//===-- SystemZElimCompare.cpp - Eliminate comparison instructions --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass: // (1) tries to remove compares if CC already contains the required information // (2) fuses compares and branches into COMPARE AND BRANCH instructions // //===----------------------------------------------------------------------===// #include "SystemZ.h" #include "SystemZInstrInfo.h" #include "SystemZTargetMachine.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/MC/MCInstrDesc.h" #include #include using namespace llvm; #define DEBUG_TYPE "systemz-elim-compare" STATISTIC(BranchOnCounts, "Number of branch-on-count instructions"); STATISTIC(LoadAndTraps, "Number of load-and-trap instructions"); STATISTIC(EliminatedComparisons, "Number of eliminated comparisons"); STATISTIC(FusedComparisons, "Number of fused compare-and-branch instructions"); namespace { // Represents the references to a particular register in one or more // instructions. struct Reference { Reference() = default; Reference &operator|=(const Reference &Other) { Def |= Other.Def; Use |= Other.Use; return *this; } explicit operator bool() const { return Def || Use; } // True if the register is defined or used in some form, either directly or // via a sub- or super-register. bool Def = false; bool Use = false; }; class SystemZElimCompare : public MachineFunctionPass { public: static char ID; SystemZElimCompare() : MachineFunctionPass(ID) { initializeSystemZElimComparePass(*PassRegistry::getPassRegistry()); } bool processBlock(MachineBasicBlock &MBB); bool runOnMachineFunction(MachineFunction &F) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: Reference getRegReferences(MachineInstr &MI, unsigned Reg); bool convertToBRCT(MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers); bool convertToLoadAndTrap(MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers); bool convertToLoadAndTest(MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers); bool convertToLogical(MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers); bool adjustCCMasksForInstr(MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers, unsigned ConvOpc = 0); bool optimizeCompareZero(MachineInstr &Compare, SmallVectorImpl &CCUsers); bool fuseCompareOperations(MachineInstr &Compare, SmallVectorImpl &CCUsers); const SystemZInstrInfo *TII = nullptr; const TargetRegisterInfo *TRI = nullptr; }; char SystemZElimCompare::ID = 0; } // end anonymous namespace INITIALIZE_PASS(SystemZElimCompare, DEBUG_TYPE, "SystemZ Comparison Elimination", false, false) // Returns true if MI is an instruction whose output equals the value in Reg. static bool preservesValueOf(MachineInstr &MI, unsigned Reg) { switch (MI.getOpcode()) { case SystemZ::LR: case SystemZ::LGR: case SystemZ::LGFR: case SystemZ::LTR: case SystemZ::LTGR: case SystemZ::LTGFR: if (MI.getOperand(1).getReg() == Reg) return true; } return false; } // Return true if any CC result of MI would (perhaps after conversion) // reflect the value of Reg. static bool resultTests(MachineInstr &MI, unsigned Reg) { if (MI.getNumOperands() > 0 && MI.getOperand(0).isReg() && MI.getOperand(0).isDef() && MI.getOperand(0).getReg() == Reg) return true; return (preservesValueOf(MI, Reg)); } // Describe the references to Reg or any of its aliases in MI. Reference SystemZElimCompare::getRegReferences(MachineInstr &MI, unsigned Reg) { Reference Ref; if (MI.isDebugInstr()) return Ref; for (const MachineOperand &MO : MI.operands()) { if (MO.isReg()) { if (Register MOReg = MO.getReg()) { if (TRI->regsOverlap(MOReg, Reg)) { if (MO.isUse()) Ref.Use = true; else if (MO.isDef()) Ref.Def = true; } } } } return Ref; } // Return true if this is a load and test which can be optimized the // same way as compare instruction. static bool isLoadAndTestAsCmp(MachineInstr &MI) { // If we during isel used a load-and-test as a compare with 0, the // def operand is dead. return (MI.getOpcode() == SystemZ::LTEBR || MI.getOpcode() == SystemZ::LTDBR || MI.getOpcode() == SystemZ::LTXBR) && MI.getOperand(0).isDead(); } // Return the source register of Compare, which is the unknown value // being tested. static unsigned getCompareSourceReg(MachineInstr &Compare) { unsigned reg = 0; if (Compare.isCompare()) reg = Compare.getOperand(0).getReg(); else if (isLoadAndTestAsCmp(Compare)) reg = Compare.getOperand(1).getReg(); assert(reg); return reg; } // Compare compares the result of MI against zero. If MI is an addition // of -1 and if CCUsers is a single branch on nonzero, eliminate the addition // and convert the branch to a BRCT(G) or BRCTH. Return true on success. bool SystemZElimCompare::convertToBRCT( MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers) { // Check whether we have an addition of -1. unsigned Opcode = MI.getOpcode(); unsigned BRCT; if (Opcode == SystemZ::AHI) BRCT = SystemZ::BRCT; else if (Opcode == SystemZ::AGHI) BRCT = SystemZ::BRCTG; else if (Opcode == SystemZ::AIH) BRCT = SystemZ::BRCTH; else return false; if (MI.getOperand(2).getImm() != -1) return false; // Check whether we have a single JLH. if (CCUsers.size() != 1) return false; MachineInstr *Branch = CCUsers[0]; if (Branch->getOpcode() != SystemZ::BRC || Branch->getOperand(0).getImm() != SystemZ::CCMASK_ICMP || Branch->getOperand(1).getImm() != SystemZ::CCMASK_CMP_NE) return false; // We already know that there are no references to the register between // MI and Compare. Make sure that there are also no references between // Compare and Branch. unsigned SrcReg = getCompareSourceReg(Compare); MachineBasicBlock::iterator MBBI = Compare, MBBE = Branch; for (++MBBI; MBBI != MBBE; ++MBBI) if (getRegReferences(*MBBI, SrcReg)) return false; // The transformation is OK. Rebuild Branch as a BRCT(G) or BRCTH. MachineOperand Target(Branch->getOperand(2)); while (Branch->getNumOperands()) Branch->removeOperand(0); Branch->setDesc(TII->get(BRCT)); MachineInstrBuilder MIB(*Branch->getParent()->getParent(), Branch); MIB.add(MI.getOperand(0)).add(MI.getOperand(1)).add(Target); // Add a CC def to BRCT(G), since we may have to split them again if the // branch displacement overflows. BRCTH has a 32-bit displacement, so // this is not necessary there. if (BRCT != SystemZ::BRCTH) MIB.addReg(SystemZ::CC, RegState::ImplicitDefine | RegState::Dead); MI.eraseFromParent(); return true; } // Compare compares the result of MI against zero. If MI is a suitable load // instruction and if CCUsers is a single conditional trap on zero, eliminate // the load and convert the branch to a load-and-trap. Return true on success. bool SystemZElimCompare::convertToLoadAndTrap( MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers) { unsigned LATOpcode = TII->getLoadAndTrap(MI.getOpcode()); if (!LATOpcode) return false; // Check whether we have a single CondTrap that traps on zero. if (CCUsers.size() != 1) return false; MachineInstr *Branch = CCUsers[0]; if (Branch->getOpcode() != SystemZ::CondTrap || Branch->getOperand(0).getImm() != SystemZ::CCMASK_ICMP || Branch->getOperand(1).getImm() != SystemZ::CCMASK_CMP_EQ) return false; // We already know that there are no references to the register between // MI and Compare. Make sure that there are also no references between // Compare and Branch. unsigned SrcReg = getCompareSourceReg(Compare); MachineBasicBlock::iterator MBBI = Compare, MBBE = Branch; for (++MBBI; MBBI != MBBE; ++MBBI) if (getRegReferences(*MBBI, SrcReg)) return false; // The transformation is OK. Rebuild Branch as a load-and-trap. while (Branch->getNumOperands()) Branch->removeOperand(0); Branch->setDesc(TII->get(LATOpcode)); MachineInstrBuilder(*Branch->getParent()->getParent(), Branch) .add(MI.getOperand(0)) .add(MI.getOperand(1)) .add(MI.getOperand(2)) .add(MI.getOperand(3)); MI.eraseFromParent(); return true; } // If MI is a load instruction, try to convert it into a LOAD AND TEST. // Return true on success. bool SystemZElimCompare::convertToLoadAndTest( MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers) { // Try to adjust CC masks for the LOAD AND TEST opcode that could replace MI. unsigned Opcode = TII->getLoadAndTest(MI.getOpcode()); if (!Opcode || !adjustCCMasksForInstr(MI, Compare, CCUsers, Opcode)) return false; // Rebuild to get the CC operand in the right place. auto MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode)); for (const auto &MO : MI.operands()) MIB.add(MO); MIB.setMemRefs(MI.memoperands()); MI.eraseFromParent(); // Mark instruction as not raising an FP exception if applicable. We already // verified earlier that this move is valid. if (!Compare.mayRaiseFPException()) MIB.setMIFlag(MachineInstr::MIFlag::NoFPExcept); return true; } // See if MI is an instruction with an equivalent "logical" opcode that can // be used and replace MI. This is useful for EQ/NE comparisons where the // "nsw" flag is missing since the "logical" opcode always sets CC to reflect // the result being zero or non-zero. bool SystemZElimCompare::convertToLogical( MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers) { unsigned ConvOpc = 0; switch (MI.getOpcode()) { case SystemZ::AR: ConvOpc = SystemZ::ALR; break; case SystemZ::ARK: ConvOpc = SystemZ::ALRK; break; case SystemZ::AGR: ConvOpc = SystemZ::ALGR; break; case SystemZ::AGRK: ConvOpc = SystemZ::ALGRK; break; case SystemZ::A: ConvOpc = SystemZ::AL; break; case SystemZ::AY: ConvOpc = SystemZ::ALY; break; case SystemZ::AG: ConvOpc = SystemZ::ALG; break; default: break; } if (!ConvOpc || !adjustCCMasksForInstr(MI, Compare, CCUsers, ConvOpc)) return false; // Operands should be identical, so just change the opcode and remove the // dead flag on CC. MI.setDesc(TII->get(ConvOpc)); MI.clearRegisterDeads(SystemZ::CC); return true; } #ifndef NDEBUG static bool isAddWithImmediate(unsigned Opcode) { switch(Opcode) { case SystemZ::AHI: case SystemZ::AHIK: case SystemZ::AGHI: case SystemZ::AGHIK: case SystemZ::AFI: case SystemZ::AIH: case SystemZ::AGFI: return true; default: break; } return false; } #endif // The CC users in CCUsers are testing the result of a comparison of some // value X against zero and we know that any CC value produced by MI would // also reflect the value of X. ConvOpc may be used to pass the transfomed // opcode MI will have if this succeeds. Try to adjust CCUsers so that they // test the result of MI directly, returning true on success. Leave // everything unchanged on failure. bool SystemZElimCompare::adjustCCMasksForInstr( MachineInstr &MI, MachineInstr &Compare, SmallVectorImpl &CCUsers, unsigned ConvOpc) { unsigned CompareFlags = Compare.getDesc().TSFlags; unsigned CompareCCValues = SystemZII::getCCValues(CompareFlags); int Opcode = (ConvOpc ? ConvOpc : MI.getOpcode()); const MCInstrDesc &Desc = TII->get(Opcode); unsigned MIFlags = Desc.TSFlags; // If Compare may raise an FP exception, we can only eliminate it // if MI itself would have already raised the exception. if (Compare.mayRaiseFPException()) { // If the caller will change MI to use ConvOpc, only test whether // ConvOpc is suitable; it is on the caller to set the MI flag. if (ConvOpc && !Desc.mayRaiseFPException()) return false; // If the caller will not change MI, we test the MI flag here. if (!ConvOpc && !MI.mayRaiseFPException()) return false; } // See which compare-style condition codes are available. unsigned CCValues = SystemZII::getCCValues(MIFlags); unsigned ReusableCCMask = CCValues; // For unsigned comparisons with zero, only equality makes sense. if (CompareFlags & SystemZII::IsLogical) ReusableCCMask &= SystemZ::CCMASK_CMP_EQ; unsigned OFImplies = 0; bool LogicalMI = false; bool MIEquivalentToCmp = false; if (MI.getFlag(MachineInstr::NoSWrap) && (MIFlags & SystemZII::CCIfNoSignedWrap)) { // If MI has the NSW flag set in combination with the // SystemZII::CCIfNoSignedWrap flag, all CCValues are valid. } else if ((MIFlags & SystemZII::CCIfNoSignedWrap) && MI.getOperand(2).isImm()) { // Signed addition of immediate. If adding a positive immediate // overflows, the result must be less than zero. If adding a negative // immediate overflows, the result must be larger than zero (except in // the special case of adding the minimum value of the result range, in // which case we cannot predict whether the result is larger than or // equal to zero). assert(isAddWithImmediate(Opcode) && "Expected an add with immediate."); assert(!MI.mayLoadOrStore() && "Expected an immediate term."); int64_t RHS = MI.getOperand(2).getImm(); if (SystemZ::GRX32BitRegClass.contains(MI.getOperand(0).getReg()) && RHS == INT32_MIN) return false; OFImplies = (RHS > 0 ? SystemZ::CCMASK_CMP_LT : SystemZ::CCMASK_CMP_GT); } else if ((MIFlags & SystemZII::IsLogical) && CCValues) { // Use CCMASK_CMP_EQ to match with CCUsers. On success CCMask:s will be // converted to CCMASK_LOGICAL_ZERO or CCMASK_LOGICAL_NONZERO. LogicalMI = true; ReusableCCMask = SystemZ::CCMASK_CMP_EQ; } else { ReusableCCMask &= SystemZII::getCompareZeroCCMask(MIFlags); assert((ReusableCCMask & ~CCValues) == 0 && "Invalid CCValues"); MIEquivalentToCmp = ReusableCCMask == CCValues && CCValues == CompareCCValues; } if (ReusableCCMask == 0) return false; if (!MIEquivalentToCmp) { // Now check whether these flags are enough for all users. SmallVector AlterMasks; for (unsigned int I = 0, E = CCUsers.size(); I != E; ++I) { MachineInstr *CCUserMI = CCUsers[I]; // Fail if this isn't a use of CC that we understand. unsigned Flags = CCUserMI->getDesc().TSFlags; unsigned FirstOpNum; if (Flags & SystemZII::CCMaskFirst) FirstOpNum = 0; else if (Flags & SystemZII::CCMaskLast) FirstOpNum = CCUserMI->getNumExplicitOperands() - 2; else return false; // Check whether the instruction predicate treats all CC values // outside of ReusableCCMask in the same way. In that case it // doesn't matter what those CC values mean. unsigned CCValid = CCUserMI->getOperand(FirstOpNum).getImm(); unsigned CCMask = CCUserMI->getOperand(FirstOpNum + 1).getImm(); assert(CCValid == CompareCCValues && (CCMask & ~CCValid) == 0 && "Corrupt CC operands of CCUser."); unsigned OutValid = ~ReusableCCMask & CCValid; unsigned OutMask = ~ReusableCCMask & CCMask; if (OutMask != 0 && OutMask != OutValid) return false; AlterMasks.push_back(&CCUserMI->getOperand(FirstOpNum)); AlterMasks.push_back(&CCUserMI->getOperand(FirstOpNum + 1)); } // All users are OK. Adjust the masks for MI. for (unsigned I = 0, E = AlterMasks.size(); I != E; I += 2) { AlterMasks[I]->setImm(CCValues); unsigned CCMask = AlterMasks[I + 1]->getImm(); if (LogicalMI) { // Translate the CCMask into its "logical" value. CCMask = (CCMask == SystemZ::CCMASK_CMP_EQ ? SystemZ::CCMASK_LOGICAL_ZERO : SystemZ::CCMASK_LOGICAL_NONZERO); CCMask &= CCValues; // Logical subtracts never set CC=0. } else { if (CCMask & ~ReusableCCMask) CCMask = (CCMask & ReusableCCMask) | (CCValues & ~ReusableCCMask); CCMask |= (CCMask & OFImplies) ? SystemZ::CCMASK_ARITH_OVERFLOW : 0; } AlterMasks[I + 1]->setImm(CCMask); } } // CC is now live after MI. if (!ConvOpc) MI.clearRegisterDeads(SystemZ::CC); // Check if MI lies before Compare. bool BeforeCmp = false; MachineBasicBlock::iterator MBBI = MI, MBBE = MI.getParent()->end(); for (++MBBI; MBBI != MBBE; ++MBBI) if (MBBI == Compare) { BeforeCmp = true; break; } // Clear any intervening kills of CC. if (BeforeCmp) { MachineBasicBlock::iterator MBBI = MI, MBBE = Compare; for (++MBBI; MBBI != MBBE; ++MBBI) MBBI->clearRegisterKills(SystemZ::CC, TRI); } return true; } // Return true if Compare is a comparison against zero. static bool isCompareZero(MachineInstr &Compare) { if (isLoadAndTestAsCmp(Compare)) return true; return Compare.getNumExplicitOperands() == 2 && Compare.getOperand(1).isImm() && Compare.getOperand(1).getImm() == 0; } // Try to optimize cases where comparison instruction Compare is testing // a value against zero. Return true on success and if Compare should be // deleted as dead. CCUsers is the list of instructions that use the CC // value produced by Compare. bool SystemZElimCompare::optimizeCompareZero( MachineInstr &Compare, SmallVectorImpl &CCUsers) { if (!isCompareZero(Compare)) return false; // Search back for CC results that are based on the first operand. unsigned SrcReg = getCompareSourceReg(Compare); MachineBasicBlock &MBB = *Compare.getParent(); Reference CCRefs; Reference SrcRefs; for (MachineBasicBlock::reverse_iterator MBBI = std::next(MachineBasicBlock::reverse_iterator(&Compare)), MBBE = MBB.rend(); MBBI != MBBE;) { MachineInstr &MI = *MBBI++; if (resultTests(MI, SrcReg)) { // Try to remove both MI and Compare by converting a branch to BRCT(G). // or a load-and-trap instruction. We don't care in this case whether // CC is modified between MI and Compare. if (!CCRefs.Use && !SrcRefs) { if (convertToBRCT(MI, Compare, CCUsers)) { BranchOnCounts += 1; return true; } if (convertToLoadAndTrap(MI, Compare, CCUsers)) { LoadAndTraps += 1; return true; } } // Try to eliminate Compare by reusing a CC result from MI. if ((!CCRefs && convertToLoadAndTest(MI, Compare, CCUsers)) || (!CCRefs.Def && (adjustCCMasksForInstr(MI, Compare, CCUsers) || convertToLogical(MI, Compare, CCUsers)))) { EliminatedComparisons += 1; return true; } } SrcRefs |= getRegReferences(MI, SrcReg); if (SrcRefs.Def) break; CCRefs |= getRegReferences(MI, SystemZ::CC); if (CCRefs.Use && CCRefs.Def) break; // Eliminating a Compare that may raise an FP exception will move // raising the exception to some earlier MI. We cannot do this if // there is anything in between that might change exception flags. if (Compare.mayRaiseFPException() && (MI.isCall() || MI.hasUnmodeledSideEffects())) break; } // Also do a forward search to handle cases where an instruction after the // compare can be converted, like // CGHI %r0d, 0; %r1d = LGR %r0d => LTGR %r1d, %r0d auto MIRange = llvm::make_range( std::next(MachineBasicBlock::iterator(&Compare)), MBB.end()); for (MachineInstr &MI : llvm::make_early_inc_range(MIRange)) { if (preservesValueOf(MI, SrcReg)) { // Try to eliminate Compare by reusing a CC result from MI. if (convertToLoadAndTest(MI, Compare, CCUsers)) { EliminatedComparisons += 1; return true; } } if (getRegReferences(MI, SrcReg).Def) return false; if (getRegReferences(MI, SystemZ::CC)) return false; } return false; } // Try to fuse comparison instruction Compare into a later branch. // Return true on success and if Compare is therefore redundant. bool SystemZElimCompare::fuseCompareOperations( MachineInstr &Compare, SmallVectorImpl &CCUsers) { // See whether we have a single branch with which to fuse. if (CCUsers.size() != 1) return false; MachineInstr *Branch = CCUsers[0]; SystemZII::FusedCompareType Type; switch (Branch->getOpcode()) { case SystemZ::BRC: Type = SystemZII::CompareAndBranch; break; case SystemZ::CondReturn: Type = SystemZII::CompareAndReturn; break; case SystemZ::CallBCR: Type = SystemZII::CompareAndSibcall; break; case SystemZ::CondTrap: Type = SystemZII::CompareAndTrap; break; default: return false; } // See whether we have a comparison that can be fused. unsigned FusedOpcode = TII->getFusedCompare(Compare.getOpcode(), Type, &Compare); if (!FusedOpcode) return false; // Make sure that the operands are available at the branch. // SrcReg2 is the register if the source operand is a register, // 0 if the source operand is immediate, and the base register // if the source operand is memory (index is not supported). Register SrcReg = Compare.getOperand(0).getReg(); Register SrcReg2 = Compare.getOperand(1).isReg() ? Compare.getOperand(1).getReg() : Register(); MachineBasicBlock::iterator MBBI = Compare, MBBE = Branch; for (++MBBI; MBBI != MBBE; ++MBBI) if (MBBI->modifiesRegister(SrcReg, TRI) || (SrcReg2 && MBBI->modifiesRegister(SrcReg2, TRI))) return false; // Read the branch mask, target (if applicable), regmask (if applicable). MachineOperand CCMask(MBBI->getOperand(1)); assert((CCMask.getImm() & ~SystemZ::CCMASK_ICMP) == 0 && "Invalid condition-code mask for integer comparison"); // This is only valid for CompareAndBranch and CompareAndSibcall. MachineOperand Target(MBBI->getOperand( (Type == SystemZII::CompareAndBranch || Type == SystemZII::CompareAndSibcall) ? 2 : 0)); const uint32_t *RegMask; if (Type == SystemZII::CompareAndSibcall) RegMask = MBBI->getOperand(3).getRegMask(); // Clear out all current operands. int CCUse = MBBI->findRegisterUseOperandIdx(SystemZ::CC, false, TRI); assert(CCUse >= 0 && "BRC/BCR must use CC"); Branch->removeOperand(CCUse); // Remove regmask (sibcall). if (Type == SystemZII::CompareAndSibcall) Branch->removeOperand(3); // Remove target (branch or sibcall). if (Type == SystemZII::CompareAndBranch || Type == SystemZII::CompareAndSibcall) Branch->removeOperand(2); Branch->removeOperand(1); Branch->removeOperand(0); // Rebuild Branch as a fused compare and branch. // SrcNOps is the number of MI operands of the compare instruction // that we need to copy over. unsigned SrcNOps = 2; if (FusedOpcode == SystemZ::CLT || FusedOpcode == SystemZ::CLGT) SrcNOps = 3; Branch->setDesc(TII->get(FusedOpcode)); MachineInstrBuilder MIB(*Branch->getParent()->getParent(), Branch); for (unsigned I = 0; I < SrcNOps; I++) MIB.add(Compare.getOperand(I)); MIB.add(CCMask); if (Type == SystemZII::CompareAndBranch) { // Only conditional branches define CC, as they may be converted back // to a non-fused branch because of a long displacement. Conditional // returns don't have that problem. MIB.add(Target).addReg(SystemZ::CC, RegState::ImplicitDefine | RegState::Dead); } if (Type == SystemZII::CompareAndSibcall) { MIB.add(Target); MIB.addRegMask(RegMask); } // Clear any intervening kills of SrcReg and SrcReg2. MBBI = Compare; for (++MBBI; MBBI != MBBE; ++MBBI) { MBBI->clearRegisterKills(SrcReg, TRI); if (SrcReg2) MBBI->clearRegisterKills(SrcReg2, TRI); } FusedComparisons += 1; return true; } // Process all comparison instructions in MBB. Return true if something // changed. bool SystemZElimCompare::processBlock(MachineBasicBlock &MBB) { bool Changed = false; // Walk backwards through the block looking for comparisons, recording // all CC users as we go. The subroutines can delete Compare and // instructions before it. LivePhysRegs LiveRegs(*TRI); LiveRegs.addLiveOuts(MBB); bool CompleteCCUsers = !LiveRegs.contains(SystemZ::CC); SmallVector CCUsers; MachineBasicBlock::iterator MBBI = MBB.end(); while (MBBI != MBB.begin()) { MachineInstr &MI = *--MBBI; if (CompleteCCUsers && (MI.isCompare() || isLoadAndTestAsCmp(MI)) && (optimizeCompareZero(MI, CCUsers) || fuseCompareOperations(MI, CCUsers))) { ++MBBI; MI.eraseFromParent(); Changed = true; CCUsers.clear(); continue; } if (MI.definesRegister(SystemZ::CC)) { CCUsers.clear(); CompleteCCUsers = true; } if (MI.readsRegister(SystemZ::CC) && CompleteCCUsers) CCUsers.push_back(&MI); } return Changed; } bool SystemZElimCompare::runOnMachineFunction(MachineFunction &F) { if (skipFunction(F.getFunction())) return false; TII = F.getSubtarget().getInstrInfo(); TRI = &TII->getRegisterInfo(); bool Changed = false; for (auto &MBB : F) Changed |= processBlock(MBB); return Changed; } FunctionPass *llvm::createSystemZElimComparePass(SystemZTargetMachine &TM) { return new SystemZElimCompare(); }