//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interfaces that SystemZ uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H #include "SystemZ.h" #include "SystemZInstrInfo.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLowering.h" #include namespace llvm { namespace SystemZISD { enum NodeType : unsigned { FIRST_NUMBER = ISD::BUILTIN_OP_END, // Return with a glue operand. Operand 0 is the chain operand. RET_GLUE, // Calls a function. Operand 0 is the chain operand and operand 1 // is the target address. The arguments start at operand 2. // There is an optional glue operand at the end. CALL, SIBCALL, // TLS calls. Like regular calls, except operand 1 is the TLS symbol. // (The call target is implicitly __tls_get_offset.) TLS_GDCALL, TLS_LDCALL, // Wraps a TargetGlobalAddress that should be loaded using PC-relative // accesses (LARL). Operand 0 is the address. PCREL_WRAPPER, // Used in cases where an offset is applied to a TargetGlobalAddress. // Operand 0 is the full TargetGlobalAddress and operand 1 is a // PCREL_WRAPPER for an anchor point. This is used so that we can // cheaply refer to either the full address or the anchor point // as a register base. PCREL_OFFSET, // Integer comparisons. There are three operands: the two values // to compare, and an integer of type SystemZICMP. ICMP, // Floating-point comparisons. The two operands are the values to compare. FCMP, // Test under mask. The first operand is ANDed with the second operand // and the condition codes are set on the result. The third operand is // a boolean that is true if the condition codes need to distinguish // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the // register forms do but the memory forms don't). TM, // Branches if a condition is true. Operand 0 is the chain operand; // operand 1 is the 4-bit condition-code mask, with bit N in // big-endian order meaning "branch if CC=N"; operand 2 is the // target block and operand 3 is the flag operand. BR_CCMASK, // Selects between operand 0 and operand 1. Operand 2 is the // mask of condition-code values for which operand 0 should be // chosen over operand 1; it has the same form as BR_CCMASK. // Operand 3 is the flag operand. SELECT_CCMASK, // Evaluates to the gap between the stack pointer and the // base of the dynamically-allocatable area. ADJDYNALLOC, // For allocating stack space when using stack clash protector. // Allocation is performed by block, and each block is probed. PROBED_ALLOCA, // Count number of bits set in operand 0 per byte. POPCNT, // Wrappers around the ISD opcodes of the same name. The output is GR128. // Input operands may be GR64 or GR32, depending on the instruction. SMUL_LOHI, UMUL_LOHI, SDIVREM, UDIVREM, // Add/subtract with overflow/carry. These have the same operands as // the corresponding standard operations, except with the carry flag // replaced by a condition code value. SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY, // Set the condition code from a boolean value in operand 0. // Operand 1 is a mask of all condition-code values that may result of this // operation, operand 2 is a mask of condition-code values that may result // if the boolean is true. // Note that this operation is always optimized away, we will never // generate any code for it. GET_CCMASK, // Use a series of MVCs to copy bytes from one memory location to another. // The operands are: // - the target address // - the source address // - the constant length // // This isn't a memory opcode because we'd need to attach two // MachineMemOperands rather than one. MVC, // Similar to MVC, but for logic operations (AND, OR, XOR). NC, OC, XC, // Use CLC to compare two blocks of memory, with the same comments // as for MVC. CLC, // Use MVC to set a block of memory after storing the first byte. MEMSET_MVC, // Use an MVST-based sequence to implement stpcpy(). STPCPY, // Use a CLST-based sequence to implement strcmp(). The two input operands // are the addresses of the strings to compare. STRCMP, // Use an SRST-based sequence to search a block of memory. The first // operand is the end address, the second is the start, and the third // is the character to search for. CC is set to 1 on success and 2 // on failure. SEARCH_STRING, // Store the CC value in bits 29 and 28 of an integer. IPM, // Transaction begin. The first operand is the chain, the second // the TDB pointer, and the third the immediate control field. // Returns CC value and chain. TBEGIN, TBEGIN_NOFLOAT, // Transaction end. Just the chain operand. Returns CC value and chain. TEND, // Create a vector constant by filling byte N of the result with bit // 15-N of the single operand. BYTE_MASK, // Create a vector constant by replicating an element-sized RISBG-style mask. // The first operand specifies the starting set bit and the second operand // specifies the ending set bit. Both operands count from the MSB of the // element. ROTATE_MASK, // Replicate a GPR scalar value into all elements of a vector. REPLICATE, // Create a vector from two i64 GPRs. JOIN_DWORDS, // Replicate one element of a vector into all elements. The first operand // is the vector and the second is the index of the element to replicate. SPLAT, // Interleave elements from the high half of operand 0 and the high half // of operand 1. MERGE_HIGH, // Likewise for the low halves. MERGE_LOW, // Concatenate the vectors in the first two operands, shift them left // by the third operand, and take the first half of the result. SHL_DOUBLE, // Take one element of the first v2i64 operand and the one element of // the second v2i64 operand and concatenate them to form a v2i64 result. // The third operand is a 4-bit value of the form 0A0B, where A and B // are the element selectors for the first operand and second operands // respectively. PERMUTE_DWORDS, // Perform a general vector permute on vector operands 0 and 1. // Each byte of operand 2 controls the corresponding byte of the result, // in the same way as a byte-level VECTOR_SHUFFLE mask. PERMUTE, // Pack vector operands 0 and 1 into a single vector with half-sized elements. PACK, // Likewise, but saturate the result and set CC. PACKS_CC does signed // saturation and PACKLS_CC does unsigned saturation. PACKS_CC, PACKLS_CC, // Unpack the first half of vector operand 0 into double-sized elements. // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends. UNPACK_HIGH, UNPACKL_HIGH, // Likewise for the second half. UNPACK_LOW, UNPACKL_LOW, // Shift each element of vector operand 0 by the number of bits specified // by scalar operand 1. VSHL_BY_SCALAR, VSRL_BY_SCALAR, VSRA_BY_SCALAR, // For each element of the output type, sum across all sub-elements of // operand 0 belonging to the corresponding element, and add in the // rightmost sub-element of the corresponding element of operand 1. VSUM, // Compare integer vector operands 0 and 1 to produce the usual 0/-1 // vector result. VICMPE is for equality, VICMPH for "signed greater than" // and VICMPHL for "unsigned greater than". VICMPE, VICMPH, VICMPHL, // Likewise, but also set the condition codes on the result. VICMPES, VICMPHS, VICMPHLS, // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and // greater than" and VFCMPHE for "ordered and greater than or equal to". VFCMPE, VFCMPH, VFCMPHE, // Likewise, but also set the condition codes on the result. VFCMPES, VFCMPHS, VFCMPHES, // Test floating-point data class for vectors. VFTCI, // Extend the even f32 elements of vector operand 0 to produce a vector // of f64 elements. VEXTEND, // Round the f64 elements of vector operand 0 to f32s and store them in the // even elements of the result. VROUND, // AND the two vector operands together and set CC based on the result. VTM, // String operations that set CC as a side-effect. VFAE_CC, VFAEZ_CC, VFEE_CC, VFEEZ_CC, VFENE_CC, VFENEZ_CC, VISTR_CC, VSTRC_CC, VSTRCZ_CC, VSTRS_CC, VSTRSZ_CC, // Test Data Class. // // Operand 0: the value to test // Operand 1: the bit mask TDC, // z/OS XPLINK ADA Entry // Wraps a TargetGlobalAddress that should be loaded from a function's // AssociatedData Area (ADA). Tha ADA is passed to the function by the // caller in the XPLink ABI defined register R5. // Operand 0: the GlobalValue/External Symbol // Operand 1: the ADA register // Operand 2: the offset (0 for the first and 8 for the second element in the // function descriptor) ADA_ENTRY, // Strict variants of scalar floating-point comparisons. // Quiet and signaling versions. STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE, STRICT_FCMPS, // Strict variants of vector floating-point comparisons. // Quiet and signaling versions. STRICT_VFCMPE, STRICT_VFCMPH, STRICT_VFCMPHE, STRICT_VFCMPES, STRICT_VFCMPHS, STRICT_VFCMPHES, // Strict variants of VEXTEND and VROUND. STRICT_VEXTEND, STRICT_VROUND, // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or // ATOMIC_LOAD_. // // Operand 0: the address of the containing 32-bit-aligned field // Operand 1: the second operand of , in the high bits of an i32 // for everything except ATOMIC_SWAPW // Operand 2: how many bits to rotate the i32 left to bring the first // operand into the high bits // Operand 3: the negative of operand 2, for rotating the other way // Operand 4: the width of the field in bits (8 or 16) ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE, ATOMIC_LOADW_ADD, ATOMIC_LOADW_SUB, ATOMIC_LOADW_AND, ATOMIC_LOADW_OR, ATOMIC_LOADW_XOR, ATOMIC_LOADW_NAND, ATOMIC_LOADW_MIN, ATOMIC_LOADW_MAX, ATOMIC_LOADW_UMIN, ATOMIC_LOADW_UMAX, // A wrapper around the inner loop of an ATOMIC_CMP_SWAP. // // Operand 0: the address of the containing 32-bit-aligned field // Operand 1: the compare value, in the low bits of an i32 // Operand 2: the swap value, in the low bits of an i32 // Operand 3: how many bits to rotate the i32 left to bring the first // operand into the high bits // Operand 4: the negative of operand 2, for rotating the other way // Operand 5: the width of the field in bits (8 or 16) ATOMIC_CMP_SWAPW, // Atomic compare-and-swap returning CC value. // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) ATOMIC_CMP_SWAP, // 128-bit atomic load. // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr) ATOMIC_LOAD_128, // 128-bit atomic store. // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr) ATOMIC_STORE_128, // 128-bit atomic compare-and-swap. // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) ATOMIC_CMP_SWAP_128, // Byte swapping load/store. Same operands as regular load/store. LRV, STRV, // Element swapping load/store. Same operands as regular load/store. VLER, VSTER, // Prefetch from the second operand using the 4-bit control code in // the first operand. The code is 1 for a load prefetch and 2 for // a store prefetch. PREFETCH }; // Return true if OPCODE is some kind of PC-relative address. inline bool isPCREL(unsigned Opcode) { return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET; } } // end namespace SystemZISD namespace SystemZICMP { // Describes whether an integer comparison needs to be signed or unsigned, // or whether either type is OK. enum { Any, UnsignedOnly, SignedOnly }; } // end namespace SystemZICMP class SystemZSubtarget; class SystemZTargetLowering : public TargetLowering { public: explicit SystemZTargetLowering(const TargetMachine &TM, const SystemZSubtarget &STI); bool useSoftFloat() const override; // Override TargetLowering. MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override { return MVT::i32; } MVT getVectorIdxTy(const DataLayout &DL) const override { // Only the lower 12 bits of an element index are used, so we don't // want to clobber the upper 32 bits of a GPR unnecessarily. return MVT::i32; } TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override { // Widen subvectors to the full width rather than promoting integer // elements. This is better because: // // (a) it means that we can handle the ABI for passing and returning // sub-128 vectors without having to handle them as legal types. // // (b) we don't have instructions to extend on load and truncate on store, // so promoting the integers is less efficient. // // (c) there are no multiplication instructions for the widest integer // type (v2i64). if (VT.getScalarSizeInBits() % 8 == 0) return TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional RegisterVT) const override { // i128 inline assembly operand. if (VT == MVT::i128 && RegisterVT && *RegisterVT == MVT::Untyped) return 1; return TargetLowering::getNumRegisters(Context, VT); } bool isCheapToSpeculateCtlz(Type *) const override { return true; } bool preferZeroCompareBranch() const override { return true; } bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override { ConstantInt* Mask = dyn_cast(AndI.getOperand(1)); return Mask && Mask->getValue().isIntN(16); } bool convertSetCCLogicToBitwiseLogic(EVT VT) const override { return VT.isScalarInteger(); } EVT getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT) const override; bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override; bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override; bool ShouldShrinkFPConstant(EVT VT) const override { // Do not shrink 64-bit FP constpool entries since LDEB is slower than // LD, and having the full constant in memory enables reg/mem opcodes. return VT != MVT::f64; } bool hasInlineStackProbe(const MachineFunction &MF) const override; bool isLegalICmpImmediate(int64_t Imm) const override; bool isLegalAddImmediate(int64_t Imm) const override; bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I = nullptr) const override; bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const override; bool findOptimalMemOpLowering(std::vector &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const override; EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const override; bool isTruncateFree(Type *, Type *) const override; bool isTruncateFree(EVT, EVT) const override; bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const override { // Form add and sub with overflow intrinsics regardless of any extra // users of the math result. return VT == MVT::i32 || VT == MVT::i64; } bool shouldConsiderGEPOffsetSplit() const override { return true; } const char *getTargetNodeName(unsigned Opcode) const override; std::pair getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override; TargetLowering::ConstraintType getConstraintType(StringRef Constraint) const override; TargetLowering::ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override; void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const override; unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override { if (ConstraintCode.size() == 1) { switch(ConstraintCode[0]) { default: break; case 'o': return InlineAsm::Constraint_o; case 'Q': return InlineAsm::Constraint_Q; case 'R': return InlineAsm::Constraint_R; case 'S': return InlineAsm::Constraint_S; case 'T': return InlineAsm::Constraint_T; } } else if (ConstraintCode.size() == 2 && ConstraintCode[0] == 'Z') { switch (ConstraintCode[1]) { default: break; case 'Q': return InlineAsm::Constraint_ZQ; case 'R': return InlineAsm::Constraint_ZR; case 'S': return InlineAsm::Constraint_ZS; case 'T': return InlineAsm::Constraint_ZT; } } return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override; /// If a physical register, this returns the register that receives the /// exception address on entry to an EH pad. Register getExceptionPointerRegister(const Constant *PersonalityFn) const override { return SystemZ::R6D; } /// If a physical register, this returns the register that receives the /// exception typeid on entry to a landing pad. Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override { return SystemZ::R7D; } /// Override to support customized stack guard loading. bool useLoadStackGuardNode() const override { return true; } void insertSSPDeclarations(Module &M) const override { } MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override; SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; void LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const override; void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const override; const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; bool allowTruncateForTailCall(Type *, Type *) const override; bool mayBeEmittedAsTailCall(const CallInst *CI) const override; bool splitValueIntoRegisterParts( SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional CC) const override; SDValue joinRegisterPartsIntoValue( SelectionDAG & DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional CC) const override; SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const override; SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const override; std::pair makeExternalCall(SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, ArrayRef Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, bool DoesNotReturn, bool IsReturnValueUsed) const; bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const override; SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; /// Determine which of the bits specified in Mask are known to be either /// zero or one and return them in the KnownZero/KnownOne bitsets. void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth = 0) const override; /// Determine the number of bits in the operation that are sign bits. unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const override; bool isGuaranteedNotToBeUndefOrPoisonForTargetNode( SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const override; ISD::NodeType getExtendForAtomicOps() const override { return ISD::ANY_EXTEND; } ISD::NodeType getExtendForAtomicCmpSwapArg() const override { return ISD::ZERO_EXTEND; } bool supportSwiftError() const override { return true; } unsigned getStackProbeSize(const MachineFunction &MF) const; private: const SystemZSubtarget &Subtarget; // Implement LowerOperation for individual opcodes. SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL, EVT VT, SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const; SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT, ISD::CondCode CC, SDValue CmpOp0, SDValue CmpOp1, SDValue Chain = SDValue(), bool IsSignaling = false) const; SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG, bool IsSignaling) const; SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerGlobalAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const; SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node, SelectionDAG &DAG, unsigned Opcode, SDValue GOTOffset) const; SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const; SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const; SDValue lowerBlockAddress(BlockAddressSDNode *Node, SelectionDAG &DAG) const; SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const; SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const; SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVASTART_ELF(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVASTART_XPLINK(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const; SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, SelectionDAG &DAG) const; SDValue lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, SelectionDAG &DAG) const; SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const; SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) const; SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const; SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG, unsigned Opcode) const; SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const; SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const; SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; bool isVectorElementLoad(SDValue Op) const; SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, SmallVectorImpl &Elems) const; SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const; SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const; SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const; SDValue lowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const; SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const; bool canTreatAsByteVector(EVT VT) const; SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp, unsigned Index, DAGCombinerInfo &DCI, bool Force) const; SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const; SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const; bool canLoadStoreByteSwapped(EVT VT) const; SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const; SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const; SDValue unwrapAddress(SDValue N) const override; // If the last instruction before MBBI in MBB was some form of COMPARE, // try to replace it with a COMPARE AND BRANCH just before MBBI. // CCMask and Target are the BRC-like operands for the branch. // Return true if the change was made. bool convertPrevCompareToBranch(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned CCMask, MachineBasicBlock *Target) const; // Implement EmitInstrWithCustomInserter for individual operation types. MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB, unsigned StoreOpcode, unsigned STOCOpcode, bool Invert) const; MachineBasicBlock *emitPair128(MachineInstr &MI, MachineBasicBlock *MBB) const; MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB, bool ClearEven) const; MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI, MachineBasicBlock *BB, unsigned BinOpcode, unsigned BitSize, bool Invert = false) const; MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, unsigned KeepOldMask, unsigned BitSize) const; MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode, bool IsMemset = false) const; MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode) const; MachineBasicBlock *emitTransactionBegin(MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, bool NoFloat) const; MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const; MachineBasicBlock *emitProbedAlloca(MachineInstr &MI, MachineBasicBlock *MBB) const; SDValue getBackchainAddress(SDValue SP, SelectionDAG &DAG) const; MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const override; const TargetRegisterClass *getRepRegClassFor(MVT VT) const override; }; struct SystemZVectorConstantInfo { private: APInt IntBits; // The 128 bits as an integer. APInt SplatBits; // Smallest splat value. APInt SplatUndef; // Bits correspoding to undef operands of the BVN. unsigned SplatBitSize = 0; bool isFP128 = false; public: unsigned Opcode = 0; SmallVector OpVals; MVT VecVT; SystemZVectorConstantInfo(APInt IntImm); SystemZVectorConstantInfo(APFloat FPImm) : SystemZVectorConstantInfo(FPImm.bitcastToAPInt()) { isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); } SystemZVectorConstantInfo(BuildVectorSDNode *BVN); bool isVectorConstantLegal(const SystemZSubtarget &Subtarget); }; } // end namespace llvm #endif