//===-- SparcFrameLowering.cpp - Sparc Frame Information ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the Sparc implementation of TargetFrameLowering class. // //===----------------------------------------------------------------------===// #include "SparcFrameLowering.h" #include "SparcInstrInfo.h" #include "SparcMachineFunctionInfo.h" #include "SparcSubtarget.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; static cl::opt DisableLeafProc("disable-sparc-leaf-proc", cl::init(false), cl::desc("Disable Sparc leaf procedure optimization."), cl::Hidden); SparcFrameLowering::SparcFrameLowering(const SparcSubtarget &ST) : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, ST.is64Bit() ? Align(16) : Align(8), 0, ST.is64Bit() ? Align(16) : Align(8)) {} void SparcFrameLowering::emitSPAdjustment(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, int NumBytes, unsigned ADDrr, unsigned ADDri) const { DebugLoc dl; const SparcInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); if (NumBytes >= -4096 && NumBytes < 4096) { BuildMI(MBB, MBBI, dl, TII.get(ADDri), SP::O6) .addReg(SP::O6).addImm(NumBytes); return; } // Emit this the hard way. This clobbers G1 which we always know is // available here. if (NumBytes >= 0) { // Emit nonnegative numbers with sethi + or. // sethi %hi(NumBytes), %g1 // or %g1, %lo(NumBytes), %g1 // add %sp, %g1, %sp BuildMI(MBB, MBBI, dl, TII.get(SP::SETHIi), SP::G1) .addImm(HI22(NumBytes)); BuildMI(MBB, MBBI, dl, TII.get(SP::ORri), SP::G1) .addReg(SP::G1).addImm(LO10(NumBytes)); BuildMI(MBB, MBBI, dl, TII.get(ADDrr), SP::O6) .addReg(SP::O6).addReg(SP::G1); return ; } // Emit negative numbers with sethi + xor. // sethi %hix(NumBytes), %g1 // xor %g1, %lox(NumBytes), %g1 // add %sp, %g1, %sp BuildMI(MBB, MBBI, dl, TII.get(SP::SETHIi), SP::G1) .addImm(HIX22(NumBytes)); BuildMI(MBB, MBBI, dl, TII.get(SP::XORri), SP::G1) .addReg(SP::G1).addImm(LOX10(NumBytes)); BuildMI(MBB, MBBI, dl, TII.get(ADDrr), SP::O6) .addReg(SP::O6).addReg(SP::G1); } void SparcFrameLowering::emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const { SparcMachineFunctionInfo *FuncInfo = MF.getInfo(); assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported"); MachineFrameInfo &MFI = MF.getFrameInfo(); const SparcSubtarget &Subtarget = MF.getSubtarget(); const SparcInstrInfo &TII = *static_cast(Subtarget.getInstrInfo()); const SparcRegisterInfo &RegInfo = *static_cast(Subtarget.getRegisterInfo()); MachineBasicBlock::iterator MBBI = MBB.begin(); // Debug location must be unknown since the first debug location is used // to determine the end of the prologue. DebugLoc dl; bool NeedsStackRealignment = RegInfo.shouldRealignStack(MF); if (NeedsStackRealignment && !RegInfo.canRealignStack(MF)) report_fatal_error("Function \"" + Twine(MF.getName()) + "\" required " "stack re-alignment, but LLVM couldn't handle it " "(probably because it has a dynamic alloca)."); // Get the number of bytes to allocate from the FrameInfo int NumBytes = (int) MFI.getStackSize(); unsigned SAVEri = SP::SAVEri; unsigned SAVErr = SP::SAVErr; if (FuncInfo->isLeafProc()) { if (NumBytes == 0) return; SAVEri = SP::ADDri; SAVErr = SP::ADDrr; } // The SPARC ABI is a bit odd in that it requires a reserved 92-byte // (128 in v9) area in the user's stack, starting at %sp. Thus, the // first part of the stack that can actually be used is located at // %sp + 92. // // We therefore need to add that offset to the total stack size // after all the stack objects are placed by // PrologEpilogInserter calculateFrameObjectOffsets. However, since the stack needs to be // aligned *after* the extra size is added, we need to disable // calculateFrameObjectOffsets's built-in stack alignment, by having // targetHandlesStackFrameRounding return true. // Add the extra call frame stack size, if needed. (This is the same // code as in PrologEpilogInserter, but also gets disabled by // targetHandlesStackFrameRounding) if (MFI.adjustsStack() && hasReservedCallFrame(MF)) NumBytes += MFI.getMaxCallFrameSize(); // Adds the SPARC subtarget-specific spill area to the stack // size. Also ensures target-required alignment. NumBytes = Subtarget.getAdjustedFrameSize(NumBytes); // Finally, ensure that the size is sufficiently aligned for the // data on the stack. NumBytes = alignTo(NumBytes, MFI.getMaxAlign()); // Update stack size with corrected value. MFI.setStackSize(NumBytes); emitSPAdjustment(MF, MBB, MBBI, -NumBytes, SAVErr, SAVEri); unsigned regFP = RegInfo.getDwarfRegNum(SP::I6, true); // Emit ".cfi_def_cfa_register 30". unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, regFP)); BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // Emit ".cfi_window_save". CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); unsigned regInRA = RegInfo.getDwarfRegNum(SP::I7, true); unsigned regOutRA = RegInfo.getDwarfRegNum(SP::O7, true); // Emit ".cfi_register 15, 31". CFIIndex = MF.addFrameInst( MCCFIInstruction::createRegister(nullptr, regOutRA, regInRA)); BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); if (NeedsStackRealignment) { int64_t Bias = Subtarget.getStackPointerBias(); unsigned regUnbiased; if (Bias) { // This clobbers G1 which we always know is available here. regUnbiased = SP::G1; // add %o6, BIAS, %g1 BuildMI(MBB, MBBI, dl, TII.get(SP::ADDri), regUnbiased) .addReg(SP::O6).addImm(Bias); } else regUnbiased = SP::O6; // andn %regUnbiased, MaxAlign-1, %regUnbiased Align MaxAlign = MFI.getMaxAlign(); BuildMI(MBB, MBBI, dl, TII.get(SP::ANDNri), regUnbiased) .addReg(regUnbiased) .addImm(MaxAlign.value() - 1U); if (Bias) { // add %g1, -BIAS, %o6 BuildMI(MBB, MBBI, dl, TII.get(SP::ADDri), SP::O6) .addReg(regUnbiased).addImm(-Bias); } } } MachineBasicBlock::iterator SparcFrameLowering:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { if (!hasReservedCallFrame(MF)) { MachineInstr &MI = *I; int Size = MI.getOperand(0).getImm(); if (MI.getOpcode() == SP::ADJCALLSTACKDOWN) Size = -Size; if (Size) emitSPAdjustment(MF, MBB, I, Size, SP::ADDrr, SP::ADDri); } return MBB.erase(I); } void SparcFrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { SparcMachineFunctionInfo *FuncInfo = MF.getInfo(); MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); const SparcInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); DebugLoc dl = MBBI->getDebugLoc(); assert(MBBI->getOpcode() == SP::RETL && "Can only put epilog before 'retl' instruction!"); if (!FuncInfo->isLeafProc()) { BuildMI(MBB, MBBI, dl, TII.get(SP::RESTORErr), SP::G0).addReg(SP::G0) .addReg(SP::G0); return; } MachineFrameInfo &MFI = MF.getFrameInfo(); int NumBytes = (int) MFI.getStackSize(); if (NumBytes == 0) return; emitSPAdjustment(MF, MBB, MBBI, NumBytes, SP::ADDrr, SP::ADDri); } bool SparcFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { // Reserve call frame if there are no variable sized objects on the stack. return !MF.getFrameInfo().hasVarSizedObjects(); } // hasFP - Return true if the specified function should have a dedicated frame // pointer register. This is true if the function has variable sized allocas or // if frame pointer elimination is disabled. bool SparcFrameLowering::hasFP(const MachineFunction &MF) const { const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); return MF.getTarget().Options.DisableFramePointerElim(MF) || RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken(); } StackOffset SparcFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const { const SparcSubtarget &Subtarget = MF.getSubtarget(); const MachineFrameInfo &MFI = MF.getFrameInfo(); const SparcRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); const SparcMachineFunctionInfo *FuncInfo = MF.getInfo(); bool isFixed = MFI.isFixedObjectIndex(FI); // Addressable stack objects are accessed using neg. offsets from // %fp, or positive offsets from %sp. bool UseFP; // Sparc uses FP-based references in general, even when "hasFP" is // false. That function is rather a misnomer, because %fp is // actually always available, unless isLeafProc. if (FuncInfo->isLeafProc()) { // If there's a leaf proc, all offsets need to be %sp-based, // because we haven't caused %fp to actually point to our frame. UseFP = false; } else if (isFixed) { // Otherwise, argument access should always use %fp. UseFP = true; } else if (RegInfo->hasStackRealignment(MF)) { // If there is dynamic stack realignment, all local object // references need to be via %sp, to take account of the // re-alignment. UseFP = false; } else { // Finally, default to using %fp. UseFP = true; } int64_t FrameOffset = MF.getFrameInfo().getObjectOffset(FI) + Subtarget.getStackPointerBias(); if (UseFP) { FrameReg = RegInfo->getFrameRegister(MF); return StackOffset::getFixed(FrameOffset); } else { FrameReg = SP::O6; // %sp return StackOffset::getFixed(FrameOffset + MF.getFrameInfo().getStackSize()); } } static bool LLVM_ATTRIBUTE_UNUSED verifyLeafProcRegUse(MachineRegisterInfo *MRI) { for (unsigned reg = SP::I0; reg <= SP::I7; ++reg) if (MRI->isPhysRegUsed(reg)) return false; for (unsigned reg = SP::L0; reg <= SP::L7; ++reg) if (MRI->isPhysRegUsed(reg)) return false; return true; } bool SparcFrameLowering::isLeafProc(MachineFunction &MF) const { MachineRegisterInfo &MRI = MF.getRegInfo(); MachineFrameInfo &MFI = MF.getFrameInfo(); return !(MFI.hasCalls() // has calls || MRI.isPhysRegUsed(SP::L0) // Too many registers needed || MRI.isPhysRegUsed(SP::O6) // %sp is used || hasFP(MF)); // need %fp } void SparcFrameLowering::remapRegsForLeafProc(MachineFunction &MF) const { MachineRegisterInfo &MRI = MF.getRegInfo(); // Remap %i[0-7] to %o[0-7]. for (unsigned reg = SP::I0; reg <= SP::I7; ++reg) { if (!MRI.isPhysRegUsed(reg)) continue; unsigned mapped_reg = reg - SP::I0 + SP::O0; // Replace I register with O register. MRI.replaceRegWith(reg, mapped_reg); // Also replace register pair super-registers. if ((reg - SP::I0) % 2 == 0) { unsigned preg = (reg - SP::I0) / 2 + SP::I0_I1; unsigned mapped_preg = preg - SP::I0_I1 + SP::O0_O1; MRI.replaceRegWith(preg, mapped_preg); } } // Rewrite MBB's Live-ins. for (MachineBasicBlock &MBB : MF) { for (unsigned reg = SP::I0_I1; reg <= SP::I6_I7; ++reg) { if (!MBB.isLiveIn(reg)) continue; MBB.removeLiveIn(reg); MBB.addLiveIn(reg - SP::I0_I1 + SP::O0_O1); } for (unsigned reg = SP::I0; reg <= SP::I7; ++reg) { if (!MBB.isLiveIn(reg)) continue; MBB.removeLiveIn(reg); MBB.addLiveIn(reg - SP::I0 + SP::O0); } } assert(verifyLeafProcRegUse(&MRI)); #ifdef EXPENSIVE_CHECKS MF.verify(0, "After LeafProc Remapping"); #endif } void SparcFrameLowering::determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const { TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); if (!DisableLeafProc && isLeafProc(MF)) { SparcMachineFunctionInfo *MFI = MF.getInfo(); MFI->setLeafProc(true); remapRegsForLeafProc(MF); } }