//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions from the standard 'F', // Single-Precision Floating-Point instruction set extension. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // RISC-V specific DAG Nodes. //===----------------------------------------------------------------------===// def SDT_RISCVFMV_W_X_RV64 : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>; def SDT_RISCVFMV_X_ANYEXTW_RV64 : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>; def SDT_RISCVFCVT_W_RV64 : SDTypeProfile<1, 2, [SDTCisVT<0, i64>, SDTCisFP<1>, SDTCisVT<2, i64>]>; def SDT_RISCVFCVT_X : SDTypeProfile<1, 2, [SDTCisVT<0, XLenVT>, SDTCisFP<1>, SDTCisVT<2, XLenVT>]>; def SDT_RISCVFROUND : SDTypeProfile<1, 3, [SDTCisFP<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<3, XLenVT>]>; def SDT_RISCVFPCLASS : SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisFP<1>]>; def riscv_fpclass : SDNode<"RISCVISD::FPCLASS", SDT_RISCVFPCLASS>; def riscv_fround : SDNode<"RISCVISD::FROUND", SDT_RISCVFROUND>; def riscv_fmv_w_x_rv64 : SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>; def riscv_fmv_x_anyextw_rv64 : SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>; def riscv_fcvt_w_rv64 : SDNode<"RISCVISD::FCVT_W_RV64", SDT_RISCVFCVT_W_RV64>; def riscv_fcvt_wu_rv64 : SDNode<"RISCVISD::FCVT_WU_RV64", SDT_RISCVFCVT_W_RV64>; def riscv_fcvt_x : SDNode<"RISCVISD::FCVT_X", SDT_RISCVFCVT_X>; def riscv_fcvt_xu : SDNode<"RISCVISD::FCVT_XU", SDT_RISCVFCVT_X>; def riscv_fmin : SDNode<"RISCVISD::FMIN", SDTFPBinOp>; def riscv_fmax : SDNode<"RISCVISD::FMAX", SDTFPBinOp>; def riscv_strict_fcvt_w_rv64 : SDNode<"RISCVISD::STRICT_FCVT_W_RV64", SDT_RISCVFCVT_W_RV64, [SDNPHasChain]>; def riscv_strict_fcvt_wu_rv64 : SDNode<"RISCVISD::STRICT_FCVT_WU_RV64", SDT_RISCVFCVT_W_RV64, [SDNPHasChain]>; def riscv_any_fcvt_w_rv64 : PatFrags<(ops node:$src, node:$frm), [(riscv_strict_fcvt_w_rv64 node:$src, node:$frm), (riscv_fcvt_w_rv64 node:$src, node:$frm)]>; def riscv_any_fcvt_wu_rv64 : PatFrags<(ops node:$src, node:$frm), [(riscv_strict_fcvt_wu_rv64 node:$src, node:$frm), (riscv_fcvt_wu_rv64 node:$src, node:$frm)]>; def any_fma_nsz : PatFrag<(ops node:$rs1, node:$rs2, node:$rs3), (any_fma node:$rs1, node:$rs2, node:$rs3), [{ return N->getFlags().hasNoSignedZeros(); }]>; //===----------------------------------------------------------------------===// // Operand and SDNode transformation definitions. //===----------------------------------------------------------------------===// // Zfinx def GPRAsFPR : AsmOperandClass { let Name = "GPRAsFPR"; let ParserMethod = "parseGPRAsFPR"; let RenderMethod = "addRegOperands"; } def FPR32INX : RegisterOperand { let ParserMatchClass = GPRAsFPR; let DecoderMethod = "DecodeGPRRegisterClass"; } // Describes a combination of predicates from F/D/Zfh/Zfhmin or // Zfinx/Zdinx/Zhinx/Zhinxmin that are applied to scalar FP instruction. // Contains the DAGOperand for the primary type for the predicates. The primary // type may be unset for combinations of predicates like Zfh+D. // Also contains the DAGOperand for f16/f32/f64, instruction suffix, and // decoder namespace that go with an instruction given those predicates. // // The DAGOperand can be unset if the predicates are not enough to define it. class ExtInfo predicates, ValueType primaryvt, DAGOperand primaryty, DAGOperand f32ty, DAGOperand f64ty, DAGOperand f16ty> { list Predicates = predicates; string Suffix = suffix; string Space = space; DAGOperand PrimaryTy = primaryty; DAGOperand F16Ty = f16ty; DAGOperand F32Ty = f32ty; DAGOperand F64Ty = f64ty; ValueType PrimaryVT = primaryvt; } def FExt : ExtInfo<"", "", [HasStdExtF], f32, FPR32, FPR32, ?, ?>; def ZfinxExt : ExtInfo<"_INX", "RVZfinx", [HasStdExtZfinx], f32, FPR32INX, FPR32INX, ?, ?>; defvar FExts = [FExt, ZfinxExt]; // Floating-point rounding mode def FRMArg : AsmOperandClass { let Name = "FRMArg"; let RenderMethod = "addFRMArgOperands"; let ParserMethod = "parseFRMArg"; let IsOptional = 1; let DefaultMethod = "defaultFRMArgOp"; } def frmarg : Operand { let ParserMatchClass = FRMArg; let PrintMethod = "printFRMArg"; let DecoderMethod = "decodeFRMArg"; } //===----------------------------------------------------------------------===// // Instruction class templates //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in class FPLoad_r funct3, string opcodestr, DAGOperand rty, SchedWrite sw> : RVInstI, Sched<[sw, ReadFMemBase]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in class FPStore_r funct3, string opcodestr, DAGOperand rty, SchedWrite sw> : RVInstS, Sched<[sw, ReadFStoreData, ReadFMemBase]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1, UseNamedOperandTable = 1, hasPostISelHook = 1, isCommutable = 1 in class FPFMA_rrr_frm funct2, string opcodestr, DAGOperand rty> : RVInstR4Frm; multiclass FPFMA_rrr_frm_m funct2, string opcodestr, ExtInfo Ext> { let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in def Ext.Suffix : FPFMA_rrr_frm; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1 in class FPALU_rr funct7, bits<3> funct3, string opcodestr, DAGOperand rty, bit Commutable> : RVInstR { let isCommutable = Commutable; } multiclass FPALU_rr_m funct7, bits<3> funct3, string opcodestr, ExtInfo Ext, bit Commutable = 0> { let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in def Ext.Suffix : FPALU_rr; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1, UseNamedOperandTable = 1, hasPostISelHook = 1 in class FPALU_rr_frm funct7, string opcodestr, DAGOperand rty, bit Commutable> : RVInstRFrm { let isCommutable = Commutable; } multiclass FPALU_rr_frm_m funct7, string opcodestr, ExtInfo Ext, bit Commutable = 0> { let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in def Ext.Suffix : FPALU_rr_frm; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1 in class FPUnaryOp_r funct7, bits<5> rs2val, bits<3> funct3, DAGOperand rdty, DAGOperand rs1ty, string opcodestr> : RVInstR { let rs2 = rs2val; } multiclass FPUnaryOp_r_m funct7, bits<5> rs2val, bits<3> funct3, ExtInfo Ext, DAGOperand rdty, DAGOperand rs1ty, string opcodestr> { let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in def Ext.Suffix : FPUnaryOp_r; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1, UseNamedOperandTable = 1, hasPostISelHook = 1 in class FPUnaryOp_r_frm funct7, bits<5> rs2val, DAGOperand rdty, DAGOperand rs1ty, string opcodestr> : RVInstRFrm { let rs2 = rs2val; } multiclass FPUnaryOp_r_frm_m funct7, bits<5> rs2val, ExtInfo Ext, DAGOperand rdty, DAGOperand rs1ty, string opcodestr, list ExtraPreds = []> { let Predicates = !listconcat(Ext.Predicates, ExtraPreds), DecoderNamespace = Ext.Space in def Ext.Suffix : FPUnaryOp_r_frm; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1, IsSignExtendingOpW = 1 in class FPCmp_rr funct7, bits<3> funct3, string opcodestr, DAGOperand rty, bit Commutable = 0> : RVInstR { let isCommutable = Commutable; } multiclass FPCmp_rr_m funct7, bits<3> funct3, string opcodestr, ExtInfo Ext, bit Commutable = 0> { let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in def Ext.Suffix : FPCmp_rr; } class PseudoFROUND : Pseudo<(outs Ty:$rd), (ins Ty:$rs1, Ty:$rs2, ixlenimm:$rm), [(set Ty:$rd, (vt (riscv_fround Ty:$rs1, Ty:$rs2, timm:$rm)))]> { let hasSideEffects = 0; let mayLoad = 0; let mayStore = 0; let usesCustomInserter = 1; let mayRaiseFPException = 1; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtF] in { def FLW : FPLoad_r<0b010, "flw", FPR32, WriteFLD32>; // Operands for stores are in the order srcreg, base, offset rather than // reflecting the order these fields are specified in the instruction // encoding. def FSW : FPStore_r<0b010, "fsw", FPR32, WriteFST32>; } // Predicates = [HasStdExtF] foreach Ext = FExts in { let SchedRW = [WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32] in { defm FMADD_S : FPFMA_rrr_frm_m; defm FMSUB_S : FPFMA_rrr_frm_m; defm FNMSUB_S : FPFMA_rrr_frm_m; defm FNMADD_S : FPFMA_rrr_frm_m; } let SchedRW = [WriteFAdd32, ReadFAdd32, ReadFAdd32] in { defm FADD_S : FPALU_rr_frm_m<0b0000000, "fadd.s", Ext, Commutable=1>; defm FSUB_S : FPALU_rr_frm_m<0b0000100, "fsub.s", Ext>; } let SchedRW = [WriteFMul32, ReadFMul32, ReadFMul32] in defm FMUL_S : FPALU_rr_frm_m<0b0001000, "fmul.s", Ext, Commutable=1>; let SchedRW = [WriteFDiv32, ReadFDiv32, ReadFDiv32] in defm FDIV_S : FPALU_rr_frm_m<0b0001100, "fdiv.s", Ext>; defm FSQRT_S : FPUnaryOp_r_frm_m<0b0101100, 0b00000, Ext, Ext.PrimaryTy, Ext.PrimaryTy, "fsqrt.s">, Sched<[WriteFSqrt32, ReadFSqrt32]>; let SchedRW = [WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32], mayRaiseFPException = 0 in { defm FSGNJ_S : FPALU_rr_m<0b0010000, 0b000, "fsgnj.s", Ext>; defm FSGNJN_S : FPALU_rr_m<0b0010000, 0b001, "fsgnjn.s", Ext>; defm FSGNJX_S : FPALU_rr_m<0b0010000, 0b010, "fsgnjx.s", Ext>; } let SchedRW = [WriteFMinMax32, ReadFMinMax32, ReadFMinMax32] in { defm FMIN_S : FPALU_rr_m<0b0010100, 0b000, "fmin.s", Ext, Commutable=1>; defm FMAX_S : FPALU_rr_m<0b0010100, 0b001, "fmax.s", Ext, Commutable=1>; } let IsSignExtendingOpW = 1 in defm FCVT_W_S : FPUnaryOp_r_frm_m<0b1100000, 0b00000, Ext, GPR, Ext.PrimaryTy, "fcvt.w.s">, Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]>; let IsSignExtendingOpW = 1 in defm FCVT_WU_S : FPUnaryOp_r_frm_m<0b1100000, 0b00001, Ext, GPR, Ext.PrimaryTy, "fcvt.wu.s">, Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]>; let SchedRW = [WriteFCmp32, ReadFCmp32, ReadFCmp32] in { defm FEQ_S : FPCmp_rr_m<0b1010000, 0b010, "feq.s", Ext, Commutable=1>; defm FLT_S : FPCmp_rr_m<0b1010000, 0b001, "flt.s", Ext>; defm FLE_S : FPCmp_rr_m<0b1010000, 0b000, "fle.s", Ext>; } let mayRaiseFPException = 0 in defm FCLASS_S : FPUnaryOp_r_m<0b1110000, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy, "fclass.s">, Sched<[WriteFClass32, ReadFClass32]>; defm FCVT_S_W : FPUnaryOp_r_frm_m<0b1101000, 0b00000, Ext, Ext.PrimaryTy, GPR, "fcvt.s.w">, Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]>; defm FCVT_S_WU : FPUnaryOp_r_frm_m<0b1101000, 0b00001, Ext, Ext.PrimaryTy, GPR, "fcvt.s.wu">, Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]>; defm FCVT_L_S : FPUnaryOp_r_frm_m<0b1100000, 0b00010, Ext, GPR, Ext.PrimaryTy, "fcvt.l.s", [IsRV64]>, Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]>; defm FCVT_LU_S : FPUnaryOp_r_frm_m<0b1100000, 0b00011, Ext, GPR, Ext.PrimaryTy, "fcvt.lu.s", [IsRV64]>, Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]>; defm FCVT_S_L : FPUnaryOp_r_frm_m<0b1101000, 0b00010, Ext, Ext.PrimaryTy, GPR, "fcvt.s.l", [IsRV64]>, Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]>; defm FCVT_S_LU : FPUnaryOp_r_frm_m<0b1101000, 0b00011, Ext, Ext.PrimaryTy, GPR, "fcvt.s.lu", [IsRV64]>, Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]>; } // foreach Ext = FExts let Predicates = [HasStdExtF], mayRaiseFPException = 0, IsSignExtendingOpW = 1 in def FMV_X_W : FPUnaryOp_r<0b1110000, 0b00000, 0b000, GPR, FPR32, "fmv.x.w">, Sched<[WriteFMovF32ToI32, ReadFMovF32ToI32]>; let Predicates = [HasStdExtF], mayRaiseFPException = 0 in def FMV_W_X : FPUnaryOp_r<0b1111000, 0b00000, 0b000, FPR32, GPR, "fmv.w.x">, Sched<[WriteFMovI32ToF32, ReadFMovI32ToF32]>; //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) //===----------------------------------------------------------------------===// let Predicates = [HasStdExtF] in { def : InstAlias<"flw $rd, (${rs1})", (FLW FPR32:$rd, GPR:$rs1, 0), 0>; def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>; def : InstAlias<"fmv.s $rd, $rs", (FSGNJ_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; // fgt.s/fge.s are recognised by the GNU assembler but the canonical // flt.s/fle.s forms will always be printed. Therefore, set a zero weight. def : InstAlias<"fgt.s $rd, $rs, $rt", (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>; def : InstAlias<"fge.s $rd, $rs, $rt", (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>; // The following csr instructions actually alias instructions from the base ISA. // However, it only makes sense to support them when the F extension is enabled. // NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr". def : InstAlias<"frcsr $rd", (CSRRS GPR:$rd, SysRegFCSR.Encoding, X0), 2>; def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, SysRegFCSR.Encoding, GPR:$rs)>; def : InstAlias<"fscsr $rs", (CSRRW X0, SysRegFCSR.Encoding, GPR:$rs), 2>; // frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them // zero weight. def : InstAlias<"frsr $rd", (CSRRS GPR:$rd, SysRegFCSR.Encoding, X0), 0>; def : InstAlias<"fssr $rd, $rs", (CSRRW GPR:$rd, SysRegFCSR.Encoding, GPR:$rs), 0>; def : InstAlias<"fssr $rs", (CSRRW X0, SysRegFCSR.Encoding, GPR:$rs), 0>; def : InstAlias<"frrm $rd", (CSRRS GPR:$rd, SysRegFRM.Encoding, X0), 2>; def : InstAlias<"fsrm $rd, $rs", (CSRRW GPR:$rd, SysRegFRM.Encoding, GPR:$rs)>; def : InstAlias<"fsrm $rs", (CSRRW X0, SysRegFRM.Encoding, GPR:$rs), 2>; def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, SysRegFRM.Encoding, uimm5:$imm)>; def : InstAlias<"fsrmi $imm", (CSRRWI X0, SysRegFRM.Encoding, uimm5:$imm), 2>; def : InstAlias<"frflags $rd", (CSRRS GPR:$rd, SysRegFFLAGS.Encoding, X0), 2>; def : InstAlias<"fsflags $rd, $rs", (CSRRW GPR:$rd, SysRegFFLAGS.Encoding, GPR:$rs)>; def : InstAlias<"fsflags $rs", (CSRRW X0, SysRegFFLAGS.Encoding, GPR:$rs), 2>; def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, SysRegFFLAGS.Encoding, uimm5:$imm)>; def : InstAlias<"fsflagsi $imm", (CSRRWI X0, SysRegFFLAGS.Encoding, uimm5:$imm), 2>; // fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both // spellings should be supported by standard tools. def : MnemonicAlias<"fmv.s.x", "fmv.w.x">; def : MnemonicAlias<"fmv.x.s", "fmv.x.w">; def PseudoFLW : PseudoFloatLoad<"flw", FPR32>; def PseudoFSW : PseudoStore<"fsw", FPR32>; let usesCustomInserter = 1 in { def PseudoQuietFLE_S : PseudoQuietFCMP; def PseudoQuietFLT_S : PseudoQuietFCMP; } } // Predicates = [HasStdExtF] let Predicates = [HasStdExtZfinx] in { def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S_INX FPR32INX:$rd, FPR32INX:$rs, FPR32INX:$rs)>; def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S_INX FPR32INX:$rd, FPR32INX:$rs, FPR32INX:$rs)>; def : InstAlias<"fgt.s $rd, $rs, $rt", (FLT_S_INX GPR:$rd, FPR32INX:$rt, FPR32INX:$rs), 0>; def : InstAlias<"fge.s $rd, $rs, $rt", (FLE_S_INX GPR:$rd, FPR32INX:$rt, FPR32INX:$rs), 0>; let usesCustomInserter = 1 in { def PseudoQuietFLE_S_INX : PseudoQuietFCMP; def PseudoQuietFLT_S_INX : PseudoQuietFCMP; } } // Predicates = [HasStdExtZfinx] //===----------------------------------------------------------------------===// // Pseudo-instructions and codegen patterns //===----------------------------------------------------------------------===// defvar FRM_RNE = 0b000; defvar FRM_RTZ = 0b001; defvar FRM_RDN = 0b010; defvar FRM_RUP = 0b011; defvar FRM_RMM = 0b100; defvar FRM_DYN = 0b111; /// Floating point constants def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; /// Generic pattern classes class PatSetCC : Pat<(XLenVT (OpNode (vt Ty:$rs1), Ty:$rs2, Cond)), (Inst $rs1, $rs2)>; multiclass PatSetCC_m { let Predicates = Ext.Predicates in def Ext.Suffix : PatSetCC(Inst#Ext.Suffix), vt>; } class PatFprFpr : Pat<(OpNode (vt RegTy:$rs1), (vt RegTy:$rs2)), (Inst $rs1, $rs2)>; multiclass PatFprFpr_m { let Predicates = Ext.Predicates in def Ext.Suffix : PatFprFpr(Inst#Ext.Suffix), Ext.PrimaryTy, Ext.PrimaryVT>; } class PatFprFprDynFrm : Pat<(OpNode (vt RegTy:$rs1), (vt RegTy:$rs2)), (Inst $rs1, $rs2, FRM_DYN)>; multiclass PatFprFprDynFrm_m { let Predicates = Ext.Predicates in def Ext.Suffix : PatFprFprDynFrm(Inst#Ext.Suffix), Ext.PrimaryTy, Ext.PrimaryVT>; } /// Float conversion operations // [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so // are defined later. /// Float arithmetic operations foreach Ext = FExts in { defm : PatFprFprDynFrm_m; defm : PatFprFprDynFrm_m; defm : PatFprFprDynFrm_m; defm : PatFprFprDynFrm_m; } let Predicates = [HasStdExtF] in { def : Pat<(any_fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, FRM_DYN)>; def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>; def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>; def : Pat<(riscv_fpclass FPR32:$rs1), (FCLASS_S $rs1)>; } // Predicates = [HasStdExtF] let Predicates = [HasStdExtZfinx] in { def : Pat<(any_fsqrt FPR32INX:$rs1), (FSQRT_S_INX FPR32INX:$rs1, FRM_DYN)>; def : Pat<(fneg FPR32INX:$rs1), (FSGNJN_S_INX $rs1, $rs1)>; def : Pat<(fabs FPR32INX:$rs1), (FSGNJX_S_INX $rs1, $rs1)>; def : Pat<(riscv_fpclass FPR32INX:$rs1), (FCLASS_S_INX $rs1)>; } // Predicates = [HasStdExtZfinx] foreach Ext = FExts in defm : PatFprFpr_m; let Predicates = [HasStdExtF] in { def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>; // fmadd: rs1 * rs2 + rs3 def : Pat<(any_fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3), (FMADD_S $rs1, $rs2, $rs3, FRM_DYN)>; // fmsub: rs1 * rs2 - rs3 def : Pat<(any_fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)), (FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, FRM_DYN)>; // fnmsub: -rs1 * rs2 + rs3 def : Pat<(any_fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3), (FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, FRM_DYN)>; // fnmadd: -rs1 * rs2 - rs3 def : Pat<(any_fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)), (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, FRM_DYN)>; // fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA) def : Pat<(fneg (any_fma_nsz FPR32:$rs1, FPR32:$rs2, FPR32:$rs3)), (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, FRM_DYN)>; } // Predicates = [HasStdExtF] let Predicates = [HasStdExtZfinx] in { def : Pat<(fcopysign FPR32INX:$rs1, (fneg FPR32INX:$rs2)), (FSGNJN_S_INX $rs1, $rs2)>; // fmadd: rs1 * rs2 + rs3 def : Pat<(any_fma FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3), (FMADD_S_INX $rs1, $rs2, $rs3, FRM_DYN)>; // fmsub: rs1 * rs2 - rs3 def : Pat<(any_fma FPR32INX:$rs1, FPR32INX:$rs2, (fneg FPR32INX:$rs3)), (FMSUB_S_INX FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3, FRM_DYN)>; // fnmsub: -rs1 * rs2 + rs3 def : Pat<(any_fma (fneg FPR32INX:$rs1), FPR32INX:$rs2, FPR32INX:$rs3), (FNMSUB_S_INX FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3, FRM_DYN)>; // fnmadd: -rs1 * rs2 - rs3 def : Pat<(any_fma (fneg FPR32INX:$rs1), FPR32INX:$rs2, (fneg FPR32INX:$rs3)), (FNMADD_S_INX FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3, FRM_DYN)>; // fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA) def : Pat<(fneg (any_fma_nsz FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3)), (FNMADD_S_INX FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3, FRM_DYN)>; } // Predicates = [HasStdExtZfinx] // The ratified 20191213 ISA spec defines fmin and fmax in a way that matches // LLVM's fminnum and fmaxnum // . foreach Ext = FExts in { defm : PatFprFpr_m; defm : PatFprFpr_m; defm : PatFprFpr_m; defm : PatFprFpr_m; } /// Setcc // FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for // strict versions of those. // Match non-signaling FEQ_S foreach Ext = FExts in { defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; } let Predicates = [HasStdExtF] in { // Match signaling FEQ_S def : Pat<(XLenVT (strict_fsetccs FPR32:$rs1, FPR32:$rs2, SETEQ)), (AND (FLE_S $rs1, $rs2), (FLE_S $rs2, $rs1))>; def : Pat<(XLenVT (strict_fsetccs FPR32:$rs1, FPR32:$rs2, SETOEQ)), (AND (FLE_S $rs1, $rs2), (FLE_S $rs2, $rs1))>; // If both operands are the same, use a single FLE. def : Pat<(XLenVT (strict_fsetccs FPR32:$rs1, FPR32:$rs1, SETEQ)), (FLE_S $rs1, $rs1)>; def : Pat<(XLenVT (strict_fsetccs FPR32:$rs1, FPR32:$rs1, SETOEQ)), (FLE_S $rs1, $rs1)>; } // Predicates = [HasStdExtF] let Predicates = [HasStdExtZfinx] in { // Match signaling FEQ_S def : Pat<(XLenVT (strict_fsetccs FPR32INX:$rs1, FPR32INX:$rs2, SETEQ)), (AND (FLE_S_INX $rs1, $rs2), (FLE_S_INX $rs2, $rs1))>; def : Pat<(XLenVT (strict_fsetccs FPR32INX:$rs1, FPR32INX:$rs2, SETOEQ)), (AND (FLE_S_INX $rs1, $rs2), (FLE_S_INX $rs2, $rs1))>; // If both operands are the same, use a single FLE. def : Pat<(XLenVT (strict_fsetccs FPR32INX:$rs1, FPR32INX:$rs1, SETEQ)), (FLE_S_INX $rs1, $rs1)>; def : Pat<(XLenVT (strict_fsetccs FPR32INX:$rs1, FPR32INX:$rs1, SETOEQ)), (FLE_S_INX $rs1, $rs1)>; } // Predicates = [HasStdExtZfinx] foreach Ext = FExts in { defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; defm : PatSetCC_m; } let Predicates = [HasStdExtF] in { defm Select_FPR32 : SelectCC_GPR_rrirr; def PseudoFROUND_S : PseudoFROUND; /// Loads def : LdPat; /// Stores def : StPat; } // Predicates = [HasStdExtF] let Predicates = [HasStdExtZfinx] in { defm Select_FPR32INX : SelectCC_GPR_rrirr; def PseudoFROUND_S_INX : PseudoFROUND; /// Loads def : Pat<(f32 (load (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12))), (COPY_TO_REGCLASS (LW GPR:$rs1, simm12:$imm12), GPRF32)>; /// Stores def : Pat<(store (f32 FPR32INX:$rs2), (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12)), (SW (COPY_TO_REGCLASS FPR32INX:$rs2, GPR), GPR:$rs1, simm12:$imm12)>; } // Predicates = [HasStdExtZfinx] let Predicates = [HasStdExtF, IsRV32] in { // Moves (no conversion) def : Pat<(bitconvert (i32 GPR:$rs1)), (FMV_W_X GPR:$rs1)>; def : Pat<(i32 (bitconvert FPR32:$rs1)), (FMV_X_W FPR32:$rs1)>; } // Predicates = [HasStdExtF, IsRV32] let Predicates = [HasStdExtZfinx, IsRV32] in { // Moves (no conversion) def : Pat<(f32 (bitconvert (i32 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPRF32)>; def : Pat<(i32 (bitconvert FPR32INX:$rs1)), (COPY_TO_REGCLASS FPR32INX:$rs1, GPR)>; } // Predicates = [HasStdExtZfinx, IsRV32] let Predicates = [HasStdExtF, IsRV32] in { // float->[u]int. Round-to-zero must be used. def : Pat<(i32 (any_fp_to_sint FPR32:$rs1)), (FCVT_W_S $rs1, FRM_RTZ)>; def : Pat<(i32 (any_fp_to_uint FPR32:$rs1)), (FCVT_WU_S $rs1, FRM_RTZ)>; // Saturating float->[u]int32. def : Pat<(i32 (riscv_fcvt_x FPR32:$rs1, timm:$frm)), (FCVT_W_S $rs1, timm:$frm)>; def : Pat<(i32 (riscv_fcvt_xu FPR32:$rs1, timm:$frm)), (FCVT_WU_S $rs1, timm:$frm)>; // float->int32 with current rounding mode. def : Pat<(i32 (any_lrint FPR32:$rs1)), (FCVT_W_S $rs1, FRM_DYN)>; // float->int32 rounded to nearest with ties rounded away from zero. def : Pat<(i32 (any_lround FPR32:$rs1)), (FCVT_W_S $rs1, FRM_RMM)>; // [u]int->float. Match GCC and default to using dynamic rounding mode. def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_S_W $rs1, FRM_DYN)>; def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_S_WU $rs1, FRM_DYN)>; } // Predicates = [HasStdExtF, IsRV32] let Predicates = [HasStdExtZfinx, IsRV32] in { // float->[u]int. Round-to-zero must be used. def : Pat<(i32 (any_fp_to_sint FPR32INX:$rs1)), (FCVT_W_S_INX $rs1, FRM_RTZ)>; def : Pat<(i32 (any_fp_to_uint FPR32INX:$rs1)), (FCVT_WU_S_INX $rs1, FRM_RTZ)>; // Saturating float->[u]int32. def : Pat<(i32 (riscv_fcvt_x FPR32INX:$rs1, timm:$frm)), (FCVT_W_S_INX $rs1, timm:$frm)>; def : Pat<(i32 (riscv_fcvt_xu FPR32INX:$rs1, timm:$frm)), (FCVT_WU_S_INX $rs1, timm:$frm)>; // float->int32 with current rounding mode. def : Pat<(i32 (any_lrint FPR32INX:$rs1)), (FCVT_W_S_INX $rs1, FRM_DYN)>; // float->int32 rounded to nearest with ties rounded away from zero. def : Pat<(i32 (any_lround FPR32INX:$rs1)), (FCVT_W_S_INX $rs1, FRM_RMM)>; // [u]int->float. Match GCC and default to using dynamic rounding mode. def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_S_W_INX $rs1, FRM_DYN)>; def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_S_WU_INX $rs1, FRM_DYN)>; } // Predicates = [HasStdExtZfinx, IsRV32] let Predicates = [HasStdExtF, IsRV64] in { // Moves (no conversion) def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>; def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>; // Use target specific isd nodes to help us remember the result is sign // extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be // duplicated if it has another user that didn't need the sign_extend. def : Pat<(riscv_any_fcvt_w_rv64 FPR32:$rs1, timm:$frm), (FCVT_W_S $rs1, timm:$frm)>; def : Pat<(riscv_any_fcvt_wu_rv64 FPR32:$rs1, timm:$frm), (FCVT_WU_S $rs1, timm:$frm)>; // float->[u]int64. Round-to-zero must be used. def : Pat<(i64 (any_fp_to_sint FPR32:$rs1)), (FCVT_L_S $rs1, FRM_RTZ)>; def : Pat<(i64 (any_fp_to_uint FPR32:$rs1)), (FCVT_LU_S $rs1, FRM_RTZ)>; // Saturating float->[u]int64. def : Pat<(i64 (riscv_fcvt_x FPR32:$rs1, timm:$frm)), (FCVT_L_S $rs1, timm:$frm)>; def : Pat<(i64 (riscv_fcvt_xu FPR32:$rs1, timm:$frm)), (FCVT_LU_S $rs1, timm:$frm)>; // float->int64 with current rounding mode. def : Pat<(i64 (any_lrint FPR32:$rs1)), (FCVT_L_S $rs1, FRM_DYN)>; def : Pat<(i64 (any_llrint FPR32:$rs1)), (FCVT_L_S $rs1, FRM_DYN)>; // float->int64 rounded to neartest with ties rounded away from zero. def : Pat<(i64 (any_lround FPR32:$rs1)), (FCVT_L_S $rs1, FRM_RMM)>; def : Pat<(i64 (any_llround FPR32:$rs1)), (FCVT_L_S $rs1, FRM_RMM)>; // [u]int->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_S_W $rs1, FRM_DYN)>; def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_S_WU $rs1, FRM_DYN)>; def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_S_L $rs1, FRM_DYN)>; def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_S_LU $rs1, FRM_DYN)>; } // Predicates = [HasStdExtF, IsRV64] let Predicates = [HasStdExtZfinx, IsRV64] in { // Moves (no conversion) def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (COPY_TO_REGCLASS GPR:$src, GPRF32)>; def : Pat<(riscv_fmv_x_anyextw_rv64 GPRF32:$src), (COPY_TO_REGCLASS GPRF32:$src, GPR)>; // Use target specific isd nodes to help us remember the result is sign // extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be // duplicated if it has another user that didn't need the sign_extend. def : Pat<(riscv_any_fcvt_w_rv64 FPR32INX:$rs1, timm:$frm), (FCVT_W_S_INX $rs1, timm:$frm)>; def : Pat<(riscv_any_fcvt_wu_rv64 FPR32INX:$rs1, timm:$frm), (FCVT_WU_S_INX $rs1, timm:$frm)>; // float->[u]int64. Round-to-zero must be used. def : Pat<(i64 (any_fp_to_sint FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_RTZ)>; def : Pat<(i64 (any_fp_to_uint FPR32INX:$rs1)), (FCVT_LU_S_INX $rs1, FRM_RTZ)>; // Saturating float->[u]int64. def : Pat<(i64 (riscv_fcvt_x FPR32INX:$rs1, timm:$frm)), (FCVT_L_S_INX $rs1, timm:$frm)>; def : Pat<(i64 (riscv_fcvt_xu FPR32INX:$rs1, timm:$frm)), (FCVT_LU_S_INX $rs1, timm:$frm)>; // float->int64 with current rounding mode. def : Pat<(i64 (any_lrint FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_DYN)>; def : Pat<(i64 (any_llrint FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_DYN)>; // float->int64 rounded to neartest with ties rounded away from zero. def : Pat<(i64 (any_lround FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_DYN)>; def : Pat<(i64 (any_llround FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_DYN)>; // [u]int->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_S_W_INX $rs1, FRM_DYN)>; def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_S_WU_INX $rs1, FRM_DYN)>; def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_S_L_INX $rs1, FRM_DYN)>; def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_S_LU_INX $rs1, FRM_DYN)>; } // Predicates = [HasStdExtZfinx, IsRV64]