//===-- SparcTargetMachine.cpp - Define TargetMachine for Sparc -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// #include "SparcTargetMachine.h" #include "LeonPasses.h" #include "Sparc.h" #include "SparcMachineFunctionInfo.h" #include "SparcTargetObjectFile.h" #include "TargetInfo/SparcTargetInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/MC/TargetRegistry.h" #include using namespace llvm; extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSparcTarget() { // Register the target. RegisterTargetMachine X(getTheSparcTarget()); RegisterTargetMachine Y(getTheSparcV9Target()); RegisterTargetMachine Z(getTheSparcelTarget()); PassRegistry &PR = *PassRegistry::getPassRegistry(); initializeSparcDAGToDAGISelPass(PR); } static cl::opt BranchRelaxation("sparc-enable-branch-relax", cl::Hidden, cl::init(true), cl::desc("Relax out of range conditional branches")); static std::string computeDataLayout(const Triple &T, bool is64Bit) { // Sparc is typically big endian, but some are little. std::string Ret = T.getArch() == Triple::sparcel ? "e" : "E"; Ret += "-m:e"; // Some ABIs have 32bit pointers. if (!is64Bit) Ret += "-p:32:32"; // Alignments for 64 bit integers. Ret += "-i64:64"; // On SparcV9 128 floats are aligned to 128 bits, on others only to 64. // On SparcV9 registers can hold 64 or 32 bits, on others only 32. if (is64Bit) Ret += "-n32:64"; else Ret += "-f128:64-n32"; if (is64Bit) Ret += "-S128"; else Ret += "-S64"; return Ret; } static Reloc::Model getEffectiveRelocModel(std::optional RM) { return RM.value_or(Reloc::Static); } // Code models. Some only make sense for 64-bit code. // // SunCC Reloc CodeModel Constraints // abs32 Static Small text+data+bss linked below 2^32 bytes // abs44 Static Medium text+data+bss linked below 2^44 bytes // abs64 Static Large text smaller than 2^31 bytes // pic13 PIC_ Small GOT < 2^13 bytes // pic32 PIC_ Medium GOT < 2^32 bytes // // All code models require that the text segment is smaller than 2GB. static CodeModel::Model getEffectiveSparcCodeModel(std::optional CM, Reloc::Model RM, bool Is64Bit, bool JIT) { if (CM) { if (*CM == CodeModel::Tiny) report_fatal_error("Target does not support the tiny CodeModel", false); if (*CM == CodeModel::Kernel) report_fatal_error("Target does not support the kernel CodeModel", false); return *CM; } if (Is64Bit) { if (JIT) return CodeModel::Large; return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium; } return CodeModel::Small; } /// Create an ILP32 architecture model SparcTargetMachine::SparcTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, std::optional RM, std::optional CM, CodeGenOptLevel OL, bool JIT, bool is64bit) : LLVMTargetMachine(T, computeDataLayout(TT, is64bit), TT, CPU, FS, Options, getEffectiveRelocModel(RM), getEffectiveSparcCodeModel( CM, getEffectiveRelocModel(RM), is64bit, JIT), OL), TLOF(std::make_unique()), is64Bit(is64bit) { initAsmInfo(); } SparcTargetMachine::~SparcTargetMachine() = default; const SparcSubtarget * SparcTargetMachine::getSubtargetImpl(const Function &F) const { Attribute CPUAttr = F.getFnAttribute("target-cpu"); Attribute TuneAttr = F.getFnAttribute("tune-cpu"); Attribute FSAttr = F.getFnAttribute("target-features"); std::string CPU = CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; std::string TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; std::string FS = FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; // FIXME: This is related to the code below to reset the target options, // we need to know whether or not the soft float flag is set on the // function, so we can enable it as a subtarget feature. bool softFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); if (softFloat) FS += FS.empty() ? "+soft-float" : ",+soft-float"; auto &I = SubtargetMap[CPU + FS]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = std::make_unique(CPU, TuneCPU, FS, *this, this->is64Bit); } return I.get(); } MachineFunctionInfo *SparcTargetMachine::createMachineFunctionInfo( BumpPtrAllocator &Allocator, const Function &F, const TargetSubtargetInfo *STI) const { return SparcMachineFunctionInfo::create(Allocator, F, STI); } namespace { /// Sparc Code Generator Pass Configuration Options. class SparcPassConfig : public TargetPassConfig { public: SparcPassConfig(SparcTargetMachine &TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} SparcTargetMachine &getSparcTargetMachine() const { return getTM(); } void addIRPasses() override; bool addInstSelector() override; void addPreEmitPass() override; }; } // namespace TargetPassConfig *SparcTargetMachine::createPassConfig(PassManagerBase &PM) { return new SparcPassConfig(*this, PM); } void SparcPassConfig::addIRPasses() { addPass(createAtomicExpandPass()); TargetPassConfig::addIRPasses(); } bool SparcPassConfig::addInstSelector() { addPass(createSparcISelDag(getSparcTargetMachine())); return false; } void SparcPassConfig::addPreEmitPass(){ if (BranchRelaxation) addPass(&BranchRelaxationPassID); addPass(createSparcDelaySlotFillerPass()); addPass(new InsertNOPLoad()); addPass(new DetectRoundChange()); addPass(new FixAllFDIVSQRT()); } void SparcV8TargetMachine::anchor() { } SparcV8TargetMachine::SparcV8TargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, std::optional RM, std::optional CM, CodeGenOptLevel OL, bool JIT) : SparcTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} void SparcV9TargetMachine::anchor() { } SparcV9TargetMachine::SparcV9TargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, std::optional RM, std::optional CM, CodeGenOptLevel OL, bool JIT) : SparcTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} void SparcelTargetMachine::anchor() {} SparcelTargetMachine::SparcelTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, std::optional RM, std::optional CM, CodeGenOptLevel OL, bool JIT) : SparcTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {}