branches def : Pat<(br bb:$addr), (BRCFLa bb:$addr)>; // brcc // integer brcc multiclass BRCCIm { def : Pat<(brcc CCSIOp:$cond, ty:$l, simm7:$r, bb:$addr), (BrOpNode2 (icond2ccSwap $cond), (LO7 $r), $l, bb:$addr)>; def : Pat<(brcc CCSIOp:$cond, ty:$l, ty:$r, bb:$addr), (BrOpNode1 (icond2cc $cond), $l, $r, bb:$addr)>; def : Pat<(brcc CCUIOp:$cond, ty:$l, simm7:$r, bb:$addr), (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode2 (LO7 $r), $l), bb:$addr)>; def : Pat<(brcc CCUIOp:$cond, ty:$l, ty:$r, bb:$addr), (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode1 $r, $l), bb:$addr)>; } defm : BRCCIm; defm : BRCCIm; // floating point brcc multiclass BRCCFm { def : Pat<(brcc cond:$cond, ty:$l, simm7fp:$r, bb:$addr), (BrOpNode2 (fcond2ccSwap $cond), (LO7FP $r), $l, bb:$addr)>; def : Pat<(brcc cond:$cond, ty:$l, ty:$r, bb:$addr), (BrOpNode1 (fcond2cc $cond), $l, $r, bb:$addr)>; } defm : BRCCFm; defm : BRCCFm; def : Pat<(brcc cond:$cond, f128:$l, f128:$r, bb:$addr), (BRCFDir (fcond2cc $cond), 0, (FCMPQrr $r, $l), bb:$addr)>; //===----------------------------------------------------------------------===// // Pseudo Instructions //===----------------------------------------------------------------------===// // GETGOT for PIC let Defs = [SX15 /* %got */, SX16 /* %plt */], hasSideEffects = 0 in { def GETGOT : Pseudo<(outs getGOT:$getpcseq), (ins), "$getpcseq">; } // GETFUNPLT for PIC let hasSideEffects = 0 in def GETFUNPLT : Pseudo<(outs I64:$dst), (ins i64imm:$addr), "$dst, $addr", [(set iPTR:$dst, (GetFunPLT tglobaladdr:$addr))] >; def : Pat<(GetFunPLT tglobaladdr:$dst), (GETFUNPLT tglobaladdr:$dst)>; def : Pat<(GetFunPLT texternalsym:$dst), (GETFUNPLT texternalsym:$dst)>; // GETTLSADDR for TLS let Defs = [SX0, SX10, SX12], hasSideEffects = 0 in def GETTLSADDR : Pseudo<(outs), (ins i64imm:$addr), "# GETTLSADDR $addr", [(GetTLSAddr tglobaltlsaddr:$addr)] >; def : Pat<(GetTLSAddr tglobaltlsaddr:$dst), (GETTLSADDR tglobaltlsaddr:$dst)>; let Defs = [SX11], Uses = [SX11], hasSideEffects = 0 in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt, i64imm:$amt2), "# ADJCALLSTACKDOWN $amt, $amt2", [(callseq_start timm:$amt, timm:$amt2)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), "# ADJCALLSTACKUP $amt1", [(callseq_end timm:$amt1, timm:$amt2)]>; } let Defs = [SX8], Uses = [SX8, SX11], hasSideEffects = 0 in def EXTEND_STACK : Pseudo<(outs), (ins), "# EXTEND STACK", []>; let hasSideEffects = 0 in def EXTEND_STACK_GUARD : Pseudo<(outs), (ins), "# EXTEND STACK GUARD", []>; // Dynamic stack allocation yields a __llvm_grow_stack for VE targets. // These calls are needed to probe the stack when allocating more over // %s8 (%sl - stack limit). let Uses = [SX11], hasSideEffects = 1 in def GETSTACKTOP : Pseudo<(outs I64:$dst), (ins), "# GET STACK TOP", [(set iPTR:$dst, (GetStackTop))]>; //===----------------------------------------------------------------------===// // Other patterns //===----------------------------------------------------------------------===// // SETCC pattern matches // // CMP %tmp, lhs, rhs ; compare lhs and rhs // or %res, 0, (0)1 ; initialize by 0 // CMOV %res, (63)0, %tmp ; set 1 if %tmp is true class setccrr : OutPatFrag<(ops node:$cond, node:$comp), (EXTRACT_SUBREG (INSN $cond, $comp, !add(63, 64), // means (63)0 == 1 (ORim 0, 0)), sub_i32)>; def : Pat<(i32 (setcc i32:$l, i32:$r, CCSIOp:$cond)), (setccrr (icond2cc $cond), (CMPSWSXrr $l, $r))>; def : Pat<(i32 (setcc i32:$l, i32:$r, CCUIOp:$cond)), (setccrr (icond2cc $cond), (CMPUWrr $l, $r))>; def : Pat<(i32 (setcc i64:$l, i64:$r, CCSIOp:$cond)), (setccrr (icond2cc $cond), (CMPSLrr $l, $r))>; def : Pat<(i32 (setcc i64:$l, i64:$r, CCUIOp:$cond)), (setccrr (icond2cc $cond), (CMPULrr $l, $r))>; def : Pat<(i32 (setcc f32:$l, f32:$r, cond:$cond)), (setccrr (fcond2cc $cond), (FCMPSrr $l, $r))>; def : Pat<(i32 (setcc f64:$l, f64:$r, cond:$cond)), (setccrr (fcond2cc $cond), (FCMPDrr $l, $r))>; def : Pat<(i32 (setcc f128:$l, f128:$r, cond:$cond)), (setccrr (fcond2cc $cond), (FCMPQrr $l, $r))>; // Generic CMOV pattern matches // CMOV accepts i64 $t, $f, and result. So, we extend it to support // i32/f32/f64/f128 $t, $f, and result. // CMOV for i32 multiclass CMOVI32m { def : Pat<(i32 (cmov TY:$cmp, i32:$t, i32:$f, (i32 CCOp:$cond))), (EXTRACT_SUBREG (!cast(Insn#"rr") (CCOP $cond), $cmp, (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)), sub_i32)>; def : Pat<(i32 (cmov TY:$cmp, (i32 mimm:$t), i32:$f, (i32 CCOp:$cond))), (EXTRACT_SUBREG (!cast(Insn#"rm") (CCOP $cond), $cmp, (MIMM $t), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)), sub_i32)>; } defm : CMOVI32m; defm : CMOVI32m; defm : CMOVI32m; defm : CMOVI32m; // CMOV for f32 multiclass CMOVF32m { def : Pat<(f32 (cmov TY:$cmp, f32:$t, f32:$f, (i32 CCOp:$cond))), (EXTRACT_SUBREG (!cast(Insn#"rr") (CCOP $cond), $cmp, (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_f32), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)), sub_f32)>; def : Pat<(f32 (cmov TY:$cmp, (f32 mimmfp:$t), f32:$f, (i32 CCOp:$cond))), (EXTRACT_SUBREG (!cast(Insn#"rm") (CCOP $cond), $cmp, (MIMMFP $t), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)), sub_f32)>; } defm : CMOVF32m; defm : CMOVF32m; defm : CMOVF32m; defm : CMOVF32m; // CMOV for f64 multiclass CMOVF64m { def : Pat<(f64 (cmov TY:$cmp, f64:$t, f64:$f, (i32 CCOp:$cond))), (!cast(Insn#"rr") (CCOP $cond), $cmp, $t, $f)>; def : Pat<(f64 (cmov TY:$cmp, (f64 mimmfp:$t), f64:$f, (i32 CCOp:$cond))), (!cast(Insn#"rm") (CCOP $cond), $cmp, (MIMMFP $t), $f)>; } defm : CMOVF64m; defm : CMOVF64m; defm : CMOVF64m; defm : CMOVF64m; // CMOV for f128 multiclass CMOVF128m { def : Pat<(f128 (cmov TY:$cmp, f128:$t, f128:$f, (i32 CCOp:$cond))), (INSERT_SUBREG (INSERT_SUBREG (f128 (IMPLICIT_DEF)), (!cast(Insn#"rr") (CCOP $cond), $cmp, (EXTRACT_SUBREG $t, sub_odd), (EXTRACT_SUBREG $f, sub_odd)), sub_odd), (!cast(Insn#"rr") (CCOP $cond), $cmp, (EXTRACT_SUBREG $t, sub_even), (EXTRACT_SUBREG $f, sub_even)), sub_even)>; } defm : CMOVF128m; defm : CMOVF128m; defm : CMOVF128m; defm : CMOVF128m; // bitconvert def : Pat<(f64 (bitconvert i64:$src)), (COPY_TO_REGCLASS $src, I64)>; def : Pat<(i64 (bitconvert f64:$src)), (COPY_TO_REGCLASS $src, I64)>; def : Pat<(i32 (bitconvert f32:$op)), (l2i (SRALri (f2l $op), 32))>; def : Pat<(f32 (bitconvert i32:$op)), (l2f (SLLri (i2l $op), 32))>; //===----------------------------------------------------------------------===// // Vector Instruction Pattern Stuff //===----------------------------------------------------------------------===// // Custom intermediate ISDs. class IsVLVT : SDTCisVT; def vec_broadcast : SDNode<"VEISD::VEC_BROADCAST", SDTypeProfile<1, 2, [SDTCisVec<0>, IsVLVT<2>]>>; ///// Packed mode Support ///// // unpack the lo part of this vector def vec_unpack_lo : SDNode<"VEISD::VEC_UNPACK_LO", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, IsVLVT<2>]>>; // unpack the hipart of this vector def vec_unpack_hi : SDNode<"VEISD::VEC_UNPACK_HI", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, IsVLVT<2>]>>; // re-pack v256i32, v256f32 back into tone v512.32 def vec_pack : SDNode<"VEISD::VEC_PACK", SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisVec<2>, SDTCisSameNumEltsAs<1,2>, IsVLVT<3>]>>; // replicate lower 32bit to upper 32bit (f32 scalar replication). def repl_f32 : SDNode<"VEISD::REPL_F32", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisFP<1>]>>; // replicate upper 32bit to lower 32 bit (i32 scalar replication). def repl_i32 : SDNode<"VEISD::REPL_I32", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>]>>; // Whether this is an all-true mask (assuming undef-bits above VL are all-true). def true_mask : PatLeaf< (vec_broadcast (i32 nonzero), (i32 srcvalue))>; // Match any broadcast (ignoring VL). def any_broadcast : PatFrag<(ops node:$sx), (vec_broadcast node:$sx, (i32 srcvalue))>; // Vector instructions. include "VEInstrVec.td" // The vevlintrin include "VEInstrIntrinsicVL.td" // Patterns and intermediate SD nodes (VEC_*). include "VEInstrPatternsVec.td" // Patterns and intermediate SD nodes (VVP_*). include "VVPInstrPatternsVec.td"