//===-- RISCVInstrInfoM.td - RISC-V 'M' instructions -------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions from the standard 'M', Integer // Multiplication and Division instruction set extension. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // RISC-V specific DAG Nodes. //===----------------------------------------------------------------------===// def riscv_mulhsu : SDNode<"RISCVISD::MULHSU", SDTIntBinOp>; def riscv_divw : SDNode<"RISCVISD::DIVW", SDT_RISCVIntBinOpW>; def riscv_divuw : SDNode<"RISCVISD::DIVUW", SDT_RISCVIntBinOpW>; def riscv_remuw : SDNode<"RISCVISD::REMUW", SDT_RISCVIntBinOpW>; //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtM] in { def MUL : ALU_rr<0b0000001, 0b000, "mul">, Sched<[WriteIMul, ReadIMul, ReadIMul]>; def MULH : ALU_rr<0b0000001, 0b001, "mulh">, Sched<[WriteIMul, ReadIMul, ReadIMul]>; def MULHSU : ALU_rr<0b0000001, 0b010, "mulhsu">, Sched<[WriteIMul, ReadIMul, ReadIMul]>; def MULHU : ALU_rr<0b0000001, 0b011, "mulhu">, Sched<[WriteIMul, ReadIMul, ReadIMul]>; def DIV : ALU_rr<0b0000001, 0b100, "div">, Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>; def DIVU : ALU_rr<0b0000001, 0b101, "divu">, Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>; def REM : ALU_rr<0b0000001, 0b110, "rem">, Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>; def REMU : ALU_rr<0b0000001, 0b111, "remu">, Sched<[WriteIDiv, ReadIDiv, ReadIDiv]>; } // Predicates = [HasStdExtM] let Predicates = [HasStdExtM, IsRV64] in { def MULW : ALUW_rr<0b0000001, 0b000, "mulw">, Sched<[WriteIMul32, ReadIMul32, ReadIMul32]>; def DIVW : ALUW_rr<0b0000001, 0b100, "divw">, Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>; def DIVUW : ALUW_rr<0b0000001, 0b101, "divuw">, Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>; def REMW : ALUW_rr<0b0000001, 0b110, "remw">, Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>; def REMUW : ALUW_rr<0b0000001, 0b111, "remuw">, Sched<[WriteIDiv32, ReadIDiv32, ReadIDiv32]>; } // Predicates = [HasStdExtM, IsRV64] //===----------------------------------------------------------------------===// // Pseudo-instructions and codegen patterns //===----------------------------------------------------------------------===// let Predicates = [HasStdExtM] in { def : PatGprGpr; def : PatGprGpr; def : PatGprGpr; def : PatGprGpr; def : PatGprGpr; def : PatGprGpr; def : PatGprGpr; def : PatGprGpr; } // Predicates = [HasStdExtM] let Predicates = [HasStdExtM, IsRV64] in { def : Pat<(sext_inreg (mul GPR:$rs1, GPR:$rs2), i32), (MULW GPR:$rs1, GPR:$rs2)>; def : PatGprGpr; def : PatGprGpr; def : PatGprGpr; // Handle the specific cases where using DIVU/REMU would be correct and result // in fewer instructions than emitting DIVUW/REMUW then zero-extending the // result. def : Pat<(and (riscv_divuw (assertzexti32 GPR:$rs1), (assertzexti32 GPR:$rs2)), 0xffffffff), (DIVU GPR:$rs1, GPR:$rs2)>; def : Pat<(and (riscv_remuw (assertzexti32 GPR:$rs1), (assertzexti32 GPR:$rs2)), 0xffffffff), (REMU GPR:$rs1, GPR:$rs2)>; // Although the sexti32 operands may not have originated from an i32 srem, // this pattern is safe as it is impossible for two sign extended inputs to // produce a result where res[63:32]=0 and res[31]=1. def : Pat<(srem (sexti32 (i64 GPR:$rs1)), (sexti32 (i64 GPR:$rs2))), (REMW GPR:$rs1, GPR:$rs2)>; } // Predicates = [HasStdExtM, IsRV64] let Predicates = [HasStdExtM, IsRV64, NotHasStdExtZba] in { // Special case for calculating the full 64-bit product of a 32x32 unsigned // multiply where the inputs aren't known to be zero extended. We can shift the // inputs left by 32 and use a MULHU. This saves two SRLIs needed to finish // zeroing the upper 32 bits. // TODO: If one of the operands is zero extended and the other isn't, we might // still be better off shifting both left by 32. def : Pat<(i64 (mul (and GPR:$rs1, 0xffffffff), (and GPR:$rs2, 0xffffffff))), (MULHU (SLLI GPR:$rs1, 32), (SLLI GPR:$rs2, 32))>; // Prevent matching the first part of this pattern to mulw. The mul here has // additionals users or the ANDs would have been removed. The above pattern // will be used for the other users. If we form a mulw we'll keep the ANDs alive // and they'll still become SLLI+SRLI. def : Pat<(sext_inreg (mul (and GPR:$rs1, 0xffffffff), (and GPR:$rs2, 0xffffffff)), i32), (ADDIW (MULHU (SLLI GPR:$rs1, 32), (SLLI GPR:$rs2, 32)), 0)>; } // Predicates = [HasStdExtM, IsRV64, NotHasStdExtZba]