//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Move instructions //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Register move. def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>; def VLR32 : UnaryAliasVRR; def VLR64 : UnaryAliasVRR; // Load GR from VR element. def VLGV : BinaryVRScGeneric<"vlgv", 0xE721>; def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>; def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>; def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>; def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>; // Load VR element from GR. def VLVG : TernaryVRSbGeneric<"vlvg", 0xE722>; def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert, v128b, v128b, GR32, 0>; def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert, v128h, v128h, GR32, 1>; def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert, v128f, v128f, GR32, 2>; def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert, v128g, v128g, GR64, 3>; // Load VR from GRs disjoint. def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>; def VLVGP32 : BinaryAliasVRRf; } // Extractions always assign to the full GR64, even if the element would // fit in the lower 32 bits. Sub-i64 extracts therefore need to take a // subreg of the result. class VectorExtractSubreg : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)), (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>; def : VectorExtractSubreg; def : VectorExtractSubreg; def : VectorExtractSubreg; //===----------------------------------------------------------------------===// // Immediate instructions //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { // Generate byte mask. def VZERO : InherentVRIa<"vzero", 0xE744, 0>; def VONE : InherentVRIa<"vone", 0xE744, 0xffff>; def VGBM : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16_timm>; // Generate mask. def VGM : BinaryVRIbGeneric<"vgm", 0xE746>; def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>; def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>; def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>; def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>; // Replicate immediate. def VREPI : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>; def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16_timm, 0>; def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16_timm, 1>; def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16_timm, 2>; def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16_timm, 3>; } // Load element immediate. // // We want these instructions to be used ahead of VLVG* where possible. // However, VLVG* takes a variable BD-format index whereas VLEI takes // a plain immediate index. This means that VLVG* has an extra "base" // register operand and is 3 units more complex. Bumping the complexity // of the VLEI* instructions by 4 means that they are strictly better // than VLVG* in cases where both forms match. let AddedComplexity = 4 in { def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert, v128b, v128b, imm32sx16trunc, imm32zx4>; def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert, v128h, v128h, imm32sx16trunc, imm32zx3>; def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert, v128f, v128f, imm32sx16, imm32zx2>; def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert, v128g, v128g, imm64sx16, imm32zx1>; } } //===----------------------------------------------------------------------===// // Loads //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Load. defm VL : UnaryVRXAlign<"vl", 0xE706>; // Load to block boundary. The number of loaded bytes is only known // at run time. The instruction is really polymorphic, but v128b matches // the return type of the associated intrinsic. def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>; // Load count to block boundary. let Defs = [CC] in def LCBB : InstRXE<0xE727, (outs GR32:$R1), (ins (bdxaddr12only $B2, $D2, $X2):$XBD2, imm32zx4:$M3), "lcbb\t$R1, $XBD2, $M3", [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2, imm32zx4_timm:$M3))]>; // Load with length. The number of loaded bytes is only known at run time. def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>; // Load multiple. defm VLM : LoadMultipleVRSaAlign<"vlm", 0xE736>; // Load and replicate def VLREP : UnaryVRXGeneric<"vlrep", 0xE705>; def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8, v128b, 1, 0>; def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>; def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>; def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>; def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)), (VLREPF bdxaddr12only:$addr)>; def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)), (VLREPG bdxaddr12only:$addr)>; // Use VLREP to load subvectors. These patterns use "12pair" because // LEY and LDY offer full 20-bit displacement fields. It's often better // to use those instructions rather than force a 20-bit displacement // into a GPR temporary. let mayLoad = 1 in { def VL32 : UnaryAliasVRX; def VL64 : UnaryAliasVRX; } // Load logical element and zero. def VLLEZ : UnaryVRXGeneric<"vllez", 0xE704>; def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8, v128b, 1, 0>; def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>; def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>; def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>; def : Pat<(z_vllezf32 bdxaddr12only:$addr), (VLLEZF bdxaddr12only:$addr)>; def : Pat<(z_vllezf64 bdxaddr12only:$addr), (VLLEZG bdxaddr12only:$addr)>; let Predicates = [FeatureVectorEnhancements1] in { def VLLEZLF : UnaryVRX<"vllezlf", 0xE704, z_vllezli32, v128f, 4, 6>; def : Pat<(z_vllezlf32 bdxaddr12only:$addr), (VLLEZLF bdxaddr12only:$addr)>; } // Load element. def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8, v128b, v128b, 1, imm32zx4>; def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>; def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>; def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>; def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index), (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>; def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index), (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>; // Gather element. def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>; def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>; } let Predicates = [FeatureVectorPackedDecimal] in { // Load rightmost with length. The number of loaded bytes is only known // at run time. Note that while the instruction will accept immediate // lengths larger that 15 at runtime, those will always result in a trap, // so we never emit them here. def VLRL : BinaryVSI<"vlrl", 0xE635, null_frag, 0>; def VLRLR : BinaryVRSd<"vlrlr", 0xE637, int_s390_vlrl, 0>; def : Pat<(int_s390_vlrl imm32zx4:$len, bdaddr12only:$addr), (VLRL bdaddr12only:$addr, imm32zx4:$len)>; } // Use replicating loads if we're inserting a single element into an // undefined vector. This avoids a false dependency on the previous // register contents. multiclass ReplicatePeephole { def : Pat<(vectype (z_vector_insert (undef), (scalartype (load bdxaddr12only:$addr)), 0)), (vlrep bdxaddr12only:$addr)>; def : Pat<(vectype (scalar_to_vector (scalartype (load bdxaddr12only:$addr)))), (vlrep bdxaddr12only:$addr)>; } defm : ReplicatePeephole; defm : ReplicatePeephole; defm : ReplicatePeephole; defm : ReplicatePeephole; defm : ReplicatePeephole; defm : ReplicatePeephole; //===----------------------------------------------------------------------===// // Stores //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Store. defm VST : StoreVRXAlign<"vst", 0xE70E>; // Store with length. The number of stored bytes is only known at run time. def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>; // Store multiple. defm VSTM : StoreMultipleVRSaAlign<"vstm", 0xE73E>; // Store element. def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8, v128b, 1, imm32zx4>; def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>; def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>; def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>; def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index), (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>; def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index), (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>; // Use VSTE to store subvectors. These patterns use "12pair" because // STEY and STDY offer full 20-bit displacement fields. It's often better // to use those instructions rather than force a 20-bit displacement // into a GPR temporary. let mayStore = 1 in { def VST32 : StoreAliasVRX; def VST64 : StoreAliasVRX; } // Scatter element. def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>; def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>; } let Predicates = [FeatureVectorPackedDecimal] in { // Store rightmost with length. The number of stored bytes is only known // at run time. Note that while the instruction will accept immediate // lengths larger that 15 at runtime, those will always result in a trap, // so we never emit them here. def VSTRL : StoreLengthVSI<"vstrl", 0xE63D, null_frag, 0>; def VSTRLR : StoreLengthVRSd<"vstrlr", 0xE63F, int_s390_vstrl, 0>; def : Pat<(int_s390_vstrl VR128:$val, imm32zx4:$len, bdaddr12only:$addr), (VSTRL VR128:$val, bdaddr12only:$addr, imm32zx4:$len)>; } //===----------------------------------------------------------------------===// // Byte swaps //===----------------------------------------------------------------------===// let Predicates = [FeatureVectorEnhancements2] in { // Load byte-reversed elements. def VLBR : UnaryVRXGeneric<"vlbr", 0xE606>; def VLBRH : UnaryVRX<"vlbrh", 0xE606, z_loadbswap, v128h, 16, 1>; def VLBRF : UnaryVRX<"vlbrf", 0xE606, z_loadbswap, v128f, 16, 2>; def VLBRG : UnaryVRX<"vlbrg", 0xE606, z_loadbswap, v128g, 16, 3>; def VLBRQ : UnaryVRX<"vlbrq", 0xE606, null_frag, v128q, 16, 4>; // Load elements reversed. def VLER : UnaryVRXGeneric<"vler", 0xE607>; def VLERH : UnaryVRX<"vlerh", 0xE607, z_loadeswap, v128h, 16, 1>; def VLERF : UnaryVRX<"vlerf", 0xE607, z_loadeswap, v128f, 16, 2>; def VLERG : UnaryVRX<"vlerg", 0xE607, z_loadeswap, v128g, 16, 3>; def : Pat<(v4f32 (z_loadeswap bdxaddr12only:$addr)), (VLERF bdxaddr12only:$addr)>; def : Pat<(v2f64 (z_loadeswap bdxaddr12only:$addr)), (VLERG bdxaddr12only:$addr)>; def : Pat<(v16i8 (z_loadeswap bdxaddr12only:$addr)), (VLBRQ bdxaddr12only:$addr)>; // Load byte-reversed element. def VLEBRH : TernaryVRX<"vlebrh", 0xE601, z_vlebri16, v128h, v128h, 2, imm32zx3>; def VLEBRF : TernaryVRX<"vlebrf", 0xE603, z_vlebri32, v128f, v128f, 4, imm32zx2>; def VLEBRG : TernaryVRX<"vlebrg", 0xE602, z_vlebri64, v128g, v128g, 8, imm32zx1>; // Load byte-reversed element and zero. def VLLEBRZ : UnaryVRXGeneric<"vllebrz", 0xE604>; def VLLEBRZH : UnaryVRX<"vllebrzh", 0xE604, z_vllebrzi16, v128h, 2, 1>; def VLLEBRZF : UnaryVRX<"vllebrzf", 0xE604, z_vllebrzi32, v128f, 4, 2>; def VLLEBRZG : UnaryVRX<"vllebrzg", 0xE604, z_vllebrzi64, v128g, 8, 3>; def VLLEBRZE : UnaryVRX<"vllebrze", 0xE604, z_vllebrzli32, v128f, 4, 6>; def : InstAlias<"lerv\t$V1, $XBD2", (VLLEBRZE VR128:$V1, bdxaddr12only:$XBD2), 0>; def : InstAlias<"ldrv\t$V1, $XBD2", (VLLEBRZG VR128:$V1, bdxaddr12only:$XBD2), 0>; // Load byte-reversed element and replicate. def VLBRREP : UnaryVRXGeneric<"vlbrrep", 0xE605>; def VLBRREPH : UnaryVRX<"vlbrreph", 0xE605, z_replicate_loadbswapi16, v128h, 2, 1>; def VLBRREPF : UnaryVRX<"vlbrrepf", 0xE605, z_replicate_loadbswapi32, v128f, 4, 2>; def VLBRREPG : UnaryVRX<"vlbrrepg", 0xE605, z_replicate_loadbswapi64, v128g, 8, 3>; // Store byte-reversed elements. def VSTBR : StoreVRXGeneric<"vstbr", 0xE60E>; def VSTBRH : StoreVRX<"vstbrh", 0xE60E, z_storebswap, v128h, 16, 1>; def VSTBRF : StoreVRX<"vstbrf", 0xE60E, z_storebswap, v128f, 16, 2>; def VSTBRG : StoreVRX<"vstbrg", 0xE60E, z_storebswap, v128g, 16, 3>; def VSTBRQ : StoreVRX<"vstbrq", 0xE60E, null_frag, v128q, 16, 4>; // Store elements reversed. def VSTER : StoreVRXGeneric<"vster", 0xE60F>; def VSTERH : StoreVRX<"vsterh", 0xE60F, z_storeeswap, v128h, 16, 1>; def VSTERF : StoreVRX<"vsterf", 0xE60F, z_storeeswap, v128f, 16, 2>; def VSTERG : StoreVRX<"vsterg", 0xE60F, z_storeeswap, v128g, 16, 3>; def : Pat<(z_storeeswap (v4f32 VR128:$val), bdxaddr12only:$addr), (VSTERF VR128:$val, bdxaddr12only:$addr)>; def : Pat<(z_storeeswap (v2f64 VR128:$val), bdxaddr12only:$addr), (VSTERG VR128:$val, bdxaddr12only:$addr)>; def : Pat<(z_storeeswap (v16i8 VR128:$val), bdxaddr12only:$addr), (VSTBRQ VR128:$val, bdxaddr12only:$addr)>; // Store byte-reversed element. def VSTEBRH : StoreBinaryVRX<"vstebrh", 0xE609, z_vstebri16, v128h, 2, imm32zx3>; def VSTEBRF : StoreBinaryVRX<"vstebrf", 0xE60B, z_vstebri32, v128f, 4, imm32zx2>; def VSTEBRG : StoreBinaryVRX<"vstebrg", 0xE60A, z_vstebri64, v128g, 8, imm32zx1>; def : InstAlias<"sterv\t$V1, $XBD2", (VSTEBRF VR128:$V1, bdxaddr12only:$XBD2, 0), 0>; def : InstAlias<"stdrv\t$V1, $XBD2", (VSTEBRG VR128:$V1, bdxaddr12only:$XBD2, 0), 0>; } //===----------------------------------------------------------------------===// // Selects and permutes //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Merge high. def VMRH: BinaryVRRcGeneric<"vmrh", 0xE761>; def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>; def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>; def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>; def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>; def : BinaryRRWithType; def : BinaryRRWithType; // Merge low. def VMRL: BinaryVRRcGeneric<"vmrl", 0xE760>; def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>; def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>; def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>; def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>; def : BinaryRRWithType; def : BinaryRRWithType; // Permute. def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>; // Permute doubleword immediate. def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>; // Bit Permute. let Predicates = [FeatureVectorEnhancements1] in def VBPERM : BinaryVRRc<"vbperm", 0xE785, int_s390_vbperm, v128g, v128b>; // Replicate. def VREP: BinaryVRIcGeneric<"vrep", 0xE74D>; def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>; def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>; def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>; def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>; def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16_timm:$index)), (VREPF VR128:$vec, imm32zx16:$index)>; def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16_timm:$index)), (VREPG VR128:$vec, imm32zx16:$index)>; // Select. def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>; } //===----------------------------------------------------------------------===// // Widening and narrowing //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Pack def VPK : BinaryVRRcGeneric<"vpk", 0xE794>; def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>; def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>; def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>; // Pack saturate. def VPKS : BinaryVRRbSPairGeneric<"vpks", 0xE797>; defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc, v128b, v128h, 1>; defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc, v128h, v128f, 2>; defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc, v128f, v128g, 3>; // Pack saturate logical. def VPKLS : BinaryVRRbSPairGeneric<"vpkls", 0xE795>; defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc, v128b, v128h, 1>; defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc, v128h, v128f, 2>; defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc, v128f, v128g, 3>; // Sign-extend to doubleword. def VSEG : UnaryVRRaGeneric<"vseg", 0xE75F>; def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8, v128g, v128g, 0>; def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>; def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>; def : Pat<(z_vsei8_by_parts (v16i8 VR128:$src)), (VSEGB VR128:$src)>; def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>; def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>; // Unpack high. def VUPH : UnaryVRRaGeneric<"vuph", 0xE7D7>; def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>; def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>; def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>; // Unpack logical high. def VUPLH : UnaryVRRaGeneric<"vuplh", 0xE7D5>; def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>; def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>; def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>; // Unpack low. def VUPL : UnaryVRRaGeneric<"vupl", 0xE7D6>; def VUPLB : UnaryVRRa<"vuplb", 0xE7D6, z_unpack_low, v128h, v128b, 0>; def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>; def VUPLF : UnaryVRRa<"vuplf", 0xE7D6, z_unpack_low, v128g, v128f, 2>; // Unpack logical low. def VUPLL : UnaryVRRaGeneric<"vupll", 0xE7D4>; def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>; def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>; def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>; } //===----------------------------------------------------------------------===// // Instantiating generic operations for specific types. //===----------------------------------------------------------------------===// multiclass GenericVectorOps { let Predicates = [FeatureVector] in { def : Pat<(type (load bdxaddr12only:$addr)), (VL bdxaddr12only:$addr)>; def : Pat<(store (type VR128:$src), bdxaddr12only:$addr), (VST VR128:$src, bdxaddr12only:$addr)>; def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)), (VSEL VR128:$y, VR128:$z, VR128:$x)>; def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)), (VSEL VR128:$z, VR128:$y, VR128:$x)>; } } defm : GenericVectorOps; defm : GenericVectorOps; defm : GenericVectorOps; defm : GenericVectorOps; defm : GenericVectorOps; defm : GenericVectorOps; //===----------------------------------------------------------------------===// // Integer arithmetic //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { let isCommutable = 1 in { // Add. def VA : BinaryVRRcGeneric<"va", 0xE7F3>; def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>; def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>; def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>; def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>; def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>; } let isCommutable = 1 in { // Add compute carry. def VACC : BinaryVRRcGeneric<"vacc", 0xE7F1>; def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>; def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>; def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>; def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>; def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>; // Add with carry. def VAC : TernaryVRRdGeneric<"vac", 0xE7BB>; def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>; // Add with carry compute carry. def VACCC : TernaryVRRdGeneric<"vaccc", 0xE7B9>; def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>; } // And. let isCommutable = 1 in def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>; // And with complement. def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>; let isCommutable = 1 in { // Average. def VAVG : BinaryVRRcGeneric<"vavg", 0xE7F2>; def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>; def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>; def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>; def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>; // Average logical. def VAVGL : BinaryVRRcGeneric<"vavgl", 0xE7F0>; def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>; def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>; def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>; def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>; } // Checksum. def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>; // Count leading zeros. def VCLZ : UnaryVRRaGeneric<"vclz", 0xE753>; def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>; def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>; def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>; def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>; // Count trailing zeros. def VCTZ : UnaryVRRaGeneric<"vctz", 0xE752>; def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>; def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>; def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>; def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>; let isCommutable = 1 in { // Not exclusive or. let Predicates = [FeatureVectorEnhancements1] in def VNX : BinaryVRRc<"vnx", 0xE76C, null_frag, v128any, v128any>; // Exclusive or. def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>; } // Galois field multiply sum. def VGFM : BinaryVRRcGeneric<"vgfm", 0xE7B4>; def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>; def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>; def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>; def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>; // Galois field multiply sum and accumulate. def VGFMA : TernaryVRRdGeneric<"vgfma", 0xE7BC>; def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>; def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>; def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>; def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>; // Load complement. def VLC : UnaryVRRaGeneric<"vlc", 0xE7DE>; def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>; def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>; def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>; def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>; // Load positive. def VLP : UnaryVRRaGeneric<"vlp", 0xE7DF>; def VLPB : UnaryVRRa<"vlpb", 0xE7DF, abs, v128b, v128b, 0>; def VLPH : UnaryVRRa<"vlph", 0xE7DF, abs, v128h, v128h, 1>; def VLPF : UnaryVRRa<"vlpf", 0xE7DF, abs, v128f, v128f, 2>; def VLPG : UnaryVRRa<"vlpg", 0xE7DF, abs, v128g, v128g, 3>; let isCommutable = 1 in { // Maximum. def VMX : BinaryVRRcGeneric<"vmx", 0xE7FF>; def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>; def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>; def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>; def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>; // Maximum logical. def VMXL : BinaryVRRcGeneric<"vmxl", 0xE7FD>; def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>; def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>; def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>; def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>; } let isCommutable = 1 in { // Minimum. def VMN : BinaryVRRcGeneric<"vmn", 0xE7FE>; def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>; def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>; def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>; def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>; // Minimum logical. def VMNL : BinaryVRRcGeneric<"vmnl", 0xE7FC>; def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>; def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>; def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>; def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>; } let isCommutable = 1 in { // Multiply and add low. def VMAL : TernaryVRRdGeneric<"vmal", 0xE7AA>; def VMALB : TernaryVRRd<"vmalb", 0xE7AA, z_muladd, v128b, v128b, 0>; def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>; def VMALF : TernaryVRRd<"vmalf", 0xE7AA, z_muladd, v128f, v128f, 2>; // Multiply and add high. def VMAH : TernaryVRRdGeneric<"vmah", 0xE7AB>; def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>; def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>; def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>; // Multiply and add logical high. def VMALH : TernaryVRRdGeneric<"vmalh", 0xE7A9>; def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>; def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>; def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>; // Multiply and add even. def VMAE : TernaryVRRdGeneric<"vmae", 0xE7AE>; def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>; def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>; def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>; // Multiply and add logical even. def VMALE : TernaryVRRdGeneric<"vmale", 0xE7AC>; def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>; def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>; def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>; // Multiply and add odd. def VMAO : TernaryVRRdGeneric<"vmao", 0xE7AF>; def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>; def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>; def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>; // Multiply and add logical odd. def VMALO : TernaryVRRdGeneric<"vmalo", 0xE7AD>; def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>; def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>; def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>; } let isCommutable = 1 in { // Multiply high. def VMH : BinaryVRRcGeneric<"vmh", 0xE7A3>; def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>; def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>; def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>; // Multiply logical high. def VMLH : BinaryVRRcGeneric<"vmlh", 0xE7A1>; def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>; def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>; def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>; // Multiply low. def VML : BinaryVRRcGeneric<"vml", 0xE7A2>; def VMLB : BinaryVRRc<"vmlb", 0xE7A2, mul, v128b, v128b, 0>; def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>; def VMLF : BinaryVRRc<"vmlf", 0xE7A2, mul, v128f, v128f, 2>; // Multiply even. def VME : BinaryVRRcGeneric<"vme", 0xE7A6>; def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>; def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>; def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>; // Multiply logical even. def VMLE : BinaryVRRcGeneric<"vmle", 0xE7A4>; def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>; def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>; def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>; // Multiply odd. def VMO : BinaryVRRcGeneric<"vmo", 0xE7A7>; def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>; def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>; def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>; // Multiply logical odd. def VMLO : BinaryVRRcGeneric<"vmlo", 0xE7A5>; def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>; def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>; def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>; } // Multiply sum logical. let Predicates = [FeatureVectorEnhancements1], isCommutable = 1 in { def VMSL : QuaternaryVRRdGeneric<"vmsl", 0xE7B8>; def VMSLG : QuaternaryVRRd<"vmslg", 0xE7B8, int_s390_vmslg, v128q, v128g, v128g, v128q, 3>; } // Nand. let Predicates = [FeatureVectorEnhancements1], isCommutable = 1 in def VNN : BinaryVRRc<"vnn", 0xE76E, null_frag, v128any, v128any>; // Nor. let isCommutable = 1 in def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>; def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>; // Or. let isCommutable = 1 in def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>; // Or with complement. let Predicates = [FeatureVectorEnhancements1] in def VOC : BinaryVRRc<"voc", 0xE76F, null_frag, v128any, v128any>; // Population count. def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>; def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>; let Predicates = [FeatureVectorEnhancements1] in { def VPOPCTB : UnaryVRRa<"vpopctb", 0xE750, ctpop, v128b, v128b, 0>; def VPOPCTH : UnaryVRRa<"vpopcth", 0xE750, ctpop, v128h, v128h, 1>; def VPOPCTF : UnaryVRRa<"vpopctf", 0xE750, ctpop, v128f, v128f, 2>; def VPOPCTG : UnaryVRRa<"vpopctg", 0xE750, ctpop, v128g, v128g, 3>; } // Element rotate left logical (with vector shift amount). def VERLLV : BinaryVRRcGeneric<"verllv", 0xE773>; def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb, v128b, v128b, 0>; def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh, v128h, v128h, 1>; def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf, v128f, v128f, 2>; def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg, v128g, v128g, 3>; // Element rotate left logical (with scalar shift amount). def VERLL : BinaryVRSaGeneric<"verll", 0xE733>; def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>; def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>; def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>; def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>; // Element rotate and insert under mask. def VERIM : QuaternaryVRIdGeneric<"verim", 0xE772>; def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>; def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>; def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>; def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>; // Element shift left (with vector shift amount). def VESLV : BinaryVRRcGeneric<"veslv", 0xE770>; def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>; def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>; def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>; def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>; // Element shift left (with scalar shift amount). def VESL : BinaryVRSaGeneric<"vesl", 0xE730>; def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>; def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>; def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>; def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>; // Element shift right arithmetic (with vector shift amount). def VESRAV : BinaryVRRcGeneric<"vesrav", 0xE77A>; def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>; def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>; def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>; def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>; // Element shift right arithmetic (with scalar shift amount). def VESRA : BinaryVRSaGeneric<"vesra", 0xE73A>; def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>; def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>; def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>; def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>; // Element shift right logical (with vector shift amount). def VESRLV : BinaryVRRcGeneric<"vesrlv", 0xE778>; def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>; def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>; def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>; def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>; // Element shift right logical (with scalar shift amount). def VESRL : BinaryVRSaGeneric<"vesrl", 0xE738>; def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>; def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>; def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>; def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>; // Shift left. def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>; // Shift left by byte. def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>; // Shift left double by byte. def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>; def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8_timm:$z), (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>; // Shift left double by bit. let Predicates = [FeatureVectorEnhancements2] in def VSLD : TernaryVRId<"vsld", 0xE786, int_s390_vsld, v128b, v128b, 0>; // Shift right arithmetic. def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>; // Shift right arithmetic by byte. def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>; // Shift right logical. def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>; // Shift right logical by byte. def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>; // Shift right double by bit. let Predicates = [FeatureVectorEnhancements2] in def VSRD : TernaryVRId<"vsrd", 0xE787, int_s390_vsrd, v128b, v128b, 0>; // Subtract. def VS : BinaryVRRcGeneric<"vs", 0xE7F7>; def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>; def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>; def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>; def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>; def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>; // Subtract compute borrow indication. def VSCBI : BinaryVRRcGeneric<"vscbi", 0xE7F5>; def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>; def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>; def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>; def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>; def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>; // Subtract with borrow indication. def VSBI : TernaryVRRdGeneric<"vsbi", 0xE7BF>; def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>; // Subtract with borrow compute borrow indication. def VSBCBI : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>; def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq, v128q, v128q, 4>; // Sum across doubleword. def VSUMG : BinaryVRRcGeneric<"vsumg", 0xE765>; def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>; def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>; // Sum across quadword. def VSUMQ : BinaryVRRcGeneric<"vsumq", 0xE767>; def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>; def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>; // Sum across word. def VSUM : BinaryVRRcGeneric<"vsum", 0xE764>; def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>; def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>; } // Instantiate the bitwise ops for type TYPE. multiclass BitwiseVectorOps { let Predicates = [FeatureVector] in { def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>; def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))), (VNC VR128:$x, VR128:$y)>; def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>; def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>; def : Pat<(type (or (and VR128:$x, VR128:$z), (and VR128:$y, (z_vnot VR128:$z)))), (VSEL VR128:$x, VR128:$y, VR128:$z)>; def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))), (VNO VR128:$x, VR128:$y)>; def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>; } let Predicates = [FeatureVectorEnhancements1] in { def : Pat<(type (z_vnot (xor VR128:$x, VR128:$y))), (VNX VR128:$x, VR128:$y)>; def : Pat<(type (z_vnot (and VR128:$x, VR128:$y))), (VNN VR128:$x, VR128:$y)>; def : Pat<(type (or VR128:$x, (z_vnot VR128:$y))), (VOC VR128:$x, VR128:$y)>; } } defm : BitwiseVectorOps; defm : BitwiseVectorOps; defm : BitwiseVectorOps; defm : BitwiseVectorOps; // Instantiate additional patterns for absolute-related expressions on // type TYPE. LC is the negate instruction for TYPE and LP is the absolute // instruction. multiclass IntegerAbsoluteVectorOps { let Predicates = [FeatureVector] in { def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)), (z_vneg VR128:$x), VR128:$x)), (lc (lp VR128:$x))>; def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))), VR128:$x, (z_vneg VR128:$x))), (lc (lp VR128:$x))>; def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)), VR128:$x, (z_vneg VR128:$x))), (lc (lp VR128:$x))>; def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))), (z_vneg VR128:$x), VR128:$x)), (lc (lp VR128:$x))>; def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)), (z_vneg VR128:$x)), (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))), VR128:$x))), (lp VR128:$x)>; def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)), VR128:$x), (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))), (z_vneg VR128:$x)))), (lc (lp VR128:$x))>; } } defm : IntegerAbsoluteVectorOps; defm : IntegerAbsoluteVectorOps; defm : IntegerAbsoluteVectorOps; defm : IntegerAbsoluteVectorOps; // Instantiate minimum- and maximum-related patterns for TYPE. CMPH is the // signed or unsigned "set if greater than" comparison instruction and // MIN and MAX are the associated minimum and maximum instructions. multiclass IntegerMinMaxVectorOps { let Predicates = [FeatureVector] in { def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)), (max VR128:$x, VR128:$y)>; def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)), (min VR128:$x, VR128:$y)>; def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)), VR128:$x, VR128:$y)), (min VR128:$x, VR128:$y)>; def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)), VR128:$y, VR128:$x)), (max VR128:$x, VR128:$y)>; } } // Signed min/max. defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; // Unsigned min/max. defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; //===----------------------------------------------------------------------===// // Integer comparison //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Element compare. let Defs = [CC] in { def VEC : CompareVRRaGeneric<"vec", 0xE7DB>; def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>; def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>; def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>; def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>; } // Element compare logical. let Defs = [CC] in { def VECL : CompareVRRaGeneric<"vecl", 0xE7D9>; def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>; def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>; def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>; def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>; } // Compare equal. def VCEQ : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>; defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes, v128b, v128b, 0>; defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes, v128h, v128h, 1>; defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes, v128f, v128f, 2>; defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes, v128g, v128g, 3>; // Compare high. def VCH : BinaryVRRbSPairGeneric<"vch", 0xE7FB>; defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs, v128b, v128b, 0>; defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs, v128h, v128h, 1>; defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs, v128f, v128f, 2>; defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs, v128g, v128g, 3>; // Compare high logical. def VCHL : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>; defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls, v128b, v128b, 0>; defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls, v128h, v128h, 1>; defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls, v128f, v128f, 2>; defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls, v128g, v128g, 3>; // Test under mask. let Defs = [CC] in def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>; } //===----------------------------------------------------------------------===// // Floating-point arithmetic //===----------------------------------------------------------------------===// // See comments in SystemZInstrFP.td for the suppression flags and // rounding modes. multiclass VectorRounding { def : FPConversion; def : FPConversion; def : FPConversion; def : FPConversion; def : FPConversion; def : FPConversion; } let Predicates = [FeatureVector] in { // Add. let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in { def VFA : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>; def VFADB : BinaryVRRc<"vfadb", 0xE7E3, any_fadd, v128db, v128db, 3, 0>; def WFADB : BinaryVRRc<"wfadb", 0xE7E3, any_fadd, v64db, v64db, 3, 8, 0, "adbr">; let Predicates = [FeatureVectorEnhancements1] in { def VFASB : BinaryVRRc<"vfasb", 0xE7E3, any_fadd, v128sb, v128sb, 2, 0>; def WFASB : BinaryVRRc<"wfasb", 0xE7E3, any_fadd, v32sb, v32sb, 2, 8, 0, "aebr">; def WFAXB : BinaryVRRc<"wfaxb", 0xE7E3, any_fadd, v128xb, v128xb, 4, 8>; } } // Convert from fixed. let Uses = [FPC], mayRaiseFPException = 1 in { def VCDG : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>; def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>; def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>; } def : FPConversion; let Predicates = [FeatureVectorEnhancements2] in { let Uses = [FPC], mayRaiseFPException = 1 in { let isAsmParserOnly = 1 in def VCFPS : TernaryVRRaFloatGeneric<"vcfps", 0xE7C3>; def VCEFB : TernaryVRRa<"vcefb", 0xE7C3, null_frag, v128sb, v128g, 2, 0>; def WCEFB : TernaryVRRa<"wcefb", 0xE7C3, null_frag, v32sb, v32f, 2, 8>; } def : FPConversion; } // Convert from logical. let Uses = [FPC], mayRaiseFPException = 1 in { def VCDLG : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>; def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>; def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>; } def : FPConversion; let Predicates = [FeatureVectorEnhancements2] in { let Uses = [FPC], mayRaiseFPException = 1 in { let isAsmParserOnly = 1 in def VCFPL : TernaryVRRaFloatGeneric<"vcfpl", 0xE7C1>; def VCELFB : TernaryVRRa<"vcelfb", 0xE7C1, null_frag, v128sb, v128g, 2, 0>; def WCELFB : TernaryVRRa<"wcelfb", 0xE7C1, null_frag, v32sb, v32f, 2, 8>; } def : FPConversion; } // Convert to fixed. let Uses = [FPC], mayRaiseFPException = 1 in { def VCGD : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>; def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>; def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>; } // Rounding mode should agree with SystemZInstrFP.td. def : FPConversion; let Predicates = [FeatureVectorEnhancements2] in { let Uses = [FPC], mayRaiseFPException = 1 in { let isAsmParserOnly = 1 in def VCSFP : TernaryVRRaFloatGeneric<"vcsfp", 0xE7C2>; def VCFEB : TernaryVRRa<"vcfeb", 0xE7C2, null_frag, v128sb, v128g, 2, 0>; def WCFEB : TernaryVRRa<"wcfeb", 0xE7C2, null_frag, v32sb, v32f, 2, 8>; } // Rounding mode should agree with SystemZInstrFP.td. def : FPConversion; } // Convert to logical. let Uses = [FPC], mayRaiseFPException = 1 in { def VCLGD : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>; def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>; def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>; } // Rounding mode should agree with SystemZInstrFP.td. def : FPConversion; let Predicates = [FeatureVectorEnhancements2] in { let Uses = [FPC], mayRaiseFPException = 1 in { let isAsmParserOnly = 1 in def VCLFP : TernaryVRRaFloatGeneric<"vclfp", 0xE7C0>; def VCLFEB : TernaryVRRa<"vclfeb", 0xE7C0, null_frag, v128sb, v128g, 2, 0>; def WCLFEB : TernaryVRRa<"wclfeb", 0xE7C0, null_frag, v32sb, v32f, 2, 8>; } // Rounding mode should agree with SystemZInstrFP.td. def : FPConversion; } // Divide. let Uses = [FPC], mayRaiseFPException = 1 in { def VFD : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>; def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, any_fdiv, v128db, v128db, 3, 0>; def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, any_fdiv, v64db, v64db, 3, 8, 0, "ddbr">; let Predicates = [FeatureVectorEnhancements1] in { def VFDSB : BinaryVRRc<"vfdsb", 0xE7E5, any_fdiv, v128sb, v128sb, 2, 0>; def WFDSB : BinaryVRRc<"wfdsb", 0xE7E5, any_fdiv, v32sb, v32sb, 2, 8, 0, "debr">; def WFDXB : BinaryVRRc<"wfdxb", 0xE7E5, any_fdiv, v128xb, v128xb, 4, 8>; } } // Load FP integer. let Uses = [FPC], mayRaiseFPException = 1 in { def VFI : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>; def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>; def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>; } defm : VectorRounding; defm : VectorRounding; let Predicates = [FeatureVectorEnhancements1] in { let Uses = [FPC], mayRaiseFPException = 1 in { def VFISB : TernaryVRRa<"vfisb", 0xE7C7, int_s390_vfisb, v128sb, v128sb, 2, 0>; def WFISB : TernaryVRRa<"wfisb", 0xE7C7, null_frag, v32sb, v32sb, 2, 8>; def WFIXB : TernaryVRRa<"wfixb", 0xE7C7, null_frag, v128xb, v128xb, 4, 8>; } defm : VectorRounding; defm : VectorRounding; defm : VectorRounding; } // Load lengthened. let Uses = [FPC], mayRaiseFPException = 1 in { def VLDE : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>; def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_any_vextend, v128db, v128sb, 2, 0>; def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, any_fpextend, v64db, v32sb, 2, 8, 0, "ldebr">; } let Predicates = [FeatureVectorEnhancements1] in { let Uses = [FPC], mayRaiseFPException = 1 in { let isAsmParserOnly = 1 in { def VFLL : UnaryVRRaFloatGeneric<"vfll", 0xE7C4>; def VFLLS : UnaryVRRa<"vflls", 0xE7C4, null_frag, v128db, v128sb, 2, 0>; def WFLLS : UnaryVRRa<"wflls", 0xE7C4, null_frag, v64db, v32sb, 2, 8>; } def WFLLD : UnaryVRRa<"wflld", 0xE7C4, any_fpextend, v128xb, v64db, 3, 8>; } def : Pat<(f128 (any_fpextend (f32 VR32:$src))), (WFLLD (WLDEB VR32:$src))>; } // Load rounded. let Uses = [FPC], mayRaiseFPException = 1 in { def VLED : TernaryVRRaFloatGeneric<"vled", 0xE7C5>; def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128sb, v128db, 3, 0>; def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32sb, v64db, 3, 8>; } def : Pat<(v4f32 (z_any_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>; def : FPConversion; let Predicates = [FeatureVectorEnhancements1] in { let Uses = [FPC], mayRaiseFPException = 1 in { let isAsmParserOnly = 1 in { def VFLR : TernaryVRRaFloatGeneric<"vflr", 0xE7C5>; def VFLRD : TernaryVRRa<"vflrd", 0xE7C5, null_frag, v128sb, v128db, 3, 0>; def WFLRD : TernaryVRRa<"wflrd", 0xE7C5, null_frag, v32sb, v64db, 3, 8>; } def WFLRX : TernaryVRRa<"wflrx", 0xE7C5, null_frag, v64db, v128xb, 4, 8>; } def : FPConversion; def : Pat<(f32 (any_fpround (f128 VR128:$src))), (WLEDB (WFLRX VR128:$src, 0, 3), 0, 0)>; } // Maximum. multiclass VectorMax { def : FPMinMax; def : FPMinMax; } let Predicates = [FeatureVectorEnhancements1] in { let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in { def VFMAX : TernaryVRRcFloatGeneric<"vfmax", 0xE7EF>; def VFMAXDB : TernaryVRRcFloat<"vfmaxdb", 0xE7EF, int_s390_vfmaxdb, v128db, v128db, 3, 0>; def WFMAXDB : TernaryVRRcFloat<"wfmaxdb", 0xE7EF, null_frag, v64db, v64db, 3, 8>; def VFMAXSB : TernaryVRRcFloat<"vfmaxsb", 0xE7EF, int_s390_vfmaxsb, v128sb, v128sb, 2, 0>; def WFMAXSB : TernaryVRRcFloat<"wfmaxsb", 0xE7EF, null_frag, v32sb, v32sb, 2, 8>; def WFMAXXB : TernaryVRRcFloat<"wfmaxxb", 0xE7EF, null_frag, v128xb, v128xb, 4, 8>; } defm : VectorMax; defm : VectorMax; defm : VectorMax; defm : VectorMax; defm : VectorMax; } // Minimum. multiclass VectorMin { def : FPMinMax; def : FPMinMax; } let Predicates = [FeatureVectorEnhancements1] in { let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in { def VFMIN : TernaryVRRcFloatGeneric<"vfmin", 0xE7EE>; def VFMINDB : TernaryVRRcFloat<"vfmindb", 0xE7EE, int_s390_vfmindb, v128db, v128db, 3, 0>; def WFMINDB : TernaryVRRcFloat<"wfmindb", 0xE7EE, null_frag, v64db, v64db, 3, 8>; def VFMINSB : TernaryVRRcFloat<"vfminsb", 0xE7EE, int_s390_vfminsb, v128sb, v128sb, 2, 0>; def WFMINSB : TernaryVRRcFloat<"wfminsb", 0xE7EE, null_frag, v32sb, v32sb, 2, 8>; def WFMINXB : TernaryVRRcFloat<"wfminxb", 0xE7EE, null_frag, v128xb, v128xb, 4, 8>; } defm : VectorMin; defm : VectorMin; defm : VectorMin; defm : VectorMin; defm : VectorMin; } // Multiply. let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in { def VFM : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>; def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, any_fmul, v128db, v128db, 3, 0>; def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, any_fmul, v64db, v64db, 3, 8, 0, "mdbr">; let Predicates = [FeatureVectorEnhancements1] in { def VFMSB : BinaryVRRc<"vfmsb", 0xE7E7, any_fmul, v128sb, v128sb, 2, 0>; def WFMSB : BinaryVRRc<"wfmsb", 0xE7E7, any_fmul, v32sb, v32sb, 2, 8, 0, "meebr">; def WFMXB : BinaryVRRc<"wfmxb", 0xE7E7, any_fmul, v128xb, v128xb, 4, 8>; } } // Multiply and add. let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in { def VFMA : TernaryVRReFloatGeneric<"vfma", 0xE78F>; def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, any_fma, v128db, v128db, 0, 3>; def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, any_fma, v64db, v64db, 8, 3, "madbr">; let Predicates = [FeatureVectorEnhancements1] in { def VFMASB : TernaryVRRe<"vfmasb", 0xE78F, any_fma, v128sb, v128sb, 0, 2>; def WFMASB : TernaryVRRe<"wfmasb", 0xE78F, any_fma, v32sb, v32sb, 8, 2, "maebr">; def WFMAXB : TernaryVRRe<"wfmaxb", 0xE78F, any_fma, v128xb, v128xb, 8, 4>; } } // Multiply and subtract. let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in { def VFMS : TernaryVRReFloatGeneric<"vfms", 0xE78E>; def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, any_fms, v128db, v128db, 0, 3>; def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, any_fms, v64db, v64db, 8, 3, "msdbr">; let Predicates = [FeatureVectorEnhancements1] in { def VFMSSB : TernaryVRRe<"vfmssb", 0xE78E, any_fms, v128sb, v128sb, 0, 2>; def WFMSSB : TernaryVRRe<"wfmssb", 0xE78E, any_fms, v32sb, v32sb, 8, 2, "msebr">; def WFMSXB : TernaryVRRe<"wfmsxb", 0xE78E, any_fms, v128xb, v128xb, 8, 4>; } } // Negative multiply and add. let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1, Predicates = [FeatureVectorEnhancements1] in { def VFNMA : TernaryVRReFloatGeneric<"vfnma", 0xE79F>; def VFNMADB : TernaryVRRe<"vfnmadb", 0xE79F, any_fnma, v128db, v128db, 0, 3>; def WFNMADB : TernaryVRRe<"wfnmadb", 0xE79F, any_fnma, v64db, v64db, 8, 3>; def VFNMASB : TernaryVRRe<"vfnmasb", 0xE79F, any_fnma, v128sb, v128sb, 0, 2>; def WFNMASB : TernaryVRRe<"wfnmasb", 0xE79F, any_fnma, v32sb, v32sb, 8, 2>; def WFNMAXB : TernaryVRRe<"wfnmaxb", 0xE79F, any_fnma, v128xb, v128xb, 8, 4>; } // Negative multiply and subtract. let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1, Predicates = [FeatureVectorEnhancements1] in { def VFNMS : TernaryVRReFloatGeneric<"vfnms", 0xE79E>; def VFNMSDB : TernaryVRRe<"vfnmsdb", 0xE79E, any_fnms, v128db, v128db, 0, 3>; def WFNMSDB : TernaryVRRe<"wfnmsdb", 0xE79E, any_fnms, v64db, v64db, 8, 3>; def VFNMSSB : TernaryVRRe<"vfnmssb", 0xE79E, any_fnms, v128sb, v128sb, 0, 2>; def WFNMSSB : TernaryVRRe<"wfnmssb", 0xE79E, any_fnms, v32sb, v32sb, 8, 2>; def WFNMSXB : TernaryVRRe<"wfnmsxb", 0xE79E, any_fnms, v128xb, v128xb, 8, 4>; } // Perform sign operation. def VFPSO : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>; def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>; def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>; let Predicates = [FeatureVectorEnhancements1] in { def VFPSOSB : BinaryVRRa<"vfpsosb", 0xE7CC, null_frag, v128sb, v128sb, 2, 0>; def WFPSOSB : BinaryVRRa<"wfpsosb", 0xE7CC, null_frag, v32sb, v32sb, 2, 8>; def WFPSOXB : BinaryVRRa<"wfpsoxb", 0xE7CC, null_frag, v128xb, v128xb, 4, 8>; } // Load complement. def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>; def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>; let Predicates = [FeatureVectorEnhancements1] in { def VFLCSB : UnaryVRRa<"vflcsb", 0xE7CC, fneg, v128sb, v128sb, 2, 0, 0>; def WFLCSB : UnaryVRRa<"wflcsb", 0xE7CC, fneg, v32sb, v32sb, 2, 8, 0>; def WFLCXB : UnaryVRRa<"wflcxb", 0xE7CC, fneg, v128xb, v128xb, 4, 8, 0>; } // Load negative. def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>; def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>; let Predicates = [FeatureVectorEnhancements1] in { def VFLNSB : UnaryVRRa<"vflnsb", 0xE7CC, fnabs, v128sb, v128sb, 2, 0, 1>; def WFLNSB : UnaryVRRa<"wflnsb", 0xE7CC, fnabs, v32sb, v32sb, 2, 8, 1>; def WFLNXB : UnaryVRRa<"wflnxb", 0xE7CC, fnabs, v128xb, v128xb, 4, 8, 1>; } // Load positive. def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>; def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>; let Predicates = [FeatureVectorEnhancements1] in { def VFLPSB : UnaryVRRa<"vflpsb", 0xE7CC, fabs, v128sb, v128sb, 2, 0, 2>; def WFLPSB : UnaryVRRa<"wflpsb", 0xE7CC, fabs, v32sb, v32sb, 2, 8, 2>; def WFLPXB : UnaryVRRa<"wflpxb", 0xE7CC, fabs, v128xb, v128xb, 4, 8, 2>; } // Square root. let Uses = [FPC], mayRaiseFPException = 1 in { def VFSQ : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>; def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, any_fsqrt, v128db, v128db, 3, 0>; def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, any_fsqrt, v64db, v64db, 3, 8, 0, "sqdbr">; let Predicates = [FeatureVectorEnhancements1] in { def VFSQSB : UnaryVRRa<"vfsqsb", 0xE7CE, any_fsqrt, v128sb, v128sb, 2, 0>; def WFSQSB : UnaryVRRa<"wfsqsb", 0xE7CE, any_fsqrt, v32sb, v32sb, 2, 8, 0, "sqebr">; def WFSQXB : UnaryVRRa<"wfsqxb", 0xE7CE, any_fsqrt, v128xb, v128xb, 4, 8>; } } // Subtract. let Uses = [FPC], mayRaiseFPException = 1 in { def VFS : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>; def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, any_fsub, v128db, v128db, 3, 0>; def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, any_fsub, v64db, v64db, 3, 8, 0, "sdbr">; let Predicates = [FeatureVectorEnhancements1] in { def VFSSB : BinaryVRRc<"vfssb", 0xE7E2, any_fsub, v128sb, v128sb, 2, 0>; def WFSSB : BinaryVRRc<"wfssb", 0xE7E2, any_fsub, v32sb, v32sb, 2, 8, 0, "sebr">; def WFSXB : BinaryVRRc<"wfsxb", 0xE7E2, any_fsub, v128xb, v128xb, 4, 8>; } } // Test data class immediate. let Defs = [CC] in { def VFTCI : BinaryVRIeFloatGeneric<"vftci", 0xE74A>; def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>; def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>; let Predicates = [FeatureVectorEnhancements1] in { def VFTCISB : BinaryVRIe<"vftcisb", 0xE74A, z_vftci, v128f, v128sb, 2, 0>; def WFTCISB : BinaryVRIe<"wftcisb", 0xE74A, null_frag, v32f, v32sb, 2, 8>; def WFTCIXB : BinaryVRIe<"wftcixb", 0xE74A, null_frag, v128q, v128xb, 4, 8>; } } } //===----------------------------------------------------------------------===// // Floating-point comparison //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Compare scalar. let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in { def WFC : CompareVRRaFloatGeneric<"wfc", 0xE7CB>; def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_any_fcmp, v64db, 3, "cdbr">; let Predicates = [FeatureVectorEnhancements1] in { def WFCSB : CompareVRRa<"wfcsb", 0xE7CB, z_any_fcmp, v32sb, 2, "cebr">; def WFCXB : CompareVRRa<"wfcxb", 0xE7CB, z_any_fcmp, v128xb, 4>; } } // Compare and signal scalar. let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in { def WFK : CompareVRRaFloatGeneric<"wfk", 0xE7CA>; def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, z_strict_fcmps, v64db, 3, "kdbr">; let Predicates = [FeatureVectorEnhancements1] in { def WFKSB : CompareVRRa<"wfksb", 0xE7CA, z_strict_fcmps, v32sb, 2, "kebr">; def WFKXB : CompareVRRa<"wfkxb", 0xE7CA, z_strict_fcmps, v128xb, 4>; } } // Compare equal. let Uses = [FPC], mayRaiseFPException = 1 in { def VFCE : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>; defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_any_vfcmpe, z_vfcmpes, v128g, v128db, 3, 0>; defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag, v64g, v64db, 3, 8>; let Predicates = [FeatureVectorEnhancements1] in { defm VFCESB : BinaryVRRcSPair<"vfcesb", 0xE7E8, z_any_vfcmpe, z_vfcmpes, v128f, v128sb, 2, 0>; defm WFCESB : BinaryVRRcSPair<"wfcesb", 0xE7E8, null_frag, null_frag, v32f, v32sb, 2, 8>; defm WFCEXB : BinaryVRRcSPair<"wfcexb", 0xE7E8, null_frag, null_frag, v128q, v128xb, 4, 8>; } } // Compare and signal equal. let Uses = [FPC], mayRaiseFPException = 1, Predicates = [FeatureVectorEnhancements1] in { defm VFKEDB : BinaryVRRcSPair<"vfkedb", 0xE7E8, z_strict_vfcmpes, null_frag, v128g, v128db, 3, 4>; defm WFKEDB : BinaryVRRcSPair<"wfkedb", 0xE7E8, null_frag, null_frag, v64g, v64db, 3, 12>; defm VFKESB : BinaryVRRcSPair<"vfkesb", 0xE7E8, z_strict_vfcmpes, null_frag, v128f, v128sb, 2, 4>; defm WFKESB : BinaryVRRcSPair<"wfkesb", 0xE7E8, null_frag, null_frag, v32f, v32sb, 2, 12>; defm WFKEXB : BinaryVRRcSPair<"wfkexb", 0xE7E8, null_frag, null_frag, v128q, v128xb, 4, 12>; } // Compare high. let Uses = [FPC], mayRaiseFPException = 1 in { def VFCH : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>; defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_any_vfcmph, z_vfcmphs, v128g, v128db, 3, 0>; defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag, v64g, v64db, 3, 8>; let Predicates = [FeatureVectorEnhancements1] in { defm VFCHSB : BinaryVRRcSPair<"vfchsb", 0xE7EB, z_any_vfcmph, z_vfcmphs, v128f, v128sb, 2, 0>; defm WFCHSB : BinaryVRRcSPair<"wfchsb", 0xE7EB, null_frag, null_frag, v32f, v32sb, 2, 8>; defm WFCHXB : BinaryVRRcSPair<"wfchxb", 0xE7EB, null_frag, null_frag, v128q, v128xb, 4, 8>; } } // Compare and signal high. let Uses = [FPC], mayRaiseFPException = 1, Predicates = [FeatureVectorEnhancements1] in { defm VFKHDB : BinaryVRRcSPair<"vfkhdb", 0xE7EB, z_strict_vfcmphs, null_frag, v128g, v128db, 3, 4>; defm WFKHDB : BinaryVRRcSPair<"wfkhdb", 0xE7EB, null_frag, null_frag, v64g, v64db, 3, 12>; defm VFKHSB : BinaryVRRcSPair<"vfkhsb", 0xE7EB, z_strict_vfcmphs, null_frag, v128f, v128sb, 2, 4>; defm WFKHSB : BinaryVRRcSPair<"wfkhsb", 0xE7EB, null_frag, null_frag, v32f, v32sb, 2, 12>; defm WFKHXB : BinaryVRRcSPair<"wfkhxb", 0xE7EB, null_frag, null_frag, v128q, v128xb, 4, 12>; } // Compare high or equal. let Uses = [FPC], mayRaiseFPException = 1 in { def VFCHE : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>; defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_any_vfcmphe, z_vfcmphes, v128g, v128db, 3, 0>; defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag, v64g, v64db, 3, 8>; let Predicates = [FeatureVectorEnhancements1] in { defm VFCHESB : BinaryVRRcSPair<"vfchesb", 0xE7EA, z_any_vfcmphe, z_vfcmphes, v128f, v128sb, 2, 0>; defm WFCHESB : BinaryVRRcSPair<"wfchesb", 0xE7EA, null_frag, null_frag, v32f, v32sb, 2, 8>; defm WFCHEXB : BinaryVRRcSPair<"wfchexb", 0xE7EA, null_frag, null_frag, v128q, v128xb, 4, 8>; } } // Compare and signal high or equal. let Uses = [FPC], mayRaiseFPException = 1, Predicates = [FeatureVectorEnhancements1] in { defm VFKHEDB : BinaryVRRcSPair<"vfkhedb", 0xE7EA, z_strict_vfcmphes, null_frag, v128g, v128db, 3, 4>; defm WFKHEDB : BinaryVRRcSPair<"wfkhedb", 0xE7EA, null_frag, null_frag, v64g, v64db, 3, 12>; defm VFKHESB : BinaryVRRcSPair<"vfkhesb", 0xE7EA, z_strict_vfcmphes, null_frag, v128f, v128sb, 2, 4>; defm WFKHESB : BinaryVRRcSPair<"wfkhesb", 0xE7EA, null_frag, null_frag, v32f, v32sb, 2, 12>; defm WFKHEXB : BinaryVRRcSPair<"wfkhexb", 0xE7EA, null_frag, null_frag, v128q, v128xb, 4, 12>; } } //===----------------------------------------------------------------------===// // Conversions //===----------------------------------------------------------------------===// def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (f128 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (f128 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (f128 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (f128 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (f128 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (f128 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(f128 (bitconvert (v16i8 VR128:$src))), (f128 VR128:$src)>; def : Pat<(f128 (bitconvert (v8i16 VR128:$src))), (f128 VR128:$src)>; def : Pat<(f128 (bitconvert (v4i32 VR128:$src))), (f128 VR128:$src)>; def : Pat<(f128 (bitconvert (v2i64 VR128:$src))), (f128 VR128:$src)>; def : Pat<(f128 (bitconvert (v4f32 VR128:$src))), (f128 VR128:$src)>; def : Pat<(f128 (bitconvert (v2f64 VR128:$src))), (f128 VR128:$src)>; //===----------------------------------------------------------------------===// // Replicating scalars //===----------------------------------------------------------------------===// // Define patterns for replicating a scalar GR32 into a vector of type TYPE. // INDEX is 8 minus the element size in bytes. class VectorReplicateScalar index> : Pat<(type (z_replicate GR32:$scalar)), (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>; def : VectorReplicateScalar; def : VectorReplicateScalar; def : VectorReplicateScalar; // i64 replications are just a single instruction. def : Pat<(v2i64 (z_replicate GR64:$scalar)), (VLVGP GR64:$scalar, GR64:$scalar)>; //===----------------------------------------------------------------------===// // Floating-point insertion and extraction //===----------------------------------------------------------------------===// // Moving 32-bit values between GPRs and FPRs can be done using VLVGF // and VLGVF. let Predicates = [FeatureVector] in { def LEFR : UnaryAliasVRS; def LFER : UnaryAliasVRS; def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>; def : Pat<(i32 (bitconvert (f32 VR32:$src))), (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>; } // Floating-point values are stored in element 0 of the corresponding // vector register. Scalar to vector conversion is just a subreg and // scalar replication can just replicate element 0 of the vector register. multiclass ScalarToVectorFP { def : Pat<(vt (scalar_to_vector cls:$scalar)), (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>; def : Pat<(vt (z_replicate cls:$scalar)), (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg), 0)>; } defm : ScalarToVectorFP; defm : ScalarToVectorFP; // Match v2f64 insertions. The AddedComplexity counters the 3 added by // TableGen for the base register operand in VLVG-based integer insertions // and ensures that this version is strictly better. let AddedComplexity = 4 in { def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0), (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt, subreg_h64), VR128:$vec, 1)>; def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1), (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt, subreg_h64), 0)>; } // We extract floating-point element X by replicating (for elements other // than 0) and then taking a high subreg. The AddedComplexity counters the // 3 added by TableGen for the base register operand in VLGV-based integer // extractions and ensures that this version is strictly better. let AddedComplexity = 4 in { def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)), (EXTRACT_SUBREG VR128:$vec, subreg_h32)>; def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)), (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_h32)>; def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)), (EXTRACT_SUBREG VR128:$vec, subreg_h64)>; def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)), (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_h64)>; } //===----------------------------------------------------------------------===// // Support for 128-bit floating-point values in vector registers //===----------------------------------------------------------------------===// let Predicates = [FeatureVectorEnhancements1] in { def : Pat<(f128 (load bdxaddr12only:$addr)), (VL bdxaddr12only:$addr)>; def : Pat<(store (f128 VR128:$src), bdxaddr12only:$addr), (VST VR128:$src, bdxaddr12only:$addr)>; def : Pat<(f128 fpimm0), (VZERO)>; def : Pat<(f128 fpimmneg0), (WFLNXB (VZERO))>; } //===----------------------------------------------------------------------===// // String instructions //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { defm VFAE : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>; defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb, z_vfae_cc, v128b, v128b, 0>; defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh, z_vfae_cc, v128h, v128h, 1>; defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef, z_vfae_cc, v128f, v128f, 2>; defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb, z_vfaez_cc, v128b, v128b, 0, 2>; defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh, z_vfaez_cc, v128h, v128h, 1, 2>; defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf, z_vfaez_cc, v128f, v128f, 2, 2>; defm VFEE : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>; defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb, z_vfee_cc, v128b, v128b, 0>; defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh, z_vfee_cc, v128h, v128h, 1>; defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef, z_vfee_cc, v128f, v128f, 2>; defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb, z_vfeez_cc, v128b, v128b, 0, 2>; defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh, z_vfeez_cc, v128h, v128h, 1, 2>; defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf, z_vfeez_cc, v128f, v128f, 2, 2>; defm VFENE : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>; defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb, z_vfene_cc, v128b, v128b, 0>; defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh, z_vfene_cc, v128h, v128h, 1>; defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef, z_vfene_cc, v128f, v128f, 2>; defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb, z_vfenez_cc, v128b, v128b, 0, 2>; defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh, z_vfenez_cc, v128h, v128h, 1, 2>; defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf, z_vfenez_cc, v128f, v128f, 2, 2>; defm VISTR : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>; defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb, z_vistr_cc, v128b, v128b, 0>; defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh, z_vistr_cc, v128h, v128h, 1>; defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf, z_vistr_cc, v128f, v128f, 2>; defm VSTRC : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>; defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb, z_vstrc_cc, v128b, v128b, 0>; defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch, z_vstrc_cc, v128h, v128h, 1>; defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf, z_vstrc_cc, v128f, v128f, 2>; defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb, z_vstrcz_cc, v128b, v128b, 0, 2>; defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh, z_vstrcz_cc, v128h, v128h, 1, 2>; defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf, z_vstrcz_cc, v128f, v128f, 2, 2>; } let Predicates = [FeatureVectorEnhancements2] in { defm VSTRS : TernaryExtraVRRdGeneric<"vstrs", 0xE78B>; defm VSTRSB : TernaryExtraVRRd<"vstrsb", 0xE78B, z_vstrs_cc, v128b, v128b, 0>; defm VSTRSH : TernaryExtraVRRd<"vstrsh", 0xE78B, z_vstrs_cc, v128b, v128h, 1>; defm VSTRSF : TernaryExtraVRRd<"vstrsf", 0xE78B, z_vstrs_cc, v128b, v128f, 2>; let Defs = [CC] in { def VSTRSZB : TernaryVRRd<"vstrszb", 0xE78B, z_vstrsz_cc, v128b, v128b, 0, 2>; def VSTRSZH : TernaryVRRd<"vstrszh", 0xE78B, z_vstrsz_cc, v128b, v128h, 1, 2>; def VSTRSZF : TernaryVRRd<"vstrszf", 0xE78B, z_vstrsz_cc, v128b, v128f, 2, 2>; } } //===----------------------------------------------------------------------===// // NNP assist instructions //===----------------------------------------------------------------------===// let Predicates = [FeatureVector, FeatureNNPAssist] in { let Uses = [FPC], mayRaiseFPException = 1 in def VCFN : UnaryVRRaFloatGeneric<"vcfn", 0xE65D>; def : Pat<(int_s390_vcfn VR128:$x, imm32zx4_timm:$m), (VCFN VR128:$x, 1, imm32zx4:$m)>; let Uses = [FPC], mayRaiseFPException = 1 in def VCLFNL : UnaryVRRaFloatGeneric<"vclfnl", 0xE65E>; def : Pat<(int_s390_vclfnls VR128:$x, imm32zx4_timm:$m), (VCLFNL VR128:$x, 2, imm32zx4:$m)>; let Uses = [FPC], mayRaiseFPException = 1 in def VCLFNH : UnaryVRRaFloatGeneric<"vclfnh", 0xE656>; def : Pat<(int_s390_vclfnhs VR128:$x, imm32zx4_timm:$m), (VCLFNH VR128:$x, 2, imm32zx4:$m)>; let Uses = [FPC], mayRaiseFPException = 1 in def VCNF : UnaryVRRaFloatGeneric<"vcnf", 0xE655>; def : Pat<(int_s390_vcnf VR128:$x, imm32zx4_timm:$m), (VCNF VR128:$x, imm32zx4:$m, 1)>; let Uses = [FPC], mayRaiseFPException = 1 in def VCRNF : BinaryVRRcFloatGeneric<"vcrnf", 0xE675>; def : Pat<(int_s390_vcrnfs VR128:$x, VR128:$y, imm32zx4_timm:$m), (VCRNF VR128:$x, VR128:$y, imm32zx4:$m, 2)>; } //===----------------------------------------------------------------------===// // Packed-decimal instructions //===----------------------------------------------------------------------===// let Predicates = [FeatureVectorPackedDecimal] in { def VLIP : BinaryVRIh<"vlip", 0xE649>; def VPKZ : BinaryVSI<"vpkz", 0xE634, null_frag, 0>; def VUPKZ : StoreLengthVSI<"vupkz", 0xE63C, null_frag, 0>; let Defs = [CC] in { let Predicates = [FeatureVectorPackedDecimalEnhancement] in { def VCVBOpt : TernaryVRRi<"vcvb", 0xE650, GR32>; def VCVBGOpt : TernaryVRRi<"vcvbg", 0xE652, GR64>; } def VCVB : BinaryVRRi<"vcvb", 0xE650, GR32>; def VCVBG : BinaryVRRi<"vcvbg", 0xE652, GR64>; def VCVD : TernaryVRIi<"vcvd", 0xE658, GR32>; def VCVDG : TernaryVRIi<"vcvdg", 0xE65A, GR64>; def VAP : QuaternaryVRIf<"vap", 0xE671>; def VSP : QuaternaryVRIf<"vsp", 0xE673>; def VMP : QuaternaryVRIf<"vmp", 0xE678>; def VMSP : QuaternaryVRIf<"vmsp", 0xE679>; def VDP : QuaternaryVRIf<"vdp", 0xE67A>; def VRP : QuaternaryVRIf<"vrp", 0xE67B>; def VSDP : QuaternaryVRIf<"vsdp", 0xE67E>; def VSRP : QuaternaryVRIg<"vsrp", 0xE659>; def VPSOP : QuaternaryVRIg<"vpsop", 0xE65B>; def VTP : TestVRRg<"vtp", 0xE65F>; def VCP : CompareVRRh<"vcp", 0xE677>; } } let Predicates = [FeatureVectorPackedDecimalEnhancement2] in { def VSCHP : BinaryExtraVRRbGeneric<"vschp", 0xE674>; def VSCHSP : BinaryExtraVRRb<"vschsp", 0xE674, 2>; def VSCHDP : BinaryExtraVRRb<"vschdp", 0xE674, 3>; def VSCHXP : BinaryExtraVRRb<"vschxp", 0xE674, 4>; def VSCSHP : BinaryVRRb<"vscshp", 0xE67C, null_frag, v128b, v128b>; def VCSPH : TernaryVRRj<"vcsph", 0xE67D>; let Defs = [CC] in def VCLZDP : BinaryVRRk<"vclzdp", 0xE651>; let Defs = [CC] in def VSRPR : QuaternaryVRIf<"vsrpr", 0xE672>; let Defs = [CC] in { def VPKZR : QuaternaryVRIf<"vpkzr", 0xE670>; def VUPKZH : BinaryVRRk<"vupkzh", 0xE654>; def VUPKZL : BinaryVRRk<"vupkzl", 0xE65C>; } }