//===- RISCVInstrInfoC.td - Compressed RISCV instructions -*- tblgen-*-----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// include "RISCVInstrFormatsC.td" //===----------------------------------------------------------------------===// // Operand definitions. //===----------------------------------------------------------------------===// def UImmLog2XLenNonZeroAsmOperand : AsmOperandClass { let Name = "UImmLog2XLenNonZero"; let RenderMethod = "addImmOperands"; let DiagnosticType = "InvalidUImmLog2XLenNonZero"; } def uimmlog2xlennonzero : Operand, ImmLeafis64Bit()) return isUInt<6>(Imm) && (Imm != 0); return isUInt<5>(Imm) && (Imm != 0); }]> { let ParserMatchClass = UImmLog2XLenNonZeroAsmOperand; // TODO: should ensure invalid shamt is rejected when decoding. let DecoderMethod = "decodeUImmOperand<6>"; let MCOperandPredicate = [{ int64_t Imm; if (!MCOp.evaluateAsConstantImm(Imm)) return false; if (STI.getTargetTriple().isArch64Bit()) return isUInt<6>(Imm) && (Imm != 0); return isUInt<5>(Imm) && (Imm != 0); }]; } def simm6 : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = SImmAsmOperand<6>; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeSImmOperand<6>"; let MCOperandPredicate = [{ int64_t Imm; if (MCOp.evaluateAsConstantImm(Imm)) return isInt<6>(Imm); return MCOp.isBareSymbolRef(); }]; } def simm6nonzero : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = SImmAsmOperand<6, "NonZero">; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeSImmOperand<6>"; let MCOperandPredicate = [{ int64_t Imm; if (MCOp.evaluateAsConstantImm(Imm)) return (Imm != 0) && isInt<6>(Imm); return MCOp.isBareSymbolRef(); }]; } def immzero : Operand, ImmLeaf { let ParserMatchClass = ImmZeroAsmOperand; } def CLUIImmAsmOperand : AsmOperandClass { let Name = "CLUIImm"; let RenderMethod = "addImmOperands"; let DiagnosticType = !strconcat("Invalid", Name); } // c_lui_imm checks the immediate range is in [1, 31] or [0xfffe0, 0xfffff]. // The RISC-V ISA describes the constraint as [1, 63], with that value being // loaded in to bits 17-12 of the destination register and sign extended from // bit 17. Therefore, this 6-bit immediate can represent values in the ranges // [1, 31] and [0xfffe0, 0xfffff]. def c_lui_imm : Operand, ImmLeaf(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff));}]> { let ParserMatchClass = CLUIImmAsmOperand; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeCLUIImmOperand"; let MCOperandPredicate = [{ int64_t Imm; if (MCOp.evaluateAsConstantImm(Imm)) return (Imm != 0) && (isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)); return MCOp.isBareSymbolRef(); }]; } // A 7-bit unsigned immediate where the least significant two bits are zero. def uimm7_lsb00 : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = UImmAsmOperand<7, "Lsb00">; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeUImmOperand<7>"; let MCOperandPredicate = [{ int64_t Imm; if (!MCOp.evaluateAsConstantImm(Imm)) return false; return isShiftedUInt<5, 2>(Imm); }]; } // A 8-bit unsigned immediate where the least significant two bits are zero. def uimm8_lsb00 : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = UImmAsmOperand<8, "Lsb00">; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeUImmOperand<8>"; let MCOperandPredicate = [{ int64_t Imm; if (!MCOp.evaluateAsConstantImm(Imm)) return false; return isShiftedUInt<6, 2>(Imm); }]; } // A 8-bit unsigned immediate where the least significant three bits are zero. def uimm8_lsb000 : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = UImmAsmOperand<8, "Lsb000">; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeUImmOperand<8>"; let MCOperandPredicate = [{ int64_t Imm; if (!MCOp.evaluateAsConstantImm(Imm)) return false; return isShiftedUInt<5, 3>(Imm); }]; } // A 9-bit signed immediate where the least significant bit is zero. def simm9_lsb0 : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = SImmAsmOperand<9, "Lsb0">; let PrintMethod = "printBranchOperand"; let EncoderMethod = "getImmOpValueAsr1"; let DecoderMethod = "decodeSImmOperandAndLsl1<9>"; let MCOperandPredicate = [{ int64_t Imm; if (MCOp.evaluateAsConstantImm(Imm)) return isShiftedInt<8, 1>(Imm); return MCOp.isBareSymbolRef(); }]; let OperandType = "OPERAND_PCREL"; } // A 9-bit unsigned immediate where the least significant three bits are zero. def uimm9_lsb000 : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = UImmAsmOperand<9, "Lsb000">; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeUImmOperand<9>"; let MCOperandPredicate = [{ int64_t Imm; if (!MCOp.evaluateAsConstantImm(Imm)) return false; return isShiftedUInt<6, 3>(Imm); }]; } // A 10-bit unsigned immediate where the least significant two bits are zero // and the immediate can't be zero. def uimm10_lsb00nonzero : Operand, ImmLeaf(Imm) && (Imm != 0);}]> { let ParserMatchClass = UImmAsmOperand<10, "Lsb00NonZero">; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeUImmNonZeroOperand<10>"; let MCOperandPredicate = [{ int64_t Imm; if (!MCOp.evaluateAsConstantImm(Imm)) return false; return isShiftedUInt<8, 2>(Imm) && (Imm != 0); }]; } // A 10-bit signed immediate where the least significant four bits are zero. def simm10_lsb0000nonzero : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = SImmAsmOperand<10, "Lsb0000NonZero">; let EncoderMethod = "getImmOpValue"; let DecoderMethod = "decodeSImmNonZeroOperand<10>"; let MCOperandPredicate = [{ int64_t Imm; if (!MCOp.evaluateAsConstantImm(Imm)) return false; return isShiftedInt<6, 4>(Imm) && (Imm != 0); }]; } // A 12-bit signed immediate where the least significant bit is zero. def simm12_lsb0 : Operand, ImmLeaf(Imm);}]> { let ParserMatchClass = SImmAsmOperand<12, "Lsb0">; let PrintMethod = "printBranchOperand"; let EncoderMethod = "getImmOpValueAsr1"; let DecoderMethod = "decodeSImmOperandAndLsl1<12>"; let MCOperandPredicate = [{ int64_t Imm; if (MCOp.evaluateAsConstantImm(Imm)) return isShiftedInt<11, 1>(Imm); return MCOp.isBareSymbolRef(); }]; let OperandType = "OPERAND_PCREL"; } //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in class CStackLoad funct3, string OpcodeStr, RegisterClass cls, DAGOperand opnd> : RVInst16CI; let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in class CStackStore funct3, string OpcodeStr, RegisterClass cls, DAGOperand opnd> : RVInst16CSS; let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in class CLoad_ri funct3, string OpcodeStr, RegisterClass cls, DAGOperand opnd> : RVInst16CL; let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in class CStore_rri funct3, string OpcodeStr, RegisterClass cls, DAGOperand opnd> : RVInst16CS; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class Bcz funct3, string OpcodeStr, RegisterClass cls> : RVInst16CB { let isBranch = 1; let isTerminator = 1; let Inst{12} = imm{7}; let Inst{11-10} = imm{3-2}; let Inst{6-5} = imm{6-5}; let Inst{4-3} = imm{1-0}; let Inst{2} = imm{4}; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class Shift_right funct2, string OpcodeStr, RegisterClass cls, Operand ImmOpnd> : RVInst16CB<0b100, 0b01, (outs cls:$rs1_wb), (ins cls:$rs1, ImmOpnd:$imm), OpcodeStr, "$rs1, $imm"> { let Constraints = "$rs1 = $rs1_wb"; let Inst{12} = imm{5}; let Inst{11-10} = funct2; let Inst{6-2} = imm{4-0}; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class CS_ALU funct6, bits<2> funct2, string OpcodeStr, RegisterClass cls> : RVInst16CA { bits<3> rd; let Constraints = "$rd = $rd_wb"; let Inst{9-7} = rd; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtC] in { let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [X2] in def C_ADDI4SPN : RVInst16CIW<0b000, 0b00, (outs GPRC:$rd), (ins SP:$rs1, uimm10_lsb00nonzero:$imm), "c.addi4spn", "$rd, $rs1, $imm">, Sched<[WriteIALU, ReadIALU]> { bits<5> rs1; let Inst{12-11} = imm{5-4}; let Inst{10-7} = imm{9-6}; let Inst{6} = imm{2}; let Inst{5} = imm{3}; } let Predicates = [HasStdExtC, HasStdExtD] in def C_FLD : CLoad_ri<0b001, "c.fld", FPR64C, uimm8_lsb000>, Sched<[WriteFLD64, ReadMemBase]> { bits<8> imm; let Inst{12-10} = imm{5-3}; let Inst{6-5} = imm{7-6}; } def C_LW : CLoad_ri<0b010, "c.lw", GPRC, uimm7_lsb00>, Sched<[WriteLDW, ReadMemBase]> { bits<7> imm; let Inst{12-10} = imm{5-3}; let Inst{6} = imm{2}; let Inst{5} = imm{6}; } let DecoderNamespace = "RISCV32Only_", Predicates = [HasStdExtC, HasStdExtF, IsRV32] in def C_FLW : CLoad_ri<0b011, "c.flw", FPR32C, uimm7_lsb00>, Sched<[WriteFLD32, ReadMemBase]> { bits<7> imm; let Inst{12-10} = imm{5-3}; let Inst{6} = imm{2}; let Inst{5} = imm{6}; } let Predicates = [HasStdExtC, IsRV64] in def C_LD : CLoad_ri<0b011, "c.ld", GPRC, uimm8_lsb000>, Sched<[WriteLDD, ReadMemBase]> { bits<8> imm; let Inst{12-10} = imm{5-3}; let Inst{6-5} = imm{7-6}; } let Predicates = [HasStdExtC, HasStdExtD] in def C_FSD : CStore_rri<0b101, "c.fsd", FPR64C, uimm8_lsb000>, Sched<[WriteFST64, ReadStoreData, ReadMemBase]> { bits<8> imm; let Inst{12-10} = imm{5-3}; let Inst{6-5} = imm{7-6}; } def C_SW : CStore_rri<0b110, "c.sw", GPRC, uimm7_lsb00>, Sched<[WriteSTW, ReadStoreData, ReadMemBase]> { bits<7> imm; let Inst{12-10} = imm{5-3}; let Inst{6} = imm{2}; let Inst{5} = imm{6}; } let DecoderNamespace = "RISCV32Only_", Predicates = [HasStdExtC, HasStdExtF, IsRV32] in def C_FSW : CStore_rri<0b111, "c.fsw", FPR32C, uimm7_lsb00>, Sched<[WriteFST32, ReadStoreData, ReadMemBase]> { bits<7> imm; let Inst{12-10} = imm{5-3}; let Inst{6} = imm{2}; let Inst{5} = imm{6}; } let Predicates = [HasStdExtC, IsRV64] in def C_SD : CStore_rri<0b111, "c.sd", GPRC, uimm8_lsb000>, Sched<[WriteSTD, ReadStoreData, ReadMemBase]> { bits<8> imm; let Inst{12-10} = imm{5-3}; let Inst{6-5} = imm{7-6}; } let rd = 0, imm = 0, hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_NOP : RVInst16CI<0b000, 0b01, (outs), (ins), "c.nop", "">, Sched<[WriteNop]> { let Inst{6-2} = 0; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_ADDI : RVInst16CI<0b000, 0b01, (outs GPRNoX0:$rd_wb), (ins GPRNoX0:$rd, simm6nonzero:$imm), "c.addi", "$rd, $imm">, Sched<[WriteIALU, ReadIALU]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = imm{4-0}; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_ADDI_NOP : RVInst16CI<0b000, 0b01, (outs GPRX0:$rd_wb), (ins GPRX0:$rd, immzero:$imm), "c.addi", "$rd, $imm">, Sched<[WriteIALU, ReadIALU]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = 0; let isAsmParserOnly = 1; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCall = 1, DecoderNamespace = "RISCV32Only_", Defs = [X1], Predicates = [HasStdExtC, IsRV32] in def C_JAL : RVInst16CJ<0b001, 0b01, (outs), (ins simm12_lsb0:$offset), "c.jal", "$offset">, Sched<[WriteJal]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Predicates = [HasStdExtC, IsRV64] in def C_ADDIW : RVInst16CI<0b001, 0b01, (outs GPRNoX0:$rd_wb), (ins GPRNoX0:$rd, simm6:$imm), "c.addiw", "$rd, $imm">, Sched<[WriteIALU32, ReadIALU32]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = imm{4-0}; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_LI : RVInst16CI<0b010, 0b01, (outs GPRNoX0:$rd), (ins simm6:$imm), "c.li", "$rd, $imm">, Sched<[WriteIALU]> { let Inst{6-2} = imm{4-0}; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_ADDI16SP : RVInst16CI<0b011, 0b01, (outs SP:$rd_wb), (ins SP:$rd, simm10_lsb0000nonzero:$imm), "c.addi16sp", "$rd, $imm">, Sched<[WriteIALU, ReadIALU]> { let Constraints = "$rd = $rd_wb"; let Inst{12} = imm{9}; let Inst{11-7} = 2; let Inst{6} = imm{4}; let Inst{5} = imm{6}; let Inst{4-3} = imm{8-7}; let Inst{2} = imm{5}; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_LUI : RVInst16CI<0b011, 0b01, (outs GPRNoX0X2:$rd), (ins c_lui_imm:$imm), "c.lui", "$rd, $imm">, Sched<[WriteIALU]> { let Inst{6-2} = imm{4-0}; } def C_SRLI : Shift_right<0b00, "c.srli", GPRC, uimmlog2xlennonzero>, Sched<[WriteShiftImm, ReadShiftImm]>; def C_SRAI : Shift_right<0b01, "c.srai", GPRC, uimmlog2xlennonzero>, Sched<[WriteShiftImm, ReadShiftImm]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_ANDI : RVInst16CB<0b100, 0b01, (outs GPRC:$rs1_wb), (ins GPRC:$rs1, simm6:$imm), "c.andi", "$rs1, $imm">, Sched<[WriteIALU, ReadIALU]> { let Constraints = "$rs1 = $rs1_wb"; let Inst{12} = imm{5}; let Inst{11-10} = 0b10; let Inst{6-2} = imm{4-0}; } def C_SUB : CS_ALU<0b100011, 0b00, "c.sub", GPRC>, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def C_XOR : CS_ALU<0b100011, 0b01, "c.xor", GPRC>, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def C_OR : CS_ALU<0b100011, 0b10, "c.or" , GPRC>, Sched<[WriteIALU, ReadIALU, ReadIALU]>; def C_AND : CS_ALU<0b100011, 0b11, "c.and", GPRC>, Sched<[WriteIALU, ReadIALU, ReadIALU]>; let Predicates = [HasStdExtC, IsRV64] in { def C_SUBW : CS_ALU<0b100111, 0b00, "c.subw", GPRC>, Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; def C_ADDW : CS_ALU<0b100111, 0b01, "c.addw", GPRC>, Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_J : RVInst16CJ<0b101, 0b01, (outs), (ins simm12_lsb0:$offset), "c.j", "$offset">, Sched<[WriteJmp]> { let isBranch = 1; let isTerminator=1; let isBarrier=1; } def C_BEQZ : Bcz<0b110, "c.beqz", GPRC>, Sched<[WriteJmp]>; def C_BNEZ : Bcz<0b111, "c.bnez", GPRC>, Sched<[WriteJmp]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_SLLI : RVInst16CI<0b000, 0b10, (outs GPRNoX0:$rd_wb), (ins GPRNoX0:$rd, uimmlog2xlennonzero:$imm), "c.slli", "$rd, $imm">, Sched<[WriteShiftImm, ReadShiftImm]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = imm{4-0}; } let Predicates = [HasStdExtC, HasStdExtD] in def C_FLDSP : CStackLoad<0b001, "c.fldsp", FPR64, uimm9_lsb000>, Sched<[WriteFLD64, ReadMemBase]> { let Inst{6-5} = imm{4-3}; let Inst{4-2} = imm{8-6}; } def C_LWSP : CStackLoad<0b010, "c.lwsp", GPRNoX0, uimm8_lsb00>, Sched<[WriteLDW, ReadMemBase]> { let Inst{6-4} = imm{4-2}; let Inst{3-2} = imm{7-6}; } let DecoderNamespace = "RISCV32Only_", Predicates = [HasStdExtC, HasStdExtF, IsRV32] in def C_FLWSP : CStackLoad<0b011, "c.flwsp", FPR32, uimm8_lsb00>, Sched<[WriteFLD32, ReadMemBase]> { let Inst{6-4} = imm{4-2}; let Inst{3-2} = imm{7-6}; } let Predicates = [HasStdExtC, IsRV64] in def C_LDSP : CStackLoad<0b011, "c.ldsp", GPRNoX0, uimm9_lsb000>, Sched<[WriteLDD, ReadMemBase]> { let Inst{6-5} = imm{4-3}; let Inst{4-2} = imm{8-6}; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_JR : RVInst16CR<0b1000, 0b10, (outs), (ins GPRNoX0:$rs1), "c.jr", "$rs1">, Sched<[WriteJmpReg]> { let isBranch = 1; let isBarrier = 1; let isTerminator = 1; let isIndirectBranch = 1; let rs2 = 0; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isMoveReg = 1, isAsCheapAsAMove = 1 in def C_MV : RVInst16CR<0b1000, 0b10, (outs GPRNoX0:$rs1), (ins GPRNoX0:$rs2), "c.mv", "$rs1, $rs2">, Sched<[WriteIALU, ReadIALU]>; let rs1 = 0, rs2 = 0, hasSideEffects = 1, mayLoad = 0, mayStore = 0 in def C_EBREAK : RVInst16CR<0b1001, 0b10, (outs), (ins), "c.ebreak", "">, Sched<[]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCall=1, Defs=[X1], rs2 = 0 in def C_JALR : RVInst16CR<0b1001, 0b10, (outs), (ins GPRNoX0:$rs1), "c.jalr", "$rs1">, Sched<[WriteJalr, ReadJalr]>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in def C_ADD : RVInst16CR<0b1001, 0b10, (outs GPRNoX0:$rs1_wb), (ins GPRNoX0:$rs1, GPRNoX0:$rs2), "c.add", "$rs1, $rs2">, Sched<[WriteIALU, ReadIALU, ReadIALU]> { let Constraints = "$rs1 = $rs1_wb"; } let Predicates = [HasStdExtC, HasStdExtD] in def C_FSDSP : CStackStore<0b101, "c.fsdsp", FPR64, uimm9_lsb000>, Sched<[WriteFST64, ReadStoreData, ReadMemBase]> { let Inst{12-10} = imm{5-3}; let Inst{9-7} = imm{8-6}; } def C_SWSP : CStackStore<0b110, "c.swsp", GPR, uimm8_lsb00>, Sched<[WriteSTW, ReadStoreData, ReadMemBase]> { let Inst{12-9} = imm{5-2}; let Inst{8-7} = imm{7-6}; } let DecoderNamespace = "RISCV32Only_", Predicates = [HasStdExtC, HasStdExtF, IsRV32] in def C_FSWSP : CStackStore<0b111, "c.fswsp", FPR32, uimm8_lsb00>, Sched<[WriteFST32, ReadStoreData, ReadMemBase]> { let Inst{12-9} = imm{5-2}; let Inst{8-7} = imm{7-6}; } let Predicates = [HasStdExtC, IsRV64] in def C_SDSP : CStackStore<0b111, "c.sdsp", GPR, uimm9_lsb000>, Sched<[WriteSTD, ReadStoreData, ReadMemBase]> { let Inst{12-10} = imm{5-3}; let Inst{9-7} = imm{8-6}; } // The all zeros pattern isn't a valid RISC-V instruction. It's used by GNU // binutils as 16-bit instruction known to be unimplemented (i.e., trapping). let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in def C_UNIMP : RVInst16<(outs), (ins), "c.unimp", "", [], InstFormatOther>, Sched<[]> { let Inst{15-0} = 0; } } // Predicates = [HasStdExtC] //===----------------------------------------------------------------------===// // HINT Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtC, HasRVCHints], hasSideEffects = 0, mayLoad = 0, mayStore = 0 in { let rd = 0 in def C_NOP_HINT : RVInst16CI<0b000, 0b01, (outs), (ins simm6nonzero:$imm), "c.nop", "$imm">, Sched<[WriteNop]> { let Inst{6-2} = imm{4-0}; let DecoderMethod = "decodeRVCInstrSImm"; } // Just a different syntax for the c.nop hint: c.addi x0, simm6 vs c.nop simm6. def C_ADDI_HINT_X0 : RVInst16CI<0b000, 0b01, (outs GPRX0:$rd_wb), (ins GPRX0:$rd, simm6nonzero:$imm), "c.addi", "$rd, $imm">, Sched<[WriteIALU, ReadIALU]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = imm{4-0}; let isAsmParserOnly = 1; } def C_ADDI_HINT_IMM_ZERO : RVInst16CI<0b000, 0b01, (outs GPRNoX0:$rd_wb), (ins GPRNoX0:$rd, immzero:$imm), "c.addi", "$rd, $imm">, Sched<[WriteIALU, ReadIALU]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = 0; let isAsmParserOnly = 1; } def C_LI_HINT : RVInst16CI<0b010, 0b01, (outs GPRX0:$rd), (ins simm6:$imm), "c.li", "$rd, $imm">, Sched<[WriteIALU]> { let Inst{6-2} = imm{4-0}; let Inst{11-7} = 0; let DecoderMethod = "decodeRVCInstrRdSImm"; } def C_LUI_HINT : RVInst16CI<0b011, 0b01, (outs GPRX0:$rd), (ins c_lui_imm:$imm), "c.lui", "$rd, $imm">, Sched<[WriteIALU]> { let Inst{6-2} = imm{4-0}; let Inst{11-7} = 0; let DecoderMethod = "decodeRVCInstrRdSImm"; } def C_MV_HINT : RVInst16CR<0b1000, 0b10, (outs GPRX0:$rs1), (ins GPRNoX0:$rs2), "c.mv", "$rs1, $rs2">, Sched<[WriteIALU, ReadIALU]> { let Inst{11-7} = 0; let DecoderMethod = "decodeRVCInstrRdRs2"; } def C_ADD_HINT : RVInst16CR<0b1001, 0b10, (outs GPRX0:$rs1_wb), (ins GPRX0:$rs1, GPRNoX0:$rs2), "c.add", "$rs1, $rs2">, Sched<[WriteIALU, ReadIALU, ReadIALU]> { let Constraints = "$rs1 = $rs1_wb"; let Inst{11-7} = 0; let DecoderMethod = "decodeRVCInstrRdRs1Rs2"; } def C_SLLI_HINT : RVInst16CI<0b000, 0b10, (outs GPRX0:$rd_wb), (ins GPRX0:$rd, uimmlog2xlennonzero:$imm), "c.slli", "$rd, $imm">, Sched<[WriteShiftImm, ReadShiftImm]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = imm{4-0}; let Inst{11-7} = 0; let DecoderMethod = "decodeRVCInstrRdRs1UImm"; } def C_SLLI64_HINT : RVInst16CI<0b000, 0b10, (outs GPR:$rd_wb), (ins GPR:$rd), "c.slli64", "$rd">, Sched<[WriteShiftImm, ReadShiftImm]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = 0; let Inst{12} = 0; } def C_SRLI64_HINT : RVInst16CI<0b100, 0b01, (outs GPRC:$rd_wb), (ins GPRC:$rd), "c.srli64", "$rd">, Sched<[WriteShiftImm, ReadShiftImm]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = 0; let Inst{11-10} = 0; let Inst{12} = 0; } def C_SRAI64_HINT : RVInst16CI<0b100, 0b01, (outs GPRC:$rd_wb), (ins GPRC:$rd), "c.srai64", "$rd">, Sched<[WriteShiftImm, ReadShiftImm]> { let Constraints = "$rd = $rd_wb"; let Inst{6-2} = 0; let Inst{11-10} = 1; let Inst{12} = 0; } } // Predicates = [HasStdExtC, HasRVCHints], hasSideEffects = 0, mayLoad = 0, // mayStore = 0 //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions //===----------------------------------------------------------------------===// let EmitPriority = 0 in { let Predicates = [HasStdExtC, HasStdExtD] in def : InstAlias<"c.fld $rd, (${rs1})", (C_FLD FPR64C:$rd, GPRC:$rs1, 0)>; def : InstAlias<"c.lw $rd, (${rs1})", (C_LW GPRC:$rd, GPRC:$rs1, 0)>; let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in def : InstAlias<"c.flw $rd, (${rs1})", (C_FLW FPR32C:$rd, GPRC:$rs1, 0)>; let Predicates = [HasStdExtC, IsRV64] in def : InstAlias<"c.ld $rd, (${rs1})", (C_LD GPRC:$rd, GPRC:$rs1, 0)>; let Predicates = [HasStdExtC, HasStdExtD] in def : InstAlias<"c.fsd $rs2, (${rs1})", (C_FSD FPR64C:$rs2, GPRC:$rs1, 0)>; def : InstAlias<"c.sw $rs2, (${rs1})", (C_SW GPRC:$rs2, GPRC:$rs1, 0)>; let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in def : InstAlias<"c.fsw $rs2, (${rs1})", (C_FSW FPR32C:$rs2, GPRC:$rs1, 0)>; let Predicates = [HasStdExtC, IsRV64] in def : InstAlias<"c.sd $rs2, (${rs1})", (C_SD GPRC:$rs2, GPRC:$rs1, 0)>; let Predicates = [HasStdExtC, HasStdExtD] in def : InstAlias<"c.fldsp $rd, (${rs1})", (C_FLDSP FPR64C:$rd, SP:$rs1, 0)>; def : InstAlias<"c.lwsp $rd, (${rs1})", (C_LWSP GPRC:$rd, SP:$rs1, 0)>; let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in def : InstAlias<"c.flwsp $rd, (${rs1})", (C_FLWSP FPR32C:$rd, SP:$rs1, 0)>; let Predicates = [HasStdExtC, IsRV64] in def : InstAlias<"c.ldsp $rd, (${rs1})", (C_LDSP GPRC:$rd, SP:$rs1, 0)>; let Predicates = [HasStdExtC, HasStdExtD] in def : InstAlias<"c.fsdsp $rs2, (${rs1})", (C_FSDSP FPR64C:$rs2, SP:$rs1, 0)>; def : InstAlias<"c.swsp $rs2, (${rs1})", (C_SWSP GPRC:$rs2, SP:$rs1, 0)>; let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in def : InstAlias<"c.fswsp $rs2, (${rs1})", (C_FSWSP FPR32C:$rs2, SP:$rs1, 0)>; let Predicates = [HasStdExtC, IsRV64] in def : InstAlias<"c.sdsp $rs2, (${rs1})", (C_SDSP GPRC:$rs2, SP:$rs1, 0)>; } //===----------------------------------------------------------------------===// // Compress Instruction tablegen backend. //===----------------------------------------------------------------------===// // Patterns are defined in the same order the compressed instructions appear // on page 82 of the ISA manual. // Quadrant 0 let Predicates = [HasStdExtC] in { def : CompressPat<(ADDI GPRC:$rd, SP:$rs1, uimm10_lsb00nonzero:$imm), (C_ADDI4SPN GPRC:$rd, SP:$rs1, uimm10_lsb00nonzero:$imm)>; } // Predicates = [HasStdExtC] let Predicates = [HasStdExtC, HasStdExtD] in { def : CompressPat<(FLD FPR64C:$rd, GPRC:$rs1, uimm8_lsb000:$imm), (C_FLD FPR64C:$rd, GPRC:$rs1, uimm8_lsb000:$imm)>; } // Predicates = [HasStdExtC, HasStdExtD] let Predicates = [HasStdExtC] in { def : CompressPat<(LW GPRC:$rd, GPRC:$rs1, uimm7_lsb00:$imm), (C_LW GPRC:$rd, GPRC:$rs1, uimm7_lsb00:$imm)>; } // Predicates = [HasStdExtC] let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in { def : CompressPat<(FLW FPR32C:$rd, GPRC:$rs1, uimm7_lsb00:$imm), (C_FLW FPR32C:$rd, GPRC:$rs1, uimm7_lsb00:$imm)>; } // Predicates = [HasStdExtC, HasStdExtF, IsRV32] let Predicates = [HasStdExtC, IsRV64] in { def : CompressPat<(LD GPRC:$rd, GPRC:$rs1, uimm8_lsb000:$imm), (C_LD GPRC:$rd, GPRC:$rs1, uimm8_lsb000:$imm)>; } // Predicates = [HasStdExtC, IsRV64] let Predicates = [HasStdExtC, HasStdExtD] in { def : CompressPat<(FSD FPR64C:$rs2, GPRC:$rs1, uimm8_lsb000:$imm), (C_FSD FPR64C:$rs2, GPRC:$rs1, uimm8_lsb000:$imm)>; } // Predicates = [HasStdExtC, HasStdExtD] let Predicates = [HasStdExtC] in { def : CompressPat<(SW GPRC:$rs2, GPRC:$rs1, uimm7_lsb00:$imm), (C_SW GPRC:$rs2, GPRC:$rs1, uimm7_lsb00:$imm)>; } // Predicates = [HasStdExtC] let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in { def : CompressPat<(FSW FPR32C:$rs2, GPRC:$rs1, uimm7_lsb00:$imm), (C_FSW FPR32C:$rs2, GPRC:$rs1, uimm7_lsb00:$imm)>; } // Predicates = [HasStdExtC, HasStdExtF, IsRV32] let Predicates = [HasStdExtC, IsRV64] in { def : CompressPat<(SD GPRC:$rs2, GPRC:$rs1, uimm8_lsb000:$imm), (C_SD GPRC:$rs2, GPRC:$rs1, uimm8_lsb000:$imm)>; } // Predicates = [HasStdExtC, IsRV64] // Quadrant 1 let Predicates = [HasStdExtC] in { def : CompressPat<(ADDI X0, X0, 0), (C_NOP)>; def : CompressPat<(ADDI GPRNoX0:$rs1, GPRNoX0:$rs1, simm6nonzero:$imm), (C_ADDI GPRNoX0:$rs1, simm6nonzero:$imm)>; } // Predicates = [HasStdExtC] let Predicates = [HasStdExtC, IsRV32] in { def : CompressPat<(JAL X1, simm12_lsb0:$offset), (C_JAL simm12_lsb0:$offset)>; } // Predicates = [HasStdExtC, IsRV32] let Predicates = [HasStdExtC, IsRV64] in { def : CompressPat<(ADDIW GPRNoX0:$rs1, GPRNoX0:$rs1, simm6:$imm), (C_ADDIW GPRNoX0:$rs1, simm6:$imm)>; } // Predicates = [HasStdExtC, IsRV64] let Predicates = [HasStdExtC] in { def : CompressPat<(ADDI GPRNoX0:$rd, X0, simm6:$imm), (C_LI GPRNoX0:$rd, simm6:$imm)>; def : CompressPat<(ADDI X2, X2, simm10_lsb0000nonzero:$imm), (C_ADDI16SP X2, simm10_lsb0000nonzero:$imm)>; def : CompressPat<(LUI GPRNoX0X2:$rd, c_lui_imm:$imm), (C_LUI GPRNoX0X2:$rd, c_lui_imm:$imm)>; def : CompressPat<(SRLI GPRC:$rs1, GPRC:$rs1, uimmlog2xlennonzero:$imm), (C_SRLI GPRC:$rs1, uimmlog2xlennonzero:$imm)>; def : CompressPat<(SRAI GPRC:$rs1, GPRC:$rs1, uimmlog2xlennonzero:$imm), (C_SRAI GPRC:$rs1, uimmlog2xlennonzero:$imm)>; def : CompressPat<(ANDI GPRC:$rs1, GPRC:$rs1, simm6:$imm), (C_ANDI GPRC:$rs1, simm6:$imm)>; def : CompressPat<(SUB GPRC:$rs1, GPRC:$rs1, GPRC:$rs2), (C_SUB GPRC:$rs1, GPRC:$rs2)>; def : CompressPat<(XOR GPRC:$rs1, GPRC:$rs1, GPRC:$rs2), (C_XOR GPRC:$rs1, GPRC:$rs2)>; let isCompressOnly = true in def : CompressPat<(XOR GPRC:$rs1, GPRC:$rs2, GPRC:$rs1), (C_XOR GPRC:$rs1, GPRC:$rs2)>; def : CompressPat<(OR GPRC:$rs1, GPRC:$rs1, GPRC:$rs2), (C_OR GPRC:$rs1, GPRC:$rs2)>; let isCompressOnly = true in def : CompressPat<(OR GPRC:$rs1, GPRC:$rs2, GPRC:$rs1), (C_OR GPRC:$rs1, GPRC:$rs2)>; def : CompressPat<(AND GPRC:$rs1, GPRC:$rs1, GPRC:$rs2), (C_AND GPRC:$rs1, GPRC:$rs2)>; let isCompressOnly = true in def : CompressPat<(AND GPRC:$rs1, GPRC:$rs2, GPRC:$rs1), (C_AND GPRC:$rs1, GPRC:$rs2)>; } // Predicates = [HasStdExtC] let Predicates = [HasStdExtC, IsRV64] in { let isCompressOnly = true in def : CompressPat<(ADDIW GPRNoX0:$rd, X0, simm6:$imm), (C_LI GPRNoX0:$rd, simm6:$imm)>; def : CompressPat<(SUBW GPRC:$rs1, GPRC:$rs1, GPRC:$rs2), (C_SUBW GPRC:$rs1, GPRC:$rs2)>; def : CompressPat<(ADDW GPRC:$rs1, GPRC:$rs1, GPRC:$rs2), (C_ADDW GPRC:$rs1, GPRC:$rs2)>; let isCompressOnly = true in def : CompressPat<(ADDW GPRC:$rs1, GPRC:$rs2, GPRC:$rs1), (C_ADDW GPRC:$rs1, GPRC:$rs2)>; } // Predicates = [HasStdExtC, IsRV64] let Predicates = [HasStdExtC] in { def : CompressPat<(JAL X0, simm12_lsb0:$offset), (C_J simm12_lsb0:$offset)>; def : CompressPat<(BEQ GPRC:$rs1, X0, simm9_lsb0:$imm), (C_BEQZ GPRC:$rs1, simm9_lsb0:$imm)>; def : CompressPat<(BNE GPRC:$rs1, X0, simm9_lsb0:$imm), (C_BNEZ GPRC:$rs1, simm9_lsb0:$imm)>; } // Predicates = [HasStdExtC] // Quadrant 2 let Predicates = [HasStdExtC] in { def : CompressPat<(SLLI GPRNoX0:$rs1, GPRNoX0:$rs1, uimmlog2xlennonzero:$imm), (C_SLLI GPRNoX0:$rs1, uimmlog2xlennonzero:$imm)>; } // Predicates = [HasStdExtC] let Predicates = [HasStdExtC, HasStdExtD] in { def : CompressPat<(FLD FPR64:$rd, SP:$rs1, uimm9_lsb000:$imm), (C_FLDSP FPR64:$rd, SP:$rs1, uimm9_lsb000:$imm)>; } // Predicates = [HasStdExtC, HasStdExtD] let Predicates = [HasStdExtC] in { def : CompressPat<(LW GPRNoX0:$rd, SP:$rs1, uimm8_lsb00:$imm), (C_LWSP GPRNoX0:$rd, SP:$rs1, uimm8_lsb00:$imm)>; } // Predicates = [HasStdExtC] let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in { def : CompressPat<(FLW FPR32:$rd, SP:$rs1, uimm8_lsb00:$imm), (C_FLWSP FPR32:$rd, SP:$rs1, uimm8_lsb00:$imm)>; } // Predicates = [HasStdExtC, HasStdExtF, IsRV32] let Predicates = [HasStdExtC, IsRV64] in { def : CompressPat<(LD GPRNoX0:$rd, SP:$rs1, uimm9_lsb000:$imm), (C_LDSP GPRNoX0:$rd, SP:$rs1, uimm9_lsb000:$imm)>; } // Predicates = [HasStdExtC, IsRV64] let Predicates = [HasStdExtC] in { def : CompressPat<(JALR X0, GPRNoX0:$rs1, 0), (C_JR GPRNoX0:$rs1)>; let isCompressOnly = true in { def : CompressPat<(ADD GPRNoX0:$rs1, X0, GPRNoX0:$rs2), (C_MV GPRNoX0:$rs1, GPRNoX0:$rs2)>; def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs2, X0), (C_MV GPRNoX0:$rs1, GPRNoX0:$rs2)>; } def : CompressPat<(ADDI GPRNoX0:$rs1, GPRNoX0:$rs2, 0), (C_MV GPRNoX0:$rs1, GPRNoX0:$rs2)>; def : CompressPat<(EBREAK), (C_EBREAK)>; def : CompressPat<(UNIMP), (C_UNIMP)>; def : CompressPat<(JALR X1, GPRNoX0:$rs1, 0), (C_JALR GPRNoX0:$rs1)>; def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs1, GPRNoX0:$rs2), (C_ADD GPRNoX0:$rs1, GPRNoX0:$rs2)>; let isCompressOnly = true in def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs2, GPRNoX0:$rs1), (C_ADD GPRNoX0:$rs1, GPRNoX0:$rs2)>; } // Predicates = [HasStdExtC] let Predicates = [HasStdExtC, HasStdExtD] in { def : CompressPat<(FSD FPR64:$rs2, SP:$rs1, uimm9_lsb000:$imm), (C_FSDSP FPR64:$rs2, SP:$rs1, uimm9_lsb000:$imm)>; } // Predicates = [HasStdExtC, HasStdExtD] let Predicates = [HasStdExtC] in { def : CompressPat<(SW GPR:$rs2, SP:$rs1, uimm8_lsb00:$imm), (C_SWSP GPR:$rs2, SP:$rs1, uimm8_lsb00:$imm)>; } // Predicates = [HasStdExtC] let Predicates = [HasStdExtC, HasStdExtF, IsRV32] in { def : CompressPat<(FSW FPR32:$rs2, SP:$rs1, uimm8_lsb00:$imm), (C_FSWSP FPR32:$rs2, SP:$rs1, uimm8_lsb00:$imm)>; } // Predicates = [HasStdExtC, HasStdExtF, IsRV32] let Predicates = [HasStdExtC, IsRV64] in { def : CompressPat<(SD GPR:$rs2, SP:$rs1, uimm9_lsb000:$imm), (C_SDSP GPR:$rs2, SP:$rs1, uimm9_lsb000:$imm)>; } // Predicates = [HasStdExtC, IsRV64]