//===-- VEInstrInfo.cpp - VE Instruction Information ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the VE implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "VEInstrInfo.h" #include "VE.h" #include "VEMachineFunctionInfo.h" #include "VESubtarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #define DEBUG_TYPE "ve-instr-info" using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #include "VEGenInstrInfo.inc" // Pin the vtable to this file. void VEInstrInfo::anchor() {} VEInstrInfo::VEInstrInfo(VESubtarget &ST) : VEGenInstrInfo(VE::ADJCALLSTACKDOWN, VE::ADJCALLSTACKUP), RI() {} static bool IsIntegerCC(unsigned CC) { return (CC < VECC::CC_AF); } static VECC::CondCode GetOppositeBranchCondition(VECC::CondCode CC) { switch (CC) { case VECC::CC_IG: return VECC::CC_ILE; case VECC::CC_IL: return VECC::CC_IGE; case VECC::CC_INE: return VECC::CC_IEQ; case VECC::CC_IEQ: return VECC::CC_INE; case VECC::CC_IGE: return VECC::CC_IL; case VECC::CC_ILE: return VECC::CC_IG; case VECC::CC_AF: return VECC::CC_AT; case VECC::CC_G: return VECC::CC_LENAN; case VECC::CC_L: return VECC::CC_GENAN; case VECC::CC_NE: return VECC::CC_EQNAN; case VECC::CC_EQ: return VECC::CC_NENAN; case VECC::CC_GE: return VECC::CC_LNAN; case VECC::CC_LE: return VECC::CC_GNAN; case VECC::CC_NUM: return VECC::CC_NAN; case VECC::CC_NAN: return VECC::CC_NUM; case VECC::CC_GNAN: return VECC::CC_LE; case VECC::CC_LNAN: return VECC::CC_GE; case VECC::CC_NENAN: return VECC::CC_EQ; case VECC::CC_EQNAN: return VECC::CC_NE; case VECC::CC_GENAN: return VECC::CC_L; case VECC::CC_LENAN: return VECC::CC_G; case VECC::CC_AT: return VECC::CC_AF; case VECC::UNKNOWN: return VECC::UNKNOWN; } llvm_unreachable("Invalid cond code"); } // Treat a branch relative long always instruction as unconditional branch. // For example, br.l.t and br.l. static bool isUncondBranchOpcode(int Opc) { using namespace llvm::VE; #define BRKIND(NAME) (Opc == NAME##a || Opc == NAME##a_nt || Opc == NAME##a_t) // VE has other branch relative always instructions for word/double/float, // but we use only long branches in our lower. So, check it here. assert(!BRKIND(BRCFW) && !BRKIND(BRCFD) && !BRKIND(BRCFS) && "Branch relative word/double/float always instructions should not be " "used!"); return BRKIND(BRCFL); #undef BRKIND } // Treat branch relative conditional as conditional branch instructions. // For example, brgt.l.t and brle.s.nt. static bool isCondBranchOpcode(int Opc) { using namespace llvm::VE; #define BRKIND(NAME) \ (Opc == NAME##rr || Opc == NAME##rr_nt || Opc == NAME##rr_t || \ Opc == NAME##ir || Opc == NAME##ir_nt || Opc == NAME##ir_t) return BRKIND(BRCFL) || BRKIND(BRCFW) || BRKIND(BRCFD) || BRKIND(BRCFS); #undef BRKIND } // Treat branch long always instructions as indirect branch. // For example, b.l.t and b.l. static bool isIndirectBranchOpcode(int Opc) { using namespace llvm::VE; #define BRKIND(NAME) \ (Opc == NAME##ari || Opc == NAME##ari_nt || Opc == NAME##ari_t) // VE has other branch always instructions for word/double/float, but // we use only long branches in our lower. So, check it here. assert(!BRKIND(BCFW) && !BRKIND(BCFD) && !BRKIND(BCFS) && "Branch word/double/float always instructions should not be used!"); return BRKIND(BCFL); #undef BRKIND } static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target, SmallVectorImpl &Cond) { Cond.push_back(MachineOperand::CreateImm(LastInst->getOperand(0).getImm())); Cond.push_back(LastInst->getOperand(1)); Cond.push_back(LastInst->getOperand(2)); Target = LastInst->getOperand(3).getMBB(); } bool VEInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); if (I == MBB.end()) return false; if (!isUnpredicatedTerminator(*I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = &*I; unsigned LastOpc = LastInst->getOpcode(); // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { if (isUncondBranchOpcode(LastOpc)) { TBB = LastInst->getOperand(0).getMBB(); return false; } if (isCondBranchOpcode(LastOpc)) { // Block ends with fall-through condbranch. parseCondBranch(LastInst, TBB, Cond); return false; } return true; // Can't handle indirect branch. } // Get the instruction before it if it is a terminator. MachineInstr *SecondLastInst = &*I; unsigned SecondLastOpc = SecondLastInst->getOpcode(); // If AllowModify is true and the block ends with two or more unconditional // branches, delete all but the first unconditional branch. if (AllowModify && isUncondBranchOpcode(LastOpc)) { while (isUncondBranchOpcode(SecondLastOpc)) { LastInst->eraseFromParent(); LastInst = SecondLastInst; LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { // Return now the only terminator is an unconditional branch. TBB = LastInst->getOperand(0).getMBB(); return false; } SecondLastInst = &*I; SecondLastOpc = SecondLastInst->getOpcode(); } } // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I)) return true; // If the block ends with a B and a Bcc, handle it. if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { parseCondBranch(SecondLastInst, TBB, Cond); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two unconditional branches, handle it. The second // one is not executed. if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { TBB = SecondLastInst->getOperand(0).getMBB(); return false; } // ...likewise if it ends with an indirect branch followed by an unconditional // branch. if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { I = LastInst; if (AllowModify) I->eraseFromParent(); return true; } // Otherwise, can't handle this. return true; } unsigned VEInstrInfo::insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded) const { assert(TBB && "insertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 3 || Cond.size() == 0) && "VE branch conditions should have three component!"); assert(!BytesAdded && "code size not handled"); if (Cond.empty()) { // Uncondition branch assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(VE::BRCFLa_t)) .addMBB(TBB); return 1; } // Conditional branch // (BRCFir CC sy sz addr) assert(Cond[0].isImm() && Cond[2].isReg() && "not implemented"); unsigned opc[2]; const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineFunction *MF = MBB.getParent(); const MachineRegisterInfo &MRI = MF->getRegInfo(); Register Reg = Cond[2].getReg(); if (IsIntegerCC(Cond[0].getImm())) { if (TRI->getRegSizeInBits(Reg, MRI) == 32) { opc[0] = VE::BRCFWir; opc[1] = VE::BRCFWrr; } else { opc[0] = VE::BRCFLir; opc[1] = VE::BRCFLrr; } } else { if (TRI->getRegSizeInBits(Reg, MRI) == 32) { opc[0] = VE::BRCFSir; opc[1] = VE::BRCFSrr; } else { opc[0] = VE::BRCFDir; opc[1] = VE::BRCFDrr; } } if (Cond[1].isImm()) { BuildMI(&MBB, DL, get(opc[0])) .add(Cond[0]) // condition code .add(Cond[1]) // lhs .add(Cond[2]) // rhs .addMBB(TBB); } else { BuildMI(&MBB, DL, get(opc[1])) .add(Cond[0]) .add(Cond[1]) .add(Cond[2]) .addMBB(TBB); } if (!FBB) return 1; BuildMI(&MBB, DL, get(VE::BRCFLa_t)) .addMBB(FBB); return 2; } unsigned VEInstrInfo::removeBranch(MachineBasicBlock &MBB, int *BytesRemoved) const { assert(!BytesRemoved && "code size not handled"); MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; if (!isUncondBranchOpcode(I->getOpcode()) && !isCondBranchOpcode(I->getOpcode())) break; // Not a branch I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } bool VEInstrInfo::reverseBranchCondition( SmallVectorImpl &Cond) const { VECC::CondCode CC = static_cast(Cond[0].getImm()); Cond[0].setImm(GetOppositeBranchCondition(CC)); return false; } static bool IsAliasOfSX(Register Reg) { return VE::I32RegClass.contains(Reg) || VE::I64RegClass.contains(Reg) || VE::F32RegClass.contains(Reg); } static void copyPhysSubRegs(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc, const MCInstrDesc &MCID, unsigned int NumSubRegs, const unsigned *SubRegIdx, const TargetRegisterInfo *TRI) { MachineInstr *MovMI = nullptr; for (unsigned Idx = 0; Idx != NumSubRegs; ++Idx) { Register SubDest = TRI->getSubReg(DestReg, SubRegIdx[Idx]); Register SubSrc = TRI->getSubReg(SrcReg, SubRegIdx[Idx]); assert(SubDest && SubSrc && "Bad sub-register"); if (MCID.getOpcode() == VE::ORri) { // generate "ORri, dest, src, 0" instruction. MachineInstrBuilder MIB = BuildMI(MBB, I, DL, MCID, SubDest).addReg(SubSrc).addImm(0); MovMI = MIB.getInstr(); } else if (MCID.getOpcode() == VE::ANDMmm) { // generate "ANDM, dest, vm0, src" instruction. MachineInstrBuilder MIB = BuildMI(MBB, I, DL, MCID, SubDest).addReg(VE::VM0).addReg(SubSrc); MovMI = MIB.getInstr(); } else { llvm_unreachable("Unexpected reg-to-reg copy instruction"); } } // Add implicit super-register defs and kills to the last MovMI. MovMI->addRegisterDefined(DestReg, TRI); if (KillSrc) MovMI->addRegisterKilled(SrcReg, TRI, true); } void VEInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const { if (IsAliasOfSX(SrcReg) && IsAliasOfSX(DestReg)) { BuildMI(MBB, I, DL, get(VE::ORri), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)) .addImm(0); } else if (VE::V64RegClass.contains(DestReg, SrcReg)) { // Generate following instructions // %sw16 = LEA32zii 256 // VORmvl %dest, (0)1, %src, %sw16 // TODO: reuse a register if vl is already assigned to a register // FIXME: it would be better to scavenge a register here instead of // reserving SX16 all of the time. const TargetRegisterInfo *TRI = &getRegisterInfo(); Register TmpReg = VE::SX16; Register SubTmp = TRI->getSubReg(TmpReg, VE::sub_i32); BuildMI(MBB, I, DL, get(VE::LEAzii), TmpReg) .addImm(0) .addImm(0) .addImm(256); MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(VE::VORmvl), DestReg) .addImm(M1(0)) // Represent (0)1. .addReg(SrcReg, getKillRegState(KillSrc)) .addReg(SubTmp, getKillRegState(true)); MIB.getInstr()->addRegisterKilled(TmpReg, TRI, true); } else if (VE::VMRegClass.contains(DestReg, SrcReg)) { BuildMI(MBB, I, DL, get(VE::ANDMmm), DestReg) .addReg(VE::VM0) .addReg(SrcReg, getKillRegState(KillSrc)); } else if (VE::VM512RegClass.contains(DestReg, SrcReg)) { // Use two instructions. const unsigned SubRegIdx[] = {VE::sub_vm_even, VE::sub_vm_odd}; unsigned int NumSubRegs = 2; copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ANDMmm), NumSubRegs, SubRegIdx, &getRegisterInfo()); } else if (VE::F128RegClass.contains(DestReg, SrcReg)) { // Use two instructions. const unsigned SubRegIdx[] = {VE::sub_even, VE::sub_odd}; unsigned int NumSubRegs = 2; copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ORri), NumSubRegs, SubRegIdx, &getRegisterInfo()); } else { const TargetRegisterInfo *TRI = &getRegisterInfo(); dbgs() << "Impossible reg-to-reg copy from " << printReg(SrcReg, TRI) << " to " << printReg(DestReg, TRI) << "\n"; llvm_unreachable("Impossible reg-to-reg copy"); } } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned VEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (MI.getOpcode() == VE::LDrii || // I64 MI.getOpcode() == VE::LDLSXrii || // I32 MI.getOpcode() == VE::LDUrii || // F32 MI.getOpcode() == VE::LDQrii // F128 (pseudo) ) { if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0 && MI.getOperand(3).isImm() && MI.getOperand(3).getImm() == 0) { FrameIndex = MI.getOperand(1).getIndex(); return MI.getOperand(0).getReg(); } } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned VEInstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { if (MI.getOpcode() == VE::STrii || // I64 MI.getOpcode() == VE::STLrii || // I32 MI.getOpcode() == VE::STUrii || // F32 MI.getOpcode() == VE::STQrii // F128 (pseudo) ) { if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0 && MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) { FrameIndex = MI.getOperand(0).getIndex(); return MI.getOperand(3).getReg(); } } return 0; } void VEInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction *MF = MBB.getParent(); const MachineFrameInfo &MFI = MF->getFrameInfo(); MachineMemOperand *MMO = MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); // On the order of operands here: think "[FrameIdx + 0] = SrcReg". if (RC == &VE::I64RegClass) { BuildMI(MBB, I, DL, get(VE::STrii)) .addFrameIndex(FI) .addImm(0) .addImm(0) .addReg(SrcReg, getKillRegState(isKill)) .addMemOperand(MMO); } else if (RC == &VE::I32RegClass) { BuildMI(MBB, I, DL, get(VE::STLrii)) .addFrameIndex(FI) .addImm(0) .addImm(0) .addReg(SrcReg, getKillRegState(isKill)) .addMemOperand(MMO); } else if (RC == &VE::F32RegClass) { BuildMI(MBB, I, DL, get(VE::STUrii)) .addFrameIndex(FI) .addImm(0) .addImm(0) .addReg(SrcReg, getKillRegState(isKill)) .addMemOperand(MMO); } else if (VE::F128RegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(VE::STQrii)) .addFrameIndex(FI) .addImm(0) .addImm(0) .addReg(SrcReg, getKillRegState(isKill)) .addMemOperand(MMO); } else report_fatal_error("Can't store this register to stack slot"); } void VEInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL; if (I != MBB.end()) DL = I->getDebugLoc(); MachineFunction *MF = MBB.getParent(); const MachineFrameInfo &MFI = MF->getFrameInfo(); MachineMemOperand *MMO = MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); if (RC == &VE::I64RegClass) { BuildMI(MBB, I, DL, get(VE::LDrii), DestReg) .addFrameIndex(FI) .addImm(0) .addImm(0) .addMemOperand(MMO); } else if (RC == &VE::I32RegClass) { BuildMI(MBB, I, DL, get(VE::LDLSXrii), DestReg) .addFrameIndex(FI) .addImm(0) .addImm(0) .addMemOperand(MMO); } else if (RC == &VE::F32RegClass) { BuildMI(MBB, I, DL, get(VE::LDUrii), DestReg) .addFrameIndex(FI) .addImm(0) .addImm(0) .addMemOperand(MMO); } else if (VE::F128RegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(VE::LDQrii), DestReg) .addFrameIndex(FI) .addImm(0) .addImm(0) .addMemOperand(MMO); } else report_fatal_error("Can't load this register from stack slot"); } bool VEInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const { LLVM_DEBUG(dbgs() << "FoldImmediate\n"); LLVM_DEBUG(dbgs() << "checking DefMI\n"); int64_t ImmVal; switch (DefMI.getOpcode()) { default: return false; case VE::ORim: // General move small immediate instruction on VE. LLVM_DEBUG(dbgs() << "checking ORim\n"); LLVM_DEBUG(DefMI.dump()); // FIXME: We may need to support FPImm too. assert(DefMI.getOperand(1).isImm()); assert(DefMI.getOperand(2).isImm()); ImmVal = DefMI.getOperand(1).getImm() + mimm2Val(DefMI.getOperand(2).getImm()); LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n"); break; case VE::LEAzii: // General move immediate instruction on VE. LLVM_DEBUG(dbgs() << "checking LEAzii\n"); LLVM_DEBUG(DefMI.dump()); // FIXME: We may need to support FPImm too. assert(DefMI.getOperand(2).isImm()); if (!DefMI.getOperand(3).isImm()) // LEAzii may refer label return false; ImmVal = DefMI.getOperand(2).getImm() + DefMI.getOperand(3).getImm(); LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n"); break; } // Try to fold like below: // %1:i64 = ORim 0, 0(1) // %2:i64 = CMPSLrr %0, %1 // To // %2:i64 = CMPSLrm %0, 0(1) // // Another example: // %1:i64 = ORim 6, 0(1) // %2:i64 = CMPSLrr %1, %0 // To // %2:i64 = CMPSLir 6, %0 // // Support commutable instructions like below: // %1:i64 = ORim 6, 0(1) // %2:i64 = ADDSLrr %1, %0 // To // %2:i64 = ADDSLri %0, 6 // // FIXME: Need to support i32. Current implementtation requires // EXTRACT_SUBREG, so input has following COPY and it avoids folding: // %1:i64 = ORim 6, 0(1) // %2:i32 = COPY %1.sub_i32 // %3:i32 = ADDSWSXrr %0, %2 // FIXME: Need to support shift, cmov, and more instructions. // FIXME: Need to support lvl too, but LVLGen runs after peephole-opt. LLVM_DEBUG(dbgs() << "checking UseMI\n"); LLVM_DEBUG(UseMI.dump()); unsigned NewUseOpcSImm7; unsigned NewUseOpcMImm; enum InstType { rr2ri_rm, // rr -> ri or rm, commutable rr2ir_rm, // rr -> ir or rm } InstType; using namespace llvm::VE; #define INSTRKIND(NAME) \ case NAME##rr: \ NewUseOpcSImm7 = NAME##ri; \ NewUseOpcMImm = NAME##rm; \ InstType = rr2ri_rm; \ break #define NCINSTRKIND(NAME) \ case NAME##rr: \ NewUseOpcSImm7 = NAME##ir; \ NewUseOpcMImm = NAME##rm; \ InstType = rr2ir_rm; \ break switch (UseMI.getOpcode()) { default: return false; INSTRKIND(ADDUL); INSTRKIND(ADDSWSX); INSTRKIND(ADDSWZX); INSTRKIND(ADDSL); NCINSTRKIND(SUBUL); NCINSTRKIND(SUBSWSX); NCINSTRKIND(SUBSWZX); NCINSTRKIND(SUBSL); INSTRKIND(MULUL); INSTRKIND(MULSWSX); INSTRKIND(MULSWZX); INSTRKIND(MULSL); NCINSTRKIND(DIVUL); NCINSTRKIND(DIVSWSX); NCINSTRKIND(DIVSWZX); NCINSTRKIND(DIVSL); NCINSTRKIND(CMPUL); NCINSTRKIND(CMPSWSX); NCINSTRKIND(CMPSWZX); NCINSTRKIND(CMPSL); INSTRKIND(MAXSWSX); INSTRKIND(MAXSWZX); INSTRKIND(MAXSL); INSTRKIND(MINSWSX); INSTRKIND(MINSWZX); INSTRKIND(MINSL); INSTRKIND(AND); INSTRKIND(OR); INSTRKIND(XOR); INSTRKIND(EQV); NCINSTRKIND(NND); NCINSTRKIND(MRG); } #undef INSTRKIND unsigned NewUseOpc; unsigned UseIdx; bool Commute = false; LLVM_DEBUG(dbgs() << "checking UseMI operands\n"); switch (InstType) { case rr2ri_rm: UseIdx = 2; if (UseMI.getOperand(1).getReg() == Reg) { Commute = true; } else { assert(UseMI.getOperand(2).getReg() == Reg); } if (isInt<7>(ImmVal)) { // This ImmVal matches to SImm7 slot, so change UseOpc to an instruction // holds a simm7 slot. NewUseOpc = NewUseOpcSImm7; } else if (isMImmVal(ImmVal)) { // Similarly, change UseOpc to an instruction holds a mimm slot. NewUseOpc = NewUseOpcMImm; ImmVal = val2MImm(ImmVal); } else return false; break; case rr2ir_rm: if (UseMI.getOperand(1).getReg() == Reg) { // Check immediate value whether it matchs to the UseMI instruction. if (!isInt<7>(ImmVal)) return false; NewUseOpc = NewUseOpcSImm7; UseIdx = 1; } else { assert(UseMI.getOperand(2).getReg() == Reg); // Check immediate value whether it matchs to the UseMI instruction. if (!isMImmVal(ImmVal)) return false; NewUseOpc = NewUseOpcMImm; ImmVal = val2MImm(ImmVal); UseIdx = 2; } break; } LLVM_DEBUG(dbgs() << "modifying UseMI\n"); bool DeleteDef = MRI->hasOneNonDBGUse(Reg); UseMI.setDesc(get(NewUseOpc)); if (Commute) { UseMI.getOperand(1).setReg(UseMI.getOperand(UseIdx).getReg()); } UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); if (DeleteDef) DefMI.eraseFromParent(); return true; } Register VEInstrInfo::getGlobalBaseReg(MachineFunction *MF) const { VEMachineFunctionInfo *VEFI = MF->getInfo(); Register GlobalBaseReg = VEFI->getGlobalBaseReg(); if (GlobalBaseReg != 0) return GlobalBaseReg; // We use %s15 (%got) as a global base register GlobalBaseReg = VE::SX15; // Insert a pseudo instruction to set the GlobalBaseReg into the first // MBB of the function MachineBasicBlock &FirstMBB = MF->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); DebugLoc dl; BuildMI(FirstMBB, MBBI, dl, get(VE::GETGOT), GlobalBaseReg); VEFI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; } static Register getVM512Upper(Register reg) { return (reg - VE::VMP0) * 2 + VE::VM0; } static Register getVM512Lower(Register reg) { return getVM512Upper(reg) + 1; } // Expand pseudo logical vector instructions for VM512 registers. static void expandPseudoLogM(MachineInstr &MI, const MCInstrDesc &MCID) { MachineBasicBlock *MBB = MI.getParent(); DebugLoc DL = MI.getDebugLoc(); Register VMXu = getVM512Upper(MI.getOperand(0).getReg()); Register VMXl = getVM512Lower(MI.getOperand(0).getReg()); Register VMYu = getVM512Upper(MI.getOperand(1).getReg()); Register VMYl = getVM512Lower(MI.getOperand(1).getReg()); switch (MI.getOpcode()) { default: { Register VMZu = getVM512Upper(MI.getOperand(2).getReg()); Register VMZl = getVM512Lower(MI.getOperand(2).getReg()); BuildMI(*MBB, MI, DL, MCID).addDef(VMXu).addUse(VMYu).addUse(VMZu); BuildMI(*MBB, MI, DL, MCID).addDef(VMXl).addUse(VMYl).addUse(VMZl); break; } case VE::NEGMy: BuildMI(*MBB, MI, DL, MCID).addDef(VMXu).addUse(VMYu); BuildMI(*MBB, MI, DL, MCID).addDef(VMXl).addUse(VMYl); break; } MI.eraseFromParent(); } static void addOperandsForVFMK(MachineInstrBuilder &MIB, MachineInstr &MI, bool Upper) { // VM512 MIB.addReg(Upper ? getVM512Upper(MI.getOperand(0).getReg()) : getVM512Lower(MI.getOperand(0).getReg())); switch (MI.getNumExplicitOperands()) { default: report_fatal_error("unexpected number of operands for pvfmk"); case 2: // _Ml: VM512, VL // VL MIB.addReg(MI.getOperand(1).getReg()); break; case 4: // _Mvl: VM512, CC, VR, VL // CC MIB.addImm(MI.getOperand(1).getImm()); // VR MIB.addReg(MI.getOperand(2).getReg()); // VL MIB.addReg(MI.getOperand(3).getReg()); break; case 5: // _MvMl: VM512, CC, VR, VM512, VL // CC MIB.addImm(MI.getOperand(1).getImm()); // VR MIB.addReg(MI.getOperand(2).getReg()); // VM512 MIB.addReg(Upper ? getVM512Upper(MI.getOperand(3).getReg()) : getVM512Lower(MI.getOperand(3).getReg())); // VL MIB.addReg(MI.getOperand(4).getReg()); break; } } static void expandPseudoVFMK(const TargetInstrInfo &TI, MachineInstr &MI) { // replace to pvfmk.w.up and pvfmk.w.lo // replace to pvfmk.s.up and pvfmk.s.lo static std::map> VFMKMap = { {VE::VFMKyal, {VE::VFMKLal, VE::VFMKLal}}, {VE::VFMKynal, {VE::VFMKLnal, VE::VFMKLnal}}, {VE::VFMKWyvl, {VE::PVFMKWUPvl, VE::PVFMKWLOvl}}, {VE::VFMKWyvyl, {VE::PVFMKWUPvml, VE::PVFMKWLOvml}}, {VE::VFMKSyvl, {VE::PVFMKSUPvl, VE::PVFMKSLOvl}}, {VE::VFMKSyvyl, {VE::PVFMKSUPvml, VE::PVFMKSLOvml}}, }; unsigned Opcode = MI.getOpcode(); auto Found = VFMKMap.find(Opcode); if (Found == VFMKMap.end()) report_fatal_error("unexpected opcode for pseudo vfmk"); unsigned OpcodeUpper = (*Found).second.first; unsigned OpcodeLower = (*Found).second.second; MachineBasicBlock *MBB = MI.getParent(); DebugLoc DL = MI.getDebugLoc(); MachineInstrBuilder Bu = BuildMI(*MBB, MI, DL, TI.get(OpcodeUpper)); addOperandsForVFMK(Bu, MI, /* Upper */ true); MachineInstrBuilder Bl = BuildMI(*MBB, MI, DL, TI.get(OpcodeLower)); addOperandsForVFMK(Bl, MI, /* Upper */ false); MI.eraseFromParent(); } bool VEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { switch (MI.getOpcode()) { case VE::EXTEND_STACK: { return expandExtendStackPseudo(MI); } case VE::EXTEND_STACK_GUARD: { MI.eraseFromParent(); // The pseudo instruction is gone now. return true; } case VE::GETSTACKTOP: { return expandGetStackTopPseudo(MI); } case VE::ANDMyy: expandPseudoLogM(MI, get(VE::ANDMmm)); return true; case VE::ORMyy: expandPseudoLogM(MI, get(VE::ORMmm)); return true; case VE::XORMyy: expandPseudoLogM(MI, get(VE::XORMmm)); return true; case VE::EQVMyy: expandPseudoLogM(MI, get(VE::EQVMmm)); return true; case VE::NNDMyy: expandPseudoLogM(MI, get(VE::NNDMmm)); return true; case VE::NEGMy: expandPseudoLogM(MI, get(VE::NEGMm)); return true; case VE::LVMyir: case VE::LVMyim: case VE::LVMyir_y: case VE::LVMyim_y: { Register VMXu = getVM512Upper(MI.getOperand(0).getReg()); Register VMXl = getVM512Lower(MI.getOperand(0).getReg()); int64_t Imm = MI.getOperand(1).getImm(); bool IsSrcReg = MI.getOpcode() == VE::LVMyir || MI.getOpcode() == VE::LVMyir_y; Register Src = IsSrcReg ? MI.getOperand(2).getReg() : VE::NoRegister; int64_t MImm = IsSrcReg ? 0 : MI.getOperand(2).getImm(); bool KillSrc = IsSrcReg ? MI.getOperand(2).isKill() : false; Register VMX = VMXl; if (Imm >= 4) { VMX = VMXu; Imm -= 4; } MachineBasicBlock *MBB = MI.getParent(); DebugLoc DL = MI.getDebugLoc(); switch (MI.getOpcode()) { case VE::LVMyir: BuildMI(*MBB, MI, DL, get(VE::LVMir)) .addDef(VMX) .addImm(Imm) .addReg(Src, getKillRegState(KillSrc)); break; case VE::LVMyim: BuildMI(*MBB, MI, DL, get(VE::LVMim)) .addDef(VMX) .addImm(Imm) .addImm(MImm); break; case VE::LVMyir_y: assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() && "LVMyir_y has different register in 3rd operand"); BuildMI(*MBB, MI, DL, get(VE::LVMir_m)) .addDef(VMX) .addImm(Imm) .addReg(Src, getKillRegState(KillSrc)) .addReg(VMX); break; case VE::LVMyim_y: assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() && "LVMyim_y has different register in 3rd operand"); BuildMI(*MBB, MI, DL, get(VE::LVMim_m)) .addDef(VMX) .addImm(Imm) .addImm(MImm) .addReg(VMX); break; } MI.eraseFromParent(); return true; } case VE::SVMyi: { Register Dest = MI.getOperand(0).getReg(); Register VMZu = getVM512Upper(MI.getOperand(1).getReg()); Register VMZl = getVM512Lower(MI.getOperand(1).getReg()); bool KillSrc = MI.getOperand(1).isKill(); int64_t Imm = MI.getOperand(2).getImm(); Register VMZ = VMZl; if (Imm >= 4) { VMZ = VMZu; Imm -= 4; } MachineBasicBlock *MBB = MI.getParent(); DebugLoc DL = MI.getDebugLoc(); MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, get(VE::SVMmi), Dest).addReg(VMZ).addImm(Imm); MachineInstr *Inst = MIB.getInstr(); if (KillSrc) { const TargetRegisterInfo *TRI = &getRegisterInfo(); Inst->addRegisterKilled(MI.getOperand(1).getReg(), TRI, true); } MI.eraseFromParent(); return true; } case VE::VFMKyal: case VE::VFMKynal: case VE::VFMKWyvl: case VE::VFMKWyvyl: case VE::VFMKSyvl: case VE::VFMKSyvyl: expandPseudoVFMK(*this, MI); return true; } return false; } bool VEInstrInfo::expandExtendStackPseudo(MachineInstr &MI) const { MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const VESubtarget &STI = MF.getSubtarget(); const VEInstrInfo &TII = *STI.getInstrInfo(); DebugLoc dl = MBB.findDebugLoc(MI); // Create following instructions and multiple basic blocks. // // thisBB: // brge.l.t %sp, %sl, sinkBB // syscallBB: // ld %s61, 0x18(, %tp) // load param area // or %s62, 0, %s0 // spill the value of %s0 // lea %s63, 0x13b // syscall # of grow // shm.l %s63, 0x0(%s61) // store syscall # at addr:0 // shm.l %sl, 0x8(%s61) // store old limit at addr:8 // shm.l %sp, 0x10(%s61) // store new limit at addr:16 // monc // call monitor // or %s0, 0, %s62 // restore the value of %s0 // sinkBB: // Create new MBB MachineBasicBlock *BB = &MBB; const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineBasicBlock *syscallMBB = MF.CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = MF.CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator It = ++(BB->getIterator()); MF.insert(It, syscallMBB); MF.insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(std::next(MachineBasicBlock::iterator(MI))), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(syscallMBB); BB->addSuccessor(sinkMBB); BuildMI(BB, dl, TII.get(VE::BRCFLrr_t)) .addImm(VECC::CC_IGE) .addReg(VE::SX11) // %sp .addReg(VE::SX8) // %sl .addMBB(sinkMBB); BB = syscallMBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); BuildMI(BB, dl, TII.get(VE::LDrii), VE::SX61) .addReg(VE::SX14) .addImm(0) .addImm(0x18); BuildMI(BB, dl, TII.get(VE::ORri), VE::SX62) .addReg(VE::SX0) .addImm(0); BuildMI(BB, dl, TII.get(VE::LEAzii), VE::SX63) .addImm(0) .addImm(0) .addImm(0x13b); BuildMI(BB, dl, TII.get(VE::SHMLri)) .addReg(VE::SX61) .addImm(0) .addReg(VE::SX63); BuildMI(BB, dl, TII.get(VE::SHMLri)) .addReg(VE::SX61) .addImm(8) .addReg(VE::SX8); BuildMI(BB, dl, TII.get(VE::SHMLri)) .addReg(VE::SX61) .addImm(16) .addReg(VE::SX11); BuildMI(BB, dl, TII.get(VE::MONC)); BuildMI(BB, dl, TII.get(VE::ORri), VE::SX0) .addReg(VE::SX62) .addImm(0); MI.eraseFromParent(); // The pseudo instruction is gone now. return true; } bool VEInstrInfo::expandGetStackTopPseudo(MachineInstr &MI) const { MachineBasicBlock *MBB = MI.getParent(); MachineFunction &MF = *MBB->getParent(); const VESubtarget &STI = MF.getSubtarget(); const VEInstrInfo &TII = *STI.getInstrInfo(); DebugLoc DL = MBB->findDebugLoc(MI); // Create following instruction // // dst = %sp + target specific frame + the size of parameter area const MachineFrameInfo &MFI = MF.getFrameInfo(); const VEFrameLowering &TFL = *STI.getFrameLowering(); // The VE ABI requires a reserved area at the top of stack as described // in VEFrameLowering.cpp. So, we adjust it here. unsigned NumBytes = STI.getAdjustedFrameSize(0); // Also adds the size of parameter area. if (MFI.adjustsStack() && TFL.hasReservedCallFrame(MF)) NumBytes += MFI.getMaxCallFrameSize(); BuildMI(*MBB, MI, DL, TII.get(VE::LEArii)) .addDef(MI.getOperand(0).getReg()) .addReg(VE::SX11) .addImm(0) .addImm(NumBytes); MI.eraseFromParent(); // The pseudo instruction is gone now. return true; }