//===-- RISCVInstrInfoZfh.td - RISC-V 'Zfh' instructions ---*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions from the standard 'Zfh' // half-precision floating-point extension, version 1.0. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // RISC-V specific DAG Nodes. //===----------------------------------------------------------------------===// def SDT_RISCVFMV_H_X : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, XLenVT>]>; def SDT_RISCVFMV_X_EXTH : SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisFP<1>]>; def riscv_fmv_h_x : SDNode<"RISCVISD::FMV_H_X", SDT_RISCVFMV_H_X>; def riscv_fmv_x_anyexth : SDNode<"RISCVISD::FMV_X_ANYEXTH", SDT_RISCVFMV_X_EXTH>; def riscv_fmv_x_signexth : SDNode<"RISCVISD::FMV_X_SIGNEXTH", SDT_RISCVFMV_X_EXTH>; //===----------------------------------------------------------------------===// // Operand and SDNode transformation definitions. //===----------------------------------------------------------------------===// // Zhinxmin and Zhinx def FPR16INX : RegisterOperand { let ParserMatchClass = GPRAsFPR; let DecoderMethod = "DecodeGPRRegisterClass"; } def ZfhExt : ExtInfo<"", "", [HasStdExtZfh], f16, FPR16, FPR32, ?, FPR16>; def ZfhminExt : ExtInfo<"", "", [HasStdExtZfhmin], f16, FPR16, FPR32, ?, FPR16>; def ZfhDExt : ExtInfo<"", "", [HasStdExtZfh, HasStdExtD], ?, ?, FPR32, FPR64, FPR16>; def ZfhminDExt : ExtInfo<"", "", [HasStdExtZfhmin, HasStdExtD], ?, ?, FPR32, FPR64, FPR16>; def ZhinxExt : ExtInfo<"_INX", "RVZfinx", [HasStdExtZhinx], f16, FPR16INX, FPR32INX, ?, FPR16INX>; def ZhinxminExt : ExtInfo<"_INX", "RVZfinx", [HasStdExtZhinxmin], f16, FPR16INX, FPR32INX, ?, FPR16INX>; def ZhinxZdinxExt : ExtInfo<"_INX", "RVZfinx", [HasStdExtZhinx, HasStdExtZdinx, IsRV64], ?, ?, FPR32INX, FPR64INX, FPR16INX>; def ZhinxminZdinxExt : ExtInfo<"_INX", "RVZfinx", [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64], ?, ?, FPR32INX, FPR64INX, FPR16INX>; def ZhinxZdinx32Ext : ExtInfo<"_IN32X", "RV32Zdinx", [HasStdExtZhinx, HasStdExtZdinx, IsRV32], ?, ?, FPR32INX, FPR64IN32X, FPR16INX >; def ZhinxminZdinx32Ext : ExtInfo<"_IN32X", "RV32Zdinx", [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32], ?, ?, FPR32INX, FPR64IN32X, FPR16INX>; defvar ZfhExts = [ZfhExt, ZhinxExt]; defvar ZfhminExts = [ZfhminExt, ZhinxminExt]; defvar ZfhDExts = [ZfhDExt, ZhinxZdinxExt, ZhinxZdinx32Ext]; defvar ZfhminDExts = [ZfhminDExt, ZhinxminZdinxExt, ZhinxminZdinx32Ext]; //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasHalfFPLoadStoreMove] in { def FLH : FPLoad_r<0b001, "flh", FPR16, WriteFLD16>; // Operands for stores are in the order srcreg, base, offset rather than // reflecting the order these fields are specified in the instruction // encoding. def FSH : FPStore_r<0b001, "fsh", FPR16, WriteFST16>; } // Predicates = [HasHalfFPLoadStoreMove] foreach Ext = ZfhExts in { let SchedRW = [WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16Addend] in { defm FMADD_H : FPFMA_rrr_frm_m; defm FMSUB_H : FPFMA_rrr_frm_m; defm FNMSUB_H : FPFMA_rrr_frm_m; defm FNMADD_H : FPFMA_rrr_frm_m; } let SchedRW = [WriteFAdd16, ReadFAdd16, ReadFAdd16] in { defm FADD_H : FPALU_rr_frm_m<0b0000010, "fadd.h", Ext, Commutable=1>; defm FSUB_H : FPALU_rr_frm_m<0b0000110, "fsub.h", Ext>; } let SchedRW = [WriteFMul16, ReadFMul16, ReadFMul16] in defm FMUL_H : FPALU_rr_frm_m<0b0001010, "fmul.h", Ext, Commutable=1>; let SchedRW = [WriteFDiv16, ReadFDiv16, ReadFDiv16] in defm FDIV_H : FPALU_rr_frm_m<0b0001110, "fdiv.h", Ext>; defm FSQRT_H : FPUnaryOp_r_frm_m<0b0101110, 0b00000, Ext, Ext.PrimaryTy, Ext.PrimaryTy, "fsqrt.h">, Sched<[WriteFSqrt16, ReadFSqrt16]>; let SchedRW = [WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16], mayRaiseFPException = 0 in { defm FSGNJ_H : FPALU_rr_m<0b0010010, 0b000, "fsgnj.h", Ext>; defm FSGNJN_H : FPALU_rr_m<0b0010010, 0b001, "fsgnjn.h", Ext>; defm FSGNJX_H : FPALU_rr_m<0b0010010, 0b010, "fsgnjx.h", Ext>; } let SchedRW = [WriteFMinMax16, ReadFMinMax16, ReadFMinMax16] in { defm FMIN_H : FPALU_rr_m<0b0010110, 0b000, "fmin.h", Ext, Commutable=1>; defm FMAX_H : FPALU_rr_m<0b0010110, 0b001, "fmax.h", Ext, Commutable=1>; } let IsSignExtendingOpW = 1 in defm FCVT_W_H : FPUnaryOp_r_frm_m<0b1100010, 0b00000, Ext, GPR, Ext.PrimaryTy, "fcvt.w.h">, Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>; let IsSignExtendingOpW = 1 in defm FCVT_WU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00001, Ext, GPR, Ext.PrimaryTy, "fcvt.wu.h">, Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>; defm FCVT_H_W : FPUnaryOp_r_frm_m<0b1101010, 0b00000, Ext, Ext.PrimaryTy, GPR, "fcvt.h.w">, Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>; defm FCVT_H_WU : FPUnaryOp_r_frm_m<0b1101010, 0b00001, Ext, Ext.PrimaryTy, GPR, "fcvt.h.wu">, Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>; } // foreach Ext = ZfhExts foreach Ext = ZfhminExts in { defm FCVT_H_S : FPUnaryOp_r_frm_m<0b0100010, 0b00000, Ext, Ext.PrimaryTy, Ext.F32Ty, "fcvt.h.s">, Sched<[WriteFCvtF32ToF16, ReadFCvtF32ToF16]>; defm FCVT_S_H : FPUnaryOp_r_frmlegacy_m<0b0100000, 0b00010,Ext, Ext.F32Ty, Ext.PrimaryTy, "fcvt.s.h">, Sched<[WriteFCvtF16ToF32, ReadFCvtF16ToF32]>; } // foreach Ext = ZfhminExts let Predicates = [HasHalfFPLoadStoreMove] in { let mayRaiseFPException = 0, IsSignExtendingOpW = 1 in def FMV_X_H : FPUnaryOp_r<0b1110010, 0b00000, 0b000, GPR, FPR16, "fmv.x.h">, Sched<[WriteFMovF16ToI16, ReadFMovF16ToI16]>; let mayRaiseFPException = 0 in def FMV_H_X : FPUnaryOp_r<0b1111010, 0b00000, 0b000, FPR16, GPR, "fmv.h.x">, Sched<[WriteFMovI16ToF16, ReadFMovI16ToF16]>; } // Predicates = [HasHalfFPLoadStoreMove] foreach Ext = ZfhExts in { let SchedRW = [WriteFCmp16, ReadFCmp16, ReadFCmp16] in { defm FEQ_H : FPCmp_rr_m<0b1010010, 0b010, "feq.h", Ext, Commutable=1>; defm FLT_H : FPCmp_rr_m<0b1010010, 0b001, "flt.h", Ext>; defm FLE_H : FPCmp_rr_m<0b1010010, 0b000, "fle.h", Ext>; } let mayRaiseFPException = 0 in defm FCLASS_H : FPUnaryOp_r_m<0b1110010, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy, "fclass.h">, Sched<[WriteFClass16, ReadFClass16]>; defm FCVT_L_H : FPUnaryOp_r_frm_m<0b1100010, 0b00010, Ext, GPR, Ext.PrimaryTy, "fcvt.l.h", [IsRV64]>, Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>; defm FCVT_LU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00011, Ext, GPR, Ext.PrimaryTy, "fcvt.lu.h", [IsRV64]>, Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>; defm FCVT_H_L : FPUnaryOp_r_frm_m<0b1101010, 0b00010, Ext, Ext.PrimaryTy, GPR, "fcvt.h.l", [IsRV64]>, Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>; defm FCVT_H_LU : FPUnaryOp_r_frm_m<0b1101010, 0b00011, Ext, Ext.PrimaryTy, GPR, "fcvt.h.lu", [IsRV64]>, Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>; } // foreach Ext = ZfhExts foreach Ext = ZfhminDExts in { defm FCVT_H_D : FPUnaryOp_r_frm_m<0b0100010, 0b00001, Ext, Ext.F16Ty, Ext.F64Ty, "fcvt.h.d">, Sched<[WriteFCvtF64ToF16, ReadFCvtF64ToF16]>; defm FCVT_D_H : FPUnaryOp_r_frmlegacy_m<0b0100001, 0b00010, Ext, Ext.F64Ty, Ext.F16Ty, "fcvt.d.h">, Sched<[WriteFCvtF16ToF64, ReadFCvtF16ToF64]>; } // foreach Ext = ZfhminDExts //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) //===----------------------------------------------------------------------===// let Predicates = [HasStdExtZfhmin] in { def : InstAlias<"flh $rd, (${rs1})", (FLH FPR16:$rd, GPR:$rs1, 0), 0>; def : InstAlias<"fsh $rs2, (${rs1})", (FSH FPR16:$rs2, GPR:$rs1, 0), 0>; } // Predicates = [HasStdExtZfhmin] let Predicates = [HasStdExtZfh] in { def : InstAlias<"fmv.h $rd, $rs", (FSGNJ_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>; def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>; def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>; // fgt.h/fge.h are recognised by the GNU assembler but the canonical // flt.h/fle.h forms will always be printed. Therefore, set a zero weight. def : InstAlias<"fgt.h $rd, $rs, $rt", (FLT_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>; def : InstAlias<"fge.h $rd, $rs, $rt", (FLE_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>; let usesCustomInserter = 1 in { def PseudoQuietFLE_H : PseudoQuietFCMP; def PseudoQuietFLT_H : PseudoQuietFCMP; } } // Predicates = [HasStdExtZfh] let Predicates = [HasStdExtZfhmin] in { def PseudoFLH : PseudoFloatLoad<"flh", FPR16>; def PseudoFSH : PseudoStore<"fsh", FPR16>; } // Predicates = [HasStdExtZfhmin] let Predicates = [HasStdExtZhinx] in { def : InstAlias<"fmv.h $rd, $rs", (FSGNJ_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>; def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>; def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>; def : InstAlias<"fgt.h $rd, $rs, $rt", (FLT_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>; def : InstAlias<"fge.h $rd, $rs, $rt", (FLE_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>; let usesCustomInserter = 1 in { def PseudoQuietFLE_H_INX : PseudoQuietFCMP; def PseudoQuietFLT_H_INX : PseudoQuietFCMP; } } // Predicates = [HasStdExtZhinxmin] //===----------------------------------------------------------------------===// // Pseudo-instructions and codegen patterns //===----------------------------------------------------------------------===// /// Float conversion operations // [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so // are defined later. /// Float arithmetic operations foreach Ext = ZfhExts in { defm : PatFprFprDynFrm_m; defm : PatFprFprDynFrm_m; defm : PatFprFprDynFrm_m; defm : PatFprFprDynFrm_m; } let Predicates = [HasStdExtZfh] in { def : Pat<(f16 (any_fsqrt FPR16:$rs1)), (FSQRT_H FPR16:$rs1, FRM_DYN)>; def : Pat<(f16 (fneg FPR16:$rs1)), (FSGNJN_H $rs1, $rs1)>; def : Pat<(f16 (fabs FPR16:$rs1)), (FSGNJX_H $rs1, $rs1)>; def : Pat<(riscv_fclass (f16 FPR16:$rs1)), (FCLASS_H $rs1)>; def : PatFprFpr; def : Pat<(f16 (fcopysign FPR16:$rs1, (f16 (fneg FPR16:$rs2)))), (FSGNJN_H $rs1, $rs2)>; def : Pat<(f16 (fcopysign FPR16:$rs1, FPR32:$rs2)), (FSGNJ_H $rs1, (FCVT_H_S $rs2, FRM_DYN))>; // fmadd: rs1 * rs2 + rs3 def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, FPR16:$rs3)), (FMADD_H $rs1, $rs2, $rs3, FRM_DYN)>; // fmsub: rs1 * rs2 - rs3 def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, (fneg FPR16:$rs3))), (FMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>; // fnmsub: -rs1 * rs2 + rs3 def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, FPR16:$rs3)), (FNMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>; // fnmadd: -rs1 * rs2 - rs3 def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, (fneg FPR16:$rs3))), (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>; // fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA) def : Pat<(f16 (fneg (any_fma_nsz FPR16:$rs1, FPR16:$rs2, FPR16:$rs3))), (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>; } // Predicates = [HasStdExtZfh] let Predicates = [HasStdExtZhinx] in { /// Float conversion operations // [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so // are defined later. /// Float arithmetic operations def : Pat<(any_fsqrt FPR16INX:$rs1), (FSQRT_H_INX FPR16INX:$rs1, FRM_DYN)>; def : Pat<(fneg FPR16INX:$rs1), (FSGNJN_H_INX $rs1, $rs1)>; def : Pat<(fabs FPR16INX:$rs1), (FSGNJX_H_INX $rs1, $rs1)>; def : Pat<(riscv_fclass FPR16INX:$rs1), (FCLASS_H_INX $rs1)>; def : PatFprFpr; def : Pat<(fcopysign FPR16INX:$rs1, (fneg FPR16INX:$rs2)), (FSGNJN_H_INX $rs1, $rs2)>; def : Pat<(fcopysign FPR16INX:$rs1, FPR32INX:$rs2), (FSGNJ_H_INX $rs1, (FCVT_H_S_INX $rs2, FRM_DYN))>; // fmadd: rs1 * rs2 + rs3 def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3), (FMADD_H_INX $rs1, $rs2, $rs3, FRM_DYN)>; // fmsub: rs1 * rs2 - rs3 def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, (fneg FPR16INX:$rs3)), (FMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>; // fnmsub: -rs1 * rs2 + rs3 def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, FPR16INX:$rs3), (FNMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>; // fnmadd: -rs1 * rs2 - rs3 def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, (fneg FPR16INX:$rs3)), (FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>; // fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA) def : Pat<(fneg (any_fma_nsz FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3)), (FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>; } // Predicates = [HasStdExtZhinx] // The ratified 20191213 ISA spec defines fmin and fmax in a way that matches // LLVM's fminnum and fmaxnum // . foreach Ext = ZfhExts in { defm : PatFprFpr_m; defm : PatFprFpr_m; defm : PatFprFpr_m; defm : PatFprFpr_m; } /// Setcc // FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for // strict versions of those. // Match non-signaling FEQ_D foreach Ext = ZfhExts in { defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; } let Predicates = [HasStdExtZfh] in { // Match signaling FEQ_H def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETEQ)), (AND (FLE_H $rs1, $rs2), (FLE_H $rs2, $rs1))>; def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETOEQ)), (AND (FLE_H $rs1, $rs2), (FLE_H $rs2, $rs1))>; // If both operands are the same, use a single FLE. def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETEQ)), (FLE_H $rs1, $rs1)>; def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETOEQ)), (FLE_H $rs1, $rs1)>; } // Predicates = [HasStdExtZfh] let Predicates = [HasStdExtZhinx] in { // Match signaling FEQ_H def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETEQ)), (AND (FLE_H_INX $rs1, $rs2), (FLE_H_INX $rs2, $rs1))>; def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETOEQ)), (AND (FLE_H_INX $rs1, $rs2), (FLE_H_INX $rs2, $rs1))>; // If both operands are the same, use a single FLE. def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETEQ)), (FLE_H_INX $rs1, $rs1)>; def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETOEQ)), (FLE_H_INX $rs1, $rs1)>; } // Predicates = [HasStdExtZhinx] foreach Ext = ZfhExts in { defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; } let Predicates = [HasStdExtZfh] in { defm Select_FPR16 : SelectCC_GPR_rrirr; def PseudoFROUND_H : PseudoFROUND; } // Predicates = [HasStdExtZfh] let Predicates = [HasStdExtZhinx] in { defm Select_FPR16INX : SelectCC_GPR_rrirr; def PseudoFROUND_H_INX : PseudoFROUND; } // Predicates = [HasStdExtZhinx] let Predicates = [HasStdExtZfhmin] in { /// Loads def : LdPat; /// Stores def : StPat; } // Predicates = [HasStdExtZfhmin] let Predicates = [HasStdExtZhinxmin] in { /// Loads def : Pat<(f16 (load (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12))), (COPY_TO_REGCLASS (LH GPR:$rs1, simm12:$imm12), GPRF16)>; /// Stores def : Pat<(store (f16 FPR16INX:$rs2), (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12)), (SH (COPY_TO_REGCLASS FPR16INX:$rs2, GPR), GPR:$rs1, simm12:$imm12)>; } // Predicates = [HasStdExtZhinxmin] let Predicates = [HasStdExtZfhmin] in { /// Float conversion operations // f32 -> f16, f16 -> f32 def : Pat<(f16 (any_fpround FPR32:$rs1)), (FCVT_H_S FPR32:$rs1, FRM_DYN)>; def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_S_H FPR16:$rs1, FRM_RNE)>; // Moves (no conversion) def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (FMV_H_X GPR:$src)>; def : Pat<(riscv_fmv_x_anyexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>; def : Pat<(riscv_fmv_x_signexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>; def : Pat<(fcopysign FPR32:$rs1, (f16 FPR16:$rs2)), (FSGNJ_S $rs1, (FCVT_S_H $rs2, FRM_RNE))>; } // Predicates = [HasStdExtZfhmin] let Predicates = [HasStdExtZhinxmin] in { /// Float conversion operations // f32 -> f16, f16 -> f32 def : Pat<(any_fpround FPR32INX:$rs1), (FCVT_H_S_INX FPR32INX:$rs1, FRM_DYN)>; def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_S_H_INX FPR16INX:$rs1, FRM_RNE)>; // Moves (no conversion) def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (COPY_TO_REGCLASS GPR:$src, GPR)>; def : Pat<(riscv_fmv_x_anyexth FPR16INX:$src), (COPY_TO_REGCLASS FPR16INX:$src, GPR)>; def : Pat<(riscv_fmv_x_signexth FPR16INX:$src), (COPY_TO_REGCLASS FPR16INX:$src, GPR)>; def : Pat<(fcopysign FPR32INX:$rs1, FPR16INX:$rs2), (FSGNJ_S_INX $rs1, (FCVT_S_H_INX $rs2, FRM_RNE))>; } // Predicates = [HasStdExtZhinxmin] let Predicates = [HasStdExtZfh] in { // half->[u]int. Round-to-zero must be used. def : Pat<(i32 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, 0b001)>; def : Pat<(i32 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_WU_H $rs1, 0b001)>; // Saturating half->[u]int32. def : Pat<(i32 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_W_H $rs1, timm:$frm)>; def : Pat<(i32 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_WU_H $rs1, timm:$frm)>; // half->int32 with current rounding mode. def : Pat<(i32 (any_lrint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_DYN)>; // half->int32 rounded to nearest with ties rounded away from zero. def : Pat<(i32 (any_lround (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_RMM)>; // [u]int->half. Match GCC and default to using dynamic rounding mode. def : Pat<(f16 (any_sint_to_fp (i32 GPR:$rs1))), (FCVT_H_W $rs1, FRM_DYN)>; def : Pat<(f16 (any_uint_to_fp (i32 GPR:$rs1))), (FCVT_H_WU $rs1, FRM_DYN)>; } // Predicates = [HasStdExtZfh] let Predicates = [HasStdExtZhinx] in { // half->[u]int. Round-to-zero must be used. def : Pat<(i32 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, 0b001)>; def : Pat<(i32 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_WU_H_INX $rs1, 0b001)>; // Saturating float->[u]int32. def : Pat<(i32 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_W_H_INX $rs1, timm:$frm)>; def : Pat<(i32 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_WU_H_INX $rs1, timm:$frm)>; // half->int32 with current rounding mode. def : Pat<(i32 (any_lrint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_DYN)>; // half->int32 rounded to nearest with ties rounded away from zero. def : Pat<(i32 (any_lround FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_RMM)>; // [u]int->half. Match GCC and default to using dynamic rounding mode. def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_H_W_INX $rs1, FRM_DYN)>; def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_H_WU_INX $rs1, FRM_DYN)>; } // Predicates = [HasStdExtZhinx] let Predicates = [HasStdExtZfh, IsRV64] in { // Use target specific isd nodes to help us remember the result is sign // extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be // duplicated if it has another user that didn't need the sign_extend. def : Pat<(riscv_any_fcvt_w_rv64 (f16 FPR16:$rs1), timm:$frm), (FCVT_W_H $rs1, timm:$frm)>; def : Pat<(riscv_any_fcvt_wu_rv64 (f16 FPR16:$rs1), timm:$frm), (FCVT_WU_H $rs1, timm:$frm)>; // half->[u]int64. Round-to-zero must be used. def : Pat<(i64 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, 0b001)>; def : Pat<(i64 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_LU_H $rs1, 0b001)>; // Saturating half->[u]int64. def : Pat<(i64 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_L_H $rs1, timm:$frm)>; def : Pat<(i64 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_LU_H $rs1, timm:$frm)>; // half->int64 with current rounding mode. def : Pat<(i64 (any_lrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>; def : Pat<(i64 (any_llrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>; // half->int64 rounded to nearest with ties rounded away from zero. def : Pat<(i64 (any_lround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>; def : Pat<(i64 (any_llround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>; // [u]int->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(f16 (any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1))))), (FCVT_H_W $rs1, FRM_DYN)>; def : Pat<(f16 (any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1))))), (FCVT_H_WU $rs1, FRM_DYN)>; def : Pat<(f16 (any_sint_to_fp (i64 GPR:$rs1))), (FCVT_H_L $rs1, FRM_DYN)>; def : Pat<(f16 (any_uint_to_fp (i64 GPR:$rs1))), (FCVT_H_LU $rs1, FRM_DYN)>; } // Predicates = [HasStdExtZfh, IsRV64] let Predicates = [HasStdExtZhinx, IsRV64] in { // Use target specific isd nodes to help us remember the result is sign // extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be // duplicated if it has another user that didn't need the sign_extend. def : Pat<(riscv_any_fcvt_w_rv64 FPR16INX:$rs1, timm:$frm), (FCVT_W_H_INX $rs1, timm:$frm)>; def : Pat<(riscv_any_fcvt_wu_rv64 FPR16INX:$rs1, timm:$frm), (FCVT_WU_H_INX $rs1, timm:$frm)>; // half->[u]int64. Round-to-zero must be used. def : Pat<(i64 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, 0b001)>; def : Pat<(i64 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_LU_H_INX $rs1, 0b001)>; // Saturating float->[u]int64. def : Pat<(i64 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_L_H_INX $rs1, timm:$frm)>; def : Pat<(i64 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_LU_H_INX $rs1, timm:$frm)>; // half->int64 with current rounding mode. def : Pat<(i64 (any_lrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>; def : Pat<(i64 (any_llrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>; // half->int64 rounded to nearest with ties rounded away from zero. def : Pat<(i64 (any_lround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>; def : Pat<(i64 (any_llround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>; // [u]int->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_H_W_INX $rs1, FRM_DYN)>; def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_H_WU_INX $rs1, FRM_DYN)>; def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_H_L_INX $rs1, FRM_DYN)>; def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_H_LU_INX $rs1, FRM_DYN)>; } // Predicates = [HasStdExtZhinx, IsRV64] let Predicates = [HasStdExtZfhmin, HasStdExtD] in { /// Float conversion operations // f64 -> f16, f16 -> f64 def : Pat<(f16 (any_fpround FPR64:$rs1)), (FCVT_H_D FPR64:$rs1, FRM_DYN)>; def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_D_H FPR16:$rs1, FRM_RNE)>; /// Float arithmetic operations def : Pat<(f16 (fcopysign FPR16:$rs1, FPR64:$rs2)), (FSGNJ_H $rs1, (FCVT_H_D $rs2, FRM_DYN))>; def : Pat<(fcopysign FPR64:$rs1, (f16 FPR16:$rs2)), (FSGNJ_D $rs1, (FCVT_D_H $rs2, FRM_RNE))>; } // Predicates = [HasStdExtZfhmin, HasStdExtD] let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32] in { /// Float conversion operations // f64 -> f16, f16 -> f64 def : Pat<(any_fpround FPR64IN32X:$rs1), (FCVT_H_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>; def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_IN32X FPR16INX:$rs1, FRM_RNE)>; /// Float arithmetic operations def : Pat<(fcopysign FPR16INX:$rs1, FPR64IN32X:$rs2), (FSGNJ_H_INX $rs1, (FCVT_H_D_IN32X $rs2, 0b111))>; def : Pat<(fcopysign FPR64IN32X:$rs1, FPR16INX:$rs2), (FSGNJ_D_IN32X $rs1, (FCVT_D_H_IN32X $rs2, FRM_RNE))>; } // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32] let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64] in { /// Float conversion operations // f64 -> f16, f16 -> f64 def : Pat<(any_fpround FPR64INX:$rs1), (FCVT_H_D_INX FPR64INX:$rs1, FRM_DYN)>; def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_INX FPR16INX:$rs1, FRM_RNE)>; /// Float arithmetic operations def : Pat<(fcopysign FPR16INX:$rs1, FPR64INX:$rs2), (FSGNJ_H_INX $rs1, (FCVT_H_D_INX $rs2, 0b111))>; def : Pat<(fcopysign FPR64INX:$rs1, FPR16INX:$rs2), (FSGNJ_D_INX $rs1, (FCVT_D_H_INX $rs2, FRM_RNE))>; } // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64] let Predicates = [HasStdExtZfhmin, NoStdExtZfh] in { // half->[u]int. Round-to-zero must be used. def : Pat<(i32 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_W_S (FCVT_S_H $rs1, FRM_RNE), FRM_RTZ)>; def : Pat<(i32 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_WU_S (FCVT_S_H $rs1, FRM_RNE), FRM_RTZ)>; // half->int32 with current rounding mode. def : Pat<(i32 (any_lrint (f16 FPR16:$rs1))), (FCVT_W_S (FCVT_S_H $rs1, FRM_RNE), FRM_DYN)>; // half->int32 rounded to nearest with ties rounded away from zero. def : Pat<(i32 (any_lround (f16 FPR16:$rs1))), (FCVT_W_S (FCVT_S_H $rs1, FRM_RNE), FRM_RMM)>; // [u]int->half. Match GCC and default to using dynamic rounding mode. def : Pat<(f16 (any_sint_to_fp (i32 GPR:$rs1))), (FCVT_H_S (FCVT_S_W $rs1, FRM_DYN), FRM_DYN)>; def : Pat<(f16 (any_uint_to_fp (i32 GPR:$rs1))), (FCVT_H_S (FCVT_S_WU $rs1, FRM_DYN), FRM_DYN)>; } // Predicates = [HasStdExtZfhmin, NoStdExtZfh] let Predicates = [HasStdExtZhinxmin, NoStdExtZhinx] in { // half->[u]int. Round-to-zero must be used. def : Pat<(i32 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_W_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RTZ)>; def : Pat<(i32 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_WU_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RTZ)>; // half->int32 with current rounding mode. def : Pat<(i32 (any_lrint FPR16INX:$rs1)), (FCVT_W_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_DYN)>; // half->int32 rounded to nearest with ties rounded away from zero. def : Pat<(i32 (any_lround FPR16INX:$rs1)), (FCVT_W_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RMM)>; // [u]int->half. Match GCC and default to using dynamic rounding mode. def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_H_S_INX (FCVT_S_W_INX $rs1, FRM_DYN), FRM_DYN)>; def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_H_S_INX (FCVT_S_WU_INX $rs1, FRM_DYN), FRM_DYN)>; } // Predicates = [HasStdExtZhinxmin, NoStdExtZhinx] let Predicates = [HasStdExtZfhmin, NoStdExtZfh, IsRV64] in { // half->[u]int64. Round-to-zero must be used. def : Pat<(i64 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_RTZ)>; def : Pat<(i64 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_LU_S (FCVT_S_H $rs1, FRM_RNE), FRM_RTZ)>; // half->int64 with current rounding mode. def : Pat<(i64 (any_lrint (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_DYN)>; def : Pat<(i64 (any_llrint (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_DYN)>; // half->int64 rounded to nearest with ties rounded away from zero. def : Pat<(i64 (any_lround (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_RMM)>; def : Pat<(i64 (any_llround (f16 FPR16:$rs1))), (FCVT_L_S (FCVT_S_H $rs1, FRM_RNE), FRM_RMM)>; // [u]int->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(f16 (any_sint_to_fp (i64 GPR:$rs1))), (FCVT_H_S (FCVT_S_L $rs1, FRM_DYN), FRM_DYN)>; def : Pat<(f16 (any_uint_to_fp (i64 GPR:$rs1))), (FCVT_H_S (FCVT_S_LU $rs1, FRM_DYN), FRM_DYN)>; } // Predicates = [HasStdExtZfhmin, NoStdExtZfh, IsRV64] let Predicates = [HasStdExtZhinxmin, NoStdExtZhinx, IsRV64] in { // half->[u]int64. Round-to-zero must be used. def : Pat<(i64 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RTZ)>; def : Pat<(i64 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_LU_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RTZ)>; // half->int64 with current rounding mode. def : Pat<(i64 (any_lrint FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_DYN)>; def : Pat<(i64 (any_llrint FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_DYN)>; // half->int64 rounded to nearest with ties rounded away from zero. def : Pat<(i64 (any_lround FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RMM)>; def : Pat<(i64 (any_llround FPR16INX:$rs1)), (FCVT_L_S_INX (FCVT_S_H_INX $rs1, FRM_RNE), FRM_RMM)>; // [u]int->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_H_S_INX (FCVT_S_L_INX $rs1, FRM_DYN), FRM_DYN)>; def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_H_S_INX (FCVT_S_LU_INX $rs1, FRM_DYN), FRM_DYN)>; } // Predicates = [HasStdExtZhinxmin, NoStdExtZhinx, IsRV64]