//===-- RISCVInstrInfoVPseudos.td - RISC-V 'V' Pseudos -----*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This file contains the required infrastructure to support code generation /// for the standard 'V' (Vector) extension, version 0.10. This version is still /// experimental as the 'V' extension hasn't been ratified yet. /// /// This file is included from RISCVInstrInfoV.td /// //===----------------------------------------------------------------------===// def riscv_vmv_x_s : SDNode<"RISCVISD::VMV_X_S", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVec<1>, SDTCisInt<1>]>>; def riscv_read_vlenb : SDNode<"RISCVISD::READ_VLENB", SDTypeProfile<1, 0, [SDTCisVT<0, XLenVT>]>>; def riscv_vleff : SDNode<"RISCVISD::VLEFF", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisVT<2, XLenVT>]>, [SDNPHasChain, SDNPOutGlue, SDNPMayLoad, SDNPSideEffect]>; def riscv_vleff_mask : SDNode<"RISCVISD::VLEFF_MASK", SDTypeProfile<1, 4, [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>, SDTCVecEltisVT<3, i1>, SDTCisVT<4, XLenVT>]>, [SDNPHasChain, SDNPOutGlue, SDNPMayLoad, SDNPSideEffect]>; def riscv_read_vl : SDNode<"RISCVISD::READ_VL", SDTypeProfile<1, 0, [SDTCisVT<0, XLenVT>]>, [SDNPInGlue]>; // X0 has special meaning for vsetvl/vsetvli. // rd | rs1 | AVL value | Effect on vl //-------------------------------------------------------------- // !X0 | X0 | VLMAX | Set vl to VLMAX // X0 | X0 | Value in vl | Keep current vl, just change vtype. def VLOp : ComplexPattern; def DecImm : SDNodeXFormgetTargetConstant(N->getSExtValue() - 1, SDLoc(N), N->getValueType(0)); }]>; //===----------------------------------------------------------------------===// // Utilities. //===----------------------------------------------------------------------===// // This class describes information associated to the LMUL. class LMULInfo { bits<3> value = lmul; // This is encoded as the vlmul field of vtype. VReg vrclass = regclass; VReg wvrclass = wregclass; VReg f8vrclass = f8regclass; VReg f4vrclass = f4regclass; VReg f2vrclass = f2regclass; string MX = mx; } // Associate LMUL with tablegen records of register classes. def V_M1 : LMULInfo<0b000, VR, VRM2, VR, VR, VR, "M1">; def V_M2 : LMULInfo<0b001, VRM2, VRM4, VR, VR, VR, "M2">; def V_M4 : LMULInfo<0b010, VRM4, VRM8, VRM2, VR, VR, "M4">; def V_M8 : LMULInfo<0b011, VRM8,/*NoVReg*/VR, VRM4, VRM2, VR, "M8">; def V_MF8 : LMULInfo<0b101, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF8">; def V_MF4 : LMULInfo<0b110, VR, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF4">; def V_MF2 : LMULInfo<0b111, VR, VR, VR, VR,/*NoVReg*/VR, "MF2">; // Used to iterate over all possible LMULs. def MxList { list m = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; } class FPR_Info { RegisterClass fprclass = regclass; string FX = fx; } def SCALAR_F16 : FPR_Info; def SCALAR_F32 : FPR_Info; def SCALAR_F64 : FPR_Info; def FPList { list fpinfo = [SCALAR_F16, SCALAR_F32, SCALAR_F64]; } class MxSet { list m = !cond(!eq(eew, 8) : [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8], !eq(eew, 16) : [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8], !eq(eew, 32) : [V_MF2, V_M1, V_M2, V_M4, V_M8], !eq(eew, 64) : [V_M1, V_M2, V_M4, V_M8]); } class NFSet { list L = !cond(!eq(m.value, V_M8.value): [], !eq(m.value, V_M4.value): [2], !eq(m.value, V_M2.value): [2, 3, 4], true: [2, 3, 4, 5, 6, 7, 8]); } class shift_amount { int val = !if(!eq(num, 1), 0, !add(1, shift_amount.val)); } class octuple_from_str { int ret = !cond(!eq(MX, "MF8") : 1, !eq(MX, "MF4") : 2, !eq(MX, "MF2") : 4, !eq(MX, "M1") : 8, !eq(MX, "M2") : 16, !eq(MX, "M4") : 32, !eq(MX, "M8") : 64); } class octuple_to_str { string ret = !if(!eq(octuple, 1), "MF8", !if(!eq(octuple, 2), "MF4", !if(!eq(octuple, 4), "MF2", !if(!eq(octuple, 8), "M1", !if(!eq(octuple, 16), "M2", !if(!eq(octuple, 32), "M4", !if(!eq(octuple, 64), "M8", "NoDef"))))))); } // Output pattern for X0 used to represent VLMAX in the pseudo instructions. def VLMax : OutPatFrag<(ops), (XLenVT X0)>; // List of EEW. defvar EEWList = [8, 16, 32, 64]; class SegRegClass { VReg RC = !cast("VRN" # nf # !cond(!eq(m.value, V_MF8.value): V_M1.MX, !eq(m.value, V_MF4.value): V_M1.MX, !eq(m.value, V_MF2.value): V_M1.MX, true: m.MX)); } //===----------------------------------------------------------------------===// // Vector register and vector group type information. //===----------------------------------------------------------------------===// class VTypeInfo { ValueType Vector = Vec; ValueType Mask = Mas; int SEW = Sew; VReg RegClass = Reg; LMULInfo LMul = M; ValueType Scalar = Scal; RegisterClass ScalarRegClass = ScalarReg; // The pattern fragment which produces the AVL operand, representing the // "natural" vector length for this type. For scalable vectors this is VLMax. OutPatFrag AVL = VLMax; string ScalarSuffix = !cond(!eq(Scal, XLenVT) : "X", !eq(Scal, f16) : "F16", !eq(Scal, f32) : "F32", !eq(Scal, f64) : "F64"); } class GroupVTypeInfo : VTypeInfo { ValueType VectorM1 = VecM1; } defset list AllVectors = { defset list AllIntegerVectors = { defset list NoGroupIntegerVectors = { def VI8MF8: VTypeInfo; def VI8MF4: VTypeInfo; def VI8MF2: VTypeInfo; def VI8M1: VTypeInfo; def VI16MF4: VTypeInfo; def VI16MF2: VTypeInfo; def VI16M1: VTypeInfo; def VI32MF2: VTypeInfo; def VI32M1: VTypeInfo; def VI64M1: VTypeInfo; } defset list GroupIntegerVectors = { def VI8M2: GroupVTypeInfo; def VI8M4: GroupVTypeInfo; def VI8M8: GroupVTypeInfo; def VI16M2: GroupVTypeInfo; def VI16M4: GroupVTypeInfo; def VI16M8: GroupVTypeInfo; def VI32M2: GroupVTypeInfo; def VI32M4: GroupVTypeInfo; def VI32M8: GroupVTypeInfo; def VI64M2: GroupVTypeInfo; def VI64M4: GroupVTypeInfo; def VI64M8: GroupVTypeInfo; } } defset list AllFloatVectors = { defset list NoGroupFloatVectors = { def VF16MF4: VTypeInfo; def VF16MF2: VTypeInfo; def VF16M1: VTypeInfo; def VF32MF2: VTypeInfo; def VF32M1: VTypeInfo; def VF64M1: VTypeInfo; } defset list GroupFloatVectors = { def VF16M2: GroupVTypeInfo; def VF16M4: GroupVTypeInfo; def VF16M8: GroupVTypeInfo; def VF32M2: GroupVTypeInfo; def VF32M4: GroupVTypeInfo; def VF32M8: GroupVTypeInfo; def VF64M2: GroupVTypeInfo; def VF64M4: GroupVTypeInfo; def VF64M8: GroupVTypeInfo; } } } // This functor is used to obtain the int vector type that has the same SEW and // multiplier as the input parameter type class GetIntVTypeInfo { // Equivalent integer vector type. Eg. // VI8M1 → VI8M1 (identity) // VF64M4 → VI64M4 VTypeInfo Vti = !cast(!subst("VF", "VI", !cast(vti))); } class MTypeInfo { ValueType Mask = Mas; // {SEW, VLMul} values set a valid VType to deal with this mask type. // we assume SEW=8 and set corresponding LMUL. int SEW = 8; LMULInfo LMul = M; string BX = Bx; // Appendix of mask operations. // The pattern fragment which produces the AVL operand, representing the // "natural" vector length for this mask type. For scalable masks this is // VLMax. OutPatFrag AVL = VLMax; } defset list AllMasks = { // vbool_t, = SEW/LMUL, we assume SEW=8 and corresponding LMUL. def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; def : MTypeInfo; } class VTypeInfoToWide { VTypeInfo Vti = vti; VTypeInfo Wti = wti; } class VTypeInfoToFraction { VTypeInfo Vti = vti; VTypeInfo Fti = fti; } defset list AllWidenableIntVectors = { def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; } defset list AllWidenableFloatVectors = { def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; } defset list AllFractionableVF2IntVectors = { def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; } defset list AllFractionableVF4IntVectors = { def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; } defset list AllFractionableVF8IntVectors = { def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; def : VTypeInfoToFraction; } defset list AllWidenableIntToFloatVectors = { def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; def : VTypeInfoToWide; } // This class holds the record of the RISCVVPseudoTable below. // This represents the information we need in codegen for each pseudo. // The definition should be consistent with `struct PseudoInfo` in // RISCVBaseInfo.h. class CONST8b val> { bits<8> V = val; } def InvalidIndex : CONST8b<0x80>; class RISCVVPseudo { Pseudo Pseudo = !cast(NAME); // Used as a key. Instruction BaseInstr; } // The actual table. def RISCVVPseudosTable : GenericTable { let FilterClass = "RISCVVPseudo"; let CppTypeName = "PseudoInfo"; let Fields = [ "Pseudo", "BaseInstr" ]; let PrimaryKey = [ "Pseudo" ]; let PrimaryKeyName = "getPseudoInfo"; } def RISCVVIntrinsicsTable : GenericTable { let FilterClass = "RISCVVIntrinsic"; let CppTypeName = "RISCVVIntrinsicInfo"; let Fields = ["IntrinsicID", "ExtendOperand"]; let PrimaryKey = ["IntrinsicID"]; let PrimaryKeyName = "getRISCVVIntrinsicInfo"; } class RISCVZvlsseg S, bits<3> L, bits<3> IL = V_M1.value> { Intrinsic IntrinsicID = !cast(IntrName); bits<11> SEW = S; bits<3> LMUL = L; bits<3> IndexLMUL = IL; Pseudo Pseudo = !cast(NAME); } def RISCVZvlssegTable : GenericTable { let FilterClass = "RISCVZvlsseg"; let Fields = ["IntrinsicID", "SEW", "LMUL", "IndexLMUL", "Pseudo"]; let PrimaryKey = ["IntrinsicID", "SEW", "LMUL", "IndexLMUL"]; let PrimaryKeyName = "getPseudo"; } //===----------------------------------------------------------------------===// // Helpers to define the different pseudo instructions. //===----------------------------------------------------------------------===// class PseudoToVInst { string VInst = !subst("_M8", "", !subst("_M4", "", !subst("_M2", "", !subst("_M1", "", !subst("_MF2", "", !subst("_MF4", "", !subst("_MF8", "", !subst("_B1", "", !subst("_B2", "", !subst("_B4", "", !subst("_B8", "", !subst("_B16", "", !subst("_B32", "", !subst("_B64", "", !subst("_MASK", "", !subst("F16", "F", !subst("F32", "F", !subst("F64", "F", !subst("Pseudo", "", PseudoInst))))))))))))))))))); } class ToLowerCase { string L = !subst("FF", "ff", !subst("VLSEG", "vlseg", !subst("VLSSEG", "vlsseg", !subst("VSSEG", "vsseg", !subst("VSSSEG", "vssseg", !subst("VLOXSEG", "vloxseg", !subst("VLUXSEG", "vluxseg", !subst("VSOXSEG", "vsoxseg", !subst("VSUXSEG", "vsuxseg", Upper))))))))); } // Example: PseudoVLSEG2E32_V_M2 -> int_riscv_vlseg2 // Example: PseudoVLSEG2E32_V_M2_MASK -> int_riscv_vlseg2_mask class PseudoToIntrinsic { string Intrinsic = !strconcat("int_riscv_", ToLowerCase< !subst("E8", "", !subst("E16", "", !subst("E32", "", !subst("E64", "", !subst("EI8", "", !subst("EI16", "", !subst("EI32", "", !subst("EI64", "", !subst("_V", "", PseudoToVInst.VInst)))))))))>.L, !if(IsMasked, "_mask", "")); } // The destination vector register group for a masked vector instruction cannot // overlap the source mask register (v0), unless the destination vector register // is being written with a mask value (e.g., comparisons) or the scalar result // of a reduction. class GetVRegNoV0 { VReg R = !cond(!eq(VRegClass, VR) : VRNoV0, !eq(VRegClass, VRM2) : VRM2NoV0, !eq(VRegClass, VRM4) : VRM4NoV0, !eq(VRegClass, VRM8) : VRM8NoV0, !eq(1, 1) : VRegClass); } // Join strings in list using separator and ignoring empty elements class Join strings, string separator> { string ret = !foldl(!head(strings), !tail(strings), a, b, !cond( !and(!empty(a), !empty(b)) : "", !empty(a) : b, !empty(b) : a, 1 : a#separator#b)); } class VPseudo : Pseudo, RISCVVPseudo { let BaseInstr = instr; let VLMul = m.value; } class VPseudoUSLoadNoMask: Pseudo<(outs RetClass:$rd), (ins GPR:$rs1, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUSLoadMask: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPR:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "$rd = $merge"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSLoadNoMask: Pseudo<(outs RetClass:$rd), (ins GPR:$rs1, GPR:$rs2, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSLoadMask: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPR:$rs1, GPR:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "$rd = $merge"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoILoadNoMask: Pseudo<(outs RetClass:$rd), (ins GPR:$rs1, IdxClass:$rs2, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoILoadMask: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPR:$rs1, IdxClass:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "$rd = $merge"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUSStoreNoMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUSStoreMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSStoreNoMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, GPR:$rs2, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSStoreMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, GPR:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } // Unary instruction that is never masked so HasDummyMask=0. class VPseudoUnaryNoDummyMask : Pseudo<(outs RetClass:$rd), (ins Op2Class:$rs1, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoNullaryNoMask: Pseudo<(outs RegClass:$rd), (ins GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoNullaryMask: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints ="$rd = $merge"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } // Nullary for pseudo instructions. They are expanded in // RISCVExpandPseudoInsts pass. class VPseudoNullaryPseudoM : Pseudo<(outs VR:$rd), (ins GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; // BaseInstr is not used in RISCVExpandPseudoInsts pass. // Just fill a corresponding real v-inst to pass tablegen check. let BaseInstr = !cast(BaseInst); } // RetClass could be GPR or VReg. class VPseudoUnaryNoMask : Pseudo<(outs RetClass:$rd), (ins OpClass:$rs2, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Constraint; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUnaryMask : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, OpClass:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } // mask unary operation without maskedoff class VPseudoMaskUnarySOutMask: Pseudo<(outs GPR:$rd), (ins VR:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } // Masked mask operation have no $rd=$merge constraints class VPseudoUnaryMOutMask: Pseudo<(outs VR:$rd), (ins VR:$merge, VR:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "$rd = $merge"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } // Mask can be V0~V31 class VPseudoUnaryAnyMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, VR:$vm, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "@earlyclobber $rd, $rd = $merge"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoBinaryNoMask : Pseudo<(outs RetClass:$rd), (ins Op1Class:$rs2, Op2Class:$rs1, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Constraint; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoIStoreNoMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, IdxClass:$rs2, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoIStoreMask: Pseudo<(outs), (ins StClass:$rd, GPR:$rs1, IdxClass:$rs2, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoBinaryMask : Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoBinaryCarryIn : Pseudo<(outs RetClass:$rd), !if(CarryIn, (ins Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, GPR:$vl, ixlenimm:$sew), (ins Op1Class:$rs2, Op2Class:$rs1, GPR:$vl, ixlenimm:$sew)), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Constraint; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 0; let BaseInstr = !cast(PseudoToVInst.VInst); let VLMul = MInfo.value; } class VPseudoTernaryNoMask : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = Join<[Constraint, "$rd = $rs3"], ",">.ret; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoAMOWDNoMask : Pseudo<(outs GetVRegNoV0.R:$vd_wd), (ins GPR:$rs1, Op1Class:$vs2, GetVRegNoV0.R:$vd, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 1; let mayStore = 1; let hasSideEffects = 1; let usesCustomInserter = 1; let Constraints = "$vd_wd = $vd"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoAMOWDMask : Pseudo<(outs GetVRegNoV0.R:$vd_wd), (ins GPR:$rs1, Op1Class:$vs2, GetVRegNoV0.R:$vd, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 1; let mayStore = 1; let hasSideEffects = 1; let usesCustomInserter = 1; let Constraints = "$vd_wd = $vd"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } multiclass VPseudoAMOEI { // Standard scalar AMO supports 32, 64, and 128 Mem data bits, // and in the base vector "V" extension, only SEW up to ELEN = max(XLEN, FLEN) // are required to be supported. // therefore only [32, 64] is allowed here. foreach sew = [32, 64] in { foreach lmul = MxSet.m in { defvar octuple_lmul = octuple_from_str.ret; // Calculate emul = eew * lmul / sew defvar octuple_emul = !srl(!mul(eew, octuple_lmul), shift_amount.val); if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then { defvar emulMX = octuple_to_str.ret; defvar lmulMX = octuple_to_str.ret; defvar emul= !cast("V_" # emulMX); defvar lmul = !cast("V_" # lmulMX); let VLMul = lmul.value in { def "_WD_" # lmulMX # "_" # emulMX : VPseudoAMOWDNoMask; def "_WD_" # lmulMX # "_" # emulMX # "_MASK" : VPseudoAMOWDMask; } } } } } multiclass VPseudoAMO { foreach eew = EEWList in defm "EI" # eew : VPseudoAMOEI; } class VPseudoUSSegLoadNoMask EEW>: Pseudo<(outs RetClass:$rd), (ins GPR:$rs1, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUSSegLoadMask EEW>: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPR:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "$rd = $merge"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSSegLoadNoMask EEW>: Pseudo<(outs RetClass:$rd), (ins GPR:$rs1, GPR:$offset, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSSegLoadMask EEW>: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPR:$rs1, GPR:$offset, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; let Constraints = "$rd = $merge"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoISegLoadNoMask EEW, bits<3> LMUL>: Pseudo<(outs RetClass:$rd), (ins GPR:$rs1, IdxClass:$offset, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul, LMUL> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; // For vector indexed segment loads, the destination vector register groups // cannot overlap the source vector register group let Constraints = "@earlyclobber $rd"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoISegLoadMask EEW, bits<3> LMUL>: Pseudo<(outs GetVRegNoV0.R:$rd), (ins GetVRegNoV0.R:$merge, GPR:$rs1, IdxClass:$offset, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul, LMUL> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let usesCustomInserter = 1; // For vector indexed segment loads, the destination vector register groups // cannot overlap the source vector register group let Constraints = "@earlyclobber $rd, $rd = $merge"; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasMergeOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUSSegStoreNoMask EEW>: Pseudo<(outs), (ins ValClass:$rd, GPR:$rs1, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoUSSegStoreMask EEW>: Pseudo<(outs), (ins ValClass:$rd, GPR:$rs1, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSSegStoreNoMask EEW>: Pseudo<(outs), (ins ValClass:$rd, GPR:$rs1, GPR: $offset, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoSSegStoreMask EEW>: Pseudo<(outs), (ins ValClass:$rd, GPR:$rs1, GPR: $offset, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoISegStoreNoMask EEW, bits<3> LMUL>: Pseudo<(outs), (ins ValClass:$rd, GPR:$rs1, IdxClass: $index, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul, LMUL> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let HasDummyMask = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } class VPseudoISegStoreMask EEW, bits<3> LMUL>: Pseudo<(outs), (ins ValClass:$rd, GPR:$rs1, IdxClass: $index, VMaskOp:$vm, GPR:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVZvlsseg.Intrinsic, EEW, VLMul, LMUL> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let usesCustomInserter = 1; let Uses = [VL, VTYPE]; let HasVLOp = 1; let HasSEWOp = 1; let BaseInstr = !cast(PseudoToVInst.VInst); } multiclass VPseudoUSLoad { foreach lmul = MxList.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value in { def "_V_" # LInfo : VPseudoUSLoadNoMask; def "_V_" # LInfo # "_MASK" : VPseudoUSLoadMask; } } } multiclass VPseudoLoadMask { foreach mti = AllMasks in { let VLMul = mti.LMul.value in { def "_V_" # mti.BX : VPseudoUSLoadNoMask; } } } multiclass VPseudoSLoad { foreach lmul = MxList.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value in { def "_V_" # LInfo : VPseudoSLoadNoMask; def "_V_" # LInfo # "_MASK" : VPseudoSLoadMask; } } } multiclass VPseudoILoad { foreach lmul = MxList.m in foreach idx_lmul = MxList.m in { defvar LInfo = lmul.MX; defvar Vreg = lmul.vrclass; defvar IdxLInfo = idx_lmul.MX; defvar IdxVreg = idx_lmul.vrclass; let VLMul = lmul.value in { def "_V_" # IdxLInfo # "_" # LInfo : VPseudoILoadNoMask; def "_V_" # IdxLInfo # "_" # LInfo # "_MASK" : VPseudoILoadMask; } } } multiclass VPseudoUSStore { foreach lmul = MxList.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value in { def "_V_" # LInfo : VPseudoUSStoreNoMask; def "_V_" # LInfo # "_MASK" : VPseudoUSStoreMask; } } } multiclass VPseudoStoreMask { foreach mti = AllMasks in { let VLMul = mti.LMul.value in { def "_V_" # mti.BX : VPseudoUSStoreNoMask; } } } multiclass VPseudoSStore { foreach lmul = MxList.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value in { def "_V_" # LInfo : VPseudoSStoreNoMask; def "_V_" # LInfo # "_MASK" : VPseudoSStoreMask; } } } multiclass VPseudoIStore { foreach lmul = MxList.m in foreach idx_lmul = MxList.m in { defvar LInfo = lmul.MX; defvar Vreg = lmul.vrclass; defvar IdxLInfo = idx_lmul.MX; defvar IdxVreg = idx_lmul.vrclass; let VLMul = lmul.value in { def "_V_" # IdxLInfo # "_" # LInfo : VPseudoIStoreNoMask; def "_V_" # IdxLInfo # "_" # LInfo # "_MASK" : VPseudoIStoreMask; } } } multiclass VPseudoUnaryS_M { foreach mti = AllMasks in { let VLMul = mti.LMul.value in { def "_M_" # mti.BX : VPseudoUnaryNoMask; def "_M_" # mti.BX # "_MASK" : VPseudoMaskUnarySOutMask; } } } multiclass VPseudoUnaryM_M { defvar constraint = "@earlyclobber $rd"; foreach mti = AllMasks in { let VLMul = mti.LMul.value in { def "_M_" # mti.BX : VPseudoUnaryNoMask; def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMask; } } } multiclass VPseudoMaskNullaryV { foreach m = MxList.m in { let VLMul = m.value in { def "_V_" # m.MX : VPseudoNullaryNoMask; def "_V_" # m.MX # "_MASK" : VPseudoNullaryMask; } } } multiclass VPseudoNullaryPseudoM { foreach mti = AllMasks in { let VLMul = mti.LMul.value in { def "_M_" # mti.BX : VPseudoNullaryPseudoM; } } } multiclass VPseudoUnaryV_M { defvar constraint = "@earlyclobber $rd"; foreach m = MxList.m in { let VLMul = m.value in { def "_" # m.MX : VPseudoUnaryNoMask; def "_" # m.MX # "_MASK" : VPseudoUnaryMask; } } } multiclass VPseudoUnaryV_V_AnyMask { foreach m = MxList.m in { let VLMul = m.value in def _VM # "_" # m.MX : VPseudoUnaryAnyMask; } } multiclass VPseudoBinary { let VLMul = MInfo.value in { def "_" # MInfo.MX : VPseudoBinaryNoMask; def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMask; } } multiclass VPseudoBinaryEmul { let VLMul = lmul.value in { def "_" # lmul.MX # "_" # emul.MX : VPseudoBinaryNoMask; def "_" # lmul.MX # "_" # emul.MX # "_MASK" : VPseudoBinaryMask; } } multiclass VPseudoBinaryV_VV { foreach m = MxList.m in defm _VV : VPseudoBinary; } multiclass VPseudoBinaryV_VV_EEW { foreach m = MxList.m in { foreach sew = EEWList in { defvar octuple_lmul = octuple_from_str.ret; // emul = lmul * eew / sew defvar octuple_emul = !srl(!mul(octuple_lmul, eew), shift_amount.val); if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then { defvar emulMX = octuple_to_str.ret; defvar emul = !cast("V_" # emulMX); defm _VV : VPseudoBinaryEmul; } } } } multiclass VPseudoBinaryV_VX { foreach m = MxList.m in defm "_VX" : VPseudoBinary; } multiclass VPseudoBinaryV_VF { foreach m = MxList.m in foreach f = FPList.fpinfo in defm "_V" # f.FX : VPseudoBinary; } multiclass VPseudoBinaryV_VI { foreach m = MxList.m in defm _VI : VPseudoBinary; } multiclass VPseudoBinaryM_MM { foreach m = MxList.m in let VLMul = m.value in { def "_MM_" # m.MX : VPseudoBinaryNoMask; } } // We use earlyclobber here due to // * The destination EEW is smaller than the source EEW and the overlap is // in the lowest-numbered part of the source register group is legal. // Otherwise, it is illegal. // * The destination EEW is greater than the source EEW, the source EMUL is // at least 1, and the overlap is in the highest-numbered part of the // destination register group is legal. Otherwise, it is illegal. multiclass VPseudoBinaryW_VV { foreach m = MxList.m[0-5] in defm _VV : VPseudoBinary; } multiclass VPseudoBinaryW_VX { foreach m = MxList.m[0-5] in defm "_VX" : VPseudoBinary; } multiclass VPseudoBinaryW_VF { foreach m = MxList.m[0-5] in foreach f = FPList.fpinfo[0-1] in defm "_V" # f.FX : VPseudoBinary; } multiclass VPseudoBinaryW_WV { foreach m = MxList.m[0-5] in defm _WV : VPseudoBinary; } multiclass VPseudoBinaryW_WX { foreach m = MxList.m[0-5] in defm "_WX" : VPseudoBinary; } multiclass VPseudoBinaryW_WF { foreach m = MxList.m[0-5] in foreach f = FPList.fpinfo[0-1] in defm "_W" # f.FX : VPseudoBinary; } multiclass VPseudoBinaryV_WV { foreach m = MxList.m[0-5] in defm _WV : VPseudoBinary; } multiclass VPseudoBinaryV_WX { foreach m = MxList.m[0-5] in defm _WX : VPseudoBinary; } multiclass VPseudoBinaryV_WI { foreach m = MxList.m[0-5] in defm _WI : VPseudoBinary; } // For vadc and vsbc, the instruction encoding is reserved if the destination // vector register is v0. // For vadc and vsbc, CarryIn == 1 and CarryOut == 0 multiclass VPseudoBinaryV_VM { foreach m = MxList.m in def "_VV" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarryIn.R, m.vrclass)), m.vrclass, m.vrclass, m, CarryIn, Constraint>; } multiclass VPseudoBinaryV_XM { foreach m = MxList.m in def "_VX" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarryIn.R, m.vrclass)), m.vrclass, GPR, m, CarryIn, Constraint>; } multiclass VPseudoBinaryV_FM { foreach m = MxList.m in foreach f = FPList.fpinfo in def "_V" # f.FX # "M_" # m.MX : VPseudoBinaryCarryIn.R, m.vrclass, f.fprclass, m, /*CarryIn=*/1, "">; } multiclass VPseudoBinaryV_IM { foreach m = MxList.m in def "_VI" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarryIn.R, m.vrclass)), m.vrclass, simm5, m, CarryIn, Constraint>; } multiclass VPseudoUnaryV_V_X_I_NoDummyMask { foreach m = MxList.m in { let VLMul = m.value in { def "_V_" # m.MX : VPseudoUnaryNoDummyMask; def "_X_" # m.MX : VPseudoUnaryNoDummyMask; def "_I_" # m.MX : VPseudoUnaryNoDummyMask; } } } multiclass VPseudoUnaryV_F_NoDummyMask { foreach m = MxList.m in { foreach f = FPList.fpinfo in { let VLMul = m.value in { def "_" # f.FX # "_" # m.MX : VPseudoUnaryNoDummyMask; } } } } multiclass VPseudoUnaryV_V { foreach m = MxList.m in { let VLMul = m.value in { def "_V_" # m.MX : VPseudoUnaryNoMask; def "_V_" # m.MX # "_MASK" : VPseudoUnaryMask; } } } multiclass PseudoUnaryV_VF2 { defvar constraints = "@earlyclobber $rd"; foreach m = MxList.m[1-6] in { let VLMul = m.value in { def "_" # m.MX : VPseudoUnaryNoMask; def "_" # m.MX # "_MASK" : VPseudoUnaryMask; } } } multiclass PseudoUnaryV_VF4 { defvar constraints = "@earlyclobber $rd"; foreach m = MxList.m[2-6] in { let VLMul = m.value in { def "_" # m.MX : VPseudoUnaryNoMask; def "_" # m.MX # "_MASK" : VPseudoUnaryMask; } } } multiclass PseudoUnaryV_VF8 { defvar constraints = "@earlyclobber $rd"; foreach m = MxList.m[3-6] in { let VLMul = m.value in { def "_" # m.MX : VPseudoUnaryNoMask; def "_" # m.MX # "_MASK" : VPseudoUnaryMask; } } } // The destination EEW is 1. // The source EEW is 8, 16, 32, or 64. // When the destination EEW is different from source EEW, we need to use // @earlyclobber to avoid the overlap between destination and source registers. multiclass VPseudoBinaryM_VV { foreach m = MxList.m in defm _VV : VPseudoBinary; } multiclass VPseudoBinaryM_VX { foreach m = MxList.m in defm "_VX" : VPseudoBinary; } multiclass VPseudoBinaryM_VF { foreach m = MxList.m in foreach f = FPList.fpinfo in defm "_V" # f.FX : VPseudoBinary; } multiclass VPseudoBinaryM_VI { foreach m = MxList.m in defm _VI : VPseudoBinary; } multiclass VPseudoBinaryV_VV_VX_VI { defm "" : VPseudoBinaryV_VV; defm "" : VPseudoBinaryV_VX; defm "" : VPseudoBinaryV_VI; } multiclass VPseudoBinaryV_VV_VX { defm "" : VPseudoBinaryV_VV; defm "" : VPseudoBinaryV_VX; } multiclass VPseudoBinaryV_VV_VF { defm "" : VPseudoBinaryV_VV; defm "" : VPseudoBinaryV_VF; } multiclass VPseudoBinaryV_VX_VI { defm "" : VPseudoBinaryV_VX; defm "" : VPseudoBinaryV_VI; } multiclass VPseudoBinaryW_VV_VX { defm "" : VPseudoBinaryW_VV; defm "" : VPseudoBinaryW_VX; } multiclass VPseudoBinaryW_VV_VF { defm "" : VPseudoBinaryW_VV; defm "" : VPseudoBinaryW_VF; } multiclass VPseudoBinaryW_WV_WX { defm "" : VPseudoBinaryW_WV; defm "" : VPseudoBinaryW_WX; } multiclass VPseudoBinaryW_WV_WF { defm "" : VPseudoBinaryW_WV; defm "" : VPseudoBinaryW_WF; } multiclass VPseudoBinaryV_VM_XM_IM { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; defm "" : VPseudoBinaryV_IM; } multiclass VPseudoBinaryV_VM_XM { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; } multiclass VPseudoBinaryM_VM_XM_IM { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; defm "" : VPseudoBinaryV_IM; } multiclass VPseudoBinaryM_VM_XM { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; } multiclass VPseudoBinaryM_V_X_I { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; defm "" : VPseudoBinaryV_IM; } multiclass VPseudoBinaryM_V_X { defm "" : VPseudoBinaryV_VM; defm "" : VPseudoBinaryV_XM; } multiclass VPseudoBinaryV_WV_WX_WI { defm "" : VPseudoBinaryV_WV; defm "" : VPseudoBinaryV_WX; defm "" : VPseudoBinaryV_WI; } multiclass VPseudoTernary { let VLMul = MInfo.value in { def "_" # MInfo.MX : VPseudoTernaryNoMask; def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMask; } } multiclass VPseudoTernaryV_VV { foreach m = MxList.m in defm _VV : VPseudoTernary; } multiclass VPseudoTernaryV_VX { foreach m = MxList.m in defm _VX : VPseudoTernary; } multiclass VPseudoTernaryV_VX_AAXA { foreach m = MxList.m in defm "_VX" : VPseudoTernary; } multiclass VPseudoTernaryV_VF_AAXA { foreach m = MxList.m in foreach f = FPList.fpinfo in defm "_V" # f.FX : VPseudoTernary; } multiclass VPseudoTernaryW_VV { defvar constraint = "@earlyclobber $rd"; foreach m = MxList.m[0-5] in defm _VV : VPseudoTernary; } multiclass VPseudoTernaryW_VX { defvar constraint = "@earlyclobber $rd"; foreach m = MxList.m[0-5] in defm "_VX" : VPseudoTernary; } multiclass VPseudoTernaryW_VF { defvar constraint = "@earlyclobber $rd"; foreach m = MxList.m[0-5] in foreach f = FPList.fpinfo[0-1] in defm "_V" # f.FX : VPseudoTernary; } multiclass VPseudoTernaryV_VI { foreach m = MxList.m in defm _VI : VPseudoTernary; } multiclass VPseudoTernaryV_VV_VX_AAXA { defm "" : VPseudoTernaryV_VV; defm "" : VPseudoTernaryV_VX_AAXA; } multiclass VPseudoTernaryV_VV_VF_AAXA { defm "" : VPseudoTernaryV_VV; defm "" : VPseudoTernaryV_VF_AAXA; } multiclass VPseudoTernaryV_VX_VI { defm "" : VPseudoTernaryV_VX; defm "" : VPseudoTernaryV_VI; } multiclass VPseudoTernaryW_VV_VX { defm "" : VPseudoTernaryW_VV; defm "" : VPseudoTernaryW_VX; } multiclass VPseudoTernaryW_VV_VF { defm "" : VPseudoTernaryW_VV; defm "" : VPseudoTernaryW_VF; } multiclass VPseudoBinaryM_VV_VX_VI { defm "" : VPseudoBinaryM_VV; defm "" : VPseudoBinaryM_VX; defm "" : VPseudoBinaryM_VI; } multiclass VPseudoBinaryM_VV_VX { defm "" : VPseudoBinaryM_VV; defm "" : VPseudoBinaryM_VX; } multiclass VPseudoBinaryM_VV_VF { defm "" : VPseudoBinaryM_VV; defm "" : VPseudoBinaryM_VF; } multiclass VPseudoBinaryM_VX_VI { defm "" : VPseudoBinaryM_VX; defm "" : VPseudoBinaryM_VI; } multiclass VPseudoReductionV_VS { foreach m = MxList.m in { let WritesElement0 = 1 in defm _VS : VPseudoTernary; } } multiclass VPseudoConversion { let VLMul = MInfo.value in { def "_" # MInfo.MX : VPseudoUnaryNoMask; def "_" # MInfo.MX # "_MASK" : VPseudoUnaryMask; } } multiclass VPseudoConversionV_V { foreach m = MxList.m in defm _V : VPseudoConversion; } multiclass VPseudoConversionW_V { defvar constraint = "@earlyclobber $rd"; foreach m = MxList.m[0-5] in defm _V : VPseudoConversion; } multiclass VPseudoConversionV_W { defvar constraint = "@earlyclobber $rd"; foreach m = MxList.m[0-5] in defm _W : VPseudoConversion; } multiclass VPseudoUSSegLoad { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; defvar FFStr = !if(isFF, "FF", ""); def nf # "E" # eew # FFStr # "_V_" # LInfo : VPseudoUSSegLoadNoMask; def nf # "E" # eew # FFStr # "_V_" # LInfo # "_MASK" : VPseudoUSSegLoadMask; } } } } } multiclass VPseudoSSegLoad { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegLoadNoMask; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegLoadMask; } } } } } multiclass VPseudoISegLoad { foreach idx_eew = EEWList in { // EEW for index argument. foreach idx_lmul = MxSet.m in { // LMUL for index argument. foreach val_lmul = MxList.m in { // LMUL for the value. defvar IdxLInfo = idx_lmul.MX; defvar IdxVreg = idx_lmul.vrclass; defvar ValLInfo = val_lmul.MX; let VLMul = val_lmul.value in { foreach nf = NFSet.L in { defvar ValVreg = SegRegClass.RC; def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo : VPseudoISegLoadNoMask; def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo # "_MASK" : VPseudoISegLoadMask; } } } } } } multiclass VPseudoUSSegStore { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoUSSegStoreNoMask; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSSegStoreMask; } } } } } multiclass VPseudoSSegStore { foreach eew = EEWList in { foreach lmul = MxSet.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value in { foreach nf = NFSet.L in { defvar vreg = SegRegClass.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegStoreNoMask; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegStoreMask; } } } } } multiclass VPseudoISegStore { foreach idx_eew = EEWList in { // EEW for index argument. foreach idx_lmul = MxSet.m in { // LMUL for index argument. foreach val_lmul = MxList.m in { // LMUL for the value. defvar IdxLInfo = idx_lmul.MX; defvar IdxVreg = idx_lmul.vrclass; defvar ValLInfo = val_lmul.MX; let VLMul = val_lmul.value in { foreach nf = NFSet.L in { defvar ValVreg = SegRegClass.RC; def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo : VPseudoISegStoreNoMask; def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo # "_MASK" : VPseudoISegStoreMask; } } } } } } //===----------------------------------------------------------------------===// // Helpers to define the intrinsic patterns. //===----------------------------------------------------------------------===// class VPatUnaryNoMask : Pat<(result_type (!cast(intrinsic_name) (op2_type op2_reg_class:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_"#kind#"_"#vlmul.MX) (op2_type op2_reg_class:$rs2), GPR:$vl, sew)>; class VPatUnaryMask : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_"#kind#"_"#vlmul.MX#"_MASK") (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), GPR:$vl, sew)>; class VPatMaskUnaryNoMask : Pat<(mti.Mask (!cast(intrinsic_name) (mti.Mask VR:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_M_"#mti.BX) (mti.Mask VR:$rs2), GPR:$vl, mti.SEW)>; class VPatMaskUnaryMask : Pat<(mti.Mask (!cast(intrinsic_name#"_mask") (mti.Mask VR:$merge), (mti.Mask VR:$rs2), (mti.Mask V0), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_M_"#mti.BX#"_MASK") (mti.Mask VR:$merge), (mti.Mask VR:$rs2), (mti.Mask V0), GPR:$vl, mti.SEW)>; class VPatUnaryAnyMask : Pat<(result_type (!cast(intrinsic) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (mask_type VR:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_"#kind#"_"#vlmul.MX) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (mask_type VR:$rs2), GPR:$vl, sew)>; class VPatBinaryNoMask : Pat<(result_type (!cast(intrinsic_name) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast(inst) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew)>; class VPatBinaryMask : Pat<(result_type (!cast(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; class VPatTernaryNoMask : Pat<(result_type (!cast(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_"#kind#"_"#vlmul.MX) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, GPR:$vl, sew)>; class VPatTernaryMask : Pat<(result_type (!cast(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_"#kind#"_"#vlmul.MX # "_MASK") result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (mask_type V0), GPR:$vl, sew)>; class VPatAMOWDNoMask : Pat<(result_type (!cast(intrinsic_name) GPR:$rs1, (op1_type op1_reg_class:$vs2), (result_type vlmul.vrclass:$vd), (XLenVT (VLOp GPR:$vl)))), (!cast(inst # "_WD_" # vlmul.MX # "_" # emul.MX) $rs1, $vs2, $vd, GPR:$vl, sew)>; class VPatAMOWDMask : Pat<(result_type (!cast(intrinsic_name # "_mask") GPR:$rs1, (op1_type op1_reg_class:$vs2), (result_type vlmul.vrclass:$vd), (mask_type V0), (XLenVT (VLOp GPR:$vl)))), (!cast(inst # "_WD_" # vlmul.MX # "_" # emul.MX # "_MASK") $rs1, $vs2, $vd, (mask_type V0), GPR:$vl, sew)>; multiclass VPatUSLoad { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#vlmul.MX); def : Pat<(type (Intr GPR:$rs1, (XLenVT (VLOp GPR:$vl)))), (Pseudo $rs1, GPR:$vl, sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#vlmul.MX#"_MASK"); def : Pat<(type (IntrMask (type GetVRegNoV0.R:$merge), GPR:$rs1, (mask_type V0), (XLenVT (VLOp GPR:$vl)))), (PseudoMask $merge, $rs1, (mask_type V0), GPR:$vl, sew)>; } multiclass VPatUSLoadFF { defvar Pseudo = !cast(inst#"_V_"#vlmul.MX); def : Pat<(type (riscv_vleff GPR:$rs1, (XLenVT (VLOp GPR:$vl)))), (Pseudo $rs1, GPR:$vl, sew)>; defvar PseudoMask = !cast(inst#"_V_"#vlmul.MX#"_MASK"); def : Pat<(type (riscv_vleff_mask (type GetVRegNoV0.R:$merge), GPR:$rs1, (mask_type V0), (XLenVT (VLOp GPR:$vl)))), (PseudoMask $merge, $rs1, (mask_type V0), GPR:$vl, sew)>; } multiclass VPatSLoad { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#vlmul.MX); def : Pat<(type (Intr GPR:$rs1, GPR:$rs2, (XLenVT (VLOp GPR:$vl)))), (Pseudo $rs1, $rs2, GPR:$vl, sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#vlmul.MX#"_MASK"); def : Pat<(type (IntrMask (type GetVRegNoV0.R:$merge), GPR:$rs1, GPR:$rs2, (mask_type V0), (XLenVT (VLOp GPR:$vl)))), (PseudoMask $merge, $rs1, $rs2, (mask_type V0), GPR:$vl, sew)>; } multiclass VPatILoad { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#idx_vlmul.MX#"_"#vlmul.MX); def : Pat<(type (Intr GPR:$rs1, (idx_type idx_reg_class:$rs2), (XLenVT (VLOp GPR:$vl)))), (Pseudo $rs1, $rs2, GPR:$vl, sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#idx_vlmul.MX#"_"#vlmul.MX#"_MASK"); def : Pat<(type (IntrMask (type GetVRegNoV0.R:$merge), GPR:$rs1, (idx_type idx_reg_class:$rs2), (mask_type V0), (XLenVT (VLOp GPR:$vl)))), (PseudoMask $merge, $rs1, $rs2, (mask_type V0), GPR:$vl, sew)>; } multiclass VPatUSStore { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#vlmul.MX); def : Pat<(Intr (type reg_class:$rs3), GPR:$rs1, (XLenVT (VLOp GPR:$vl))), (Pseudo $rs3, $rs1, GPR:$vl, sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#vlmul.MX#"_MASK"); def : Pat<(IntrMask (type reg_class:$rs3), GPR:$rs1, (mask_type V0), (XLenVT (VLOp GPR:$vl))), (PseudoMask $rs3, $rs1, (mask_type V0), GPR:$vl, sew)>; } multiclass VPatSStore { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#vlmul.MX); def : Pat<(Intr (type reg_class:$rs3), GPR:$rs1, GPR:$rs2, (XLenVT (VLOp GPR:$vl))), (Pseudo $rs3, $rs1, $rs2, GPR:$vl, sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#vlmul.MX#"_MASK"); def : Pat<(IntrMask (type reg_class:$rs3), GPR:$rs1, GPR:$rs2, (mask_type V0), (XLenVT (VLOp GPR:$vl))), (PseudoMask $rs3, $rs1, $rs2, (mask_type V0), GPR:$vl, sew)>; } multiclass VPatIStore { defvar Intr = !cast(intrinsic); defvar Pseudo = !cast(inst#"_V_"#idx_vlmul.MX#"_"#vlmul.MX); def : Pat<(Intr (type reg_class:$rs3), GPR:$rs1, (idx_type idx_reg_class:$rs2), (XLenVT (VLOp GPR:$vl))), (Pseudo $rs3, $rs1, $rs2, GPR:$vl, sew)>; defvar IntrMask = !cast(intrinsic # "_mask"); defvar PseudoMask = !cast(inst#"_V_"#idx_vlmul.MX#"_"#vlmul.MX#"_MASK"); def : Pat<(IntrMask (type reg_class:$rs3), GPR:$rs1, (idx_type idx_reg_class:$rs2), (mask_type V0), (XLenVT (VLOp GPR:$vl))), (PseudoMask $rs3, $rs1, $rs2, (mask_type V0), GPR:$vl, sew)>; } multiclass VPatUnaryS_M { foreach mti = AllMasks in { def : Pat<(XLenVT (!cast(intrinsic_name) (mti.Mask VR:$rs1), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_M_"#mti.BX) $rs1, GPR:$vl, mti.SEW)>; def : Pat<(XLenVT (!cast(intrinsic_name # "_mask") (mti.Mask VR:$rs1), (mti.Mask V0), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_M_"#mti.BX#"_MASK") $rs1, (mti.Mask V0), GPR:$vl, mti.SEW)>; } } multiclass VPatUnaryV_V_AnyMask vtilist> { foreach vti = vtilist in { def : VPatUnaryAnyMask; } } multiclass VPatUnaryM_M { foreach mti = AllMasks in { def : VPatMaskUnaryNoMask; def : VPatMaskUnaryMask; } } multiclass VPatUnaryV_M { foreach vti = AllIntegerVectors in { def : VPatUnaryNoMask; def : VPatUnaryMask; } } multiclass VPatUnaryV_VF fractionList> { foreach vtiTofti = fractionList in { defvar vti = vtiTofti.Vti; defvar fti = vtiTofti.Fti; def : VPatUnaryNoMask; def : VPatUnaryMask; } } multiclass VPatUnaryV_V vtilist> { foreach vti = vtilist in { def : VPatUnaryNoMask; def : VPatUnaryMask; } } multiclass VPatNullaryV { foreach vti = AllIntegerVectors in { def : Pat<(vti.Vector (!cast(intrinsic) (XLenVT (VLOp GPR:$vl)))), (!cast(instruction#"_V_" # vti.LMul.MX) GPR:$vl, vti.SEW)>; def : Pat<(vti.Vector (!cast(intrinsic # "_mask") (vti.Vector vti.RegClass:$merge), (vti.Mask V0), (XLenVT (VLOp GPR:$vl)))), (!cast(instruction#"_V_" # vti.LMul.MX # "_MASK") vti.RegClass:$merge, (vti.Mask V0), GPR:$vl, vti.SEW)>; } } multiclass VPatNullaryM { foreach mti = AllMasks in def : Pat<(mti.Mask (!cast(intrinsic) (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_M_"#mti.BX) GPR:$vl, mti.SEW)>; } multiclass VPatBinary { def : VPatBinaryNoMask; def : VPatBinaryMask; } multiclass VPatBinaryCarryIn { def : Pat<(result_type (!cast(intrinsic) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_"#kind#"_"#vlmul.MX) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; } multiclass VPatBinaryMaskOut { def : Pat<(result_type (!cast(intrinsic) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast(inst#"_"#kind#"_"#vlmul.MX) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew)>; } multiclass VPatConversion { def : VPatUnaryNoMask; def : VPatUnaryMask; } multiclass VPatBinaryV_VV vtilist> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryV_VV_INT vtilist> { foreach vti = vtilist in { defvar ivti = GetIntVTypeInfo.Vti; defm : VPatBinary; } } multiclass VPatBinaryV_VV_INT_EEW vtilist> { foreach vti = vtilist in { // emul = lmul * eew / sew defvar vlmul = vti.LMul; defvar octuple_lmul = octuple_from_str.ret; defvar octuple_emul = !srl(!mul(octuple_lmul, eew), shift_amount.val); if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then { defvar emul_str = octuple_to_str.ret; defvar ivti = !cast("VI" # eew # emul_str); defvar inst = instruction # "_VV_" # vti.LMul.MX # "_" # emul_str; defm : VPatBinary; } } } multiclass VPatBinaryV_VX vtilist> { foreach vti = vtilist in { defvar kind = "V"#vti.ScalarSuffix; defm : VPatBinary; } } multiclass VPatBinaryV_VX_INT vtilist> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryV_VI vtilist, Operand imm_type> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryM_MM { foreach mti = AllMasks in def : VPatBinaryNoMask; } multiclass VPatBinaryW_VV vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryW_VX vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "V"#Vti.ScalarSuffix; defm : VPatBinary; } } multiclass VPatBinaryW_WV vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryW_WX vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; defm : VPatBinary; } } multiclass VPatBinaryV_WV vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryV_WX vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; defm : VPatBinary; } } multiclass VPatBinaryV_WI vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defm : VPatBinary; } } multiclass VPatBinaryV_VM vtilist = AllIntegerVectors> { foreach vti = vtilist in defm : VPatBinaryCarryIn; } multiclass VPatBinaryV_XM vtilist = AllIntegerVectors> { foreach vti = vtilist in defm : VPatBinaryCarryIn; } multiclass VPatBinaryV_IM { foreach vti = AllIntegerVectors in defm : VPatBinaryCarryIn; } multiclass VPatBinaryV_V { foreach vti = AllIntegerVectors in defm : VPatBinaryMaskOut; } multiclass VPatBinaryV_X { foreach vti = AllIntegerVectors in defm : VPatBinaryMaskOut; } multiclass VPatBinaryV_I { foreach vti = AllIntegerVectors in defm : VPatBinaryMaskOut; } multiclass VPatBinaryM_VV vtilist> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryM_VX vtilist> { foreach vti = vtilist in { defvar kind = "V"#vti.ScalarSuffix; defm : VPatBinary; } } multiclass VPatBinaryM_VI vtilist> { foreach vti = vtilist in defm : VPatBinary; } multiclass VPatBinaryV_VV_VX_VI vtilist, Operand ImmType = simm5> { defm "" : VPatBinaryV_VV; defm "" : VPatBinaryV_VX; defm "" : VPatBinaryV_VI; } multiclass VPatBinaryV_VV_VX vtilist> { defm "" : VPatBinaryV_VV; defm "" : VPatBinaryV_VX; } multiclass VPatBinaryV_VX_VI vtilist> { defm "" : VPatBinaryV_VX; defm "" : VPatBinaryV_VI; } multiclass VPatBinaryW_VV_VX vtilist> { defm "" : VPatBinaryW_VV; defm "" : VPatBinaryW_VX; } multiclass VPatBinaryW_WV_WX vtilist> { defm "" : VPatBinaryW_WV; defm "" : VPatBinaryW_WX; } multiclass VPatBinaryV_WV_WX_WI vtilist> { defm "" : VPatBinaryV_WV; defm "" : VPatBinaryV_WX; defm "" : VPatBinaryV_WI; } multiclass VPatBinaryV_VM_XM_IM { defm "" : VPatBinaryV_VM; defm "" : VPatBinaryV_XM; defm "" : VPatBinaryV_IM; } multiclass VPatBinaryM_VM_XM_IM { defm "" : VPatBinaryV_VM; defm "" : VPatBinaryV_XM; defm "" : VPatBinaryV_IM; } multiclass VPatBinaryM_V_X_I { defm "" : VPatBinaryV_V; defm "" : VPatBinaryV_X; defm "" : VPatBinaryV_I; } multiclass VPatBinaryV_VM_XM { defm "" : VPatBinaryV_VM; defm "" : VPatBinaryV_XM; } multiclass VPatBinaryM_VM_XM { defm "" : VPatBinaryV_VM; defm "" : VPatBinaryV_XM; } multiclass VPatBinaryM_V_X { defm "" : VPatBinaryV_V; defm "" : VPatBinaryV_X; } multiclass VPatTernary { def : VPatTernaryNoMask; def : VPatTernaryMask; } multiclass VPatTernaryV_VV vtilist> { foreach vti = vtilist in defm : VPatTernary; } multiclass VPatTernaryV_VX vtilist> { foreach vti = vtilist in defm : VPatTernary; } multiclass VPatTernaryV_VX_AAXA vtilist> { foreach vti = vtilist in defm : VPatTernary; } multiclass VPatTernaryV_VI vtilist, Operand Imm_type> { foreach vti = vtilist in defm : VPatTernary; } multiclass VPatTernaryW_VV vtilist> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; defm : VPatTernary; } } multiclass VPatTernaryW_VX vtilist> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; defm : VPatTernary; } } multiclass VPatTernaryV_VV_VX_AAXA vtilist> { defm "" : VPatTernaryV_VV; defm "" : VPatTernaryV_VX_AAXA; } multiclass VPatTernaryV_VX_VI vtilist, Operand Imm_type = simm5> { defm "" : VPatTernaryV_VX; defm "" : VPatTernaryV_VI; } multiclass VPatBinaryM_VV_VX_VI vtilist> { defm "" : VPatBinaryM_VV; defm "" : VPatBinaryM_VX; defm "" : VPatBinaryM_VI; } multiclass VPatTernaryW_VV_VX vtilist> { defm "" : VPatTernaryW_VV; defm "" : VPatTernaryW_VX; } multiclass VPatBinaryM_VV_VX vtilist> { defm "" : VPatBinaryM_VV; defm "" : VPatBinaryM_VX; } multiclass VPatBinaryM_VX_VI vtilist> { defm "" : VPatBinaryM_VX; defm "" : VPatBinaryM_VI; } multiclass VPatBinaryV_VV_VX_VI_INT vtilist, Operand ImmType = simm5> { defm "" : VPatBinaryV_VV_INT; defm "" : VPatBinaryV_VX_INT; defm "" : VPatBinaryV_VI; } multiclass VPatReductionV_VS { foreach vti = !if(IsFloat, NoGroupFloatVectors, NoGroupIntegerVectors) in { defvar vectorM1 = !cast(!if(IsFloat, "VF", "VI") # vti.SEW # "M1"); defm : VPatTernary; } foreach gvti = !if(IsFloat, GroupFloatVectors, GroupIntegerVectors) in { defm : VPatTernary; } } multiclass VPatReductionW_VS { foreach vti = !if(IsFloat, AllFloatVectors, AllIntegerVectors) in { defvar wtiSEW = !mul(vti.SEW, 2); if !le(wtiSEW, 64) then { defvar wtiM1 = !cast(!if(IsFloat, "VF", "VI") # wtiSEW # "M1"); defm : VPatTernary; } } } multiclass VPatConversionVI_VF { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo.Vti; defm : VPatConversion; } } multiclass VPatConversionVF_VI { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo.Vti; defm : VPatConversion; } } multiclass VPatConversionWI_VF { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo.Vti; defm : VPatConversion; } } multiclass VPatConversionWF_VI { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; defm : VPatConversion; } } multiclass VPatConversionWF_VF { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; defm : VPatConversion; } } multiclass VPatConversionVI_WF { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; defm : VPatConversion; } } multiclass VPatConversionVF_WI { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo.Vti; defm : VPatConversion; } } multiclass VPatConversionVF_WF { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; defm : VPatConversion; } } multiclass VPatAMOWD { def : VPatAMOWDNoMask; def : VPatAMOWDMask; } multiclass VPatAMOV_WD vtilist> { foreach eew = EEWList in { foreach vti = vtilist in { if !or(!eq(vti.SEW, 32), !eq(vti.SEW, 64)) then { defvar octuple_lmul = octuple_from_str.ret; // Calculate emul = eew * lmul / sew defvar octuple_emul = !srl(!mul(eew, octuple_lmul), shift_amount.val); if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then { defvar emulMX = octuple_to_str.ret; defvar offsetVti = !cast("VI" # eew # emulMX); defvar inst_ei = inst # "EI" # eew; defm : VPatAMOWD; } } } } } //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { //===----------------------------------------------------------------------===// // Pseudo Instructions for CodeGen //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in { def PseudoVMV1R_V : VPseudo; def PseudoVMV2R_V : VPseudo; def PseudoVMV4R_V : VPseudo; def PseudoVMV8R_V : VPseudo; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1 in { def PseudoReadVLENB : Pseudo<(outs GPR:$rd), (ins), [(set GPR:$rd, (riscv_read_vlenb))]>; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1, Uses = [VL] in def PseudoReadVL : Pseudo<(outs GPR:$rd), (ins), [(set GPR:$rd, (riscv_read_vl))]>; //===----------------------------------------------------------------------===// // 6. Configuration-Setting Instructions //===----------------------------------------------------------------------===// // Pseudos. let hasSideEffects = 1, mayLoad = 0, mayStore = 0, Defs = [VL, VTYPE] in { def PseudoVSETVLI : Pseudo<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp:$vtypei), []>; def PseudoVSETIVLI : Pseudo<(outs GPR:$rd), (ins uimm5:$rs1, VTypeIOp:$vtypei), []>; } //===----------------------------------------------------------------------===// // 7. Vector Loads and Stores //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 7.4 Vector Unit-Stride Instructions //===----------------------------------------------------------------------===// // Pseudos Unit-Stride Loads and Stores foreach eew = EEWList in { defm PseudoVLE # eew : VPseudoUSLoad; defm PseudoVSE # eew : VPseudoUSStore; } defm PseudoVLE1 : VPseudoLoadMask; defm PseudoVSE1 : VPseudoStoreMask; //===----------------------------------------------------------------------===// // 7.5 Vector Strided Instructions //===----------------------------------------------------------------------===// // Vector Strided Loads and Stores foreach eew = EEWList in { defm PseudoVLSE # eew : VPseudoSLoad; defm PseudoVSSE # eew : VPseudoSStore; } //===----------------------------------------------------------------------===// // 7.6 Vector Indexed Instructions //===----------------------------------------------------------------------===// // Vector Indexed Loads and Stores foreach eew = EEWList in { defm PseudoVLUXEI # eew : VPseudoILoad; defm PseudoVLOXEI # eew : VPseudoILoad; defm PseudoVSOXEI # eew : VPseudoIStore; defm PseudoVSUXEI # eew : VPseudoIStore; } //===----------------------------------------------------------------------===// // 7.7. Unit-stride Fault-Only-First Loads //===----------------------------------------------------------------------===// // vleff may update VL register let hasSideEffects = 1, Defs = [VL] in foreach eew = EEWList in { defm PseudoVLE # eew # FF : VPseudoUSLoad; } //===----------------------------------------------------------------------===// // 7.8. Vector Load/Store Segment Instructions //===----------------------------------------------------------------------===// defm PseudoVLSEG : VPseudoUSSegLoad; defm PseudoVLSSEG : VPseudoSSegLoad; defm PseudoVLOXSEG : VPseudoISegLoad; defm PseudoVLUXSEG : VPseudoISegLoad; defm PseudoVSSEG : VPseudoUSSegStore; defm PseudoVSSSEG : VPseudoSSegStore; defm PseudoVSOXSEG : VPseudoISegStore; defm PseudoVSUXSEG : VPseudoISegStore; // vlsegeff.v may update VL register let hasSideEffects = 1, Defs = [VL] in defm PseudoVLSEG : VPseudoUSSegLoad; //===----------------------------------------------------------------------===// // 8. Vector AMO Operations //===----------------------------------------------------------------------===// defm PseudoVAMOSWAP : VPseudoAMO; defm PseudoVAMOADD : VPseudoAMO; defm PseudoVAMOXOR : VPseudoAMO; defm PseudoVAMOAND : VPseudoAMO; defm PseudoVAMOOR : VPseudoAMO; defm PseudoVAMOMIN : VPseudoAMO; defm PseudoVAMOMAX : VPseudoAMO; defm PseudoVAMOMINU : VPseudoAMO; defm PseudoVAMOMAXU : VPseudoAMO; //===----------------------------------------------------------------------===// // 12. Vector Integer Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 12.1. Vector Single-Width Integer Add and Subtract //===----------------------------------------------------------------------===// defm PseudoVADD : VPseudoBinaryV_VV_VX_VI; defm PseudoVSUB : VPseudoBinaryV_VV_VX; defm PseudoVRSUB : VPseudoBinaryV_VX_VI; //===----------------------------------------------------------------------===// // 12.2. Vector Widening Integer Add/Subtract //===----------------------------------------------------------------------===// defm PseudoVWADDU : VPseudoBinaryW_VV_VX; defm PseudoVWSUBU : VPseudoBinaryW_VV_VX; defm PseudoVWADD : VPseudoBinaryW_VV_VX; defm PseudoVWSUB : VPseudoBinaryW_VV_VX; defm PseudoVWADDU : VPseudoBinaryW_WV_WX; defm PseudoVWSUBU : VPseudoBinaryW_WV_WX; defm PseudoVWADD : VPseudoBinaryW_WV_WX; defm PseudoVWSUB : VPseudoBinaryW_WV_WX; //===----------------------------------------------------------------------===// // 12.3. Vector Integer Extension //===----------------------------------------------------------------------===// defm PseudoVZEXT_VF2 : PseudoUnaryV_VF2; defm PseudoVZEXT_VF4 : PseudoUnaryV_VF4; defm PseudoVZEXT_VF8 : PseudoUnaryV_VF8; defm PseudoVSEXT_VF2 : PseudoUnaryV_VF2; defm PseudoVSEXT_VF4 : PseudoUnaryV_VF4; defm PseudoVSEXT_VF8 : PseudoUnaryV_VF8; //===----------------------------------------------------------------------===// // 12.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions //===----------------------------------------------------------------------===// defm PseudoVADC : VPseudoBinaryV_VM_XM_IM; defm PseudoVMADC : VPseudoBinaryM_VM_XM_IM<"@earlyclobber $rd">; defm PseudoVMADC : VPseudoBinaryM_V_X_I<"@earlyclobber $rd">; defm PseudoVSBC : VPseudoBinaryV_VM_XM; defm PseudoVMSBC : VPseudoBinaryM_VM_XM<"@earlyclobber $rd">; defm PseudoVMSBC : VPseudoBinaryM_V_X<"@earlyclobber $rd">; //===----------------------------------------------------------------------===// // 12.5. Vector Bitwise Logical Instructions //===----------------------------------------------------------------------===// defm PseudoVAND : VPseudoBinaryV_VV_VX_VI; defm PseudoVOR : VPseudoBinaryV_VV_VX_VI; defm PseudoVXOR : VPseudoBinaryV_VV_VX_VI; //===----------------------------------------------------------------------===// // 12.6. Vector Single-Width Bit Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVSLL : VPseudoBinaryV_VV_VX_VI; defm PseudoVSRL : VPseudoBinaryV_VV_VX_VI; defm PseudoVSRA : VPseudoBinaryV_VV_VX_VI; //===----------------------------------------------------------------------===// // 12.7. Vector Narrowing Integer Right Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVNSRL : VPseudoBinaryV_WV_WX_WI; defm PseudoVNSRA : VPseudoBinaryV_WV_WX_WI; //===----------------------------------------------------------------------===// // 12.8. Vector Integer Comparison Instructions //===----------------------------------------------------------------------===// defm PseudoVMSEQ : VPseudoBinaryM_VV_VX_VI; defm PseudoVMSNE : VPseudoBinaryM_VV_VX_VI; defm PseudoVMSLTU : VPseudoBinaryM_VV_VX; defm PseudoVMSLT : VPseudoBinaryM_VV_VX; defm PseudoVMSLEU : VPseudoBinaryM_VV_VX_VI; defm PseudoVMSLE : VPseudoBinaryM_VV_VX_VI; defm PseudoVMSGTU : VPseudoBinaryM_VX_VI; defm PseudoVMSGT : VPseudoBinaryM_VX_VI; //===----------------------------------------------------------------------===// // 12.9. Vector Integer Min/Max Instructions //===----------------------------------------------------------------------===// defm PseudoVMINU : VPseudoBinaryV_VV_VX; defm PseudoVMIN : VPseudoBinaryV_VV_VX; defm PseudoVMAXU : VPseudoBinaryV_VV_VX; defm PseudoVMAX : VPseudoBinaryV_VV_VX; //===----------------------------------------------------------------------===// // 12.10. Vector Single-Width Integer Multiply Instructions //===----------------------------------------------------------------------===// defm PseudoVMUL : VPseudoBinaryV_VV_VX; defm PseudoVMULH : VPseudoBinaryV_VV_VX; defm PseudoVMULHU : VPseudoBinaryV_VV_VX; defm PseudoVMULHSU : VPseudoBinaryV_VV_VX; //===----------------------------------------------------------------------===// // 12.11. Vector Integer Divide Instructions //===----------------------------------------------------------------------===// defm PseudoVDIVU : VPseudoBinaryV_VV_VX; defm PseudoVDIV : VPseudoBinaryV_VV_VX; defm PseudoVREMU : VPseudoBinaryV_VV_VX; defm PseudoVREM : VPseudoBinaryV_VV_VX; //===----------------------------------------------------------------------===// // 12.12. Vector Widening Integer Multiply Instructions //===----------------------------------------------------------------------===// defm PseudoVWMUL : VPseudoBinaryW_VV_VX; defm PseudoVWMULU : VPseudoBinaryW_VV_VX; defm PseudoVWMULSU : VPseudoBinaryW_VV_VX; //===----------------------------------------------------------------------===// // 12.13. Vector Single-Width Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm PseudoVMACC : VPseudoTernaryV_VV_VX_AAXA; defm PseudoVNMSAC : VPseudoTernaryV_VV_VX_AAXA; defm PseudoVMADD : VPseudoTernaryV_VV_VX_AAXA; defm PseudoVNMSUB : VPseudoTernaryV_VV_VX_AAXA; //===----------------------------------------------------------------------===// // 12.14. Vector Widening Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm PseudoVWMACCU : VPseudoTernaryW_VV_VX; defm PseudoVWMACC : VPseudoTernaryW_VV_VX; defm PseudoVWMACCSU : VPseudoTernaryW_VV_VX; defm PseudoVWMACCUS : VPseudoTernaryW_VX; //===----------------------------------------------------------------------===// // 12.16. Vector Integer Merge Instructions //===----------------------------------------------------------------------===// defm PseudoVMERGE : VPseudoBinaryV_VM_XM_IM; //===----------------------------------------------------------------------===// // 12.17. Vector Integer Move Instructions //===----------------------------------------------------------------------===// defm PseudoVMV_V : VPseudoUnaryV_V_X_I_NoDummyMask; //===----------------------------------------------------------------------===// // 13.1. Vector Single-Width Saturating Add and Subtract //===----------------------------------------------------------------------===// let Defs = [VXSAT], hasSideEffects = 1 in { defm PseudoVSADDU : VPseudoBinaryV_VV_VX_VI; defm PseudoVSADD : VPseudoBinaryV_VV_VX_VI; defm PseudoVSSUBU : VPseudoBinaryV_VV_VX; defm PseudoVSSUB : VPseudoBinaryV_VV_VX; } //===----------------------------------------------------------------------===// // 13.2. Vector Single-Width Averaging Add and Subtract //===----------------------------------------------------------------------===// let Uses = [VL, VTYPE, VXRM], hasSideEffects = 1 in { defm PseudoVAADDU : VPseudoBinaryV_VV_VX; defm PseudoVAADD : VPseudoBinaryV_VV_VX; defm PseudoVASUBU : VPseudoBinaryV_VV_VX; defm PseudoVASUB : VPseudoBinaryV_VV_VX; } //===----------------------------------------------------------------------===// // 13.3. Vector Single-Width Fractional Multiply with Rounding and Saturation //===----------------------------------------------------------------------===// let Uses = [VL, VTYPE, VXRM], Defs = [VXSAT], hasSideEffects = 1 in { defm PseudoVSMUL : VPseudoBinaryV_VV_VX; } //===----------------------------------------------------------------------===// // 13.4. Vector Single-Width Scaling Shift Instructions //===----------------------------------------------------------------------===// let Uses = [VL, VTYPE, VXRM], hasSideEffects = 1 in { defm PseudoVSSRL : VPseudoBinaryV_VV_VX_VI; defm PseudoVSSRA : VPseudoBinaryV_VV_VX_VI; } //===----------------------------------------------------------------------===// // 13.5. Vector Narrowing Fixed-Point Clip Instructions //===----------------------------------------------------------------------===// let Uses = [VL, VTYPE, VXRM], Defs = [VXSAT], hasSideEffects = 1 in { defm PseudoVNCLIP : VPseudoBinaryV_WV_WX_WI; defm PseudoVNCLIPU : VPseudoBinaryV_WV_WX_WI; } } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { //===----------------------------------------------------------------------===// // 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm PseudoVFADD : VPseudoBinaryV_VV_VF; defm PseudoVFSUB : VPseudoBinaryV_VV_VF; defm PseudoVFRSUB : VPseudoBinaryV_VF; //===----------------------------------------------------------------------===// // 14.3. Vector Widening Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm PseudoVFWADD : VPseudoBinaryW_VV_VF; defm PseudoVFWSUB : VPseudoBinaryW_VV_VF; defm PseudoVFWADD : VPseudoBinaryW_WV_WF; defm PseudoVFWSUB : VPseudoBinaryW_WV_WF; //===----------------------------------------------------------------------===// // 14.4. Vector Single-Width Floating-Point Multiply/Divide Instructions //===----------------------------------------------------------------------===// defm PseudoVFMUL : VPseudoBinaryV_VV_VF; defm PseudoVFDIV : VPseudoBinaryV_VV_VF; defm PseudoVFRDIV : VPseudoBinaryV_VF; //===----------------------------------------------------------------------===// // 14.5. Vector Widening Floating-Point Multiply //===----------------------------------------------------------------------===// defm PseudoVFWMUL : VPseudoBinaryW_VV_VF; //===----------------------------------------------------------------------===// // 14.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// defm PseudoVFMACC : VPseudoTernaryV_VV_VF_AAXA; defm PseudoVFNMACC : VPseudoTernaryV_VV_VF_AAXA; defm PseudoVFMSAC : VPseudoTernaryV_VV_VF_AAXA; defm PseudoVFNMSAC : VPseudoTernaryV_VV_VF_AAXA; defm PseudoVFMADD : VPseudoTernaryV_VV_VF_AAXA; defm PseudoVFNMADD : VPseudoTernaryV_VV_VF_AAXA; defm PseudoVFMSUB : VPseudoTernaryV_VV_VF_AAXA; defm PseudoVFNMSUB : VPseudoTernaryV_VV_VF_AAXA; //===----------------------------------------------------------------------===// // 14.7. Vector Widening Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// defm PseudoVFWMACC : VPseudoTernaryW_VV_VF; defm PseudoVFWNMACC : VPseudoTernaryW_VV_VF; defm PseudoVFWMSAC : VPseudoTernaryW_VV_VF; defm PseudoVFWNMSAC : VPseudoTernaryW_VV_VF; //===----------------------------------------------------------------------===// // 14.8. Vector Floating-Point Square-Root Instruction //===----------------------------------------------------------------------===// defm PseudoVFSQRT : VPseudoUnaryV_V; //===----------------------------------------------------------------------===// // 14.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction //===----------------------------------------------------------------------===// defm PseudoVFRSQRT7 : VPseudoUnaryV_V; //===----------------------------------------------------------------------===// // 14.10. Vector Floating-Point Reciprocal Estimate Instruction //===----------------------------------------------------------------------===// defm PseudoVFREC7 : VPseudoUnaryV_V; //===----------------------------------------------------------------------===// // 14.11. Vector Floating-Point Min/Max Instructions //===----------------------------------------------------------------------===// defm PseudoVFMIN : VPseudoBinaryV_VV_VF; defm PseudoVFMAX : VPseudoBinaryV_VV_VF; //===----------------------------------------------------------------------===// // 14.12. Vector Floating-Point Sign-Injection Instructions //===----------------------------------------------------------------------===// defm PseudoVFSGNJ : VPseudoBinaryV_VV_VF; defm PseudoVFSGNJN : VPseudoBinaryV_VV_VF; defm PseudoVFSGNJX : VPseudoBinaryV_VV_VF; //===----------------------------------------------------------------------===// // 14.13. Vector Floating-Point Compare Instructions //===----------------------------------------------------------------------===// defm PseudoVMFEQ : VPseudoBinaryM_VV_VF; defm PseudoVMFNE : VPseudoBinaryM_VV_VF; defm PseudoVMFLT : VPseudoBinaryM_VV_VF; defm PseudoVMFLE : VPseudoBinaryM_VV_VF; defm PseudoVMFGT : VPseudoBinaryM_VF; defm PseudoVMFGE : VPseudoBinaryM_VF; //===----------------------------------------------------------------------===// // 14.14. Vector Floating-Point Classify Instruction //===----------------------------------------------------------------------===// defm PseudoVFCLASS : VPseudoUnaryV_V; //===----------------------------------------------------------------------===// // 14.15. Vector Floating-Point Merge Instruction //===----------------------------------------------------------------------===// defm PseudoVFMERGE : VPseudoBinaryV_FM; //===----------------------------------------------------------------------===// // 14.16. Vector Floating-Point Move Instruction //===----------------------------------------------------------------------===// defm PseudoVFMV_V : VPseudoUnaryV_F_NoDummyMask; //===----------------------------------------------------------------------===// // 14.17. Single-Width Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm PseudoVFCVT_XU_F : VPseudoConversionV_V; defm PseudoVFCVT_X_F : VPseudoConversionV_V; defm PseudoVFCVT_RTZ_XU_F : VPseudoConversionV_V; defm PseudoVFCVT_RTZ_X_F : VPseudoConversionV_V; defm PseudoVFCVT_F_XU : VPseudoConversionV_V; defm PseudoVFCVT_F_X : VPseudoConversionV_V; //===----------------------------------------------------------------------===// // 14.18. Widening Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm PseudoVFWCVT_XU_F : VPseudoConversionW_V; defm PseudoVFWCVT_X_F : VPseudoConversionW_V; defm PseudoVFWCVT_RTZ_XU_F : VPseudoConversionW_V; defm PseudoVFWCVT_RTZ_X_F : VPseudoConversionW_V; defm PseudoVFWCVT_F_XU : VPseudoConversionW_V; defm PseudoVFWCVT_F_X : VPseudoConversionW_V; defm PseudoVFWCVT_F_F : VPseudoConversionW_V; //===----------------------------------------------------------------------===// // 14.19. Narrowing Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm PseudoVFNCVT_XU_F : VPseudoConversionV_W; defm PseudoVFNCVT_X_F : VPseudoConversionV_W; defm PseudoVFNCVT_RTZ_XU_F : VPseudoConversionV_W; defm PseudoVFNCVT_RTZ_X_F : VPseudoConversionV_W; defm PseudoVFNCVT_F_XU : VPseudoConversionV_W; defm PseudoVFNCVT_F_X : VPseudoConversionV_W; defm PseudoVFNCVT_F_F : VPseudoConversionV_W; defm PseudoVFNCVT_ROD_F_F : VPseudoConversionV_W; } // Predicates = [HasStdExtV, HasStdExtF] let Predicates = [HasStdExtV] in { //===----------------------------------------------------------------------===// // 15.1. Vector Single-Width Integer Reduction Instructions //===----------------------------------------------------------------------===// defm PseudoVREDSUM : VPseudoReductionV_VS; defm PseudoVREDAND : VPseudoReductionV_VS; defm PseudoVREDOR : VPseudoReductionV_VS; defm PseudoVREDXOR : VPseudoReductionV_VS; defm PseudoVREDMINU : VPseudoReductionV_VS; defm PseudoVREDMIN : VPseudoReductionV_VS; defm PseudoVREDMAXU : VPseudoReductionV_VS; defm PseudoVREDMAX : VPseudoReductionV_VS; //===----------------------------------------------------------------------===// // 15.2. Vector Widening Integer Reduction Instructions //===----------------------------------------------------------------------===// defm PseudoVWREDSUMU : VPseudoReductionV_VS; defm PseudoVWREDSUM : VPseudoReductionV_VS; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { //===----------------------------------------------------------------------===// // 15.3. Vector Single-Width Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// defm PseudoVFREDOSUM : VPseudoReductionV_VS; defm PseudoVFREDSUM : VPseudoReductionV_VS; defm PseudoVFREDMIN : VPseudoReductionV_VS; defm PseudoVFREDMAX : VPseudoReductionV_VS; //===----------------------------------------------------------------------===// // 15.4. Vector Widening Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// defm PseudoVFWREDSUM : VPseudoReductionV_VS; defm PseudoVFWREDOSUM : VPseudoReductionV_VS; } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 16. Vector Mask Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 16.1 Vector Mask-Register Logical Instructions //===----------------------------------------------------------------------===// defm PseudoVMAND: VPseudoBinaryM_MM; defm PseudoVMNAND: VPseudoBinaryM_MM; defm PseudoVMANDNOT: VPseudoBinaryM_MM; defm PseudoVMXOR: VPseudoBinaryM_MM; defm PseudoVMOR: VPseudoBinaryM_MM; defm PseudoVMNOR: VPseudoBinaryM_MM; defm PseudoVMORNOT: VPseudoBinaryM_MM; defm PseudoVMXNOR: VPseudoBinaryM_MM; // Pseudo insturctions defm PseudoVMCLR : VPseudoNullaryPseudoM<"VMXOR">; defm PseudoVMSET : VPseudoNullaryPseudoM<"VMXNOR">; //===----------------------------------------------------------------------===// // 16.2. Vector mask population count vpopc //===----------------------------------------------------------------------===// defm PseudoVPOPC: VPseudoUnaryS_M; //===----------------------------------------------------------------------===// // 16.3. vfirst find-first-set mask bit //===----------------------------------------------------------------------===// defm PseudoVFIRST: VPseudoUnaryS_M; //===----------------------------------------------------------------------===// // 16.4. vmsbf.m set-before-first mask bit //===----------------------------------------------------------------------===// defm PseudoVMSBF: VPseudoUnaryM_M; //===----------------------------------------------------------------------===// // 16.5. vmsif.m set-including-first mask bit //===----------------------------------------------------------------------===// defm PseudoVMSIF: VPseudoUnaryM_M; //===----------------------------------------------------------------------===// // 16.6. vmsof.m set-only-first mask bit //===----------------------------------------------------------------------===// defm PseudoVMSOF: VPseudoUnaryM_M; //===----------------------------------------------------------------------===// // 16.8. Vector Iota Instruction //===----------------------------------------------------------------------===// defm PseudoVIOTA_M: VPseudoUnaryV_M; //===----------------------------------------------------------------------===// // 16.9. Vector Element Index Instruction //===----------------------------------------------------------------------===// defm PseudoVID : VPseudoMaskNullaryV; //===----------------------------------------------------------------------===// // 17. Vector Permutation Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 17.1. Integer Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { let mayLoad = 0, mayStore = 0, hasSideEffects = 0, usesCustomInserter = 1, Uses = [VL, VTYPE] in { foreach m = MxList.m in { let VLMul = m.value in { let HasSEWOp = 1, BaseInstr = VMV_X_S in def PseudoVMV_X_S # "_" # m.MX: Pseudo<(outs GPR:$rd), (ins m.vrclass:$rs2, ixlenimm:$sew), []>, RISCVVPseudo; let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VMV_S_X, WritesElement0 = 1, Constraints = "$rd = $rs1" in def PseudoVMV_S_X # "_" # m.MX: Pseudo<(outs m.vrclass:$rd), (ins m.vrclass:$rs1, GPR:$rs2, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo; } } } } // Predicates = [HasStdExtV] //===----------------------------------------------------------------------===// // 17.2. Floating-Point Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV, HasStdExtF] in { let mayLoad = 0, mayStore = 0, hasSideEffects = 0, usesCustomInserter = 1, Uses = [VL, VTYPE] in { foreach m = MxList.m in { foreach f = FPList.fpinfo in { let VLMul = m.value in { let HasSEWOp = 1, BaseInstr = VFMV_F_S in def "PseudoVFMV_" # f.FX # "_S_" # m.MX : Pseudo<(outs f.fprclass:$rd), (ins m.vrclass:$rs2, ixlenimm:$sew), []>, RISCVVPseudo; let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VFMV_S_F, WritesElement0 = 1, Constraints = "$rd = $rs1" in def "PseudoVFMV_S_" # f.FX # "_" # m.MX : Pseudo<(outs m.vrclass:$rd), (ins m.vrclass:$rs1, f.fprclass:$rs2, GPR:$vl, ixlenimm:$sew), []>, RISCVVPseudo; } } } } } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 17.3. Vector Slide Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { defm PseudoVSLIDEUP : VPseudoTernaryV_VX_VI; defm PseudoVSLIDEDOWN : VPseudoTernaryV_VX_VI; defm PseudoVSLIDE1UP : VPseudoBinaryV_VX<"@earlyclobber $rd">; defm PseudoVSLIDE1DOWN : VPseudoBinaryV_VX; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { defm PseudoVFSLIDE1UP : VPseudoBinaryV_VF<"@earlyclobber $rd">; defm PseudoVFSLIDE1DOWN : VPseudoBinaryV_VF; } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 17.4. Vector Register Gather Instructions //===----------------------------------------------------------------------===// defm PseudoVRGATHER : VPseudoBinaryV_VV_VX_VI; defm PseudoVRGATHEREI16 : VPseudoBinaryV_VV_EEW; //===----------------------------------------------------------------------===// // 17.5. Vector Compress Instruction //===----------------------------------------------------------------------===// defm PseudoVCOMPRESS : VPseudoUnaryV_V_AnyMask; //===----------------------------------------------------------------------===// // Patterns. //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { //===----------------------------------------------------------------------===// // 7. Vector Loads and Stores //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 7.4 Vector Unit-Stride Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in { defm : VPatUSLoad<"int_riscv_vle", "PseudoVLE" # vti.SEW, vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; defm : VPatUSLoadFF<"PseudoVLE" # vti.SEW # "FF", vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; defm : VPatUSStore<"int_riscv_vse", "PseudoVSE" # vti.SEW, vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; } foreach vti = AllMasks in { defvar PseudoVLE1 = !cast("PseudoVLE1_V_"#vti.BX); def : Pat<(vti.Mask (int_riscv_vle1 GPR:$rs1, (XLenVT (VLOp GPR:$vl)))), (PseudoVLE1 $rs1, GPR:$vl, vti.SEW)>; defvar PseudoVSE1 = !cast("PseudoVSE1_V_"#vti.BX); def : Pat<(int_riscv_vse1 (vti.Mask VR:$rs3), GPR:$rs1, (XLenVT (VLOp GPR:$vl))), (PseudoVSE1 $rs3, $rs1, GPR:$vl, vti.SEW)>; } //===----------------------------------------------------------------------===// // 7.5 Vector Strided Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in { defm : VPatSLoad<"int_riscv_vlse", "PseudoVLSE" # vti.SEW, vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; defm : VPatSStore<"int_riscv_vsse", "PseudoVSSE" # vti.SEW, vti.Vector, vti.Mask, vti.SEW, vti.LMul, vti.RegClass>; } //===----------------------------------------------------------------------===// // 7.6 Vector Indexed Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in foreach eew = EEWList in { defvar vlmul = vti.LMul; defvar octuple_lmul = octuple_from_str.ret; defvar log_sew = shift_amount.val; // The data vector register group has EEW=SEW, EMUL=LMUL, while the offset // vector register group has EEW encoding in the instruction and EMUL=(EEW/SEW)*LMUL. // calculate octuple elmul which is (eew * octuple_lmul) >> log_sew defvar octuple_elmul = !srl(!mul(eew, octuple_lmul), log_sew); // legal octuple elmul should be more than 0 and less than equal 64 if !gt(octuple_elmul, 0) then { if !le(octuple_elmul, 64) then { defvar elmul_str = octuple_to_str.ret; defvar elmul =!cast("V_" # elmul_str); defvar idx_vti = !cast("VI" # eew # elmul_str); defm : VPatILoad<"int_riscv_vluxei", "PseudoVLUXEI"#eew, vti.Vector, idx_vti.Vector, vti.Mask, vti.SEW, vlmul, elmul, vti.RegClass, idx_vti.RegClass>; defm : VPatILoad<"int_riscv_vloxei", "PseudoVLOXEI"#eew, vti.Vector, idx_vti.Vector, vti.Mask, vti.SEW, vlmul, elmul, vti.RegClass, idx_vti.RegClass>; defm : VPatIStore<"int_riscv_vsoxei", "PseudoVSOXEI"#eew, vti.Vector, idx_vti.Vector, vti.Mask, vti.SEW, vlmul, elmul, vti.RegClass, idx_vti.RegClass>; defm : VPatIStore<"int_riscv_vsuxei", "PseudoVSUXEI"#eew, vti.Vector, idx_vti.Vector, vti.Mask, vti.SEW, vlmul, elmul, vti.RegClass, idx_vti.RegClass>; } } } } // Predicates = [HasStdExtV] //===----------------------------------------------------------------------===// // 8. Vector AMO Operations //===----------------------------------------------------------------------===// let Predicates = [HasStdExtZvamo] in { defm "" : VPatAMOV_WD<"int_riscv_vamoswap", "PseudoVAMOSWAP", AllIntegerVectors>; defm "" : VPatAMOV_WD<"int_riscv_vamoadd", "PseudoVAMOADD", AllIntegerVectors>; defm "" : VPatAMOV_WD<"int_riscv_vamoxor", "PseudoVAMOXOR", AllIntegerVectors>; defm "" : VPatAMOV_WD<"int_riscv_vamoand", "PseudoVAMOAND", AllIntegerVectors>; defm "" : VPatAMOV_WD<"int_riscv_vamoor", "PseudoVAMOOR", AllIntegerVectors>; defm "" : VPatAMOV_WD<"int_riscv_vamomin", "PseudoVAMOMIN", AllIntegerVectors>; defm "" : VPatAMOV_WD<"int_riscv_vamomax", "PseudoVAMOMAX", AllIntegerVectors>; defm "" : VPatAMOV_WD<"int_riscv_vamominu", "PseudoVAMOMINU", AllIntegerVectors>; defm "" : VPatAMOV_WD<"int_riscv_vamomaxu", "PseudoVAMOMAXU", AllIntegerVectors>; } // Predicates = [HasStdExtZvamo] let Predicates = [HasStdExtZvamo, HasStdExtF] in { defm "" : VPatAMOV_WD<"int_riscv_vamoswap", "PseudoVAMOSWAP", AllFloatVectors>; } // Predicates = [HasStdExtZvamo, HasStdExtF] //===----------------------------------------------------------------------===// // 12. Vector Integer Arithmetic Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { //===----------------------------------------------------------------------===// // 12.1. Vector Single-Width Integer Add and Subtract //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vadd", "PseudoVADD", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vsub", "PseudoVSUB", AllIntegerVectors>; defm "" : VPatBinaryV_VX_VI<"int_riscv_vrsub", "PseudoVRSUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.2. Vector Widening Integer Add/Subtract //===----------------------------------------------------------------------===// defm "" : VPatBinaryW_VV_VX<"int_riscv_vwaddu", "PseudoVWADDU", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwsubu", "PseudoVWSUBU", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwadd", "PseudoVWADD", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwsub", "PseudoVWSUB", AllWidenableIntVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vwaddu_w", "PseudoVWADDU", AllWidenableIntVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vwsubu_w", "PseudoVWSUBU", AllWidenableIntVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vwadd_w", "PseudoVWADD", AllWidenableIntVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vwsub_w", "PseudoVWSUB", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 12.3. Vector Integer Extension //===----------------------------------------------------------------------===// defm "" : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF2", AllFractionableVF2IntVectors>; defm "" : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF4", AllFractionableVF4IntVectors>; defm "" : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF8", AllFractionableVF8IntVectors>; defm "" : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF2", AllFractionableVF2IntVectors>; defm "" : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF4", AllFractionableVF4IntVectors>; defm "" : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF8", AllFractionableVF8IntVectors>; //===----------------------------------------------------------------------===// // 12.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VM_XM_IM<"int_riscv_vadc", "PseudoVADC">; defm "" : VPatBinaryM_VM_XM_IM<"int_riscv_vmadc_carry_in", "PseudoVMADC">; defm "" : VPatBinaryM_V_X_I<"int_riscv_vmadc", "PseudoVMADC">; defm "" : VPatBinaryV_VM_XM<"int_riscv_vsbc", "PseudoVSBC">; defm "" : VPatBinaryM_VM_XM<"int_riscv_vmsbc_borrow_in", "PseudoVMSBC">; defm "" : VPatBinaryM_V_X<"int_riscv_vmsbc", "PseudoVMSBC">; //===----------------------------------------------------------------------===// // 12.5. Vector Bitwise Logical Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vand", "PseudoVAND", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vor", "PseudoVOR", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vxor", "PseudoVXOR", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.6. Vector Single-Width Bit Shift Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsll", "PseudoVSLL", AllIntegerVectors, uimm5>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsrl", "PseudoVSRL", AllIntegerVectors, uimm5>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsra", "PseudoVSRA", AllIntegerVectors, uimm5>; //===----------------------------------------------------------------------===// // 12.7. Vector Narrowing Integer Right Shift Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnsrl", "PseudoVNSRL", AllWidenableIntVectors>; defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnsra", "PseudoVNSRA", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 12.8. Vector Integer Comparison Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryM_VV_VX_VI<"int_riscv_vmseq", "PseudoVMSEQ", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX_VI<"int_riscv_vmsne", "PseudoVMSNE", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmsltu", "PseudoVMSLTU", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmslt", "PseudoVMSLT", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX_VI<"int_riscv_vmsleu", "PseudoVMSLEU", AllIntegerVectors>; defm "" : VPatBinaryM_VV_VX_VI<"int_riscv_vmsle", "PseudoVMSLE", AllIntegerVectors>; defm "" : VPatBinaryM_VX_VI<"int_riscv_vmsgtu", "PseudoVMSGTU", AllIntegerVectors>; defm "" : VPatBinaryM_VX_VI<"int_riscv_vmsgt", "PseudoVMSGT", AllIntegerVectors>; // Match vmslt(u).vx intrinsics to vmsle(u).vi if the scalar is -15 to 16. This // avoids the user needing to know that there is no vmslt(u).vi instruction. // This is limited to vmslt(u).vx as there is no vmsge().vx intrinsic or // instruction. foreach vti = AllIntegerVectors in { def : Pat<(vti.Mask (int_riscv_vmslt (vti.Vector vti.RegClass:$rs1), (vti.Scalar simm5_plus1:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMSLE_VI_"#vti.LMul.MX) vti.RegClass:$rs1, (DecImm simm5_plus1:$rs2), GPR:$vl, vti.SEW)>; def : Pat<(vti.Mask (int_riscv_vmslt_mask (vti.Mask VR:$merge), (vti.Vector vti.RegClass:$rs1), (vti.Scalar simm5_plus1:$rs2), (vti.Mask V0), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMSLE_VI_"#vti.LMul.MX#"_MASK") VR:$merge, vti.RegClass:$rs1, (DecImm simm5_plus1:$rs2), (vti.Mask V0), GPR:$vl, vti.SEW)>; def : Pat<(vti.Mask (int_riscv_vmsltu (vti.Vector vti.RegClass:$rs1), (vti.Scalar simm5_plus1:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMSLEU_VI_"#vti.LMul.MX) vti.RegClass:$rs1, (DecImm simm5_plus1:$rs2), GPR:$vl, vti.SEW)>; def : Pat<(vti.Mask (int_riscv_vmsltu_mask (vti.Mask VR:$merge), (vti.Vector vti.RegClass:$rs1), (vti.Scalar simm5_plus1:$rs2), (vti.Mask V0), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMSLEU_VI_"#vti.LMul.MX#"_MASK") VR:$merge, vti.RegClass:$rs1, (DecImm simm5_plus1:$rs2), (vti.Mask V0), GPR:$vl, vti.SEW)>; // Special cases to avoid matching vmsltu.vi 0 (always false) to // vmsleu.vi -1 (always true). Instead match to vmsne.vv. def : Pat<(vti.Mask (int_riscv_vmsltu (vti.Vector vti.RegClass:$rs1), (vti.Scalar 0), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMSNE_VV_"#vti.LMul.MX) vti.RegClass:$rs1, vti.RegClass:$rs1, GPR:$vl, vti.SEW)>; def : Pat<(vti.Mask (int_riscv_vmsltu_mask (vti.Mask VR:$merge), (vti.Vector vti.RegClass:$rs1), (vti.Scalar 0), (vti.Mask V0), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMSNE_VV_"#vti.LMul.MX#"_MASK") VR:$merge, vti.RegClass:$rs1, vti.RegClass:$rs1, (vti.Mask V0), GPR:$vl, vti.SEW)>; } //===----------------------------------------------------------------------===// // 12.9. Vector Integer Min/Max Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vminu", "PseudoVMINU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmin", "PseudoVMIN", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmaxu", "PseudoVMAXU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmax", "PseudoVMAX", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.10. Vector Single-Width Integer Multiply Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vmul", "PseudoVMUL", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.11. Vector Integer Divide Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vdivu", "PseudoVDIVU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vdiv", "PseudoVDIV", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vremu", "PseudoVREMU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vrem", "PseudoVREM", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.12. Vector Widening Integer Multiply Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryW_VV_VX<"int_riscv_vwmul", "PseudoVWMUL", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwmulu", "PseudoVWMULU", AllWidenableIntVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vwmulsu", "PseudoVWMULSU", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 12.13. Vector Single-Width Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmadd", "PseudoVMADD", AllIntegerVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsub", "PseudoVNMSUB", AllIntegerVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmacc", "PseudoVMACC", AllIntegerVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsac", "PseudoVNMSAC", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.14. Vector Widening Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm "" : VPatTernaryW_VV_VX<"int_riscv_vwmaccu", "PseudoVWMACCU", AllWidenableIntVectors>; defm "" : VPatTernaryW_VV_VX<"int_riscv_vwmacc", "PseudoVWMACC", AllWidenableIntVectors>; defm "" : VPatTernaryW_VV_VX<"int_riscv_vwmaccsu", "PseudoVWMACCSU", AllWidenableIntVectors>; defm "" : VPatTernaryW_VX<"int_riscv_vwmaccus", "PseudoVWMACCUS", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 12.16. Vector Integer Merge Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VM_XM_IM<"int_riscv_vmerge", "PseudoVMERGE">; //===----------------------------------------------------------------------===// // 12.17. Vector Integer Move Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in { def : Pat<(vti.Vector (int_riscv_vmv_v_v (vti.Vector vti.RegClass:$rs1), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMV_V_V_"#vti.LMul.MX) $rs1, GPR:$vl, vti.SEW)>; } foreach vti = AllIntegerVectors in { def : Pat<(vti.Vector (int_riscv_vmv_v_x GPR:$rs2, (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMV_V_X_"#vti.LMul.MX) $rs2, GPR:$vl, vti.SEW)>; def : Pat<(vti.Vector (int_riscv_vmv_v_x simm5:$imm5, (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMV_V_I_"#vti.LMul.MX) simm5:$imm5, GPR:$vl, vti.SEW)>; } //===----------------------------------------------------------------------===// // 13.1. Vector Single-Width Saturating Add and Subtract //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsaddu", "PseudoVSADDU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vsadd", "PseudoVSADD", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vssubu", "PseudoVSSUBU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vssub", "PseudoVSSUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 13.2. Vector Single-Width Averaging Add and Subtract //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vaaddu", "PseudoVAADDU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vaadd", "PseudoVAADD", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vasubu", "PseudoVASUBU", AllIntegerVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vasub", "PseudoVASUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 13.3. Vector Single-Width Fractional Multiply with Rounding and Saturation //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vsmul", "PseudoVSMUL", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 13.4. Vector Single-Width Scaling Shift Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vssrl", "PseudoVSSRL", AllIntegerVectors, uimm5>; defm "" : VPatBinaryV_VV_VX_VI<"int_riscv_vssra", "PseudoVSSRA", AllIntegerVectors, uimm5>; //===----------------------------------------------------------------------===// // 13.5. Vector Narrowing Fixed-Point Clip Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnclipu", "PseudoVNCLIPU", AllWidenableIntVectors>; defm "" : VPatBinaryV_WV_WX_WI<"int_riscv_vnclip", "PseudoVNCLIP", AllWidenableIntVectors>; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { //===----------------------------------------------------------------------===// // 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vfadd", "PseudoVFADD", AllFloatVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vfsub", "PseudoVFSUB", AllFloatVectors>; defm "" : VPatBinaryV_VX<"int_riscv_vfrsub", "PseudoVFRSUB", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.3. Vector Widening Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryW_VV_VX<"int_riscv_vfwadd", "PseudoVFWADD", AllWidenableFloatVectors>; defm "" : VPatBinaryW_VV_VX<"int_riscv_vfwsub", "PseudoVFWSUB", AllWidenableFloatVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vfwadd_w", "PseudoVFWADD", AllWidenableFloatVectors>; defm "" : VPatBinaryW_WV_WX<"int_riscv_vfwsub_w", "PseudoVFWSUB", AllWidenableFloatVectors>; //===----------------------------------------------------------------------===// // 14.4. Vector Single-Width Floating-Point Multiply/Divide Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vfmul", "PseudoVFMUL", AllFloatVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vfdiv", "PseudoVFDIV", AllFloatVectors>; defm "" : VPatBinaryV_VX<"int_riscv_vfrdiv", "PseudoVFRDIV", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.5. Vector Widening Floating-Point Multiply //===----------------------------------------------------------------------===// defm "" : VPatBinaryW_VV_VX<"int_riscv_vfwmul", "PseudoVFWMUL", AllWidenableFloatVectors>; //===----------------------------------------------------------------------===// // 14.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmacc", "PseudoVFMACC", AllFloatVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmacc", "PseudoVFNMACC", AllFloatVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmsac", "PseudoVFMSAC", AllFloatVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmsac", "PseudoVFNMSAC", AllFloatVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmadd", "PseudoVFMADD", AllFloatVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmadd", "PseudoVFNMADD", AllFloatVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmsub", "PseudoVFMSUB", AllFloatVectors>; defm "" : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmsub", "PseudoVFNMSUB", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.7. Vector Widening Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// defm "" : VPatTernaryW_VV_VX<"int_riscv_vfwmacc", "PseudoVFWMACC", AllWidenableFloatVectors>; defm "" : VPatTernaryW_VV_VX<"int_riscv_vfwnmacc", "PseudoVFWNMACC", AllWidenableFloatVectors>; defm "" : VPatTernaryW_VV_VX<"int_riscv_vfwmsac", "PseudoVFWMSAC", AllWidenableFloatVectors>; defm "" : VPatTernaryW_VV_VX<"int_riscv_vfwnmsac", "PseudoVFWNMSAC", AllWidenableFloatVectors>; //===----------------------------------------------------------------------===// // 14.8. Vector Floating-Point Square-Root Instruction //===----------------------------------------------------------------------===// defm "" : VPatUnaryV_V<"int_riscv_vfsqrt", "PseudoVFSQRT", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction //===----------------------------------------------------------------------===// defm "" : VPatUnaryV_V<"int_riscv_vfrsqrt7", "PseudoVFRSQRT7", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.10. Vector Floating-Point Reciprocal Estimate Instruction //===----------------------------------------------------------------------===// defm "" : VPatUnaryV_V<"int_riscv_vfrec7", "PseudoVFREC7", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.11. Vector Floating-Point Min/Max Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vfmin", "PseudoVFMIN", AllFloatVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vfmax", "PseudoVFMAX", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.12. Vector Floating-Point Sign-Injection Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryV_VV_VX<"int_riscv_vfsgnj", "PseudoVFSGNJ", AllFloatVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vfsgnjn", "PseudoVFSGNJN", AllFloatVectors>; defm "" : VPatBinaryV_VV_VX<"int_riscv_vfsgnjx", "PseudoVFSGNJX", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.13. Vector Floating-Point Compare Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryM_VV_VX<"int_riscv_vmfeq", "PseudoVMFEQ", AllFloatVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmfle", "PseudoVMFLE", AllFloatVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmflt", "PseudoVMFLT", AllFloatVectors>; defm "" : VPatBinaryM_VV_VX<"int_riscv_vmfne", "PseudoVMFNE", AllFloatVectors>; defm "" : VPatBinaryM_VX<"int_riscv_vmfgt", "PseudoVMFGT", AllFloatVectors>; defm "" : VPatBinaryM_VX<"int_riscv_vmfge", "PseudoVMFGE", AllFloatVectors>; //===----------------------------------------------------------------------===// // 14.14. Vector Floating-Point Classify Instruction //===----------------------------------------------------------------------===// defm "" : VPatConversionVI_VF<"int_riscv_vfclass", "PseudoVFCLASS">; //===----------------------------------------------------------------------===// // 14.15. Vector Floating-Point Merge Instruction //===----------------------------------------------------------------------===// // We can use vmerge.vvm to support vector-vector vfmerge. defm "" : VPatBinaryV_VM<"int_riscv_vfmerge", "PseudoVMERGE", /*CarryOut = */0, /*vtilist=*/AllFloatVectors>; defm "" : VPatBinaryV_XM<"int_riscv_vfmerge", "PseudoVFMERGE", /*CarryOut = */0, /*vtilist=*/AllFloatVectors>; foreach fvti = AllFloatVectors in { defvar instr = !cast("PseudoVMERGE_VIM_"#fvti.LMul.MX); def : Pat<(fvti.Vector (int_riscv_vfmerge (fvti.Vector fvti.RegClass:$rs2), (fvti.Scalar (fpimm0)), (fvti.Mask V0), (XLenVT (VLOp GPR:$vl)))), (instr fvti.RegClass:$rs2, 0, (fvti.Mask V0), GPR:$vl, fvti.SEW)>; } //===----------------------------------------------------------------------===// // 14.16. Vector Floating-Point Move Instruction //===----------------------------------------------------------------------===// foreach fvti = AllFloatVectors in { // If we're splatting fpimm0, use vmv.v.x vd, x0. def : Pat<(fvti.Vector (int_riscv_vfmv_v_f (fvti.Scalar (fpimm0)), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMV_V_I_"#fvti.LMul.MX) 0, GPR:$vl, fvti.SEW)>; def : Pat<(fvti.Vector (int_riscv_vfmv_v_f (fvti.Scalar fvti.ScalarRegClass:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVFMV_V_" # fvti.ScalarSuffix # "_" # fvti.LMul.MX) (fvti.Scalar fvti.ScalarRegClass:$rs2), GPR:$vl, fvti.SEW)>; } //===----------------------------------------------------------------------===// // 14.17. Single-Width Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm "" : VPatConversionVI_VF<"int_riscv_vfcvt_xu_f_v", "PseudoVFCVT_XU_F">; defm "" : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_xu_f_v", "PseudoVFCVT_RTZ_XU_F">; defm "" : VPatConversionVI_VF<"int_riscv_vfcvt_x_f_v", "PseudoVFCVT_X_F">; defm "" : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_x_f_v", "PseudoVFCVT_RTZ_X_F">; defm "" : VPatConversionVF_VI<"int_riscv_vfcvt_f_x_v", "PseudoVFCVT_F_X">; defm "" : VPatConversionVF_VI<"int_riscv_vfcvt_f_xu_v", "PseudoVFCVT_F_XU">; //===----------------------------------------------------------------------===// // 14.18. Widening Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm "" : VPatConversionWI_VF<"int_riscv_vfwcvt_xu_f_v", "PseudoVFWCVT_XU_F">; defm "" : VPatConversionWI_VF<"int_riscv_vfwcvt_x_f_v", "PseudoVFWCVT_X_F">; defm "" : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_xu_f_v", "PseudoVFWCVT_RTZ_XU_F">; defm "" : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_x_f_v", "PseudoVFWCVT_RTZ_X_F">; defm "" : VPatConversionWF_VI<"int_riscv_vfwcvt_f_xu_v", "PseudoVFWCVT_F_XU">; defm "" : VPatConversionWF_VI<"int_riscv_vfwcvt_f_x_v", "PseudoVFWCVT_F_X">; defm "" : VPatConversionWF_VF<"int_riscv_vfwcvt_f_f_v", "PseudoVFWCVT_F_F">; //===----------------------------------------------------------------------===// // 14.19. Narrowing Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm "" : VPatConversionVI_WF<"int_riscv_vfncvt_xu_f_w", "PseudoVFNCVT_XU_F">; defm "" : VPatConversionVI_WF<"int_riscv_vfncvt_x_f_w", "PseudoVFNCVT_X_F">; defm "" : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_xu_f_w", "PseudoVFNCVT_RTZ_XU_F">; defm "" : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_x_f_w", "PseudoVFNCVT_RTZ_X_F">; defm "" : VPatConversionVF_WI <"int_riscv_vfncvt_f_xu_w", "PseudoVFNCVT_F_XU">; defm "" : VPatConversionVF_WI <"int_riscv_vfncvt_f_x_w", "PseudoVFNCVT_F_X">; defm "" : VPatConversionVF_WF<"int_riscv_vfncvt_f_f_w", "PseudoVFNCVT_F_F">; defm "" : VPatConversionVF_WF<"int_riscv_vfncvt_rod_f_f_w", "PseudoVFNCVT_ROD_F_F">; } // Predicates = [HasStdExtV, HasStdExtF] let Predicates = [HasStdExtV] in { //===----------------------------------------------------------------------===// // 15.1. Vector Single-Width Integer Reduction Instructions //===----------------------------------------------------------------------===// defm "" : VPatReductionV_VS<"int_riscv_vredsum", "PseudoVREDSUM">; defm "" : VPatReductionV_VS<"int_riscv_vredand", "PseudoVREDAND">; defm "" : VPatReductionV_VS<"int_riscv_vredor", "PseudoVREDOR">; defm "" : VPatReductionV_VS<"int_riscv_vredxor", "PseudoVREDXOR">; defm "" : VPatReductionV_VS<"int_riscv_vredminu", "PseudoVREDMINU">; defm "" : VPatReductionV_VS<"int_riscv_vredmin", "PseudoVREDMIN">; defm "" : VPatReductionV_VS<"int_riscv_vredmaxu", "PseudoVREDMAXU">; defm "" : VPatReductionV_VS<"int_riscv_vredmax", "PseudoVREDMAX">; //===----------------------------------------------------------------------===// // 15.2. Vector Widening Integer Reduction Instructions //===----------------------------------------------------------------------===// defm "" : VPatReductionW_VS<"int_riscv_vwredsumu", "PseudoVWREDSUMU">; defm "" : VPatReductionW_VS<"int_riscv_vwredsum", "PseudoVWREDSUM">; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { //===----------------------------------------------------------------------===// // 15.3. Vector Single-Width Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// defm "" : VPatReductionV_VS<"int_riscv_vfredosum", "PseudoVFREDOSUM", /*IsFloat=*/1>; defm "" : VPatReductionV_VS<"int_riscv_vfredsum", "PseudoVFREDSUM", /*IsFloat=*/1>; defm "" : VPatReductionV_VS<"int_riscv_vfredmin", "PseudoVFREDMIN", /*IsFloat=*/1>; defm "" : VPatReductionV_VS<"int_riscv_vfredmax", "PseudoVFREDMAX", /*IsFloat=*/1>; //===----------------------------------------------------------------------===// // 15.4. Vector Widening Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// defm "" : VPatReductionW_VS<"int_riscv_vfwredsum", "PseudoVFWREDSUM", /*IsFloat=*/1>; defm "" : VPatReductionW_VS<"int_riscv_vfwredosum", "PseudoVFWREDOSUM", /*IsFloat=*/1>; } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 16. Vector Mask Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { //===----------------------------------------------------------------------===// // 16.1 Vector Mask-Register Logical Instructions //===----------------------------------------------------------------------===// defm "" : VPatBinaryM_MM<"int_riscv_vmand", "PseudoVMAND">; defm "" : VPatBinaryM_MM<"int_riscv_vmnand", "PseudoVMNAND">; defm "" : VPatBinaryM_MM<"int_riscv_vmandnot", "PseudoVMANDNOT">; defm "" : VPatBinaryM_MM<"int_riscv_vmxor", "PseudoVMXOR">; defm "" : VPatBinaryM_MM<"int_riscv_vmor", "PseudoVMOR">; defm "" : VPatBinaryM_MM<"int_riscv_vmnor", "PseudoVMNOR">; defm "" : VPatBinaryM_MM<"int_riscv_vmornot", "PseudoVMORNOT">; defm "" : VPatBinaryM_MM<"int_riscv_vmxnor", "PseudoVMXNOR">; // pseudo instructions defm "" : VPatNullaryM<"int_riscv_vmclr", "PseudoVMCLR">; defm "" : VPatNullaryM<"int_riscv_vmset", "PseudoVMSET">; //===----------------------------------------------------------------------===// // 16.2. Vector mask population count vpopc //===----------------------------------------------------------------------===// defm "" : VPatUnaryS_M<"int_riscv_vpopc", "PseudoVPOPC">; //===----------------------------------------------------------------------===// // 16.3. vfirst find-first-set mask bit //===----------------------------------------------------------------------===// defm "" : VPatUnaryS_M<"int_riscv_vfirst", "PseudoVFIRST">; //===----------------------------------------------------------------------===// // 16.4. vmsbf.m set-before-first mask bit //===----------------------------------------------------------------------===// defm "" : VPatUnaryM_M<"int_riscv_vmsbf", "PseudoVMSBF">; //===----------------------------------------------------------------------===// // 16.5. vmsif.m set-including-first mask bit //===----------------------------------------------------------------------===// defm "" : VPatUnaryM_M<"int_riscv_vmsif", "PseudoVMSIF">; //===----------------------------------------------------------------------===// // 16.6. vmsof.m set-only-first mask bit //===----------------------------------------------------------------------===// defm "" : VPatUnaryM_M<"int_riscv_vmsof", "PseudoVMSOF">; //===----------------------------------------------------------------------===// // 16.8. Vector Iota Instruction //===----------------------------------------------------------------------===// defm "" : VPatUnaryV_M<"int_riscv_viota", "PseudoVIOTA">; //===----------------------------------------------------------------------===// // 16.9. Vector Element Index Instruction //===----------------------------------------------------------------------===// defm "" : VPatNullaryV<"int_riscv_vid", "PseudoVID">; } // Predicates = [HasStdExtV] //===----------------------------------------------------------------------===// // 17. Vector Permutation Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 17.1. Integer Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { foreach vti = AllIntegerVectors in { def : Pat<(riscv_vmv_x_s (vti.Vector vti.RegClass:$rs2)), (!cast("PseudoVMV_X_S_" # vti.LMul.MX) $rs2, vti.SEW)>; def : Pat<(vti.Vector (int_riscv_vmv_s_x (vti.Vector vti.RegClass:$rs1), GPR:$rs2, (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVMV_S_X_" # vti.LMul.MX) (vti.Vector $rs1), $rs2, GPR:$vl, vti.SEW)>; } } // Predicates = [HasStdExtV] //===----------------------------------------------------------------------===// // 17.2. Floating-Point Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV, HasStdExtF] in { foreach fvti = AllFloatVectors in { defvar instr = !cast("PseudoVFMV_"#fvti.ScalarSuffix#"_S_" # fvti.LMul.MX); def : Pat<(fvti.Scalar (int_riscv_vfmv_f_s (fvti.Vector fvti.RegClass:$rs2))), (instr $rs2, fvti.SEW)>; def : Pat<(fvti.Vector (int_riscv_vfmv_s_f (fvti.Vector fvti.RegClass:$rs1), (fvti.Scalar fvti.ScalarRegClass:$rs2), (XLenVT (VLOp GPR:$vl)))), (!cast("PseudoVFMV_S_"#fvti.ScalarSuffix#"_" # fvti.LMul.MX) (fvti.Vector $rs1), (fvti.Scalar fvti.ScalarRegClass:$rs2), GPR:$vl, fvti.SEW)>; } } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 17.3. Vector Slide Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { defm "" : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllIntegerVectors, uimm5>; defm "" : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllIntegerVectors, uimm5>; defm "" : VPatBinaryV_VX<"int_riscv_vslide1up", "PseudoVSLIDE1UP", AllIntegerVectors>; defm "" : VPatBinaryV_VX<"int_riscv_vslide1down", "PseudoVSLIDE1DOWN", AllIntegerVectors>; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { defm "" : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllFloatVectors, uimm5>; defm "" : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllFloatVectors, uimm5>; defm "" : VPatBinaryV_VX<"int_riscv_vfslide1up", "PseudoVFSLIDE1UP", AllFloatVectors>; defm "" : VPatBinaryV_VX<"int_riscv_vfslide1down", "PseudoVFSLIDE1DOWN", AllFloatVectors>; } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 17.4. Vector Register Gather Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { defm "" : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER", AllIntegerVectors, uimm5>; defm "" : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16", "PseudoVRGATHEREI16", /* eew */ 16, AllIntegerVectors>; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { defm "" : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER", AllFloatVectors, uimm5>; defm "" : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16", "PseudoVRGATHEREI16", /* eew */ 16, AllFloatVectors>; } // Predicates = [HasStdExtV, HasStdExtF] //===----------------------------------------------------------------------===// // 17.5. Vector Compress Instruction //===----------------------------------------------------------------------===// let Predicates = [HasStdExtV] in { defm "" : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllIntegerVectors>; } // Predicates = [HasStdExtV] let Predicates = [HasStdExtV, HasStdExtF] in { defm "" : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllFloatVectors>; } // Predicates = [HasStdExtV, HasStdExtF] // Include the non-intrinsic ISel patterns include "RISCVInstrInfoVSDPatterns.td"