//===-- VEAsmParser.cpp - Parse VE assembly to MCInst instructions --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "MCTargetDesc/VEMCExpr.h" #include "MCTargetDesc/VEMCTargetDesc.h" #include "TargetInfo/VETargetInfo.h" #include "VE.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; #define DEBUG_TYPE "ve-asmparser" namespace { class VEOperand; class VEAsmParser : public MCTargetAsmParser { MCAsmParser &Parser; /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "VEGenAsmMatcher.inc" /// } // public interface of the MCTargetAsmParser. bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; int parseRegisterName(MCRegister (*matchFn)(StringRef)); ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; ParseStatus parseDirective(AsmToken DirectiveID) override; unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override; // Custom parse functions for VE specific operands. ParseStatus parseMEMOperand(OperandVector &Operands); ParseStatus parseMEMAsOperand(OperandVector &Operands); ParseStatus parseCCOpOperand(OperandVector &Operands); ParseStatus parseRDOpOperand(OperandVector &Operands); ParseStatus parseMImmOperand(OperandVector &Operands); ParseStatus parseOperand(OperandVector &Operands, StringRef Name); ParseStatus parseVEAsmOperand(std::unique_ptr &Operand); // Helper function to parse expression with a symbol. const MCExpr *extractModifierFromExpr(const MCExpr *E, VEMCExpr::VariantKind &Variant); const MCExpr *fixupVariantKind(const MCExpr *E); bool parseExpression(const MCExpr *&EVal); // Split the mnemonic stripping conditional code and quantifiers StringRef splitMnemonic(StringRef Name, SMLoc NameLoc, OperandVector *Operands); bool parseLiteralValues(unsigned Size, SMLoc L); public: VEAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, sti, MII), Parser(parser) { // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); } }; } // end anonymous namespace static const MCPhysReg I32Regs[64] = { VE::SW0, VE::SW1, VE::SW2, VE::SW3, VE::SW4, VE::SW5, VE::SW6, VE::SW7, VE::SW8, VE::SW9, VE::SW10, VE::SW11, VE::SW12, VE::SW13, VE::SW14, VE::SW15, VE::SW16, VE::SW17, VE::SW18, VE::SW19, VE::SW20, VE::SW21, VE::SW22, VE::SW23, VE::SW24, VE::SW25, VE::SW26, VE::SW27, VE::SW28, VE::SW29, VE::SW30, VE::SW31, VE::SW32, VE::SW33, VE::SW34, VE::SW35, VE::SW36, VE::SW37, VE::SW38, VE::SW39, VE::SW40, VE::SW41, VE::SW42, VE::SW43, VE::SW44, VE::SW45, VE::SW46, VE::SW47, VE::SW48, VE::SW49, VE::SW50, VE::SW51, VE::SW52, VE::SW53, VE::SW54, VE::SW55, VE::SW56, VE::SW57, VE::SW58, VE::SW59, VE::SW60, VE::SW61, VE::SW62, VE::SW63}; static const MCPhysReg F32Regs[64] = { VE::SF0, VE::SF1, VE::SF2, VE::SF3, VE::SF4, VE::SF5, VE::SF6, VE::SF7, VE::SF8, VE::SF9, VE::SF10, VE::SF11, VE::SF12, VE::SF13, VE::SF14, VE::SF15, VE::SF16, VE::SF17, VE::SF18, VE::SF19, VE::SF20, VE::SF21, VE::SF22, VE::SF23, VE::SF24, VE::SF25, VE::SF26, VE::SF27, VE::SF28, VE::SF29, VE::SF30, VE::SF31, VE::SF32, VE::SF33, VE::SF34, VE::SF35, VE::SF36, VE::SF37, VE::SF38, VE::SF39, VE::SF40, VE::SF41, VE::SF42, VE::SF43, VE::SF44, VE::SF45, VE::SF46, VE::SF47, VE::SF48, VE::SF49, VE::SF50, VE::SF51, VE::SF52, VE::SF53, VE::SF54, VE::SF55, VE::SF56, VE::SF57, VE::SF58, VE::SF59, VE::SF60, VE::SF61, VE::SF62, VE::SF63}; static const MCPhysReg F128Regs[32] = { VE::Q0, VE::Q1, VE::Q2, VE::Q3, VE::Q4, VE::Q5, VE::Q6, VE::Q7, VE::Q8, VE::Q9, VE::Q10, VE::Q11, VE::Q12, VE::Q13, VE::Q14, VE::Q15, VE::Q16, VE::Q17, VE::Q18, VE::Q19, VE::Q20, VE::Q21, VE::Q22, VE::Q23, VE::Q24, VE::Q25, VE::Q26, VE::Q27, VE::Q28, VE::Q29, VE::Q30, VE::Q31}; static const MCPhysReg VM512Regs[8] = {VE::VMP0, VE::VMP1, VE::VMP2, VE::VMP3, VE::VMP4, VE::VMP5, VE::VMP6, VE::VMP7}; static const MCPhysReg MISCRegs[31] = { VE::USRCC, VE::PSW, VE::SAR, VE::NoRegister, VE::NoRegister, VE::NoRegister, VE::NoRegister, VE::PMMR, VE::PMCR0, VE::PMCR1, VE::PMCR2, VE::PMCR3, VE::NoRegister, VE::NoRegister, VE::NoRegister, VE::NoRegister, VE::PMC0, VE::PMC1, VE::PMC2, VE::PMC3, VE::PMC4, VE::PMC5, VE::PMC6, VE::PMC7, VE::PMC8, VE::PMC9, VE::PMC10, VE::PMC11, VE::PMC12, VE::PMC13, VE::PMC14}; namespace { /// VEOperand - Instances of this class represent a parsed VE machine /// instruction. class VEOperand : public MCParsedAsmOperand { private: enum KindTy { k_Token, k_Register, k_Immediate, // SX-Aurora ASX form is disp(index, base). k_MemoryRegRegImm, // base=reg, index=reg, disp=imm k_MemoryRegImmImm, // base=reg, index=imm, disp=imm k_MemoryZeroRegImm, // base=0, index=reg, disp=imm k_MemoryZeroImmImm, // base=0, index=imm, disp=imm // SX-Aurora AS form is disp(base). k_MemoryRegImm, // base=reg, disp=imm k_MemoryZeroImm, // base=0, disp=imm // Other special cases for Aurora VE k_CCOp, // condition code k_RDOp, // rounding mode k_MImmOp, // Special immediate value of sequential bit stream of 0 or 1. } Kind; SMLoc StartLoc, EndLoc; struct Token { const char *Data; unsigned Length; }; struct RegOp { unsigned RegNum; }; struct ImmOp { const MCExpr *Val; }; struct MemOp { unsigned Base; unsigned IndexReg; const MCExpr *Index; const MCExpr *Offset; }; struct CCOp { unsigned CCVal; }; struct RDOp { unsigned RDVal; }; struct MImmOp { const MCExpr *Val; bool M0Flag; }; union { struct Token Tok; struct RegOp Reg; struct ImmOp Imm; struct MemOp Mem; struct CCOp CC; struct RDOp RD; struct MImmOp MImm; }; public: VEOperand(KindTy K) : Kind(K) {} bool isToken() const override { return Kind == k_Token; } bool isReg() const override { return Kind == k_Register; } bool isImm() const override { return Kind == k_Immediate; } bool isMem() const override { return isMEMrri() || isMEMrii() || isMEMzri() || isMEMzii() || isMEMri() || isMEMzi(); } bool isMEMrri() const { return Kind == k_MemoryRegRegImm; } bool isMEMrii() const { return Kind == k_MemoryRegImmImm; } bool isMEMzri() const { return Kind == k_MemoryZeroRegImm; } bool isMEMzii() const { return Kind == k_MemoryZeroImmImm; } bool isMEMri() const { return Kind == k_MemoryRegImm; } bool isMEMzi() const { return Kind == k_MemoryZeroImm; } bool isCCOp() const { return Kind == k_CCOp; } bool isRDOp() const { return Kind == k_RDOp; } bool isZero() { if (!isImm()) return false; // Constant case if (const auto *ConstExpr = dyn_cast(Imm.Val)) { int64_t Value = ConstExpr->getValue(); return Value == 0; } return false; } bool isUImm0to2() { if (!isImm()) return false; // Constant case if (const auto *ConstExpr = dyn_cast(Imm.Val)) { int64_t Value = ConstExpr->getValue(); return Value >= 0 && Value < 3; } return false; } bool isUImm1() { if (!isImm()) return false; // Constant case if (const auto *ConstExpr = dyn_cast(Imm.Val)) { int64_t Value = ConstExpr->getValue(); return isUInt<1>(Value); } return false; } bool isUImm2() { if (!isImm()) return false; // Constant case if (const auto *ConstExpr = dyn_cast(Imm.Val)) { int64_t Value = ConstExpr->getValue(); return isUInt<2>(Value); } return false; } bool isUImm3() { if (!isImm()) return false; // Constant case if (const auto *ConstExpr = dyn_cast(Imm.Val)) { int64_t Value = ConstExpr->getValue(); return isUInt<3>(Value); } return false; } bool isUImm4() { if (!isImm()) return false; // Constant case if (const auto *ConstExpr = dyn_cast(Imm.Val)) { int64_t Value = ConstExpr->getValue(); return isUInt<4>(Value); } return false; } bool isUImm6() { if (!isImm()) return false; // Constant case if (const auto *ConstExpr = dyn_cast(Imm.Val)) { int64_t Value = ConstExpr->getValue(); return isUInt<6>(Value); } return false; } bool isUImm7() { if (!isImm()) return false; // Constant case if (const auto *ConstExpr = dyn_cast(Imm.Val)) { int64_t Value = ConstExpr->getValue(); return isUInt<7>(Value); } return false; } bool isSImm7() { if (!isImm()) return false; // Constant case if (const auto *ConstExpr = dyn_cast(Imm.Val)) { int64_t Value = ConstExpr->getValue(); return isInt<7>(Value); } return false; } bool isMImm() const { if (Kind != k_MImmOp) return false; // Constant case if (const auto *ConstExpr = dyn_cast(MImm.Val)) { int64_t Value = ConstExpr->getValue(); return isUInt<6>(Value); } return false; } StringRef getToken() const { assert(Kind == k_Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } MCRegister getReg() const override { assert((Kind == k_Register) && "Invalid access!"); return Reg.RegNum; } const MCExpr *getImm() const { assert((Kind == k_Immediate) && "Invalid access!"); return Imm.Val; } unsigned getMemBase() const { assert((Kind == k_MemoryRegRegImm || Kind == k_MemoryRegImmImm || Kind == k_MemoryRegImm) && "Invalid access!"); return Mem.Base; } unsigned getMemIndexReg() const { assert((Kind == k_MemoryRegRegImm || Kind == k_MemoryZeroRegImm) && "Invalid access!"); return Mem.IndexReg; } const MCExpr *getMemIndex() const { assert((Kind == k_MemoryRegImmImm || Kind == k_MemoryZeroImmImm) && "Invalid access!"); return Mem.Index; } const MCExpr *getMemOffset() const { assert((Kind == k_MemoryRegRegImm || Kind == k_MemoryRegImmImm || Kind == k_MemoryZeroImmImm || Kind == k_MemoryZeroRegImm || Kind == k_MemoryRegImm || Kind == k_MemoryZeroImm) && "Invalid access!"); return Mem.Offset; } void setMemOffset(const MCExpr *off) { assert((Kind == k_MemoryRegRegImm || Kind == k_MemoryRegImmImm || Kind == k_MemoryZeroImmImm || Kind == k_MemoryZeroRegImm || Kind == k_MemoryRegImm || Kind == k_MemoryZeroImm) && "Invalid access!"); Mem.Offset = off; } unsigned getCCVal() const { assert((Kind == k_CCOp) && "Invalid access!"); return CC.CCVal; } unsigned getRDVal() const { assert((Kind == k_RDOp) && "Invalid access!"); return RD.RDVal; } const MCExpr *getMImmVal() const { assert((Kind == k_MImmOp) && "Invalid access!"); return MImm.Val; } bool getM0Flag() const { assert((Kind == k_MImmOp) && "Invalid access!"); return MImm.M0Flag; } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const override { return EndLoc; } void print(raw_ostream &OS) const override { switch (Kind) { case k_Token: OS << "Token: " << getToken() << "\n"; break; case k_Register: OS << "Reg: #" << getReg() << "\n"; break; case k_Immediate: OS << "Imm: " << getImm() << "\n"; break; case k_MemoryRegRegImm: assert(getMemOffset() != nullptr); OS << "Mem: #" << getMemBase() << "+#" << getMemIndexReg() << "+" << *getMemOffset() << "\n"; break; case k_MemoryRegImmImm: assert(getMemIndex() != nullptr && getMemOffset() != nullptr); OS << "Mem: #" << getMemBase() << "+" << *getMemIndex() << "+" << *getMemOffset() << "\n"; break; case k_MemoryZeroRegImm: assert(getMemOffset() != nullptr); OS << "Mem: 0+#" << getMemIndexReg() << "+" << *getMemOffset() << "\n"; break; case k_MemoryZeroImmImm: assert(getMemIndex() != nullptr && getMemOffset() != nullptr); OS << "Mem: 0+" << *getMemIndex() << "+" << *getMemOffset() << "\n"; break; case k_MemoryRegImm: assert(getMemOffset() != nullptr); OS << "Mem: #" << getMemBase() << "+" << *getMemOffset() << "\n"; break; case k_MemoryZeroImm: assert(getMemOffset() != nullptr); OS << "Mem: 0+" << *getMemOffset() << "\n"; break; case k_CCOp: OS << "CCOp: " << getCCVal() << "\n"; break; case k_RDOp: OS << "RDOp: " << getRDVal() << "\n"; break; case k_MImmOp: OS << "MImm: (" << getMImmVal() << (getM0Flag() ? ")0" : ")1") << "\n"; break; } } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCExpr *Expr = getImm(); addExpr(Inst, Expr); } void addZeroOperands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addUImm0to2Operands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addUImm1Operands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addUImm2Operands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addUImm3Operands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addUImm4Operands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addUImm6Operands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addUImm7Operands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addSImm7Operands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediate when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::createImm(0)); else if (const auto *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::createImm(CE->getValue())); else Inst.addOperand(MCOperand::createExpr(Expr)); } void addMEMrriOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMemBase())); Inst.addOperand(MCOperand::createReg(getMemIndexReg())); addExpr(Inst, getMemOffset()); } void addMEMriiOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMemBase())); addExpr(Inst, getMemIndex()); addExpr(Inst, getMemOffset()); } void addMEMzriOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(0)); Inst.addOperand(MCOperand::createReg(getMemIndexReg())); addExpr(Inst, getMemOffset()); } void addMEMziiOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(0)); addExpr(Inst, getMemIndex()); addExpr(Inst, getMemOffset()); } void addMEMriOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMemBase())); addExpr(Inst, getMemOffset()); } void addMEMziOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(0)); addExpr(Inst, getMemOffset()); } void addCCOpOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getCCVal())); } void addRDOpOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getRDVal())); } void addMImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const auto *ConstExpr = dyn_cast(getMImmVal()); assert(ConstExpr && "Null operands!"); int64_t Value = ConstExpr->getValue(); if (getM0Flag()) Value += 64; Inst.addOperand(MCOperand::createImm(Value)); } static std::unique_ptr CreateToken(StringRef Str, SMLoc S) { auto Op = std::make_unique(k_Token); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateReg(unsigned RegNum, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_Register); Op->Reg.RegNum = RegNum; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateCCOp(unsigned CCVal, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_CCOp); Op->CC.CCVal = CCVal; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateRDOp(unsigned RDVal, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_RDOp); Op->RD.RDVal = RDVal; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateMImm(const MCExpr *Val, bool Flag, SMLoc S, SMLoc E) { auto Op = std::make_unique(k_MImmOp); Op->MImm.Val = Val; Op->MImm.M0Flag = Flag; Op->StartLoc = S; Op->EndLoc = E; return Op; } static bool MorphToI32Reg(VEOperand &Op) { unsigned Reg = Op.getReg(); unsigned regIdx = Reg - VE::SX0; if (regIdx > 63) return false; Op.Reg.RegNum = I32Regs[regIdx]; return true; } static bool MorphToF32Reg(VEOperand &Op) { unsigned Reg = Op.getReg(); unsigned regIdx = Reg - VE::SX0; if (regIdx > 63) return false; Op.Reg.RegNum = F32Regs[regIdx]; return true; } static bool MorphToF128Reg(VEOperand &Op) { unsigned Reg = Op.getReg(); unsigned regIdx = Reg - VE::SX0; if (regIdx % 2 || regIdx > 63) return false; Op.Reg.RegNum = F128Regs[regIdx / 2]; return true; } static bool MorphToVM512Reg(VEOperand &Op) { unsigned Reg = Op.getReg(); unsigned regIdx = Reg - VE::VM0; if (regIdx % 2 || regIdx > 15) return false; Op.Reg.RegNum = VM512Regs[regIdx / 2]; return true; } static bool MorphToMISCReg(VEOperand &Op) { const auto *ConstExpr = dyn_cast(Op.getImm()); if (!ConstExpr) return false; unsigned regIdx = ConstExpr->getValue(); if (regIdx > 31 || MISCRegs[regIdx] == VE::NoRegister) return false; Op.Kind = k_Register; Op.Reg.RegNum = MISCRegs[regIdx]; return true; } static std::unique_ptr MorphToMEMri(unsigned Base, std::unique_ptr Op) { const MCExpr *Imm = Op->getImm(); Op->Kind = k_MemoryRegImm; Op->Mem.Base = Base; Op->Mem.IndexReg = 0; Op->Mem.Index = nullptr; Op->Mem.Offset = Imm; return Op; } static std::unique_ptr MorphToMEMzi(std::unique_ptr Op) { const MCExpr *Imm = Op->getImm(); Op->Kind = k_MemoryZeroImm; Op->Mem.Base = 0; Op->Mem.IndexReg = 0; Op->Mem.Index = nullptr; Op->Mem.Offset = Imm; return Op; } static std::unique_ptr MorphToMEMrri(unsigned Base, unsigned Index, std::unique_ptr Op) { const MCExpr *Imm = Op->getImm(); Op->Kind = k_MemoryRegRegImm; Op->Mem.Base = Base; Op->Mem.IndexReg = Index; Op->Mem.Index = nullptr; Op->Mem.Offset = Imm; return Op; } static std::unique_ptr MorphToMEMrii(unsigned Base, const MCExpr *Index, std::unique_ptr Op) { const MCExpr *Imm = Op->getImm(); Op->Kind = k_MemoryRegImmImm; Op->Mem.Base = Base; Op->Mem.IndexReg = 0; Op->Mem.Index = Index; Op->Mem.Offset = Imm; return Op; } static std::unique_ptr MorphToMEMzri(unsigned Index, std::unique_ptr Op) { const MCExpr *Imm = Op->getImm(); Op->Kind = k_MemoryZeroRegImm; Op->Mem.Base = 0; Op->Mem.IndexReg = Index; Op->Mem.Index = nullptr; Op->Mem.Offset = Imm; return Op; } static std::unique_ptr MorphToMEMzii(const MCExpr *Index, std::unique_ptr Op) { const MCExpr *Imm = Op->getImm(); Op->Kind = k_MemoryZeroImmImm; Op->Mem.Base = 0; Op->Mem.IndexReg = 0; Op->Mem.Index = Index; Op->Mem.Offset = Imm; return Op; } }; } // end anonymous namespace bool VEAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); switch (MatchResult) { case Match_Success: Inst.setLoc(IDLoc); Out.emitInstruction(Inst, getSTI()); return false; case Match_MissingFeature: return Error(IDLoc, "instruction requires a CPU feature not currently enabled"); case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0ULL) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((VEOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } case Match_MnemonicFail: return Error(IDLoc, "invalid instruction mnemonic"); } llvm_unreachable("Implement any new match types added!"); } bool VEAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) { if (!tryParseRegister(Reg, StartLoc, EndLoc).isSuccess()) return Error(StartLoc, "invalid register name"); return false; } /// Parses a register name using a given matching function. /// Checks for lowercase or uppercase if necessary. int VEAsmParser::parseRegisterName(MCRegister (*matchFn)(StringRef)) { StringRef Name = Parser.getTok().getString(); int RegNum = matchFn(Name); // GCC supports case insensitive register names. All of the VE registers // are all lower case. if (RegNum == VE::NoRegister) { RegNum = matchFn(Name.lower()); } return RegNum; } /// Maps from the set of all register names to a register number. /// \note Generated by TableGen. static MCRegister MatchRegisterName(StringRef Name); /// Maps from the set of all alternative registernames to a register number. /// \note Generated by TableGen. static MCRegister MatchRegisterAltName(StringRef Name); ParseStatus VEAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) { const AsmToken Tok = Parser.getTok(); StartLoc = Tok.getLoc(); EndLoc = Tok.getEndLoc(); Reg = VE::NoRegister; if (getLexer().getKind() != AsmToken::Percent) return ParseStatus::NoMatch; Parser.Lex(); Reg = parseRegisterName(&MatchRegisterName); if (Reg == VE::NoRegister) Reg = parseRegisterName(&MatchRegisterAltName); if (Reg != VE::NoRegister) { Parser.Lex(); return ParseStatus::Success; } getLexer().UnLex(Tok); return ParseStatus::NoMatch; } static StringRef parseCC(StringRef Name, unsigned Prefix, unsigned Suffix, bool IntegerCC, bool OmitCC, SMLoc NameLoc, OperandVector *Operands) { // Parse instructions with a conditional code. For example, 'bne' is // converted into two operands 'b' and 'ne'. StringRef Cond = Name.slice(Prefix, Suffix); VECC::CondCode CondCode = IntegerCC ? stringToVEICondCode(Cond) : stringToVEFCondCode(Cond); // If OmitCC is enabled, CC_AT and CC_AF is treated as a part of mnemonic. if (CondCode != VECC::UNKNOWN && (!OmitCC || (CondCode != VECC::CC_AT && CondCode != VECC::CC_AF))) { StringRef SuffixStr = Name.substr(Suffix); // Push "b". Name = Name.slice(0, Prefix); Operands->push_back(VEOperand::CreateToken(Name, NameLoc)); // Push $cond part. SMLoc CondLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Prefix); SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Suffix); Operands->push_back(VEOperand::CreateCCOp(CondCode, CondLoc, SuffixLoc)); // push suffix like ".l.t" if (!SuffixStr.empty()) Operands->push_back(VEOperand::CreateToken(SuffixStr, SuffixLoc)); } else { Operands->push_back(VEOperand::CreateToken(Name, NameLoc)); } return Name; } static StringRef parseRD(StringRef Name, unsigned Prefix, SMLoc NameLoc, OperandVector *Operands) { // Parse instructions with a conditional code. For example, 'cvt.w.d.sx.rz' // is converted into two operands 'cvt.w.d.sx' and '.rz'. StringRef RD = Name.substr(Prefix); VERD::RoundingMode RoundingMode = stringToVERD(RD); if (RoundingMode != VERD::UNKNOWN) { Name = Name.slice(0, Prefix); // push 1st like `cvt.w.d.sx` Operands->push_back(VEOperand::CreateToken(Name, NameLoc)); SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() + (RD.data() - Name.data())); SMLoc SuffixEnd = SMLoc::getFromPointer(NameLoc.getPointer() + (RD.end() - Name.data())); // push $round if it has rounding mode Operands->push_back( VEOperand::CreateRDOp(RoundingMode, SuffixLoc, SuffixEnd)); } else { Operands->push_back(VEOperand::CreateToken(Name, NameLoc)); } return Name; } // Split the mnemonic into ASM operand, conditional code and instruction // qualifier (half-word, byte). StringRef VEAsmParser::splitMnemonic(StringRef Name, SMLoc NameLoc, OperandVector *Operands) { // Create the leading tokens for the mnemonic StringRef Mnemonic = Name; if (Name[0] == 'b') { // Match b?? or br??. size_t Start = 1; size_t Next = Name.find('.'); // Adjust position of CondCode. if (Name.size() > 1 && Name[1] == 'r') Start = 2; // Check suffix. bool ICC = true; if (Next + 1 < Name.size() && (Name[Next + 1] == 'd' || Name[Next + 1] == 's')) ICC = false; Mnemonic = parseCC(Name, Start, Next, ICC, true, NameLoc, Operands); } else if (Name.starts_with("cmov.l.") || Name.starts_with("cmov.w.") || Name.starts_with("cmov.d.") || Name.starts_with("cmov.s.")) { bool ICC = Name[5] == 'l' || Name[5] == 'w'; Mnemonic = parseCC(Name, 7, Name.size(), ICC, false, NameLoc, Operands); } else if (Name.starts_with("cvt.w.d.sx") || Name.starts_with("cvt.w.d.zx") || Name.starts_with("cvt.w.s.sx") || Name.starts_with("cvt.w.s.zx")) { Mnemonic = parseRD(Name, 10, NameLoc, Operands); } else if (Name.starts_with("cvt.l.d")) { Mnemonic = parseRD(Name, 7, NameLoc, Operands); } else if (Name.starts_with("vcvt.w.d.sx") || Name.starts_with("vcvt.w.d.zx") || Name.starts_with("vcvt.w.s.sx") || Name.starts_with("vcvt.w.s.zx")) { Mnemonic = parseRD(Name, 11, NameLoc, Operands); } else if (Name.starts_with("vcvt.l.d")) { Mnemonic = parseRD(Name, 8, NameLoc, Operands); } else if (Name.starts_with("pvcvt.w.s.lo") || Name.starts_with("pvcvt.w.s.up")) { Mnemonic = parseRD(Name, 12, NameLoc, Operands); } else if (Name.starts_with("pvcvt.w.s")) { Mnemonic = parseRD(Name, 9, NameLoc, Operands); } else if (Name.starts_with("vfmk.l.") || Name.starts_with("vfmk.w.") || Name.starts_with("vfmk.d.") || Name.starts_with("vfmk.s.")) { bool ICC = Name[5] == 'l' || Name[5] == 'w' ? true : false; Mnemonic = parseCC(Name, 7, Name.size(), ICC, true, NameLoc, Operands); } else if (Name.starts_with("pvfmk.w.lo.") || Name.starts_with("pvfmk.w.up.") || Name.starts_with("pvfmk.s.lo.") || Name.starts_with("pvfmk.s.up.")) { bool ICC = Name[6] == 'l' || Name[6] == 'w' ? true : false; Mnemonic = parseCC(Name, 11, Name.size(), ICC, true, NameLoc, Operands); } else { Operands->push_back(VEOperand::CreateToken(Mnemonic, NameLoc)); } return Mnemonic; } static void applyMnemonicAliases(StringRef &Mnemonic, const FeatureBitset &Features, unsigned VariantID); bool VEAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { // If the target architecture uses MnemonicAlias, call it here to parse // operands correctly. applyMnemonicAliases(Name, getAvailableFeatures(), 0); // Split name to first token and the rest, e.g. "bgt.l.t" to "b", "gt", and // ".l.t". We treat "b" as a mnemonic, "gt" as first operand, and ".l.t" // as second operand. StringRef Mnemonic = splitMnemonic(Name, NameLoc, &Operands); if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (!parseOperand(Operands, Mnemonic).isSuccess()) { SMLoc Loc = getLexer().getLoc(); return Error(Loc, "unexpected token"); } while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (!parseOperand(Operands, Mnemonic).isSuccess()) { SMLoc Loc = getLexer().getLoc(); return Error(Loc, "unexpected token"); } } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); return Error(Loc, "unexpected token"); } Parser.Lex(); // Consume the EndOfStatement. return false; } ParseStatus VEAsmParser::parseDirective(AsmToken DirectiveID) { std::string IDVal = DirectiveID.getIdentifier().lower(); // Defines VE specific directives. Reference is "Vector Engine Assembly // Language Reference Manual": // https://www.hpc.nec/documents/sdk/pdfs/VectorEngine-as-manual-v1.3.pdf // The .word is 4 bytes long on VE. if (IDVal == ".word") return parseLiteralValues(4, DirectiveID.getLoc()); // The .long is 8 bytes long on VE. if (IDVal == ".long") return parseLiteralValues(8, DirectiveID.getLoc()); // The .llong is 8 bytes long on VE. if (IDVal == ".llong") return parseLiteralValues(8, DirectiveID.getLoc()); // Let the MC layer to handle other directives. return ParseStatus::NoMatch; } /// parseLiteralValues /// ::= .word expression [, expression]* /// ::= .long expression [, expression]* /// ::= .llong expression [, expression]* bool VEAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { auto parseOne = [&]() -> bool { const MCExpr *Value; if (getParser().parseExpression(Value)) return true; getParser().getStreamer().emitValue(Value, Size, L); return false; }; return (parseMany(parseOne)); } /// Extract \code @lo32/@hi32/etc \endcode modifier from expression. /// Recursively scan the expression and check for VK_VE_HI32/LO32/etc /// symbol variants. If all symbols with modifier use the same /// variant, return the corresponding VEMCExpr::VariantKind, /// and a modified expression using the default symbol variant. /// Otherwise, return NULL. const MCExpr * VEAsmParser::extractModifierFromExpr(const MCExpr *E, VEMCExpr::VariantKind &Variant) { MCContext &Context = getParser().getContext(); Variant = VEMCExpr::VK_VE_None; switch (E->getKind()) { case MCExpr::Target: case MCExpr::Constant: return nullptr; case MCExpr::SymbolRef: { const MCSymbolRefExpr *SRE = cast(E); switch (SRE->getKind()) { case MCSymbolRefExpr::VK_None: // Use VK_VE_REFLONG to a symbol without modifiers. Variant = VEMCExpr::VK_VE_REFLONG; break; case MCSymbolRefExpr::VK_VE_HI32: Variant = VEMCExpr::VK_VE_HI32; break; case MCSymbolRefExpr::VK_VE_LO32: Variant = VEMCExpr::VK_VE_LO32; break; case MCSymbolRefExpr::VK_VE_PC_HI32: Variant = VEMCExpr::VK_VE_PC_HI32; break; case MCSymbolRefExpr::VK_VE_PC_LO32: Variant = VEMCExpr::VK_VE_PC_LO32; break; case MCSymbolRefExpr::VK_VE_GOT_HI32: Variant = VEMCExpr::VK_VE_GOT_HI32; break; case MCSymbolRefExpr::VK_VE_GOT_LO32: Variant = VEMCExpr::VK_VE_GOT_LO32; break; case MCSymbolRefExpr::VK_VE_GOTOFF_HI32: Variant = VEMCExpr::VK_VE_GOTOFF_HI32; break; case MCSymbolRefExpr::VK_VE_GOTOFF_LO32: Variant = VEMCExpr::VK_VE_GOTOFF_LO32; break; case MCSymbolRefExpr::VK_VE_PLT_HI32: Variant = VEMCExpr::VK_VE_PLT_HI32; break; case MCSymbolRefExpr::VK_VE_PLT_LO32: Variant = VEMCExpr::VK_VE_PLT_LO32; break; case MCSymbolRefExpr::VK_VE_TLS_GD_HI32: Variant = VEMCExpr::VK_VE_TLS_GD_HI32; break; case MCSymbolRefExpr::VK_VE_TLS_GD_LO32: Variant = VEMCExpr::VK_VE_TLS_GD_LO32; break; case MCSymbolRefExpr::VK_VE_TPOFF_HI32: Variant = VEMCExpr::VK_VE_TPOFF_HI32; break; case MCSymbolRefExpr::VK_VE_TPOFF_LO32: Variant = VEMCExpr::VK_VE_TPOFF_LO32; break; default: return nullptr; } return MCSymbolRefExpr::create(&SRE->getSymbol(), Context); } case MCExpr::Unary: { const MCUnaryExpr *UE = cast(E); const MCExpr *Sub = extractModifierFromExpr(UE->getSubExpr(), Variant); if (!Sub) return nullptr; return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); } case MCExpr::Binary: { const MCBinaryExpr *BE = cast(E); VEMCExpr::VariantKind LHSVariant, RHSVariant; const MCExpr *LHS = extractModifierFromExpr(BE->getLHS(), LHSVariant); const MCExpr *RHS = extractModifierFromExpr(BE->getRHS(), RHSVariant); if (!LHS && !RHS) return nullptr; if (!LHS) LHS = BE->getLHS(); if (!RHS) RHS = BE->getRHS(); if (LHSVariant == VEMCExpr::VK_VE_None) Variant = RHSVariant; else if (RHSVariant == VEMCExpr::VK_VE_None) Variant = LHSVariant; else if (LHSVariant == RHSVariant) Variant = LHSVariant; else return nullptr; return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); } } llvm_unreachable("Invalid expression kind!"); } const MCExpr *VEAsmParser::fixupVariantKind(const MCExpr *E) { MCContext &Context = getParser().getContext(); switch (E->getKind()) { case MCExpr::Target: case MCExpr::Constant: case MCExpr::SymbolRef: return E; case MCExpr::Unary: { const MCUnaryExpr *UE = cast(E); const MCExpr *Sub = fixupVariantKind(UE->getSubExpr()); if (Sub == UE->getSubExpr()) return E; return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); } case MCExpr::Binary: { const MCBinaryExpr *BE = cast(E); const MCExpr *LHS = fixupVariantKind(BE->getLHS()); const MCExpr *RHS = fixupVariantKind(BE->getRHS()); if (LHS == BE->getLHS() && RHS == BE->getRHS()) return E; return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); } } llvm_unreachable("Invalid expression kind!"); } /// ParseExpression. This differs from the default "parseExpression" in that /// it handles modifiers. bool VEAsmParser::parseExpression(const MCExpr *&EVal) { // Handle \code symbol @lo32/@hi32/etc \endcode. if (getParser().parseExpression(EVal)) return true; // Convert MCSymbolRefExpr with VK_* to MCExpr with VK_*. EVal = fixupVariantKind(EVal); VEMCExpr::VariantKind Variant; const MCExpr *E = extractModifierFromExpr(EVal, Variant); if (E) EVal = VEMCExpr::create(Variant, E, getParser().getContext()); return false; } ParseStatus VEAsmParser::parseMEMOperand(OperandVector &Operands) { LLVM_DEBUG(dbgs() << "parseMEMOperand\n"); const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); SMLoc E = Tok.getEndLoc(); // Parse ASX format // disp // disp(, base) // disp(index) // disp(index, base) // (, base) // (index) // (index, base) std::unique_ptr Offset; switch (getLexer().getKind()) { default: return ParseStatus::NoMatch; case AsmToken::Minus: case AsmToken::Integer: case AsmToken::Dot: case AsmToken::Identifier: { const MCExpr *EVal; if (!parseExpression(EVal)) Offset = VEOperand::CreateImm(EVal, S, E); else return ParseStatus::NoMatch; break; } case AsmToken::LParen: // empty disp (= 0) Offset = VEOperand::CreateImm(MCConstantExpr::create(0, getContext()), S, E); break; } switch (getLexer().getKind()) { default: return ParseStatus::Failure; case AsmToken::EndOfStatement: Operands.push_back(VEOperand::MorphToMEMzii( MCConstantExpr::create(0, getContext()), std::move(Offset))); return ParseStatus::Success; case AsmToken::LParen: Parser.Lex(); // Eat the ( break; } const MCExpr *IndexValue = nullptr; MCRegister IndexReg; switch (getLexer().getKind()) { default: if (parseRegister(IndexReg, S, E)) return ParseStatus::Failure; break; case AsmToken::Minus: case AsmToken::Integer: case AsmToken::Dot: if (getParser().parseExpression(IndexValue, E)) return ParseStatus::Failure; break; case AsmToken::Comma: // empty index IndexValue = MCConstantExpr::create(0, getContext()); break; } switch (getLexer().getKind()) { default: return ParseStatus::Failure; case AsmToken::RParen: Parser.Lex(); // Eat the ) Operands.push_back( IndexValue ? VEOperand::MorphToMEMzii(IndexValue, std::move(Offset)) : VEOperand::MorphToMEMzri(IndexReg, std::move(Offset))); return ParseStatus::Success; case AsmToken::Comma: Parser.Lex(); // Eat the , break; } MCRegister BaseReg; if (parseRegister(BaseReg, S, E)) return ParseStatus::Failure; if (!Parser.getTok().is(AsmToken::RParen)) return ParseStatus::Failure; Parser.Lex(); // Eat the ) Operands.push_back( IndexValue ? VEOperand::MorphToMEMrii(BaseReg, IndexValue, std::move(Offset)) : VEOperand::MorphToMEMrri(BaseReg, IndexReg, std::move(Offset))); return ParseStatus::Success; } ParseStatus VEAsmParser::parseMEMAsOperand(OperandVector &Operands) { LLVM_DEBUG(dbgs() << "parseMEMAsOperand\n"); const AsmToken &Tok = Parser.getTok(); SMLoc S = Tok.getLoc(); SMLoc E = Tok.getEndLoc(); // Parse AS format // disp // disp(, base) // disp(base) // disp() // (, base) // (base) // base MCRegister BaseReg; std::unique_ptr Offset; switch (getLexer().getKind()) { default: return ParseStatus::NoMatch; case AsmToken::Minus: case AsmToken::Integer: case AsmToken::Dot: case AsmToken::Identifier: { const MCExpr *EVal; if (!parseExpression(EVal)) Offset = VEOperand::CreateImm(EVal, S, E); else return ParseStatus::NoMatch; break; } case AsmToken::Percent: if (parseRegister(BaseReg, S, E)) return ParseStatus::NoMatch; Offset = VEOperand::CreateImm(MCConstantExpr::create(0, getContext()), S, E); break; case AsmToken::LParen: // empty disp (= 0) Offset = VEOperand::CreateImm(MCConstantExpr::create(0, getContext()), S, E); break; } switch (getLexer().getKind()) { default: return ParseStatus::Failure; case AsmToken::EndOfStatement: case AsmToken::Comma: Operands.push_back(BaseReg != VE::NoRegister ? VEOperand::MorphToMEMri(BaseReg, std::move(Offset)) : VEOperand::MorphToMEMzi(std::move(Offset))); return ParseStatus::Success; case AsmToken::LParen: if (BaseReg != VE::NoRegister) return ParseStatus::Failure; Parser.Lex(); // Eat the ( break; } switch (getLexer().getKind()) { default: if (parseRegister(BaseReg, S, E)) return ParseStatus::Failure; break; case AsmToken::Comma: Parser.Lex(); // Eat the , if (parseRegister(BaseReg, S, E)) return ParseStatus::Failure; break; case AsmToken::RParen: break; } if (!Parser.getTok().is(AsmToken::RParen)) return ParseStatus::Failure; Parser.Lex(); // Eat the ) Operands.push_back(BaseReg != VE::NoRegister ? VEOperand::MorphToMEMri(BaseReg, std::move(Offset)) : VEOperand::MorphToMEMzi(std::move(Offset))); return ParseStatus::Success; } ParseStatus VEAsmParser::parseMImmOperand(OperandVector &Operands) { LLVM_DEBUG(dbgs() << "parseMImmOperand\n"); // Parsing "(" + number + ")0/1" const AsmToken Tok1 = Parser.getTok(); if (!Tok1.is(AsmToken::LParen)) return ParseStatus::NoMatch; Parser.Lex(); // Eat the '('. const AsmToken Tok2 = Parser.getTok(); SMLoc E; const MCExpr *EVal; if (!Tok2.is(AsmToken::Integer) || getParser().parseExpression(EVal, E)) { getLexer().UnLex(Tok1); return ParseStatus::NoMatch; } const AsmToken Tok3 = Parser.getTok(); if (!Tok3.is(AsmToken::RParen)) { getLexer().UnLex(Tok2); getLexer().UnLex(Tok1); return ParseStatus::NoMatch; } Parser.Lex(); // Eat the ')'. const AsmToken &Tok4 = Parser.getTok(); StringRef Suffix = Tok4.getString(); if (Suffix != "1" && Suffix != "0") { getLexer().UnLex(Tok3); getLexer().UnLex(Tok2); getLexer().UnLex(Tok1); return ParseStatus::NoMatch; } Parser.Lex(); // Eat the value. SMLoc EndLoc = SMLoc::getFromPointer(Suffix.end()); Operands.push_back( VEOperand::CreateMImm(EVal, Suffix == "0", Tok1.getLoc(), EndLoc)); return ParseStatus::Success; } ParseStatus VEAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { LLVM_DEBUG(dbgs() << "parseOperand\n"); ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic); // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (Res.isSuccess() || Res.isFailure()) return Res; switch (getLexer().getKind()) { case AsmToken::LParen: { // Parsing "(" + %vreg + ", " + %vreg + ")" const AsmToken Tok1 = Parser.getTok(); Parser.Lex(); // Eat the '('. MCRegister Reg1; SMLoc S1, E1; if (!tryParseRegister(Reg1, S1, E1).isSuccess()) { getLexer().UnLex(Tok1); return ParseStatus::NoMatch; } if (!Parser.getTok().is(AsmToken::Comma)) return ParseStatus::Failure; Parser.Lex(); // Eat the ','. MCRegister Reg2; SMLoc S2, E2; if (!tryParseRegister(Reg2, S2, E2).isSuccess()) return ParseStatus::Failure; if (!Parser.getTok().is(AsmToken::RParen)) return ParseStatus::Failure; Operands.push_back(VEOperand::CreateToken(Tok1.getString(), Tok1.getLoc())); Operands.push_back(VEOperand::CreateReg(Reg1, S1, E1)); Operands.push_back(VEOperand::CreateReg(Reg2, S2, E2)); Operands.push_back(VEOperand::CreateToken(Parser.getTok().getString(), Parser.getTok().getLoc())); Parser.Lex(); // Eat the ')'. break; } default: { std::unique_ptr Op; Res = parseVEAsmOperand(Op); if (!Res.isSuccess() || !Op) return ParseStatus::Failure; // Push the parsed operand into the list of operands Operands.push_back(std::move(Op)); if (!Parser.getTok().is(AsmToken::LParen)) break; // Parsing %vec-reg + "(" + %sclar-reg/number + ")" std::unique_ptr Op1 = VEOperand::CreateToken( Parser.getTok().getString(), Parser.getTok().getLoc()); Parser.Lex(); // Eat the '('. std::unique_ptr Op2; Res = parseVEAsmOperand(Op2); if (!Res.isSuccess() || !Op2) return ParseStatus::Failure; if (!Parser.getTok().is(AsmToken::RParen)) return ParseStatus::Failure; Operands.push_back(std::move(Op1)); Operands.push_back(std::move(Op2)); Operands.push_back(VEOperand::CreateToken(Parser.getTok().getString(), Parser.getTok().getLoc())); Parser.Lex(); // Eat the ')'. break; } } return ParseStatus::Success; } ParseStatus VEAsmParser::parseVEAsmOperand(std::unique_ptr &Op) { LLVM_DEBUG(dbgs() << "parseVEAsmOperand\n"); SMLoc S = Parser.getTok().getLoc(); SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); const MCExpr *EVal; Op = nullptr; switch (getLexer().getKind()) { default: break; case AsmToken::Percent: { MCRegister Reg; if (tryParseRegister(Reg, S, E).isSuccess()) Op = VEOperand::CreateReg(Reg, S, E); break; } case AsmToken::Minus: case AsmToken::Integer: case AsmToken::Dot: case AsmToken::Identifier: if (!parseExpression(EVal)) Op = VEOperand::CreateImm(EVal, S, E); break; } return Op ? ParseStatus::Success : ParseStatus::Failure; } // Force static initialization. extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeVEAsmParser() { RegisterMCAsmParser A(getTheVETarget()); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "VEGenAsmMatcher.inc" unsigned VEAsmParser::validateTargetOperandClass(MCParsedAsmOperand &GOp, unsigned Kind) { VEOperand &Op = (VEOperand &)GOp; // VE uses identical register name for all registers like both // F32 and I32 uses "%s23". Need to convert the name of them // for validation. switch (Kind) { default: break; case MCK_F32: if (Op.isReg() && VEOperand::MorphToF32Reg(Op)) return MCTargetAsmParser::Match_Success; break; case MCK_I32: if (Op.isReg() && VEOperand::MorphToI32Reg(Op)) return MCTargetAsmParser::Match_Success; break; case MCK_F128: if (Op.isReg() && VEOperand::MorphToF128Reg(Op)) return MCTargetAsmParser::Match_Success; break; case MCK_VM512: if (Op.isReg() && VEOperand::MorphToVM512Reg(Op)) return MCTargetAsmParser::Match_Success; break; case MCK_MISC: if (Op.isImm() && VEOperand::MorphToMISCReg(Op)) return MCTargetAsmParser::Match_Success; break; } return Match_InvalidOperand; }