//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the interfaces that Sparc uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "SparcISelLowering.h" #include "MCTargetDesc/SparcMCExpr.h" #include "SparcMachineFunctionInfo.h" #include "SparcRegisterInfo.h" #include "SparcTargetMachine.h" #include "SparcTargetObjectFile.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" using namespace llvm; //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { assert (ArgFlags.isSRet()); // Assign SRet argument. State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 0, LocVT, LocInfo)); return true; } static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { static const MCPhysReg RegList[] = { SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 }; // Try to get first reg. if (Register Reg = State.AllocateReg(RegList)) { State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); } else { // Assign whole thing in stack. State.addLoc(CCValAssign::getCustomMem( ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo)); return true; } // Try to get second reg. if (Register Reg = State.AllocateReg(RegList)) State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); else State.addLoc(CCValAssign::getCustomMem( ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo)); return true; } static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { static const MCPhysReg RegList[] = { SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 }; // Try to get first reg. if (Register Reg = State.AllocateReg(RegList)) State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); else return false; // Try to get second reg. if (Register Reg = State.AllocateReg(RegList)) State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); else return false; return true; } // Allocate a full-sized argument for the 64-bit ABI. static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { assert((LocVT == MVT::f32 || LocVT == MVT::f128 || LocVT.getSizeInBits() == 64) && "Can't handle non-64 bits locations"); // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. unsigned size = (LocVT == MVT::f128) ? 16 : 8; Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8); unsigned Offset = State.AllocateStack(size, alignment); unsigned Reg = 0; if (LocVT == MVT::i64 && Offset < 6*8) // Promote integers to %i0-%i5. Reg = SP::I0 + Offset/8; else if (LocVT == MVT::f64 && Offset < 16*8) // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). Reg = SP::D0 + Offset/8; else if (LocVT == MVT::f32 && Offset < 16*8) // Promote floats to %f1, %f3, ... Reg = SP::F1 + Offset/4; else if (LocVT == MVT::f128 && Offset < 16*8) // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). Reg = SP::Q0 + Offset/16; // Promote to register when possible, otherwise use the stack slot. if (Reg) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return true; } // Bail out if this is a return CC and we run out of registers to place // values into. if (IsReturn) return false; // This argument goes on the stack in an 8-byte slot. // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to // the right-aligned float. The first 4 bytes of the stack slot are undefined. if (LocVT == MVT::f32) Offset += 4; State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return true; } // Allocate a half-sized argument for the 64-bit ABI. // // This is used when passing { float, int } structs by value in registers. static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); unsigned Offset = State.AllocateStack(4, Align(4)); if (LocVT == MVT::f32 && Offset < 16*8) { // Promote floats to %f0-%f31. State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, LocVT, LocInfo)); return true; } if (LocVT == MVT::i32 && Offset < 6*8) { // Promote integers to %i0-%i5, using half the register. unsigned Reg = SP::I0 + Offset/8; LocVT = MVT::i64; LocInfo = CCValAssign::AExt; // Set the Custom bit if this i32 goes in the high bits of a register. if (Offset % 8 == 0) State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); else State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return true; } // Bail out if this is a return CC and we run out of registers to place // values into. if (IsReturn) return false; State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return true; } static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); } static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); } static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); } static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); } #include "SparcGenCallingConv.inc" // The calling conventions in SparcCallingConv.td are described in terms of the // callee's register window. This function translates registers to the // corresponding caller window %o register. static unsigned toCallerWindow(unsigned Reg) { static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, "Unexpected enum"); if (Reg >= SP::I0 && Reg <= SP::I7) return Reg - SP::I0 + SP::O0; return Reg; } bool SparcTargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64 : RetCC_Sparc32); } SDValue SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { if (Subtarget->is64Bit()) return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); } SDValue SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); // CCValAssign - represent the assignment of the return value to locations. SmallVector RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze return values. CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); SDValue Glue; SmallVector RetOps(1, Chain); // Make room for the return address offset. RetOps.push_back(SDValue()); // Copy the result values into the output registers. for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = OutVals[realRVLocIdx]; if (VA.needsCustom()) { assert(VA.getLocVT() == MVT::v2i32); // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would // happen by default if this wasn't a legal type) SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Arg, DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Arg, DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Glue); Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, Glue); } else Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); // Guarantee that all emitted copies are stuck together with flags. Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } unsigned RetAddrOffset = 8; // Call Inst + Delay Slot // If the function returns a struct, copy the SRetReturnReg to I0 if (MF.getFunction().hasStructRetAttr()) { SparcMachineFunctionInfo *SFI = MF.getInfo(); Register Reg = SFI->getSRetReturnReg(); if (!Reg) llvm_unreachable("sret virtual register not created in the entry block"); auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Glue); Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); RetAddrOffset = 12; // CallInst + Delay Slot + Unimp } RetOps[0] = Chain; // Update chain. RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); // Add the glue if we have it. if (Glue.getNode()) RetOps.push_back(Glue); return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps); } // Lower return values for the 64-bit ABI. // Return values are passed the exactly the same way as function arguments. SDValue SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to locations. SmallVector RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze return values. CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); SDValue Glue; SmallVector RetOps(1, Chain); // The second operand on the return instruction is the return address offset. // The return address is always %i7+8 with the 64-bit ABI. RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue OutVal = OutVals[i]; // Integer return values must be sign or zero extended by the callee. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::SExt: OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); break; case CCValAssign::ZExt: OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); break; case CCValAssign::AExt: OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); break; default: llvm_unreachable("Unknown loc info!"); } // The custom bit on an i32 return value indicates that it should be passed // in the high bits of the register. if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, DAG.getConstant(32, DL, MVT::i32)); // The next value may go in the low bits of the same register. // Handle both at once. if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); // Skip the next value, it's already done. ++i; } } Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue); // Guarantee that all emitted copies are stuck together with flags. Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Glue.getNode()) RetOps.push_back(Glue); return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps); } SDValue SparcTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { if (Subtarget->is64Bit()) return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); } /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are /// passed in either one or two GPRs, including FP values. TODO: we should /// pass FP values in FP registers for fastcc functions. SDValue SparcTargetLowering::LowerFormalArguments_32( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); SparcMachineFunctionInfo *FuncInfo = MF.getInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); const unsigned StackOffset = 92; bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); unsigned InIdx = 0; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { CCValAssign &VA = ArgLocs[i]; if (Ins[InIdx].Flags.isSRet()) { if (InIdx != 0) report_fatal_error("sparc only supports sret on the first parameter"); // Get SRet from [%fp+64]. int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue Arg = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); InVals.push_back(Arg); continue; } if (VA.isRegLoc()) { if (VA.needsCustom()) { assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); assert(i+1 < e); CCValAssign &NextVA = ArgLocs[++i]; SDValue LoVal; if (NextVA.isMemLoc()) { int FrameIdx = MF.getFrameInfo(). CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); } else { Register loReg = MF.addLiveIn(NextVA.getLocReg(), &SP::IntRegsRegClass); LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); } if (IsLittleEndian) std::swap(LoVal, HiVal); SDValue WholeValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); InVals.push_back(WholeValue); continue; } Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); if (VA.getLocVT() == MVT::f32) Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); else if (VA.getLocVT() != MVT::i32) { Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, DAG.getValueType(VA.getLocVT())); Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); } InVals.push_back(Arg); continue; } assert(VA.isMemLoc()); unsigned Offset = VA.getLocMemOffset()+StackOffset; auto PtrVT = getPointerTy(DAG.getDataLayout()); if (VA.needsCustom()) { assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); // If it is double-word aligned, just load. if (Offset % 8 == 0) { int FI = MF.getFrameInfo().CreateFixedObject(8, Offset, true); SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); SDValue Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); InVals.push_back(Load); continue; } int FI = MF.getFrameInfo().CreateFixedObject(4, Offset, true); SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); SDValue HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); int FI2 = MF.getFrameInfo().CreateFixedObject(4, Offset+4, true); SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); SDValue LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); if (IsLittleEndian) std::swap(LoVal, HiVal); SDValue WholeValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); InVals.push_back(WholeValue); continue; } int FI = MF.getFrameInfo().CreateFixedObject(4, Offset, true); SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); SDValue Load ; if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); } else if (VA.getValVT() == MVT::f128) { report_fatal_error("SPARCv8 does not handle f128 in calls; " "pass indirectly"); } else { // We shouldn't see any other value types here. llvm_unreachable("Unexpected ValVT encountered in frame lowering."); } InVals.push_back(Load); } if (MF.getFunction().hasStructRetAttr()) { // Copy the SRet Argument to SRetReturnReg. SparcMachineFunctionInfo *SFI = MF.getInfo(); Register Reg = SFI->getSRetReturnReg(); if (!Reg) { Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); SFI->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); } // Store remaining ArgRegs to the stack if this is a varargs function. if (isVarArg) { static const MCPhysReg ArgRegs[] = { SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 }; unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; unsigned ArgOffset = CCInfo.getStackSize(); if (NumAllocated == 6) ArgOffset += StackOffset; else { assert(!ArgOffset); ArgOffset = 68+4*NumAllocated; } // Remember the vararg offset for the va_start implementation. FuncInfo->setVarArgsFrameOffset(ArgOffset); std::vector OutChains; for (; CurArgReg != ArgRegEnd; ++CurArgReg) { Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg, VReg); SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); OutChains.push_back( DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); ArgOffset += 4; } if (!OutChains.empty()) { OutChains.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); } } return Chain; } // Lower formal arguments for the 64 bit ABI. SDValue SparcTargetLowering::LowerFormalArguments_64( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); // Analyze arguments according to CC_Sparc64. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); // The argument array begins at %fp+BIAS+128, after the register save area. const unsigned ArgArea = 128; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isRegLoc()) { // This argument is passed in a register. // All integer register arguments are promoted by the caller to i64. // Create a virtual register for the promoted live-in value. Register VReg = MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); // Get the high bits for i32 struct elements. if (VA.getValVT() == MVT::i32 && VA.needsCustom()) Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, DAG.getConstant(32, DL, MVT::i32)); // The caller promoted the argument, so insert an Assert?ext SDNode so we // won't promote the value again in this function. switch (VA.getLocInfo()) { case CCValAssign::SExt: Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, DAG.getValueType(VA.getValVT())); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, DAG.getValueType(VA.getValVT())); break; default: break; } // Truncate the register down to the argument type. if (VA.isExtInLoc()) Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); InVals.push_back(Arg); continue; } // The registers are exhausted. This argument was passed on the stack. assert(VA.isMemLoc()); // The CC_Sparc64_Full/Half functions compute stack offsets relative to the // beginning of the arguments area at %fp+BIAS+128. unsigned Offset = VA.getLocMemOffset() + ArgArea; unsigned ValSize = VA.getValVT().getSizeInBits() / 8; // Adjust offset for extended arguments, SPARC is big-endian. // The caller will have written the full slot with extended bytes, but we // prefer our own extending loads. if (VA.isExtInLoc()) Offset += 8 - ValSize; int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); InVals.push_back( DAG.getLoad(VA.getValVT(), DL, Chain, DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), MachinePointerInfo::getFixedStack(MF, FI))); } if (!IsVarArg) return Chain; // This function takes variable arguments, some of which may have been passed // in registers %i0-%i5. Variable floating point arguments are never passed // in floating point registers. They go on %i0-%i5 or on the stack like // integer arguments. // // The va_start intrinsic needs to know the offset to the first variable // argument. unsigned ArgOffset = CCInfo.getStackSize(); SparcMachineFunctionInfo *FuncInfo = MF.getInfo(); // Skip the 128 bytes of register save area. FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + Subtarget->getStackPointerBias()); // Save the variable arguments that were passed in registers. // The caller is required to reserve stack space for 6 arguments regardless // of how many arguments were actually passed. SmallVector OutChains; for (; ArgOffset < 6*8; ArgOffset += 8) { Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); auto PtrVT = getPointerTy(MF.getDataLayout()); OutChains.push_back( DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), MachinePointerInfo::getFixedStack(MF, FI))); } if (!OutChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); return Chain; } SDValue SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { if (Subtarget->is64Bit()) return LowerCall_64(CLI, InVals); return LowerCall_32(CLI, InVals); } static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, const CallBase *Call) { if (Call) return Call->hasFnAttr(Attribute::ReturnsTwice); const Function *CalleeFn = nullptr; if (GlobalAddressSDNode *G = dyn_cast(Callee)) { CalleeFn = dyn_cast(G->getGlobal()); } else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) { const Function &Fn = DAG.getMachineFunction().getFunction(); const Module *M = Fn.getParent(); const char *CalleeName = E->getSymbol(); CalleeFn = M->getFunction(CalleeName); } if (!CalleeFn) return false; return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. bool SparcTargetLowering::IsEligibleForTailCallOptimization( CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const { auto &Outs = CLI.Outs; auto &Caller = MF.getFunction(); // Do not tail call opt functions with "disable-tail-calls" attribute. if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") return false; // Do not tail call opt if the stack is used to pass parameters. // 64-bit targets have a slightly higher limit since the ABI requires // to allocate some space even when all the parameters fit inside registers. unsigned StackSizeLimit = Subtarget->is64Bit() ? 48 : 0; if (CCInfo.getStackSize() > StackSizeLimit) return false; // Do not tail call opt if either the callee or caller returns // a struct and the other does not. if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet()) return false; // Byval parameters hand the function a pointer directly into the stack area // we want to reuse during a tail call. for (auto &Arg : Outs) if (Arg.Flags.isByVal()) return false; return true; } // Lower a call for the 32-bit ABI. SDValue SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool isVarArg = CLI.IsVarArg; // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); isTailCall = isTailCall && IsEligibleForTailCallOptimization( CCInfo, CLI, DAG.getMachineFunction()); // Get the size of the outgoing arguments stack space requirement. unsigned ArgsSize = CCInfo.getStackSize(); // Keep stack frames 8-byte aligned. ArgsSize = (ArgsSize+7) & ~7; MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); // Create local copies for byval args. SmallVector ByValArgs; for (unsigned i = 0, e = Outs.size(); i != e; ++i) { ISD::ArgFlagsTy Flags = Outs[i].Flags; if (!Flags.isByVal()) continue; SDValue Arg = OutVals[i]; unsigned Size = Flags.getByValSize(); Align Alignment = Flags.getNonZeroByValAlign(); if (Size > 0U) { int FI = MFI.CreateStackObject(Size, Alignment, false); SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment, false, // isVolatile, (Size <= 32), // AlwaysInline if size <= 32, false, // isTailCall MachinePointerInfo(), MachinePointerInfo()); ByValArgs.push_back(FIPtr); } else { SDValue nullVal; ByValArgs.push_back(nullVal); } } assert(!isTailCall || ArgsSize == 0); if (!isTailCall) Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); SmallVector, 8> RegsToPass; SmallVector MemOpChains; const unsigned StackOffset = 92; bool hasStructRetAttr = false; unsigned SRetArgSize = 0; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[realArgIdx]; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; // Use local copy if it is a byval arg. if (Flags.isByVal()) { Arg = ByValArgs[byvalArgIdx++]; if (!Arg) { continue; } } // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } if (Flags.isSRet()) { assert(VA.needsCustom()); if (isTailCall) continue; // store SRet argument in %sp+64 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(64, dl); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back( DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); hasStructRetAttr = true; // sret only allowed on first argument assert(Outs[realArgIdx].OrigArgIndex == 0); SRetArgSize = DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType); continue; } if (VA.needsCustom()) { assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); if (VA.isMemLoc()) { unsigned Offset = VA.getLocMemOffset() + StackOffset; // if it is double-word aligned, just store. if (Offset % 8 == 0) { SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back( DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); continue; } } if (VA.getLocVT() == MVT::f64) { // Move from the float value from float registers into the // integer registers. if (ConstantFPSDNode *C = dyn_cast(Arg)) Arg = bitcastConstantFPToInt(C, dl, DAG); else Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); } SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Arg, DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Arg, DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); assert(i+1 != e); CCValAssign &NextVA = ArgLocs[++i]; if (NextVA.isRegLoc()) { RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); } else { // Store the second part in stack. unsigned Offset = NextVA.getLocMemOffset() + StackOffset; SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back( DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); } } else { unsigned Offset = VA.getLocMemOffset() + StackOffset; // Store the first part. SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back( DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); // Store the second part. PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back( DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); } continue; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { if (VA.getLocVT() != MVT::f32) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } assert(VA.isMemLoc()); // Create a store off the stack pointer for this argument. SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, dl); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back( DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); } // Emit all stores, make sure the occur before any copies into physregs. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InGlue in necessary since all emitted instructions must be // stuck together. SDValue InGlue; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Register Reg = RegsToPass[i].first; if (!isTailCall) Reg = toCallerWindow(Reg); Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InGlue); InGlue = Chain.getValue(1); } bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : SparcMCExpr::VK_Sparc_WDISP30; if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); // Returns a chain & a flag for retval copy to use SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (hasStructRetAttr) Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Register Reg = RegsToPass[i].first; if (!isTailCall) Reg = toCallerWindow(Reg); Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType())); } // Add a register mask operand representing the call-preserved registers. const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *Mask = ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CallConv) : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InGlue.getNode()) Ops.push_back(InGlue); if (isTailCall) { DAG.getMachineFunction().getFrameInfo().setHasTailCall(); return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops); } Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); InGlue = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, dl); InGlue = Chain.getValue(1); // Assign locations to each value returned by this call. SmallVector RVLocs; CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { assert(RVLocs[i].isRegLoc() && "Can only return in registers!"); if (RVLocs[i].getLocVT() == MVT::v2i32) { SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); SDValue Lo = DAG.getCopyFromReg( Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InGlue); Chain = Lo.getValue(1); InGlue = Lo.getValue(2); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, DAG.getConstant(0, dl, MVT::i32)); SDValue Hi = DAG.getCopyFromReg( Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InGlue); Chain = Hi.getValue(1); InGlue = Hi.getValue(2); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, DAG.getConstant(1, dl, MVT::i32)); InVals.push_back(Vec); } else { Chain = DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), RVLocs[i].getValVT(), InGlue) .getValue(1); InGlue = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } } return Chain; } // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { Register Reg = StringSwitch(RegName) .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) .Default(0); if (Reg) return Reg; report_fatal_error("Invalid register name global variable"); } // Fixup floating point arguments in the ... part of a varargs call. // // The SPARC v9 ABI requires that floating point arguments are treated the same // as integers when calling a varargs function. This does not apply to the // fixed arguments that are part of the function's prototype. // // This function post-processes a CCValAssign array created by // AnalyzeCallOperands(). static void fixupVariableFloatArgs(SmallVectorImpl &ArgLocs, ArrayRef Outs) { for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; MVT ValTy = VA.getLocVT(); // FIXME: What about f32 arguments? C promotes them to f64 when calling // varargs functions. if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) continue; // The fixed arguments to a varargs function still go in FP registers. if (Outs[VA.getValNo()].IsFixed) continue; // This floating point argument should be reassigned. // Determine the offset into the argument array. Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; unsigned Offset = argSize * (VA.getLocReg() - firstReg); assert(Offset < 16*8 && "Offset out of range, bad register enum?"); if (Offset < 6*8) { // This argument should go in %i0-%i5. unsigned IReg = SP::I0 + Offset/8; if (ValTy == MVT::f64) // Full register, just bitconvert into i64. VA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i64, CCValAssign::BCvt); else { assert(ValTy == MVT::f128 && "Unexpected type!"); // Full register, just bitconvert into i128 -- We will lower this into // two i64s in LowerCall_64. VA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i128, CCValAssign::BCvt); } } else { // This needs to go to memory, we're out of integer registers. VA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), Offset, VA.getLocVT(), VA.getLocInfo()); } } } // Lower a call for the 64-bit ABI. SDValue SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc DL = CLI.DL; SDValue Chain = CLI.Chain; auto PtrVT = getPointerTy(DAG.getDataLayout()); // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); CLI.IsTailCall = CLI.IsTailCall && IsEligibleForTailCallOptimization( CCInfo, CLI, DAG.getMachineFunction()); // Get the size of the outgoing arguments stack space requirement. // The stack offset computed by CC_Sparc64 includes all arguments. // Called functions expect 6 argument words to exist in the stack frame, used // or not. unsigned StackReserved = 6 * 8u; unsigned ArgsSize = std::max(StackReserved, CCInfo.getStackSize()); // Keep stack frames 16-byte aligned. ArgsSize = alignTo(ArgsSize, 16); // Varargs calls require special treatment. if (CLI.IsVarArg) fixupVariableFloatArgs(ArgLocs, CLI.Outs); assert(!CLI.IsTailCall || ArgsSize == StackReserved); // Adjust the stack pointer to make room for the arguments. // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls // with more than 6 arguments. if (!CLI.IsTailCall) Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); // Collect the set of registers to pass to the function and their values. // This will be emitted as a sequence of CopyToReg nodes glued to the call // instruction. SmallVector, 8> RegsToPass; // Collect chains from all the memory opeations that copy arguments to the // stack. They must follow the stack pointer adjustment above and precede the // call instruction itself. SmallVector MemOpChains; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { const CCValAssign &VA = ArgLocs[i]; SDValue Arg = CLI.OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown location info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::BCvt: // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But // SPARC does not support i128 natively. Lower it into two i64, see below. if (!VA.needsCustom() || VA.getValVT() != MVT::f128 || VA.getLocVT() != MVT::i128) Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; } if (VA.isRegLoc()) { if (VA.needsCustom() && VA.getValVT() == MVT::f128 && VA.getLocVT() == MVT::i128) { // Store and reload into the integer register reg and reg+1. unsigned Offset = 8 * (VA.getLocReg() - SP::I0); unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); // Store to %sp+BIAS+128+Offset SDValue Store = DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); // Load into Reg and Reg+1 SDValue Hi64 = DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); SDValue Lo64 = DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); Register HiReg = VA.getLocReg(); Register LoReg = VA.getLocReg() + 1; if (!CLI.IsTailCall) { HiReg = toCallerWindow(HiReg); LoReg = toCallerWindow(LoReg); } RegsToPass.push_back(std::make_pair(HiReg, Hi64)); RegsToPass.push_back(std::make_pair(LoReg, Lo64)); continue; } // The custom bit on an i32 return value indicates that it should be // passed in the high bits of the register. if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, DAG.getConstant(32, DL, MVT::i32)); // The next value may go in the low bits of the same register. // Handle both at once. if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && ArgLocs[i+1].getLocReg() == VA.getLocReg()) { SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, CLI.OutVals[i+1]); Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); // Skip the next value, it's already done. ++i; } } Register Reg = VA.getLocReg(); if (!CLI.IsTailCall) Reg = toCallerWindow(Reg); RegsToPass.push_back(std::make_pair(Reg, Arg)); continue; } assert(VA.isMemLoc()); // Create a store off the stack pointer for this argument. SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); // The argument area starts at %fp+BIAS+128 in the callee frame, // %sp+BIAS+128 in ours. SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + Subtarget->getStackPointerBias() + 128, DL); PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); MemOpChains.push_back( DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); } // Emit all stores, make sure they occur before the call. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); // Build a sequence of CopyToReg nodes glued together with token chain and // glue operands which copy the outgoing args into registers. The InGlue is // necessary since all emitted instructions must be stuck together in order // to pass the live physical registers. SDValue InGlue; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, RegsToPass[i].second, InGlue); InGlue = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. SDValue Callee = CLI.Callee; bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : SparcMCExpr::VK_Sparc_WDISP30; if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); // Build the operands for the call instruction itself. SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *Mask = ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) : TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv)); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); // Make sure the CopyToReg nodes are glued to the call instruction which // consumes the registers. if (InGlue.getNode()) Ops.push_back(InGlue); // Now the call itself. if (CLI.IsTailCall) { DAG.getMachineFunction().getFrameInfo().setHasTailCall(); return DAG.getNode(SPISD::TAIL_CALL, DL, MVT::Other, Ops); } SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); InGlue = Chain.getValue(1); // Revert the stack pointer immediately after the call. Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL); InGlue = Chain.getValue(1); // Now extract the return values. This is more or less the same as // LowerFormalArguments_64. // Assign locations to each value returned by this call. SmallVector RVLocs; CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Set inreg flag manually for codegen generated library calls that // return float. if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) CLI.Ins[0].Flags.setInReg(); RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); unsigned Reg = toCallerWindow(VA.getLocReg()); // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can // reside in the same register in the high and low bits. Reuse the // CopyFromReg previous node to avoid duplicate copies. SDValue RV; if (RegisterSDNode *SrcReg = dyn_cast(Chain.getOperand(1))) if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) RV = Chain.getValue(0); // But usually we'll create a new CopyFromReg for a different register. if (!RV.getNode()) { RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); Chain = RV.getValue(1); InGlue = Chain.getValue(2); } // Get the high bits for i32 struct elements. if (VA.getValVT() == MVT::i32 && VA.needsCustom()) RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, DAG.getConstant(32, DL, MVT::i32)); // The callee promoted the return value, so insert an Assert?ext SDNode so // we won't promote the value again in this function. switch (VA.getLocInfo()) { case CCValAssign::SExt: RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, DAG.getValueType(VA.getValVT())); break; case CCValAssign::ZExt: RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, DAG.getValueType(VA.getValVT())); break; default: break; } // Truncate the register down to the return value type. if (VA.isExtInLoc()) RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); InVals.push_back(RV); } return Chain; } //===----------------------------------------------------------------------===// // TargetLowering Implementation //===----------------------------------------------------------------------===// TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { if (AI->getOperation() == AtomicRMWInst::Xchg && AI->getType()->getPrimitiveSizeInBits() == 32) return AtomicExpansionKind::None; // Uses xchg instruction return AtomicExpansionKind::CmpXChg; } /// intCondCCodeToRcond - Convert a DAG integer condition code to a SPARC /// rcond condition. static SPCC::CondCodes intCondCCodeToRcond(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown/unsigned integer condition code!"); case ISD::SETEQ: return SPCC::REG_Z; case ISD::SETNE: return SPCC::REG_NZ; case ISD::SETLT: return SPCC::REG_LZ; case ISD::SETGT: return SPCC::REG_GZ; case ISD::SETLE: return SPCC::REG_LEZ; case ISD::SETGE: return SPCC::REG_GEZ; } } /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC /// condition. static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown integer condition code!"); case ISD::SETEQ: return SPCC::ICC_E; case ISD::SETNE: return SPCC::ICC_NE; case ISD::SETLT: return SPCC::ICC_L; case ISD::SETGT: return SPCC::ICC_G; case ISD::SETLE: return SPCC::ICC_LE; case ISD::SETGE: return SPCC::ICC_GE; case ISD::SETULT: return SPCC::ICC_CS; case ISD::SETULE: return SPCC::ICC_LEU; case ISD::SETUGT: return SPCC::ICC_GU; case ISD::SETUGE: return SPCC::ICC_CC; } } /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC /// FCC condition. static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown fp condition code!"); case ISD::SETEQ: case ISD::SETOEQ: return SPCC::FCC_E; case ISD::SETNE: case ISD::SETUNE: return SPCC::FCC_NE; case ISD::SETLT: case ISD::SETOLT: return SPCC::FCC_L; case ISD::SETGT: case ISD::SETOGT: return SPCC::FCC_G; case ISD::SETLE: case ISD::SETOLE: return SPCC::FCC_LE; case ISD::SETGE: case ISD::SETOGE: return SPCC::FCC_GE; case ISD::SETULT: return SPCC::FCC_UL; case ISD::SETULE: return SPCC::FCC_ULE; case ISD::SETUGT: return SPCC::FCC_UG; case ISD::SETUGE: return SPCC::FCC_UGE; case ISD::SETUO: return SPCC::FCC_U; case ISD::SETO: return SPCC::FCC_O; case ISD::SETONE: return SPCC::FCC_LG; case ISD::SETUEQ: return SPCC::FCC_UE; } } SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, const SparcSubtarget &STI) : TargetLowering(TM), Subtarget(&STI) { MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); // Instructions which use registers as conditionals examine all the // bits (as does the pseudo SELECT_CC expansion). I don't think it // matters much whether it's ZeroOrOneBooleanContent, or // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the // former. setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); // Set up the register classes. addRegisterClass(MVT::i32, &SP::IntRegsRegClass); if (!Subtarget->useSoftFloat()) { addRegisterClass(MVT::f32, &SP::FPRegsRegClass); addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); } if (Subtarget->is64Bit()) { addRegisterClass(MVT::i64, &SP::I64RegsRegClass); } else { // On 32bit sparc, we define a double-register 32bit register // class, as well. This is modeled in LLVM as a 2-vector of i32. addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); // ...but almost all operations must be expanded, so set that as // the default. for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { setOperationAction(Op, MVT::v2i32, Expand); } // Truncating/extending stores/loads are also not supported. for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); setTruncStoreAction(VT, MVT::v2i32, Expand); setTruncStoreAction(MVT::v2i32, VT, Expand); } // However, load and store *are* legal. setOperationAction(ISD::LOAD, MVT::v2i32, Legal); setOperationAction(ISD::STORE, MVT::v2i32, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); // And we need to promote i64 loads/stores into vector load/store setOperationAction(ISD::LOAD, MVT::i64, Custom); setOperationAction(ISD::STORE, MVT::i64, Custom); // Sadly, this doesn't work: // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); } // Turn FP extload into load/fpextend for (MVT VT : MVT::fp_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); } // Sparc doesn't have i1 sign extending load for (MVT VT : MVT::integer_valuetypes()) setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); // Turn FP truncstore into trunc + store. setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f16, Expand); setTruncStoreAction(MVT::f128, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f64, Expand); // Custom legalize GlobalAddress nodes into LO/HI parts. setOperationAction(ISD::GlobalAddress, PtrVT, Custom); setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); setOperationAction(ISD::ConstantPool, PtrVT, Custom); setOperationAction(ISD::BlockAddress, PtrVT, Custom); // Sparc doesn't have sext_inreg, replace them with shl/sra setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); // Sparc has no REM or DIVREM operations. setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); // ... nor does SparcV9. if (Subtarget->is64Bit()) { setOperationAction(ISD::UREM, MVT::i64, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); } // Custom expand fp<->sint setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); // Custom Expand fp<->uint setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); // Lower f16 conversion operations into library calls setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand); setOperationAction(ISD::BITCAST, MVT::f32, Expand); setOperationAction(ISD::BITCAST, MVT::i32, Expand); // Sparc has no select or setcc: expand to SELECT_CC. setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); setOperationAction(ISD::SELECT, MVT::f128, Expand); setOperationAction(ISD::SETCC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Expand); setOperationAction(ISD::SETCC, MVT::f64, Expand); setOperationAction(ISD::SETCC, MVT::f128, Expand); // Sparc doesn't have BRCOND either, it has BR_CC. setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BRIND, MVT::Other, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::BR_CC, MVT::f128, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); setOperationAction(ISD::ADDC, MVT::i32, Custom); setOperationAction(ISD::ADDE, MVT::i32, Custom); setOperationAction(ISD::SUBC, MVT::i32, Custom); setOperationAction(ISD::SUBE, MVT::i32, Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::ADDC, MVT::i64, Custom); setOperationAction(ISD::ADDE, MVT::i64, Custom); setOperationAction(ISD::SUBC, MVT::i64, Custom); setOperationAction(ISD::SUBE, MVT::i64, Custom); setOperationAction(ISD::BITCAST, MVT::f64, Expand); setOperationAction(ISD::BITCAST, MVT::i64, Expand); setOperationAction(ISD::SELECT, MVT::i64, Expand); setOperationAction(ISD::SETCC, MVT::i64, Expand); setOperationAction(ISD::BR_CC, MVT::i64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); setOperationAction(ISD::CTPOP, MVT::i64, Subtarget->usePopc() ? Legal : Expand); setOperationAction(ISD::CTTZ , MVT::i64, Expand); setOperationAction(ISD::CTLZ , MVT::i64, Expand); setOperationAction(ISD::BSWAP, MVT::i64, Expand); setOperationAction(ISD::ROTL , MVT::i64, Expand); setOperationAction(ISD::ROTR , MVT::i64, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); } // ATOMICs. // Atomics are supported on SparcV9. 32-bit atomics are also // supported by some Leon SparcV8 variants. Otherwise, atomics // are unsupported. if (Subtarget->isV9()) setMaxAtomicSizeInBitsSupported(64); else if (Subtarget->hasLeonCasa()) setMaxAtomicSizeInBitsSupported(32); else setMaxAtomicSizeInBitsSupported(0); setMinCmpXchgSizeInBits(32); setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); // Custom Lower Atomic LOAD/STORE setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); if (Subtarget->is64Bit()) { setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); } if (!Subtarget->is64Bit()) { // These libcalls are not available in 32-bit. setLibcallName(RTLIB::MULO_I64, nullptr); setLibcallName(RTLIB::MUL_I128, nullptr); setLibcallName(RTLIB::SHL_I128, nullptr); setLibcallName(RTLIB::SRL_I128, nullptr); setLibcallName(RTLIB::SRA_I128, nullptr); } setLibcallName(RTLIB::MULO_I128, nullptr); if (!Subtarget->isV9()) { // SparcV8 does not have FNEGD and FABSD. setOperationAction(ISD::FNEG, MVT::f64, Custom); setOperationAction(ISD::FABS, MVT::f64, Custom); } setOperationAction(ISD::FSIN , MVT::f128, Expand); setOperationAction(ISD::FCOS , MVT::f128, Expand); setOperationAction(ISD::FSINCOS, MVT::f128, Expand); setOperationAction(ISD::FREM , MVT::f128, Expand); setOperationAction(ISD::FMA , MVT::f128, Expand); setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FMA , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); setOperationAction(ISD::FMA , MVT::f32, Expand); setOperationAction(ISD::CTTZ , MVT::i32, Expand); setOperationAction(ISD::CTLZ , MVT::i32, Expand); setOperationAction(ISD::ROTL , MVT::i32, Expand); setOperationAction(ISD::ROTR , MVT::i32, Expand); setOperationAction(ISD::BSWAP, MVT::i32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); setOperationAction(ISD::FPOW , MVT::f128, Expand); setOperationAction(ISD::FPOW , MVT::f64, Expand); setOperationAction(ISD::FPOW , MVT::f32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); // Expands to [SU]MUL_LOHI. setOperationAction(ISD::MULHU, MVT::i32, Expand); setOperationAction(ISD::MULHS, MVT::i32, Expand); setOperationAction(ISD::MUL, MVT::i32, Expand); if (Subtarget->useSoftMulDiv()) { // .umul works for both signed and unsigned setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setLibcallName(RTLIB::MUL_I32, ".umul"); setOperationAction(ISD::SDIV, MVT::i32, Expand); setLibcallName(RTLIB::SDIV_I32, ".div"); setOperationAction(ISD::UDIV, MVT::i32, Expand); setLibcallName(RTLIB::UDIV_I32, ".udiv"); setLibcallName(RTLIB::SREM_I32, ".rem"); setLibcallName(RTLIB::UREM_I32, ".urem"); } if (Subtarget->is64Bit()) { setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i64, Expand); setOperationAction(ISD::MULHS, MVT::i64, Expand); setOperationAction(ISD::UMULO, MVT::i64, Custom); setOperationAction(ISD::SMULO, MVT::i64, Custom); setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); } // VASTART needs to be custom lowered to use the VarArgsFrameIndex. setOperationAction(ISD::VASTART , MVT::Other, Custom); // VAARG needs to be lowered to not do unaligned accesses for doubles. setOperationAction(ISD::VAARG , MVT::Other, Custom); setOperationAction(ISD::TRAP , MVT::Other, Legal); setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); // Use the default implementation. setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); setStackPointerRegisterToSaveRestore(SP::O6); setOperationAction(ISD::CTPOP, MVT::i32, Subtarget->usePopc() ? Legal : Expand); if (Subtarget->isV9() && Subtarget->hasHardQuad()) { setOperationAction(ISD::LOAD, MVT::f128, Legal); setOperationAction(ISD::STORE, MVT::f128, Legal); } else { setOperationAction(ISD::LOAD, MVT::f128, Custom); setOperationAction(ISD::STORE, MVT::f128, Custom); } if (Subtarget->hasHardQuad()) { setOperationAction(ISD::FADD, MVT::f128, Legal); setOperationAction(ISD::FSUB, MVT::f128, Legal); setOperationAction(ISD::FMUL, MVT::f128, Legal); setOperationAction(ISD::FDIV, MVT::f128, Legal); setOperationAction(ISD::FSQRT, MVT::f128, Legal); setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); if (Subtarget->isV9()) { setOperationAction(ISD::FNEG, MVT::f128, Legal); setOperationAction(ISD::FABS, MVT::f128, Legal); } else { setOperationAction(ISD::FNEG, MVT::f128, Custom); setOperationAction(ISD::FABS, MVT::f128, Custom); } if (!Subtarget->is64Bit()) { setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); } } else { // Custom legalize f128 operations. setOperationAction(ISD::FADD, MVT::f128, Custom); setOperationAction(ISD::FSUB, MVT::f128, Custom); setOperationAction(ISD::FMUL, MVT::f128, Custom); setOperationAction(ISD::FDIV, MVT::f128, Custom); setOperationAction(ISD::FSQRT, MVT::f128, Custom); setOperationAction(ISD::FNEG, MVT::f128, Custom); setOperationAction(ISD::FABS, MVT::f128, Custom); setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); // Setup Runtime library names. if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { setLibcallName(RTLIB::ADD_F128, "_Qp_add"); setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); setLibcallName(RTLIB::DIV_F128, "_Qp_div"); setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); } else if (!Subtarget->useSoftFloat()) { setLibcallName(RTLIB::ADD_F128, "_Q_add"); setLibcallName(RTLIB::SUB_F128, "_Q_sub"); setLibcallName(RTLIB::MUL_F128, "_Q_mul"); setLibcallName(RTLIB::DIV_F128, "_Q_div"); setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); } } if (Subtarget->fixAllFDIVSQRT()) { // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as // the former instructions generate errata on LEON processors. setOperationAction(ISD::FDIV, MVT::f32, Promote); setOperationAction(ISD::FSQRT, MVT::f32, Promote); } if (Subtarget->hasNoFMULS()) { setOperationAction(ISD::FMUL, MVT::f32, Promote); } // Custom combine bitcast between f64 and v2i32 if (!Subtarget->is64Bit()) setTargetDAGCombine(ISD::BITCAST); if (Subtarget->hasLeonCycleCounter()) setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setMinFunctionAlignment(Align(4)); computeRegisterProperties(Subtarget->getRegisterInfo()); } bool SparcTargetLowering::useSoftFloat() const { return Subtarget->useSoftFloat(); } const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((SPISD::NodeType)Opcode) { case SPISD::FIRST_NUMBER: break; case SPISD::CMPICC: return "SPISD::CMPICC"; case SPISD::CMPFCC: return "SPISD::CMPFCC"; case SPISD::CMPFCC_V9: return "SPISD::CMPFCC_V9"; case SPISD::BRICC: return "SPISD::BRICC"; case SPISD::BPICC: return "SPISD::BPICC"; case SPISD::BPXCC: return "SPISD::BPXCC"; case SPISD::BRFCC: return "SPISD::BRFCC"; case SPISD::BRFCC_V9: return "SPISD::BRFCC_V9"; case SPISD::BR_REG: return "SPISD::BR_REG"; case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; case SPISD::SELECT_REG: return "SPISD::SELECT_REG"; case SPISD::Hi: return "SPISD::Hi"; case SPISD::Lo: return "SPISD::Lo"; case SPISD::FTOI: return "SPISD::FTOI"; case SPISD::ITOF: return "SPISD::ITOF"; case SPISD::FTOX: return "SPISD::FTOX"; case SPISD::XTOF: return "SPISD::XTOF"; case SPISD::CALL: return "SPISD::CALL"; case SPISD::RET_GLUE: return "SPISD::RET_GLUE"; case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; case SPISD::FLUSHW: return "SPISD::FLUSHW"; case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; case SPISD::TLS_LD: return "SPISD::TLS_LD"; case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; case SPISD::TAIL_CALL: return "SPISD::TAIL_CALL"; case SPISD::LOAD_GDOP: return "SPISD::LOAD_GDOP"; } return nullptr; } EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, EVT VT) const { if (!VT.isVector()) return MVT::i32; return VT.changeVectorElementTypeToInteger(); } /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to /// be zero. Op is expected to be a target specific node. Used by DAG /// combiner. void SparcTargetLowering::computeKnownBitsForTargetNode (const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { KnownBits Known2; Known.resetAll(); switch (Op.getOpcode()) { default: break; case SPISD::SELECT_ICC: case SPISD::SELECT_XCC: case SPISD::SELECT_FCC: Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); // Only known if known in both the LHS and RHS. Known = Known.intersectWith(Known2); break; } } // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode CC, unsigned &SPCC) { if (isNullConstant(RHS) && CC == ISD::SETNE && (((LHS.getOpcode() == SPISD::SELECT_ICC || LHS.getOpcode() == SPISD::SELECT_XCC) && LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || (LHS.getOpcode() == SPISD::SELECT_FCC && (LHS.getOperand(3).getOpcode() == SPISD::CMPFCC || LHS.getOperand(3).getOpcode() == SPISD::CMPFCC_V9))) && isOneConstant(LHS.getOperand(0)) && isNullConstant(LHS.getOperand(1))) { SDValue CMPCC = LHS.getOperand(3); SPCC = LHS.getConstantOperandVal(2); LHS = CMPCC.getOperand(0); RHS = CMPCC.getOperand(1); } } // Convert to a target node and set target flags. SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, SelectionDAG &DAG) const { if (const GlobalAddressSDNode *GA = dyn_cast(Op)) return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), GA->getValueType(0), GA->getOffset(), TF); if (const ConstantPoolSDNode *CP = dyn_cast(Op)) return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), CP->getAlign(), CP->getOffset(), TF); if (const BlockAddressSDNode *BA = dyn_cast(Op)) return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 0, TF); if (const ExternalSymbolSDNode *ES = dyn_cast(Op)) return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), TF); llvm_unreachable("Unhandled address SDNode"); } // Split Op into high and low parts according to HiTF and LoTF. // Return an ADD node combining the parts. SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); } // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, // or ExternalSymbol SDNode. SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = getPointerTy(DAG.getDataLayout()); // Handle PIC mode first. SPARC needs a got load for every variable! if (isPositionIndependent()) { const Module *M = DAG.getMachineFunction().getFunction().getParent(); PICLevel::Level picLevel = M->getPICLevel(); SDValue Idx; if (picLevel == PICLevel::SmallPIC) { // This is the pic13 code model, the GOT is known to be smaller than 8KiB. Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); } else { // This is the pic32 code model, the GOT is known to be smaller than 4GB. Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, SparcMCExpr::VK_Sparc_GOT10, DAG); } SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this // function has calls. MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setHasCalls(true); return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, MachinePointerInfo::getGOT(DAG.getMachineFunction())); } // This is one of the absolute code models. switch(getTargetMachine().getCodeModel()) { default: llvm_unreachable("Unsupported absolute code model"); case CodeModel::Small: // abs32. return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, SparcMCExpr::VK_Sparc_LO, DAG); case CodeModel::Medium: { // abs44. SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, SparcMCExpr::VK_Sparc_M44, DAG); H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); return DAG.getNode(ISD::ADD, DL, VT, H44, L44); } case CodeModel::Large: { // abs64. SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, SparcMCExpr::VK_Sparc_HM, DAG); Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, SparcMCExpr::VK_Sparc_LO, DAG); return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); } } } SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { return makeAddress(Op, DAG); } SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { return makeAddress(Op, DAG); } SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { return makeAddress(Op, DAG); } SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GA = cast(Op); if (DAG.getTarget().useEmulatedTLS()) return LowerToTLSEmulatedModel(GA, DAG); SDLoc DL(GA); const GlobalValue *GV = GA->getGlobal(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); TLSModel::Model model = getTargetMachine().getTLSModel(GV); if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { unsigned HiTF = ((model == TLSModel::GeneralDynamic) ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); unsigned LoTF = ((model == TLSModel::GeneralDynamic) ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); unsigned addTF = ((model == TLSModel::GeneralDynamic) ? SparcMCExpr::VK_Sparc_TLS_GD_ADD : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); unsigned callTF = ((model == TLSModel::GeneralDynamic) ? SparcMCExpr::VK_Sparc_TLS_GD_CALL : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, withTargetFlags(Op, addTF, DAG)); SDValue Chain = DAG.getEntryNode(); SDValue InGlue; Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InGlue); InGlue = Chain.getValue(1); SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); SDValue Symbol = withTargetFlags(Op, callTF, DAG); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( DAG.getMachineFunction(), CallingConv::C); assert(Mask && "Missing call preserved mask for calling convention"); SDValue Ops[] = {Chain, Callee, Symbol, DAG.getRegister(SP::O0, PtrVT), DAG.getRegisterMask(Mask), InGlue}; Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); InGlue = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, 1, 0, InGlue, DL); InGlue = Chain.getValue(1); SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InGlue); if (model != TLSModel::LocalDynamic) return Ret; SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); } if (model == TLSModel::InitialExec) { unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX : SparcMCExpr::VK_Sparc_TLS_IE_LD); SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this // function has calls. MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setHasCalls(true); SDValue TGA = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_TLS_IE_HI22, SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); SDValue Offset = DAG.getNode(SPISD::TLS_LD, DL, PtrVT, Ptr, withTargetFlags(Op, ldTF, DAG)); return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, DAG.getRegister(SP::G7, PtrVT), Offset, withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); } assert(model == TLSModel::LocalExec); SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); return DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::G7, PtrVT), Offset); } SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, ArgListTy &Args, SDValue Arg, const SDLoc &DL, SelectionDAG &DAG) const { MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); EVT ArgVT = Arg.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); ArgListEntry Entry; Entry.Node = Arg; Entry.Ty = ArgTy; if (ArgTy->isFP128Ty()) { // Create a stack object and pass the pointer to the library function. int FI = MFI.CreateStackObject(16, Align(8), false); SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), Align(8)); Entry.Node = FIPtr; Entry.Ty = PointerType::getUnqual(ArgTy); } Args.push_back(Entry); return Chain; } SDValue SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, const char *LibFuncName, unsigned numArgs) const { ArgListTy Args; MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); Type *RetTyABI = RetTy; SDValue Chain = DAG.getEntryNode(); SDValue RetPtr; if (RetTy->isFP128Ty()) { // Create a Stack Object to receive the return value of type f128. ArgListEntry Entry; int RetFI = MFI.CreateStackObject(16, Align(8), false); RetPtr = DAG.getFrameIndex(RetFI, PtrVT); Entry.Node = RetPtr; Entry.Ty = PointerType::getUnqual(RetTy); if (!Subtarget->is64Bit()) { Entry.IsSRet = true; Entry.IndirectType = RetTy; } Entry.IsReturned = false; Args.push_back(Entry); RetTyABI = Type::getVoidTy(*DAG.getContext()); } assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); for (unsigned i = 0, e = numArgs; i != e; ++i) { Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); } TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); std::pair CallInfo = LowerCallTo(CLI); // chain is in second result. if (RetTyABI == RetTy) return CallInfo.first; assert (RetTy->isFP128Ty() && "Unexpected return type!"); Chain = CallInfo.second; // Load RetPtr to get the return value. return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, MachinePointerInfo(), Align(8)); } SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, unsigned &SPCC, const SDLoc &DL, SelectionDAG &DAG) const { const char *LibCall = nullptr; bool is64Bit = Subtarget->is64Bit(); switch(SPCC) { default: llvm_unreachable("Unhandled conditional code!"); case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; case SPCC::FCC_UL : case SPCC::FCC_ULE: case SPCC::FCC_UG : case SPCC::FCC_UGE: case SPCC::FCC_U : case SPCC::FCC_O : case SPCC::FCC_LG : case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; } auto PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); Type *RetTy = Type::getInt32Ty(*DAG.getContext()); ArgListTy Args; SDValue Chain = DAG.getEntryNode(); Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(DL).setChain(Chain) .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); std::pair CallInfo = LowerCallTo(CLI); // result is in first, and chain is in second result. SDValue Result = CallInfo.first; switch(SPCC) { default: { SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); SPCC = SPCC::ICC_NE; return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); } case SPCC::FCC_UL : { SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); SPCC = SPCC::ICC_NE; return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); } case SPCC::FCC_ULE: { SDValue RHS = DAG.getConstant(2, DL, Result.getValueType()); SPCC = SPCC::ICC_NE; return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); } case SPCC::FCC_UG : { SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); SPCC = SPCC::ICC_G; return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); } case SPCC::FCC_UGE: { SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); SPCC = SPCC::ICC_NE; return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); } case SPCC::FCC_U : { SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); SPCC = SPCC::ICC_E; return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); } case SPCC::FCC_O : { SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); SPCC = SPCC::ICC_NE; return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); } case SPCC::FCC_LG : { SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); SPCC = SPCC::ICC_NE; return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); } case SPCC::FCC_UE : { SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); SPCC = SPCC::ICC_E; return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); } } } static SDValue LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI) { if (Op.getOperand(0).getValueType() == MVT::f64) return TLI.LowerF128Op(Op, DAG, TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); if (Op.getOperand(0).getValueType() == MVT::f32) return TLI.LowerF128Op(Op, DAG, TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); llvm_unreachable("fpextend with non-float operand!"); return SDValue(); } static SDValue LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI) { // FP_ROUND on f64 and f32 are legal. if (Op.getOperand(0).getValueType() != MVT::f128) return Op; if (Op.getValueType() == MVT::f64) return TLI.LowerF128Op(Op, DAG, TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); if (Op.getValueType() == MVT::f32) return TLI.LowerF128Op(Op, DAG, TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); llvm_unreachable("fpround to non-float!"); return SDValue(); } static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI, bool hasHardQuad) { SDLoc dl(Op); EVT VT = Op.getValueType(); assert(VT == MVT::i32 || VT == MVT::i64); // Expand f128 operations to fp128 abi calls. if (Op.getOperand(0).getValueType() == MVT::f128 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { const char *libName = TLI.getLibcallName(VT == MVT::i32 ? RTLIB::FPTOSINT_F128_I32 : RTLIB::FPTOSINT_F128_I64); return TLI.LowerF128Op(Op, DAG, libName, 1); } // Expand if the resulting type is illegal. if (!TLI.isTypeLegal(VT)) return SDValue(); // Otherwise, Convert the fp value to integer in an FP register. if (VT == MVT::i32) Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); else Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); return DAG.getNode(ISD::BITCAST, dl, VT, Op); } static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI, bool hasHardQuad) { SDLoc dl(Op); EVT OpVT = Op.getOperand(0).getValueType(); assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; // Expand f128 operations to fp128 ABI calls. if (Op.getValueType() == MVT::f128 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { const char *libName = TLI.getLibcallName(OpVT == MVT::i32 ? RTLIB::SINTTOFP_I32_F128 : RTLIB::SINTTOFP_I64_F128); return TLI.LowerF128Op(Op, DAG, libName, 1); } // Expand if the operand type is illegal. if (!TLI.isTypeLegal(OpVT)) return SDValue(); // Otherwise, Convert the int value to FP in an FP register. SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); } static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI, bool hasHardQuad) { SDLoc dl(Op); EVT VT = Op.getValueType(); // Expand if it does not involve f128 or the target has support for // quad floating point instructions and the resulting type is legal. if (Op.getOperand(0).getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(VT))) return SDValue(); assert(VT == MVT::i32 || VT == MVT::i64); return TLI.LowerF128Op(Op, DAG, TLI.getLibcallName(VT == MVT::i32 ? RTLIB::FPTOUINT_F128_I32 : RTLIB::FPTOUINT_F128_I64), 1); } static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI, bool hasHardQuad) { SDLoc dl(Op); EVT OpVT = Op.getOperand(0).getValueType(); assert(OpVT == MVT::i32 || OpVT == MVT::i64); // Expand if it does not involve f128 or the target has support for // quad floating point instructions and the operand type is legal. if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) return SDValue(); return TLI.LowerF128Op(Op, DAG, TLI.getLibcallName(OpVT == MVT::i32 ? RTLIB::UINTTOFP_I32_F128 : RTLIB::UINTTOFP_I64_F128), 1); } static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI, bool hasHardQuad, bool isV9, bool is64Bit) { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); unsigned Opc, SPCC = ~0U; // If this is a br_cc of a "setcc", and if the setcc got lowered into // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. LookThroughSetCC(LHS, RHS, CC, SPCC); assert(LHS.getValueType() == RHS.getValueType()); // Get the condition flag. SDValue CompareFlag; if (LHS.getValueType().isInteger()) { // On V9 processors running in 64-bit mode, if CC compares two `i64`s // and the RHS is zero we might be able to use a specialized branch. if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 && isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC)) return DAG.getNode(SPISD::BR_REG, dl, MVT::Other, Chain, Dest, DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS); CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); if (isV9) // 32-bit compares use the icc flags, 64-bit uses the xcc flags. Opc = LHS.getValueType() == MVT::i32 ? SPISD::BPICC : SPISD::BPXCC; else // Non-v9 targets don't have xcc. Opc = SPISD::BRICC; } else { if (!hasHardQuad && LHS.getValueType() == MVT::f128) { if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); Opc = isV9 ? SPISD::BPICC : SPISD::BRICC; } else { unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); Opc = isV9 ? SPISD::BRFCC_V9 : SPISD::BRFCC; } } return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); } static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI, bool hasHardQuad, bool isV9, bool is64Bit) { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDValue TrueVal = Op.getOperand(2); SDValue FalseVal = Op.getOperand(3); SDLoc dl(Op); unsigned Opc, SPCC = ~0U; // If this is a select_cc of a "setcc", and if the setcc got lowered into // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. LookThroughSetCC(LHS, RHS, CC, SPCC); assert(LHS.getValueType() == RHS.getValueType()); SDValue CompareFlag; if (LHS.getValueType().isInteger()) { // On V9 processors running in 64-bit mode, if CC compares two `i64`s // and the RHS is zero we might be able to use a specialized select. // All SELECT_CC between any two scalar integer types are eligible for // lowering to specialized instructions. Additionally, f32 and f64 types // are also eligible, but for f128 we can only use the specialized // instruction when we have hardquad. EVT ValType = TrueVal.getValueType(); bool IsEligibleType = ValType.isScalarInteger() || ValType == MVT::f32 || ValType == MVT::f64 || (ValType == MVT::f128 && hasHardQuad); if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 && isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC) && IsEligibleType) return DAG.getNode( SPISD::SELECT_REG, dl, TrueVal.getValueType(), TrueVal, FalseVal, DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS); CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); Opc = LHS.getValueType() == MVT::i32 ? SPISD::SELECT_ICC : SPISD::SELECT_XCC; if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); } else { if (!hasHardQuad && LHS.getValueType() == MVT::f128) { if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); Opc = SPISD::SELECT_ICC; } else { unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); Opc = SPISD::SELECT_FCC; if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); } } return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); } static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI) { MachineFunction &MF = DAG.getMachineFunction(); SparcMachineFunctionInfo *FuncInfo = MF.getInfo(); auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); // Need frame address to find the address of VarArgsFrameIndex. MF.getFrameInfo().setFrameAddressIsTaken(true); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDLoc DL(Op); SDValue Offset = DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), MachinePointerInfo(SV)); } static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); EVT VT = Node->getValueType(0); SDValue InChain = Node->getOperand(0); SDValue VAListPtr = Node->getOperand(1); EVT PtrVT = VAListPtr.getValueType(); const Value *SV = cast(Node->getOperand(2))->getValue(); SDLoc DL(Node); SDValue VAList = DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); // Increment the pointer, VAList, to the next vaarg. SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(VT.getSizeInBits()/8, DL)); // Store the incremented VAList to the legalized pointer. InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); // Load the actual argument out of the pointer VAList. // We can't count on greater alignment than the word size. return DAG.getLoad( VT, DL, InChain, VAList, MachinePointerInfo(), Align(std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8)); } static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, const SparcSubtarget *Subtarget) { SDValue Chain = Op.getOperand(0); // Legalize the chain. SDValue Size = Op.getOperand(1); // Legalize the size. MaybeAlign Alignment = cast(Op.getOperand(2))->getMaybeAlignValue(); Align StackAlign = Subtarget->getFrameLowering()->getStackAlign(); EVT VT = Size->getValueType(0); SDLoc dl(Op); // TODO: implement over-aligned alloca. (Note: also implies // supporting support for overaligned function frames + dynamic // allocations, at all, which currently isn't supported) if (Alignment && *Alignment > StackAlign) { const MachineFunction &MF = DAG.getMachineFunction(); report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " "over-aligned dynamic alloca not supported."); } // The resultant pointer needs to be above the register spill area // at the bottom of the stack. unsigned regSpillArea; if (Subtarget->is64Bit()) { regSpillArea = 128; } else { // On Sparc32, the size of the spill area is 92. Unfortunately, // that's only 4-byte aligned, not 8-byte aligned (the stack // pointer is 8-byte aligned). So, if the user asked for an 8-byte // aligned dynamic allocation, we actually need to add 96 to the // bottom of the stack, instead of 92, to ensure 8-byte alignment. // That also means adding 4 to the size of the allocation -- // before applying the 8-byte rounding. Unfortunately, we the // value we get here has already had rounding applied. So, we need // to add 8, instead, wasting a bit more memory. // Further, this only actually needs to be done if the required // alignment is > 4, but, we've lost that info by this point, too, // so we always apply it. // (An alternative approach would be to always reserve 96 bytes // instead of the required 92, but then we'd waste 4 extra bytes // in every frame, not just those with dynamic stack allocations) // TODO: modify code in SelectionDAGBuilder to make this less sad. Size = DAG.getNode(ISD::ADD, dl, VT, Size, DAG.getConstant(8, dl, VT)); regSpillArea = 96; } unsigned SPReg = SP::O6; SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain regSpillArea += Subtarget->getStackPointerBias(); SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, DAG.getConstant(regSpillArea, dl, VT)); SDValue Ops[2] = { NewVal, Chain }; return DAG.getMergeValues(Ops, dl); } static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); SDValue Chain = DAG.getNode(SPISD::FLUSHW, dl, MVT::Other, DAG.getEntryNode()); return Chain; } static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, const SparcSubtarget *Subtarget, bool AlwaysFlush = false) { MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned FrameReg = SP::I6; unsigned stackBias = Subtarget->getStackPointerBias(); SDValue FrameAddr; SDValue Chain; // flush first to make sure the windowed registers' values are in stack Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; while (depth--) { SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, DAG.getIntPtrConstant(Offset, dl)); FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); } if (Subtarget->is64Bit()) FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, DAG.getIntPtrConstant(stackBias, dl)); return FrameAddr; } static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, const SparcSubtarget *Subtarget) { uint64_t depth = Op.getConstantOperandVal(0); return getFRAMEADDR(depth, Op, DAG, Subtarget); } static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI, const SparcSubtarget *Subtarget) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); EVT VT = Op.getValueType(); SDLoc dl(Op); uint64_t depth = Op.getConstantOperandVal(0); SDValue RetAddr; if (depth == 0) { auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); return RetAddr; } // Need frame address to find return address of the caller. SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, DAG.getIntPtrConstant(Offset, dl)); RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); return RetAddr; } static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, unsigned opcode) { assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); assert(opcode == ISD::FNEG || opcode == ISD::FABS); // Lower fneg/fabs on f64 to fneg/fabs on f32. // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. // Note: in little-endian, the floating-point value is stored in the // registers are in the opposite order, so the subreg with the sign // bit is the highest-numbered (odd), rather than the // lowest-numbered (even). SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, SrcReg64); SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, SrcReg64); if (DAG.getDataLayout().isLittleEndian()) Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); else Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::f64), 0); DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, DstReg64, Hi32); DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, DstReg64, Lo32); return DstReg64; } // Lower a f128 load into two f64 loads. static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); LoadSDNode *LdNode = cast(Op.getNode()); assert(LdNode->getOffset().isUndef() && "Unexpected node type"); Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8); SDValue Hi64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), LdNode->getPointerInfo(), Alignment); EVT addrVT = LdNode->getBasePtr().getValueType(); SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, LdNode->getBasePtr(), DAG.getConstant(8, dl, addrVT)); SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, LdNode->getPointerInfo().getWithOffset(8), Alignment); SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::f128); InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, MVT::f128, SDValue(InFP128, 0), Hi64, SubRegEven); InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, MVT::f128, SDValue(InFP128, 0), Lo64, SubRegOdd); SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), SDValue(Lo64.getNode(), 1) }; SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; return DAG.getMergeValues(Ops, dl); } static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) { LoadSDNode *LdNode = cast(Op.getNode()); EVT MemVT = LdNode->getMemoryVT(); if (MemVT == MVT::f128) return LowerF128Load(Op, DAG); return Op; } // Lower a f128 store into two f64 stores. static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); StoreSDNode *StNode = cast(Op.getNode()); assert(StNode->getOffset().isUndef() && "Unexpected node type"); SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::f64, StNode->getValue(), SubRegEven); SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::f64, StNode->getValue(), SubRegOdd); Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8); SDValue OutChains[2]; OutChains[0] = DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), StNode->getBasePtr(), StNode->getPointerInfo(), Alignment); EVT addrVT = StNode->getBasePtr().getValueType(); SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, StNode->getBasePtr(), DAG.getConstant(8, dl, addrVT)); OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, StNode->getPointerInfo().getWithOffset(8), Alignment); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); } static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) { SDLoc dl(Op); StoreSDNode *St = cast(Op.getNode()); EVT MemVT = St->getMemoryVT(); if (MemVT == MVT::f128) return LowerF128Store(Op, DAG); if (MemVT == MVT::i64) { // Custom handling for i64 stores: turn it into a bitcast and a // v2i32 store. SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); SDValue Chain = DAG.getStore( St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), St->getOriginalAlign(), St->getMemOperand()->getFlags(), St->getAAInfo()); return Chain; } return SDValue(); } static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) && "invalid opcode"); SDLoc dl(Op); if (Op.getValueType() == MVT::f64) return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); if (Op.getValueType() != MVT::f128) return Op; // Lower fabs/fneg on f128 to fabs/fneg on f64 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 // (As with LowerF64Op, on little-endian, we need to negate the odd // subreg) SDValue SrcReg128 = Op.getOperand(0); SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, SrcReg128); SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, SrcReg128); if (DAG.getDataLayout().isLittleEndian()) { if (isV9) Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); else Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); } else { if (isV9) Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); else Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); } SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::f128), 0); DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, DstReg128, Hi64); DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, DstReg128, Lo64); return DstReg128; } static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { if (Op.getValueType() != MVT::i64) return Op; SDLoc dl(Op); SDValue Src1 = Op.getOperand(0); SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, DAG.getConstant(32, dl, MVT::i64)); Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); SDValue Src2 = Op.getOperand(1); SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, DAG.getConstant(32, dl, MVT::i64)); Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); bool hasChain = false; unsigned hiOpc = Op.getOpcode(); switch (Op.getOpcode()) { default: llvm_unreachable("Invalid opcode"); case ISD::ADDC: hiOpc = ISD::ADDE; break; case ISD::ADDE: hasChain = true; break; case ISD::SUBC: hiOpc = ISD::SUBE; break; case ISD::SUBE: hasChain = true; break; } SDValue Lo; SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); if (hasChain) { Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, Op.getOperand(2)); } else { Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); } SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); SDValue Carry = Hi.getValue(1); Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, DAG.getConstant(32, dl, MVT::i64)); SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); SDValue Ops[2] = { Dst, Carry }; return DAG.getMergeValues(Ops, dl); } // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() // in LegalizeDAG.cpp except the order of arguments to the library function. static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI) { unsigned opcode = Op.getOpcode(); assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); bool isSigned = (opcode == ISD::SMULO); EVT VT = MVT::i64; EVT WideVT = MVT::i128; SDLoc dl(Op); SDValue LHS = Op.getOperand(0); if (LHS.getValueType() != VT) return Op; SDValue ShiftAmt = DAG.getConstant(63, dl, VT); SDValue RHS = Op.getOperand(1); SDValue HiLHS, HiRHS; if (isSigned) { HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); } else { HiLHS = DAG.getConstant(0, dl, VT); HiRHS = DAG.getConstant(0, dl, MVT::i64); } SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; TargetLowering::MakeLibCallOptions CallOptions; CallOptions.setSExt(isSigned); SDValue MulResult = TLI.makeLibCall(DAG, RTLIB::MUL_I128, WideVT, Args, CallOptions, dl).first; SDValue BottomHalf, TopHalf; std::tie(BottomHalf, TopHalf) = DAG.SplitScalar(MulResult, dl, VT, VT); if (isSigned) { SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); } else { TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), ISD::SETNE); } // MulResult is a node with an illegal type. Because such things are not // generally permitted during this phase of legalization, ensure that // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have // been folded. assert(MulResult->use_empty() && "Illegally typed node still in use!"); SDValue Ops[2] = { BottomHalf, TopHalf } ; return DAG.getMergeValues(Ops, dl); } static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { if (isStrongerThanMonotonic(cast(Op)->getSuccessOrdering())) { // Expand with a fence. return SDValue(); } // Monotonic load/stores are legal. return Op; } SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntNo = Op.getConstantOperandVal(0); SDLoc dl(Op); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::thread_pointer: { EVT PtrVT = getPointerTy(DAG.getDataLayout()); return DAG.getRegister(SP::G7, PtrVT); } } } SDValue SparcTargetLowering:: LowerOperation(SDValue Op, SelectionDAG &DAG) const { bool hasHardQuad = Subtarget->hasHardQuad(); bool isV9 = Subtarget->isV9(); bool is64Bit = Subtarget->is64Bit(); switch (Op.getOpcode()) { default: llvm_unreachable("Should not custom lower this!"); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, Subtarget); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, Subtarget); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, hasHardQuad); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, hasHardQuad); case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, hasHardQuad); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, hasHardQuad); case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit); case ISD::VASTART: return LowerVASTART(Op, DAG, *this); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); case ISD::LOAD: return LowerLOAD(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::FADD: return LowerF128Op(Op, DAG, getLibcallName(RTLIB::ADD_F128), 2); case ISD::FSUB: return LowerF128Op(Op, DAG, getLibcallName(RTLIB::SUB_F128), 2); case ISD::FMUL: return LowerF128Op(Op, DAG, getLibcallName(RTLIB::MUL_F128), 2); case ISD::FDIV: return LowerF128Op(Op, DAG, getLibcallName(RTLIB::DIV_F128), 2); case ISD::FSQRT: return LowerF128Op(Op, DAG, getLibcallName(RTLIB::SQRT_F128),1); case ISD::FABS: case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); case ISD::UMULO: case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); case ISD::ATOMIC_LOAD: case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); } } SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, const SDLoc &DL, SelectionDAG &DAG) const { APInt V = C->getValueAPF().bitcastToAPInt(); SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); if (DAG.getDataLayout().isLittleEndian()) std::swap(Lo, Hi); return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); } SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDLoc dl(N); SDValue Src = N->getOperand(0); if (isa(Src) && N->getSimpleValueType(0) == MVT::v2i32 && Src.getSimpleValueType() == MVT::f64) return bitcastConstantFPToInt(cast(Src), dl, DCI.DAG); return SDValue(); } SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch (N->getOpcode()) { default: break; case ISD::BITCAST: return PerformBITCASTCombine(N, DCI); } return SDValue(); } MachineBasicBlock * SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const { switch (MI.getOpcode()) { default: llvm_unreachable("Unknown SELECT_CC!"); case SP::SELECT_CC_Int_ICC: case SP::SELECT_CC_FP_ICC: case SP::SELECT_CC_DFP_ICC: case SP::SELECT_CC_QFP_ICC: if (Subtarget->isV9()) return expandSelectCC(MI, BB, SP::BPICC); return expandSelectCC(MI, BB, SP::BCOND); case SP::SELECT_CC_Int_XCC: case SP::SELECT_CC_FP_XCC: case SP::SELECT_CC_DFP_XCC: case SP::SELECT_CC_QFP_XCC: return expandSelectCC(MI, BB, SP::BPXCC); case SP::SELECT_CC_Int_FCC: case SP::SELECT_CC_FP_FCC: case SP::SELECT_CC_DFP_FCC: case SP::SELECT_CC_QFP_FCC: if (Subtarget->isV9()) return expandSelectCC(MI, BB, SP::FBCOND_V9); return expandSelectCC(MI, BB, SP::FBCOND); } } MachineBasicBlock * SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, unsigned BROpcode) const { const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc dl = MI.getDebugLoc(); unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); // To "insert" a SELECT_CC instruction, we actually have to insert the // triangle control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and the condition code for the branch. // // We produce the following control flow: // ThisMBB // | \ // | IfFalseMBB // | / // SinkMBB const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = ++BB->getIterator(); MachineBasicBlock *ThisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, IfFalseMBB); F->insert(It, SinkMBB); // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. SinkMBB->splice(SinkMBB->begin(), ThisMBB, std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); // Set the new successors for ThisMBB. ThisMBB->addSuccessor(IfFalseMBB); ThisMBB->addSuccessor(SinkMBB); BuildMI(ThisMBB, dl, TII.get(BROpcode)) .addMBB(SinkMBB) .addImm(CC); // IfFalseMBB just falls through to SinkMBB. IfFalseMBB->addSuccessor(SinkMBB); // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), MI.getOperand(0).getReg()) .addReg(MI.getOperand(1).getReg()) .addMBB(ThisMBB) .addReg(MI.getOperand(2).getReg()) .addMBB(IfFalseMBB); MI.eraseFromParent(); // The pseudo instruction is gone now. return SinkMBB; } //===----------------------------------------------------------------------===// // Sparc Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. SparcTargetLowering::ConstraintType SparcTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'r': case 'f': case 'e': return C_RegisterClass; case 'I': // SIMM13 return C_Immediate; } } return TargetLowering::getConstraintType(Constraint); } TargetLowering::ConstraintWeight SparcTargetLowering:: getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'I': // SIMM13 if (ConstantInt *C = dyn_cast(info.CallOperandVal)) { if (isInt<13>(C->getSExtValue())) weight = CW_Constant; } break; } return weight; } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void SparcTargetLowering::LowerAsmOperandForConstraint( SDValue Op, StringRef Constraint, std::vector &Ops, SelectionDAG &DAG) const { SDValue Result; // Only support length 1 constraints for now. if (Constraint.size() > 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; case 'I': if (ConstantSDNode *C = dyn_cast(Op)) { if (isInt<13>(C->getSExtValue())) { Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), Op.getValueType()); break; } return; } } if (Result.getNode()) { Ops.push_back(Result); return; } TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } std::pair SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.empty()) return std::make_pair(0U, nullptr); if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': if (VT == MVT::v2i32) return std::make_pair(0U, &SP::IntPairRegClass); else if (Subtarget->is64Bit()) return std::make_pair(0U, &SP::I64RegsRegClass); else return std::make_pair(0U, &SP::IntRegsRegClass); case 'f': if (VT == MVT::f32 || VT == MVT::i32) return std::make_pair(0U, &SP::FPRegsRegClass); else if (VT == MVT::f64 || VT == MVT::i64) return std::make_pair(0U, &SP::LowDFPRegsRegClass); else if (VT == MVT::f128) return std::make_pair(0U, &SP::LowQFPRegsRegClass); // This will generate an error message return std::make_pair(0U, nullptr); case 'e': if (VT == MVT::f32 || VT == MVT::i32) return std::make_pair(0U, &SP::FPRegsRegClass); else if (VT == MVT::f64 || VT == MVT::i64 ) return std::make_pair(0U, &SP::DFPRegsRegClass); else if (VT == MVT::f128) return std::make_pair(0U, &SP::QFPRegsRegClass); // This will generate an error message return std::make_pair(0U, nullptr); } } if (Constraint.front() != '{') return std::make_pair(0U, nullptr); assert(Constraint.back() == '}' && "Not a brace enclosed constraint?"); StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); if (RegName.empty()) return std::make_pair(0U, nullptr); unsigned long long RegNo; // Handle numbered register aliases. if (RegName[0] == 'r' && getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { // r0-r7 -> g0-g7 // r8-r15 -> o0-o7 // r16-r23 -> l0-l7 // r24-r31 -> i0-i7 if (RegNo > 31) return std::make_pair(0U, nullptr); const char RegTypes[] = {'g', 'o', 'l', 'i'}; char RegType = RegTypes[RegNo / 8]; char RegIndex = '0' + (RegNo % 8); char Tmp[] = {'{', RegType, RegIndex, '}', 0}; return getRegForInlineAsmConstraint(TRI, Tmp, VT); } // Rewrite the fN constraint according to the value type if needed. if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' && getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { if (VT == MVT::f64 && (RegNo % 2 == 0)) { return getRegForInlineAsmConstraint( TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT); } else if (VT == MVT::f128 && (RegNo % 4 == 0)) { return getRegForInlineAsmConstraint( TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT); } else { return std::make_pair(0U, nullptr); } } auto ResultPair = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); if (!ResultPair.second) return std::make_pair(0U, nullptr); // Force the use of I64Regs over IntRegs for 64-bit values. if (Subtarget->is64Bit() && VT == MVT::i64) { assert(ResultPair.second == &SP::IntRegsRegClass && "Unexpected register class"); return std::make_pair(ResultPair.first, &SP::I64RegsRegClass); } return ResultPair; } bool SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The Sparc target isn't yet aware of offsets. return false; } void SparcTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl& Results, SelectionDAG &DAG) const { SDLoc dl(N); RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; switch (N->getOpcode()) { default: llvm_unreachable("Do not know how to custom type legalize this operation!"); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: // Custom lower only if it involves f128 or i64. if (N->getOperand(0).getValueType() != MVT::f128 || N->getValueType(0) != MVT::i64) return; libCall = ((N->getOpcode() == ISD::FP_TO_SINT) ? RTLIB::FPTOSINT_F128_I64 : RTLIB::FPTOUINT_F128_I64); Results.push_back(LowerF128Op(SDValue(N, 0), DAG, getLibcallName(libCall), 1)); return; case ISD::READCYCLECOUNTER: { assert(Subtarget->hasLeonCycleCounter()); SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); SDValue Ops[] = { Lo, Hi }; SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); Results.push_back(Pair); Results.push_back(N->getOperand(0)); return; } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: // Custom lower only if it involves f128 or i64. if (N->getValueType(0) != MVT::f128 || N->getOperand(0).getValueType() != MVT::i64) return; libCall = ((N->getOpcode() == ISD::SINT_TO_FP) ? RTLIB::SINTTOFP_I64_F128 : RTLIB::UINTTOFP_I64_F128); Results.push_back(LowerF128Op(SDValue(N, 0), DAG, getLibcallName(libCall), 1)); return; case ISD::LOAD: { LoadSDNode *Ld = cast(N); // Custom handling only for i64: turn i64 load into a v2i32 load, // and a bitcast. if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) return; SDLoc dl(N); SDValue LoadRes = DAG.getExtLoad( Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(), Ld->getAAInfo()); SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); Results.push_back(Res); Results.push_back(LoadRes.getValue(1)); return; } } } // Override to enable LOAD_STACK_GUARD lowering on Linux. bool SparcTargetLowering::useLoadStackGuardNode() const { if (!Subtarget->isTargetLinux()) return TargetLowering::useLoadStackGuardNode(); return true; } // Override to disable global variable loading on Linux. void SparcTargetLowering::insertSSPDeclarations(Module &M) const { if (!Subtarget->isTargetLinux()) return TargetLowering::insertSSPDeclarations(M); } void SparcTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { assert(MI.getOpcode() == SP::SUBCCrr || MI.getOpcode() == SP::SUBCCri); // If the result is dead, replace it with %g0. if (!Node->hasAnyUseOfValue(0)) MI.getOperand(0).setReg(SP::G0); }