//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions from the standard 'D', // Double-Precision Floating-Point instruction set extension. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // RISC-V specific DAG Nodes. //===----------------------------------------------------------------------===// def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def SDT_RISCVSplitF64 : SDTypeProfile<2, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, f64>]>; def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>; def RISCVSplitF64 : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>; //===----------------------------------------------------------------------===// // Operand and SDNode transformation definitions. //===----------------------------------------------------------------------===// // Zdinx def GPRPF64AsFPR : AsmOperandClass { let Name = "GPRPF64AsFPR"; let ParserMethod = "parseGPRAsFPR"; let RenderMethod = "addRegOperands"; } def GPRF64AsFPR : AsmOperandClass { let Name = "GPRF64AsFPR"; let ParserMethod = "parseGPRAsFPR"; let RenderMethod = "addRegOperands"; } def FPR64INX : RegisterOperand { let ParserMatchClass = GPRF64AsFPR; let DecoderMethod = "DecodeGPRRegisterClass"; } def FPR64IN32X : RegisterOperand { let ParserMatchClass = GPRPF64AsFPR; } def DExt : ExtInfo<0, [HasStdExtD]>; def D64Ext : ExtInfo<0, [HasStdExtD, IsRV64]>; def ZdinxExt : ExtInfo<1, [HasStdExtZdinx, IsRV64]>; def Zdinx32Ext : ExtInfo<2, [HasStdExtZdinx, IsRV32]>; def D : ExtInfo_r; def D_INX : ExtInfo_r; def D_IN32X : ExtInfo_r; def DD : ExtInfo_rr; def DD_INX : ExtInfo_rr; def DD_IN32X : ExtInfo_rr; def DF : ExtInfo_rr; def DF_INX : ExtInfo_rr; def DF_IN32X : ExtInfo_rr; def DX : ExtInfo_rr; def DX_INX : ExtInfo_rr; def DX_IN32X : ExtInfo_rr; def DX_64 : ExtInfo_rr; def FD : ExtInfo_rr; def FD_INX : ExtInfo_rr; def FD_IN32X : ExtInfo_rr; def XD : ExtInfo_rr; def XD_INX : ExtInfo_rr; def XD_IN32X : ExtInfo_rr; def XD_64 : ExtInfo_rr; defvar DINX = [D, D_INX, D_IN32X]; defvar DDINX = [DD, DD_INX, DD_IN32X]; defvar DXINX = [DX, DX_INX, DX_IN32X]; defvar DFINX = [DF, DF_INX, DF_IN32X]; defvar FDINX = [FD, FD_INX, FD_IN32X]; defvar XDINX = [XD, XD_INX, XD_IN32X]; defvar DXIN64X = [DX_64, DX_INX]; defvar XDIN64X = [XD_64, XD_INX]; //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtD] in { def FLD : FPLoad_r<0b011, "fld", FPR64, WriteFLD64>; // Operands for stores are in the order srcreg, base, offset rather than // reflecting the order these fields are specified in the instruction // encoding. def FSD : FPStore_r<0b011, "fsd", FPR64, WriteFST64>; } // Predicates = [HasStdExtD] let SchedRW = [WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64] in { defm FMADD_D : FPFMA_rrr_frm_m; defm FMSUB_D : FPFMA_rrr_frm_m; defm FNMSUB_D : FPFMA_rrr_frm_m; defm FNMADD_D : FPFMA_rrr_frm_m; } defm : FPFMADynFrmAlias_m; defm : FPFMADynFrmAlias_m; defm : FPFMADynFrmAlias_m; defm : FPFMADynFrmAlias_m; let SchedRW = [WriteFALU64, ReadFALU64, ReadFALU64] in { defm FADD_D : FPALU_rr_frm_m<0b0000001, "fadd.d", DINX, /*Commutable*/1>; defm FSUB_D : FPALU_rr_frm_m<0b0000101, "fsub.d", DINX>; } let SchedRW = [WriteFMul64, ReadFMul64, ReadFMul64] in defm FMUL_D : FPALU_rr_frm_m<0b0001001, "fmul.d", DINX, /*Commutable*/1>; let SchedRW = [WriteFDiv64, ReadFDiv64, ReadFDiv64] in defm FDIV_D : FPALU_rr_frm_m<0b0001101, "fdiv.d", DINX>; defm : FPALUDynFrmAlias_m; defm : FPALUDynFrmAlias_m; defm : FPALUDynFrmAlias_m; defm : FPALUDynFrmAlias_m; defm FSQRT_D : FPUnaryOp_r_frm_m<0b0101101, 0b00000, DDINX, "fsqrt.d">, Sched<[WriteFSqrt64, ReadFSqrt64]>; defm : FPUnaryOpDynFrmAlias_m; let SchedRW = [WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64], mayRaiseFPException = 0 in { defm FSGNJ_D : FPALU_rr_m<0b0010001, 0b000, "fsgnj.d", DINX>; defm FSGNJN_D : FPALU_rr_m<0b0010001, 0b001, "fsgnjn.d", DINX>; defm FSGNJX_D : FPALU_rr_m<0b0010001, 0b010, "fsgnjx.d", DINX>; } let SchedRW = [WriteFMinMax64, ReadFMinMax64, ReadFMinMax64] in { defm FMIN_D : FPALU_rr_m<0b0010101, 0b000, "fmin.d", DINX, /*Commutable*/1>; defm FMAX_D : FPALU_rr_m<0b0010101, 0b001, "fmax.d", DINX, /*Commutable*/1>; } defm FCVT_S_D : FPUnaryOp_r_frm_m<0b0100000, 0b00001, FDINX, "fcvt.s.d">, Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]>; defm : FPUnaryOpDynFrmAlias_m; defm FCVT_D_S : FPUnaryOp_r_m<0b0100001, 0b00000, 0b000, DFINX, "fcvt.d.s">, Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]>; let SchedRW = [WriteFCmp64, ReadFCmp64, ReadFCmp64] in { defm FEQ_D : FPCmp_rr_m<0b1010001, 0b010, "feq.d", DINX, /*Commutable*/1>; defm FLT_D : FPCmp_rr_m<0b1010001, 0b001, "flt.d", DINX>; defm FLE_D : FPCmp_rr_m<0b1010001, 0b000, "fle.d", DINX>; } defm FCLASS_D : FPUnaryOp_r_m<0b1110001, 0b00000, 0b001, XDINX, "fclass.d">, Sched<[WriteFClass64, ReadFClass64]>; defm FCVT_W_D : FPUnaryOp_r_frm_m<0b1100001, 0b00000, XDINX, "fcvt.w.d">, Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>; defm : FPUnaryOpDynFrmAlias_m; defm FCVT_WU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00001, XDINX, "fcvt.wu.d">, Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>; defm : FPUnaryOpDynFrmAlias_m; defm FCVT_D_W : FPUnaryOp_r_m<0b1101001, 0b00000, 0b000, DXINX, "fcvt.d.w">, Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>; defm FCVT_D_WU : FPUnaryOp_r_m<0b1101001, 0b00001, 0b000, DXINX, "fcvt.d.wu">, Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>; defm FCVT_L_D : FPUnaryOp_r_frm_m<0b1100001, 0b00010, XDIN64X, "fcvt.l.d">, Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>; defm : FPUnaryOpDynFrmAlias_m; defm FCVT_LU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00011, XDIN64X, "fcvt.lu.d">, Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>; defm : FPUnaryOpDynFrmAlias_m; let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in def FMV_X_D : FPUnaryOp_r<0b1110001, 0b00000, 0b000, GPR, FPR64, "fmv.x.d">, Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]>; defm FCVT_D_L : FPUnaryOp_r_frm_m<0b1101001, 0b00010, DXIN64X, "fcvt.d.l">, Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>; defm : FPUnaryOpDynFrmAlias_m; defm FCVT_D_LU : FPUnaryOp_r_frm_m<0b1101001, 0b00011, DXIN64X, "fcvt.d.lu">, Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>; defm : FPUnaryOpDynFrmAlias_m; let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in def FMV_D_X : FPUnaryOp_r<0b1111001, 0b00000, 0b000, FPR64, GPR, "fmv.d.x">, Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]>; //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) //===----------------------------------------------------------------------===// let Predicates = [HasStdExtD] in { def : InstAlias<"fld $rd, (${rs1})", (FLD FPR64:$rd, GPR:$rs1, 0), 0>; def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>; def : InstAlias<"fmv.d $rd, $rs", (FSGNJ_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>; def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>; def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>; // fgt.d/fge.d are recognised by the GNU assembler but the canonical // flt.d/fle.d forms will always be printed. Therefore, set a zero weight. def : InstAlias<"fgt.d $rd, $rs, $rt", (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>; def : InstAlias<"fge.d $rd, $rs, $rt", (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>; def PseudoFLD : PseudoFloatLoad<"fld", FPR64>; def PseudoFSD : PseudoStore<"fsd", FPR64>; let usesCustomInserter = 1 in { def PseudoQuietFLE_D : PseudoQuietFCMP; def PseudoQuietFLT_D : PseudoQuietFCMP; } } // Predicates = [HasStdExtD] let Predicates = [HasStdExtZdinx, IsRV64] in { def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>; def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>; def : InstAlias<"fgt.d $rd, $rs, $rt", (FLT_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>; def : InstAlias<"fge.d $rd, $rs, $rt", (FLE_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>; } // Predicates = [HasStdExtZdinx, IsRV64] let Predicates = [HasStdExtZdinx, IsRV32] in { def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>; def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>; def : InstAlias<"fgt.d $rd, $rs, $rt", (FLT_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>; def : InstAlias<"fge.d $rd, $rs, $rt", (FLE_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>; } // Predicates = [HasStdExtZdinx, IsRV32] //===----------------------------------------------------------------------===// // Pseudo-instructions and codegen patterns //===----------------------------------------------------------------------===// let Predicates = [HasStdExtD] in { /// Float conversion operations // f64 -> f32, f32 -> f64 def : Pat<(any_fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>; def : Pat<(any_fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>; // [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so // are defined later. /// Float arithmetic operations def : PatFprFprDynFrm; def : PatFprFprDynFrm; def : PatFprFprDynFrm; def : PatFprFprDynFrm; def : Pat<(any_fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>; def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>; def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>; def : PatFprFpr; def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>; def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2))>; def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2, 0b111))>; // fmadd: rs1 * rs2 + rs3 def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3), (FMADD_D $rs1, $rs2, $rs3, 0b111)>; // fmsub: rs1 * rs2 - rs3 def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)), (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>; // fnmsub: -rs1 * rs2 + rs3 def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3), (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>; // fnmadd: -rs1 * rs2 - rs3 def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)), (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>; // fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA) def : Pat<(fneg (any_fma_nsz FPR64:$rs1, FPR64:$rs2, FPR64:$rs3)), (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>; // The ratified 20191213 ISA spec defines fmin and fmax in a way that matches // LLVM's fminnum and fmaxnum. // . def : PatFprFpr; def : PatFprFpr; /// Setcc // FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for // strict versions of those. // Match non-signaling FEQ_D def : PatSetCC; def : PatSetCC; def : PatSetCC; def : PatSetCC; def : PatSetCC; def : PatSetCC; // Match signaling FEQ_D def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETEQ), (AND (FLE_D $rs1, $rs2), (FLE_D $rs2, $rs1))>; def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETOEQ), (AND (FLE_D $rs1, $rs2), (FLE_D $rs2, $rs1))>; // If both operands are the same, use a single FLE. def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETEQ), (FLE_D $rs1, $rs1)>; def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETOEQ), (FLE_D $rs1, $rs1)>; def : PatSetCC; def : PatSetCC; def : PatSetCC; def : PatSetCC; def Select_FPR64_Using_CC_GPR : SelectCC_rrirr; /// Loads defm : LdPat; /// Stores defm : StPat; /// Pseudo-instructions needed for the soft-float ABI with RV32D // Moves two GPRs to an FPR. let usesCustomInserter = 1 in def BuildPairF64Pseudo : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2), [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>; // Moves an FPR to two GPRs. let usesCustomInserter = 1 in def SplitF64Pseudo : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src), [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>; } // Predicates = [HasStdExtD] let Predicates = [HasStdExtD, IsRV32] in { /// Float constants def : Pat<(f64 (fpimm0)), (FCVT_D_W (i32 X0))>; def : Pat<(f64 (fpimmneg0)), (FSGNJN_D (FCVT_D_W (i32 X0)), (FCVT_D_W (i32 X0)))>; // double->[u]int. Round-to-zero must be used. def : Pat<(i32 (any_fp_to_sint FPR64:$rs1)), (FCVT_W_D FPR64:$rs1, 0b001)>; def : Pat<(i32 (any_fp_to_uint FPR64:$rs1)), (FCVT_WU_D FPR64:$rs1, 0b001)>; // Saturating double->[u]int32. def : Pat<(i32 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_W_D $rs1, timm:$frm)>; def : Pat<(i32 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_WU_D $rs1, timm:$frm)>; // float->int32 with current rounding mode. def : Pat<(i32 (any_lrint FPR64:$rs1)), (FCVT_W_D $rs1, 0b111)>; // float->int32 rounded to nearest with ties rounded away from zero. def : Pat<(i32 (any_lround FPR64:$rs1)), (FCVT_W_D $rs1, 0b100)>; // [u]int->double. def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W GPR:$rs1)>; def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU GPR:$rs1)>; } // Predicates = [HasStdExtD, IsRV32] let Predicates = [HasStdExtD, IsRV64] in { /// Float constants def : Pat<(f64 (fpimm0)), (FMV_D_X (i64 X0))>; def : Pat<(f64 (fpimmneg0)), (FSGNJN_D (FMV_D_X (i64 X0)), (FMV_D_X (i64 X0)))>; // Moves (no conversion) def : Pat<(bitconvert (i64 GPR:$rs1)), (FMV_D_X GPR:$rs1)>; def : Pat<(i64 (bitconvert FPR64:$rs1)), (FMV_X_D FPR64:$rs1)>; // Use target specific isd nodes to help us remember the result is sign // extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be // duplicated if it has another user that didn't need the sign_extend. def : Pat<(riscv_any_fcvt_w_rv64 FPR64:$rs1, timm:$frm), (FCVT_W_D $rs1, timm:$frm)>; def : Pat<(riscv_any_fcvt_wu_rv64 FPR64:$rs1, timm:$frm), (FCVT_WU_D $rs1, timm:$frm)>; // [u]int32->fp def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W $rs1)>; def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU $rs1)>; // Saturating double->[u]int64. def : Pat<(i64 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_L_D $rs1, timm:$frm)>; def : Pat<(i64 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_LU_D $rs1, timm:$frm)>; // double->[u]int64. Round-to-zero must be used. def : Pat<(i64 (any_fp_to_sint FPR64:$rs1)), (FCVT_L_D FPR64:$rs1, 0b001)>; def : Pat<(i64 (any_fp_to_uint FPR64:$rs1)), (FCVT_LU_D FPR64:$rs1, 0b001)>; // double->int64 with current rounding mode. def : Pat<(i64 (any_lrint FPR64:$rs1)), (FCVT_L_D $rs1, 0b111)>; def : Pat<(i64 (any_llrint FPR64:$rs1)), (FCVT_L_D $rs1, 0b111)>; // double->int64 rounded to nearest with ties rounded away from zero. def : Pat<(i64 (any_lround FPR64:$rs1)), (FCVT_L_D $rs1, 0b100)>; def : Pat<(i64 (any_llround FPR64:$rs1)), (FCVT_L_D $rs1, 0b100)>; // [u]int64->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L GPR:$rs1, 0b111)>; def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU GPR:$rs1, 0b111)>; } // Predicates = [HasStdExtD, IsRV64]