//===-- RISCVISelLowering.cpp - RISC-V DAG Lowering Implementation -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interfaces that RISC-V uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "RISCVISelLowering.h" #include "MCTargetDesc/RISCVMatInt.h" #include "RISCV.h" #include "RISCVMachineFunctionInfo.h" #include "RISCVRegisterInfo.h" #include "RISCVSubtarget.h" #include "RISCVTargetMachine.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicsRISCV.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/InstructionCost.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "riscv-lower" STATISTIC(NumTailCalls, "Number of tail calls"); static cl::opt ExtensionMaxWebSize( DEBUG_TYPE "-ext-max-web-size", cl::Hidden, cl::desc("Give the maximum size (in number of nodes) of the web of " "instructions that we will consider for VW expansion"), cl::init(18)); static cl::opt AllowSplatInVW_W(DEBUG_TYPE "-form-vw-w-with-splat", cl::Hidden, cl::desc("Allow the formation of VW_W operations (e.g., " "VWADD_W) with splat constants"), cl::init(false)); static cl::opt NumRepeatedDivisors( DEBUG_TYPE "-fp-repeated-divisors", cl::Hidden, cl::desc("Set the minimum number of repetitions of a divisor to allow " "transformation to multiplications by the reciprocal"), cl::init(2)); static cl::opt FPImmCost(DEBUG_TYPE "-fpimm-cost", cl::Hidden, cl::desc("Give the maximum number of instructions that we will " "use for creating a floating-point immediate value"), cl::init(2)); static cl::opt RV64LegalI32("riscv-experimental-rv64-legal-i32", cl::ReallyHidden, cl::desc("Make i32 a legal type for SelectionDAG on RV64.")); RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, const RISCVSubtarget &STI) : TargetLowering(TM), Subtarget(STI) { RISCVABI::ABI ABI = Subtarget.getTargetABI(); assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && !Subtarget.hasStdExtF()) { errs() << "Hard-float 'f' ABI can't be used for a target that " "doesn't support the F instruction set extension (ignoring " "target-abi)\n"; ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && !Subtarget.hasStdExtD()) { errs() << "Hard-float 'd' ABI can't be used for a target that " "doesn't support the D instruction set extension (ignoring " "target-abi)\n"; ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; } switch (ABI) { default: report_fatal_error("Don't know how to lower this ABI"); case RISCVABI::ABI_ILP32: case RISCVABI::ABI_ILP32E: case RISCVABI::ABI_LP64E: case RISCVABI::ABI_ILP32F: case RISCVABI::ABI_ILP32D: case RISCVABI::ABI_LP64: case RISCVABI::ABI_LP64F: case RISCVABI::ABI_LP64D: break; } MVT XLenVT = Subtarget.getXLenVT(); // Set up the register classes. addRegisterClass(XLenVT, &RISCV::GPRRegClass); if (Subtarget.is64Bit() && RV64LegalI32) addRegisterClass(MVT::i32, &RISCV::GPRRegClass); if (Subtarget.hasStdExtZfhmin()) addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); if (Subtarget.hasStdExtZfbfmin()) addRegisterClass(MVT::bf16, &RISCV::FPR16RegClass); if (Subtarget.hasStdExtF()) addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); if (Subtarget.hasStdExtD()) addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); if (Subtarget.hasStdExtZhinxmin()) addRegisterClass(MVT::f16, &RISCV::GPRF16RegClass); if (Subtarget.hasStdExtZfinx()) addRegisterClass(MVT::f32, &RISCV::GPRF32RegClass); if (Subtarget.hasStdExtZdinx()) { if (Subtarget.is64Bit()) addRegisterClass(MVT::f64, &RISCV::GPRRegClass); else addRegisterClass(MVT::f64, &RISCV::GPRPairRegClass); } static const MVT::SimpleValueType BoolVecVTs[] = { MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; static const MVT::SimpleValueType IntVecVTs[] = { MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, MVT::nxv4i64, MVT::nxv8i64}; static const MVT::SimpleValueType F16VecVTs[] = { MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; static const MVT::SimpleValueType BF16VecVTs[] = { MVT::nxv1bf16, MVT::nxv2bf16, MVT::nxv4bf16, MVT::nxv8bf16, MVT::nxv16bf16, MVT::nxv32bf16}; static const MVT::SimpleValueType F32VecVTs[] = { MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; static const MVT::SimpleValueType F64VecVTs[] = { MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; if (Subtarget.hasVInstructions()) { auto addRegClassForRVV = [this](MVT VT) { // Disable the smallest fractional LMUL types if ELEN is less than // RVVBitsPerBlock. unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELen(); if (VT.getVectorMinNumElements() < MinElts) return; unsigned Size = VT.getSizeInBits().getKnownMinValue(); const TargetRegisterClass *RC; if (Size <= RISCV::RVVBitsPerBlock) RC = &RISCV::VRRegClass; else if (Size == 2 * RISCV::RVVBitsPerBlock) RC = &RISCV::VRM2RegClass; else if (Size == 4 * RISCV::RVVBitsPerBlock) RC = &RISCV::VRM4RegClass; else if (Size == 8 * RISCV::RVVBitsPerBlock) RC = &RISCV::VRM8RegClass; else llvm_unreachable("Unexpected size"); addRegisterClass(VT, RC); }; for (MVT VT : BoolVecVTs) addRegClassForRVV(VT); for (MVT VT : IntVecVTs) { if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasVInstructionsI64()) continue; addRegClassForRVV(VT); } if (Subtarget.hasVInstructionsF16Minimal()) for (MVT VT : F16VecVTs) addRegClassForRVV(VT); if (Subtarget.hasVInstructionsBF16()) for (MVT VT : BF16VecVTs) addRegClassForRVV(VT); if (Subtarget.hasVInstructionsF32()) for (MVT VT : F32VecVTs) addRegClassForRVV(VT); if (Subtarget.hasVInstructionsF64()) for (MVT VT : F64VecVTs) addRegClassForRVV(VT); if (Subtarget.useRVVForFixedLengthVectors()) { auto addRegClassForFixedVectors = [this](MVT VT) { MVT ContainerVT = getContainerForFixedLengthVector(VT); unsigned RCID = getRegClassIDForVecVT(ContainerVT); const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); addRegisterClass(VT, TRI.getRegClass(RCID)); }; for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) if (useRVVForFixedLengthVectorVT(VT)) addRegClassForFixedVectors(VT); for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) if (useRVVForFixedLengthVectorVT(VT)) addRegClassForFixedVectors(VT); } } // Compute derived properties from the register classes. computeRegisterProperties(STI.getRegisterInfo()); setStackPointerRegisterToSaveRestore(RISCV::X2); setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT, MVT::i1, Promote); // DAGCombiner can call isLoadExtLegal for types that aren't legal. setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32, MVT::i1, Promote); // TODO: add all necessary setOperationAction calls. setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BR_CC, XLenVT, Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction(ISD::BR_CC, MVT::i32, Expand); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setOperationAction(ISD::SELECT_CC, XLenVT, Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); setCondCodeAction(ISD::SETLE, XLenVT, Expand); setCondCodeAction(ISD::SETGT, XLenVT, Custom); setCondCodeAction(ISD::SETGE, XLenVT, Expand); setCondCodeAction(ISD::SETULE, XLenVT, Expand); setCondCodeAction(ISD::SETUGT, XLenVT, Custom); setCondCodeAction(ISD::SETUGE, XLenVT, Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction(ISD::SETCC, MVT::i32, Promote); setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand); setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); if (!Subtarget.hasStdExtZbb() && !Subtarget.hasVendorXTHeadBb()) setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand); if (Subtarget.is64Bit()) { setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); if (!RV64LegalI32) { setOperationAction(ISD::LOAD, MVT::i32, Custom); setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL}, MVT::i32, Custom); setOperationAction(ISD::SADDO, MVT::i32, Custom); setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Custom); } } else { setLibcallName( {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128}, nullptr); setLibcallName(RTLIB::MULO_I64, nullptr); } if (!Subtarget.hasStdExtM() && !Subtarget.hasStdExtZmmul()) { setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction(ISD::MUL, MVT::i32, Promote); } else if (Subtarget.is64Bit()) { setOperationAction(ISD::MUL, MVT::i128, Custom); if (!RV64LegalI32) setOperationAction(ISD::MUL, MVT::i32, Custom); } else { setOperationAction(ISD::MUL, MVT::i64, Custom); } if (!Subtarget.hasStdExtM()) { setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, XLenVT, Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, MVT::i32, Promote); } else if (Subtarget.is64Bit()) { if (!RV64LegalI32) setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM}, {MVT::i8, MVT::i16, MVT::i32}, Custom); } if (RV64LegalI32 && Subtarget.is64Bit()) { setOperationAction({ISD::MULHS, ISD::MULHU}, MVT::i32, Expand); setOperationAction( {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Expand); } setOperationAction( {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT, Expand); setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT, Custom); if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) { if (!RV64LegalI32 && Subtarget.is64Bit()) setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); } else if (Subtarget.hasVendorXTHeadBb()) { if (Subtarget.is64Bit()) setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Custom); } else if (Subtarget.hasVendorXCVbitmanip()) { setOperationAction(ISD::ROTL, XLenVT, Expand); } else { setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Expand); } // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll // pattern match it directly in isel. setOperationAction(ISD::BSWAP, XLenVT, (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() || Subtarget.hasVendorXTHeadBb()) ? Legal : Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction(ISD::BSWAP, MVT::i32, (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() || Subtarget.hasVendorXTHeadBb()) ? Promote : Expand); if (Subtarget.hasVendorXCVbitmanip()) { setOperationAction(ISD::BITREVERSE, XLenVT, Legal); } else { // Zbkb can use rev8+brev8 to implement bitreverse. setOperationAction(ISD::BITREVERSE, XLenVT, Subtarget.hasStdExtZbkb() ? Custom : Expand); } if (Subtarget.hasStdExtZbb()) { setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT, Legal); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, MVT::i32, Promote); if (Subtarget.is64Bit()) { if (RV64LegalI32) setOperationAction(ISD::CTTZ, MVT::i32, Legal); else setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); } } else if (!Subtarget.hasVendorXCVbitmanip()) { setOperationAction({ISD::CTTZ, ISD::CTPOP}, XLenVT, Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction({ISD::CTTZ, ISD::CTPOP}, MVT::i32, Expand); } if (Subtarget.hasStdExtZbb() || Subtarget.hasVendorXTHeadBb() || Subtarget.hasVendorXCVbitmanip()) { // We need the custom lowering to make sure that the resulting sequence // for the 32bit case is efficient on 64bit targets. if (Subtarget.is64Bit()) { if (RV64LegalI32) { setOperationAction(ISD::CTLZ, MVT::i32, Subtarget.hasStdExtZbb() ? Legal : Promote); if (!Subtarget.hasStdExtZbb()) setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); } else setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); } } else { setOperationAction(ISD::CTLZ, XLenVT, Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction(ISD::CTLZ, MVT::i32, Expand); } if (!RV64LegalI32 && Subtarget.is64Bit() && !Subtarget.hasShortForwardBranchOpt()) setOperationAction(ISD::ABS, MVT::i32, Custom); // We can use PseudoCCSUB to implement ABS. if (Subtarget.hasShortForwardBranchOpt()) setOperationAction(ISD::ABS, XLenVT, Legal); if (!Subtarget.hasVendorXTHeadCondMov()) setOperationAction(ISD::SELECT, XLenVT, Custom); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction(ISD::SELECT, MVT::i32, Promote); static const unsigned FPLegalNodeTypes[] = { ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND, ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; static const ISD::CondCode FPCCToExpand[] = { ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; static const unsigned FPOpToExpand[] = { ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM}; static const unsigned FPRndMode[] = { ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN}; if (Subtarget.hasStdExtZfhminOrZhinxmin()) setOperationAction(ISD::BITCAST, MVT::i16, Custom); static const unsigned ZfhminZfbfminPromoteOps[] = { ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, ISD::FSQRT, ISD::FABS, ISD::FNEG, ISD::STRICT_FMA, ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, ISD::SETCC, ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::SELECT}; if (Subtarget.hasStdExtZfbfmin()) { setOperationAction(ISD::BITCAST, MVT::i16, Custom); setOperationAction(ISD::BITCAST, MVT::bf16, Custom); setOperationAction(ISD::FP_ROUND, MVT::bf16, Custom); setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom); setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom); setOperationAction(ISD::ConstantFP, MVT::bf16, Expand); setOperationAction(ISD::SELECT_CC, MVT::bf16, Expand); setOperationAction(ISD::BR_CC, MVT::bf16, Expand); setOperationAction(ZfhminZfbfminPromoteOps, MVT::bf16, Promote); setOperationAction(ISD::FREM, MVT::bf16, Promote); // FIXME: Need to promote bf16 FCOPYSIGN to f32, but the // DAGCombiner::visitFP_ROUND probably needs improvements first. setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand); } if (Subtarget.hasStdExtZfhminOrZhinxmin()) { if (Subtarget.hasStdExtZfhOrZhinx()) { setOperationAction(FPLegalNodeTypes, MVT::f16, Legal); setOperationAction(FPRndMode, MVT::f16, Subtarget.hasStdExtZfa() ? Legal : Custom); setOperationAction(ISD::SELECT, MVT::f16, Custom); setOperationAction(ISD::IS_FPCLASS, MVT::f16, Custom); } else { setOperationAction(ZfhminZfbfminPromoteOps, MVT::f16, Promote); setOperationAction({ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, ISD::STRICT_LLROUND}, MVT::f16, Legal); // FIXME: Need to promote f16 FCOPYSIGN to f32, but the // DAGCombiner::visitFP_ROUND probably needs improvements first. setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); } setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); setCondCodeAction(FPCCToExpand, MVT::f16, Expand); setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); setOperationAction(ISD::BR_CC, MVT::f16, Expand); setOperationAction(ISD::FNEARBYINT, MVT::f16, Subtarget.hasStdExtZfa() ? Legal : Promote); setOperationAction({ISD::FREM, ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN, ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FEXP10, ISD::FLOG, ISD::FLOG2, ISD::FLOG10}, MVT::f16, Promote); // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have // complete support for all operations in LegalizeDAG. setOperationAction({ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, ISD::STRICT_FNEARBYINT, ISD::STRICT_FRINT, ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN, ISD::STRICT_FTRUNC}, MVT::f16, Promote); // We need to custom promote this. if (Subtarget.is64Bit()) setOperationAction(ISD::FPOWI, MVT::i32, Custom); if (!Subtarget.hasStdExtZfa()) setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f16, Custom); } if (Subtarget.hasStdExtFOrZfinx()) { setOperationAction(FPLegalNodeTypes, MVT::f32, Legal); setOperationAction(FPRndMode, MVT::f32, Subtarget.hasStdExtZfa() ? Legal : Custom); setCondCodeAction(FPCCToExpand, MVT::f32, Expand); setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Expand); setOperationAction(FPOpToExpand, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand); setTruncStoreAction(MVT::f32, MVT::bf16, Expand); setOperationAction(ISD::IS_FPCLASS, MVT::f32, Custom); setOperationAction(ISD::BF16_TO_FP, MVT::f32, Custom); setOperationAction(ISD::FP_TO_BF16, MVT::f32, Subtarget.isSoftFPABI() ? LibCall : Custom); setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); setOperationAction(ISD::FP16_TO_FP, MVT::f32, Custom); if (Subtarget.hasStdExtZfa()) setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); else setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f32, Custom); } if (Subtarget.hasStdExtFOrZfinx() && Subtarget.is64Bit()) setOperationAction(ISD::BITCAST, MVT::i32, Custom); if (Subtarget.hasStdExtDOrZdinx()) { setOperationAction(FPLegalNodeTypes, MVT::f64, Legal); if (Subtarget.hasStdExtZfa()) { setOperationAction(FPRndMode, MVT::f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); setOperationAction(ISD::BITCAST, MVT::i64, Custom); setOperationAction(ISD::BITCAST, MVT::f64, Custom); } else { if (Subtarget.is64Bit()) setOperationAction(FPRndMode, MVT::f64, Custom); setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f64, Custom); } setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); setCondCodeAction(FPCCToExpand, MVT::f64, Expand); setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setOperationAction(FPOpToExpand, MVT::f64, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand); setTruncStoreAction(MVT::f64, MVT::bf16, Expand); setOperationAction(ISD::IS_FPCLASS, MVT::f64, Custom); setOperationAction(ISD::BF16_TO_FP, MVT::f64, Custom); setOperationAction(ISD::FP_TO_BF16, MVT::f64, Subtarget.isSoftFPABI() ? LibCall : Custom); setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); } if (Subtarget.is64Bit()) { setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT, ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT}, MVT::i32, Custom); setOperationAction(ISD::LROUND, MVT::i32, Custom); } if (Subtarget.hasStdExtFOrZfinx()) { setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT, Custom); setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, XLenVT, Legal); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, MVT::i32, Legal); setOperationAction(ISD::GET_ROUNDING, XLenVT, Custom); setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); } setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool, ISD::JumpTable}, XLenVT, Custom); setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); if (Subtarget.is64Bit()) setOperationAction(ISD::Constant, MVT::i64, Custom); // TODO: On M-mode only targets, the cycle[h] CSR may not be present. // Unfortunately this can't be determined just from the ISA naming string. setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Subtarget.is64Bit() ? Legal : Custom); setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); if (Subtarget.is64Bit()) setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); if (Subtarget.hasStdExtZicbop()) { setOperationAction(ISD::PREFETCH, MVT::Other, Legal); } if (Subtarget.hasStdExtA()) { setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); setMinCmpXchgSizeInBits(32); } else if (Subtarget.hasForcedAtomics()) { setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); } else { setMaxAtomicSizeInBitsSupported(0); } setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); setBooleanContents(ZeroOrOneBooleanContent); if (Subtarget.hasVInstructions()) { setBooleanVectorContents(ZeroOrOneBooleanContent); setOperationAction(ISD::VSCALE, XLenVT, Custom); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction(ISD::VSCALE, MVT::i32, Custom); // RVV intrinsics may have illegal operands. // We also need to custom legalize vmv.x.s. setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, {MVT::i8, MVT::i16}, Custom); if (Subtarget.is64Bit()) setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, MVT::i32, Custom); else setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, MVT::i64, Custom); setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, MVT::Other, Custom); static const unsigned IntegerVPOps[] = { ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND, ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE, ISD::VP_SMIN, ISD::VP_SMAX, ISD::VP_UMIN, ISD::VP_UMAX, ISD::VP_ABS, ISD::EXPERIMENTAL_VP_REVERSE, ISD::EXPERIMENTAL_VP_SPLICE}; static const unsigned FloatingPointVPOps[] = { ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FABS, ISD::VP_FMA, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP, ISD::VP_SETCC, ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND, ISD::VP_SQRT, ISD::VP_FMINNUM, ISD::VP_FMAXNUM, ISD::VP_FCEIL, ISD::VP_FFLOOR, ISD::VP_FROUND, ISD::VP_FROUNDEVEN, ISD::VP_FCOPYSIGN, ISD::VP_FROUNDTOZERO, ISD::VP_FRINT, ISD::VP_FNEARBYINT, ISD::VP_IS_FPCLASS, ISD::VP_FMINIMUM, ISD::VP_FMAXIMUM, ISD::EXPERIMENTAL_VP_REVERSE, ISD::EXPERIMENTAL_VP_SPLICE}; static const unsigned IntegerVecReduceOps[] = { ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}; static const unsigned FloatingPointVecReduceOps[] = { ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX}; if (!Subtarget.is64Bit()) { // We must custom-lower certain vXi64 operations on RV32 due to the vector // element type being illegal. setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, MVT::i64, Custom); setOperationAction(IntegerVecReduceOps, MVT::i64, Custom); setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}, MVT::i64, Custom); } for (MVT VT : BoolVecVTs) { if (!isTypeLegal(VT)) continue; setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); // Mask VTs are custom-expanded into a series of standard nodes setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR}, VT, Custom); setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction( {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT, Expand); setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom); setOperationAction( {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, Custom); setOperationAction( {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, Custom); // RVV has native int->float & float->int conversions where the // element type sizes are within one power-of-two of each other. Any // wider distances between type sizes have to be lowered as sequences // which progressively narrow the gap in stages. setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::STRICT_SINT_TO_FP, ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT}, VT, Custom); setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT, Custom); // Expand all extending loads to types larger than this, and truncating // stores from types larger than this. for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { setTruncStoreAction(VT, OtherVT, Expand); setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT, OtherVT, Expand); } setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT, Custom); setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom); setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom); setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom); setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom); setOperationPromotedToType( ISD::VECTOR_SPLICE, VT, MVT::getVectorVT(MVT::i8, VT.getVectorElementCount())); } for (MVT VT : IntVecVTs) { if (!isTypeLegal(VT)) continue; setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); // Vectors implement MULHS/MULHU. setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand); setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT, Legal); // Custom-lower extensions and truncations from/to mask types. setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom); // RVV has native int->float & float->int conversions where the // element type sizes are within one power-of-two of each other. Any // wider distances between type sizes have to be lowered as sequences // which progressively narrow the gap in stages. setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::STRICT_SINT_TO_FP, ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT}, VT, Custom); setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT, Custom); setOperationAction({ISD::LRINT, ISD::LLRINT}, VT, Custom); setOperationAction({ISD::AVGFLOORU, ISD::AVGCEILU, ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal); // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" // nodes which truncate by one power of two at a time. setOperationAction(ISD::TRUNCATE, VT, Custom); // Custom-lower insert/extract operations to simplify patterns. setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, Custom); // Custom-lower reduction operations to set up the corresponding custom // nodes' operands. setOperationAction(IntegerVecReduceOps, VT, Custom); setOperationAction(IntegerVPOps, VT, Custom); setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); setOperationAction( {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, Custom); setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR}, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom); for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { setTruncStoreAction(VT, OtherVT, Expand); setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT, OtherVT, Expand); } setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom); setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom); // Splice setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); if (Subtarget.hasStdExtZvkb()) { setOperationAction(ISD::BSWAP, VT, Legal); setOperationAction(ISD::VP_BSWAP, VT, Custom); } else { setOperationAction({ISD::BSWAP, ISD::VP_BSWAP}, VT, Expand); setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand); } if (Subtarget.hasStdExtZvbb()) { setOperationAction(ISD::BITREVERSE, VT, Legal); setOperationAction(ISD::VP_BITREVERSE, VT, Custom); setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ, ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP}, VT, Custom); } else { setOperationAction({ISD::BITREVERSE, ISD::VP_BITREVERSE}, VT, Expand); setOperationAction({ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}, VT, Expand); setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ, ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP}, VT, Expand); // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the // range of f32. EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); if (isTypeLegal(FloatVT)) { setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF, ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ_ZERO_UNDEF}, VT, Custom); } } } // Expand various CCs to best match the RVV ISA, which natively supports UNE // but no other unordered comparisons, and supports all ordered comparisons // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), // and we pattern-match those back to the "original", swapping operands once // more. This way we catch both operations and both "vf" and "fv" forms with // fewer patterns. static const ISD::CondCode VFPCCToExpand[] = { ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, }; // TODO: support more ops. static const unsigned ZvfhminPromoteOps[] = { ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, ISD::FSQRT, ISD::FABS, ISD::FNEG, ISD::FCOPYSIGN, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND, ISD::FROUNDEVEN, ISD::FRINT, ISD::FNEARBYINT, ISD::IS_FPCLASS, ISD::SETCC, ISD::FMAXIMUM, ISD::FMINIMUM, ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA}; // TODO: support more vp ops. static const unsigned ZvfhminPromoteVPOps[] = { ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FABS, ISD::VP_FMA, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SQRT, ISD::VP_FMINNUM, ISD::VP_FMAXNUM, ISD::VP_FCEIL, ISD::VP_FFLOOR, ISD::VP_FROUND, ISD::VP_FROUNDEVEN, ISD::VP_FCOPYSIGN, ISD::VP_FROUNDTOZERO, ISD::VP_FRINT, ISD::VP_FNEARBYINT, ISD::VP_SETCC, ISD::VP_FMINIMUM, ISD::VP_FMAXIMUM}; // Sets common operation actions on RVV floating-point vector types. const auto SetCommonVFPActions = [&](MVT VT) { setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); // RVV has native FP_ROUND & FP_EXTEND conversions where the element type // sizes are within one power-of-two of each other. Therefore conversions // between vXf16 and vXf64 must be lowered as sequences which convert via // vXf32. setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); // Custom-lower insert/extract operations to simplify patterns. setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, Custom); // Expand various condition codes (explained above). setCondCodeAction(VFPCCToExpand, VT, Expand); setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal); setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, VT, Custom); setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND, ISD::FROUNDEVEN, ISD::FRINT, ISD::FNEARBYINT, ISD::IS_FPCLASS}, VT, Custom); setOperationAction(FloatingPointVecReduceOps, VT, Custom); // Expand FP operations that need libcalls. setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FSINCOS, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FEXP10, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FCOPYSIGN, VT, Legal); setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); setOperationAction( {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR}, VT, Custom); setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom); setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom); setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom); setOperationAction(FloatingPointVPOps, VT, Custom); setOperationAction({ISD::STRICT_FP_EXTEND, ISD::STRICT_FP_ROUND}, VT, Custom); setOperationAction({ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA}, VT, Legal); setOperationAction({ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, ISD::STRICT_FTRUNC, ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN, ISD::STRICT_FNEARBYINT}, VT, Custom); }; // Sets common extload/truncstore actions on RVV floating-point vector // types. const auto SetCommonVFPExtLoadTruncStoreActions = [&](MVT VT, ArrayRef SmallerVTs) { for (auto SmallVT : SmallerVTs) { setTruncStoreAction(VT, SmallVT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); } }; if (Subtarget.hasVInstructionsF16()) { for (MVT VT : F16VecVTs) { if (!isTypeLegal(VT)) continue; SetCommonVFPActions(VT); } } else if (Subtarget.hasVInstructionsF16Minimal()) { for (MVT VT : F16VecVTs) { if (!isTypeLegal(VT)) continue; setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT, Custom); setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom); setOperationAction({ISD::VP_MERGE, ISD::VP_SELECT, ISD::SELECT}, VT, Custom); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP}, VT, Custom); setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR}, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); // load/store setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); // Custom split nxv32f16 since nxv32f32 if not legal. if (VT == MVT::nxv32f16) { setOperationAction(ZvfhminPromoteOps, VT, Custom); setOperationAction(ZvfhminPromoteVPOps, VT, Custom); continue; } // Add more promote ops. MVT F32VecVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); setOperationPromotedToType(ZvfhminPromoteOps, VT, F32VecVT); setOperationPromotedToType(ZvfhminPromoteVPOps, VT, F32VecVT); } } if (Subtarget.hasVInstructionsF32()) { for (MVT VT : F32VecVTs) { if (!isTypeLegal(VT)) continue; SetCommonVFPActions(VT); SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); } } if (Subtarget.hasVInstructionsF64()) { for (MVT VT : F64VecVTs) { if (!isTypeLegal(VT)) continue; SetCommonVFPActions(VT); SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); } } if (Subtarget.useRVVForFixedLengthVectors()) { for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { if (!useRVVForFixedLengthVectorVT(VT)) continue; // By default everything must be expanded. for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) setOperationAction(Op, VT, Expand); for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { setTruncStoreAction(VT, OtherVT, Expand); setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT, OtherVT, Expand); } // Custom lower fixed vector undefs to scalable vector undefs to avoid // expansion to a build_vector of 0s. setOperationAction(ISD::UNDEF, VT, Custom); // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, Custom); setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT, Custom); setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::TRUNCATE, VT, Custom); setOperationAction(ISD::BITCAST, VT, Custom); setOperationAction( {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, Custom); setOperationAction( {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, Custom); setOperationAction( { ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::STRICT_SINT_TO_FP, ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT, }, VT, Custom); setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); // Operations below are different for between masks and other vectors. if (VT.getVectorElementType() == MVT::i1) { setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND, ISD::OR, ISD::XOR}, VT, Custom); setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT, ISD::VP_SETCC, ISD::VP_TRUNCATE}, VT, Custom); setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom); setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom); continue; } // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to // it before type legalization for i64 vectors on RV32. It will then be // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs // improvements first. if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); } setOperationAction( {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); setOperationAction({ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, Custom); setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR, ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV, ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL}, VT, Custom); setOperationAction( {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom); // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom); setOperationAction({ISD::AVGFLOORU, ISD::AVGCEILU, ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Custom); setOperationAction(ISD::VSELECT, VT, Custom); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction( {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom); // Custom-lower reduction operations to set up the corresponding custom // nodes' operands. setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}, VT, Custom); setOperationAction(IntegerVPOps, VT, Custom); if (Subtarget.hasStdExtZvkb()) setOperationAction({ISD::BSWAP, ISD::ROTL, ISD::ROTR}, VT, Custom); if (Subtarget.hasStdExtZvbb()) { setOperationAction({ISD::BITREVERSE, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTPOP}, VT, Custom); } else { // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the // range of f32. EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); if (isTypeLegal(FloatVT)) setOperationAction( {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, Custom); } } for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { // There are no extending loads or truncating stores. for (MVT InnerVT : MVT::fp_fixedlen_vector_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); setTruncStoreAction(VT, InnerVT, Expand); } if (!useRVVForFixedLengthVectorVT(VT)) continue; // By default everything must be expanded. for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) setOperationAction(Op, VT, Expand); // Custom lower fixed vector undefs to scalable vector undefs to avoid // expansion to a build_vector of 0s. setOperationAction(ISD::UNDEF, VT, Custom); if (VT.getVectorElementType() == MVT::f16 && !Subtarget.hasVInstructionsF16()) { setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT, Custom); setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom); setOperationAction( {ISD::VP_MERGE, ISD::VP_SELECT, ISD::VSELECT, ISD::SELECT}, VT, Custom); setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP}, VT, Custom); setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR}, VT, Custom); setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); MVT F32VecVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); // Don't promote f16 vector operations to f32 if f32 vector type is // not legal. // TODO: could split the f16 vector into two vectors and do promotion. if (!isTypeLegal(F32VecVT)) continue; setOperationPromotedToType(ZvfhminPromoteOps, VT, F32VecVT); setOperationPromotedToType(ZvfhminPromoteVPOps, VT, F32VecVT); continue; } // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, Custom); setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, Custom); setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); setOperationAction({ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT, Custom); setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT, ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM, ISD::IS_FPCLASS, ISD::FMAXIMUM, ISD::FMINIMUM}, VT, Custom); setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND, ISD::FROUNDEVEN, ISD::FRINT, ISD::FNEARBYINT}, VT, Custom); setCondCodeAction(VFPCCToExpand, VT, Expand); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::BITCAST, VT, Custom); setOperationAction(FloatingPointVecReduceOps, VT, Custom); setOperationAction(FloatingPointVPOps, VT, Custom); setOperationAction({ISD::STRICT_FP_EXTEND, ISD::STRICT_FP_ROUND}, VT, Custom); setOperationAction( {ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, ISD::STRICT_FTRUNC, ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN, ISD::STRICT_FNEARBYINT}, VT, Custom); } // Custom-legalize bitcasts from fixed-length vectors to scalar types. setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64}, Custom); if (Subtarget.hasStdExtZfhminOrZhinxmin()) setOperationAction(ISD::BITCAST, MVT::f16, Custom); if (Subtarget.hasStdExtFOrZfinx()) setOperationAction(ISD::BITCAST, MVT::f32, Custom); if (Subtarget.hasStdExtDOrZdinx()) setOperationAction(ISD::BITCAST, MVT::f64, Custom); } } if (Subtarget.hasStdExtA()) { setOperationAction(ISD::ATOMIC_LOAD_SUB, XLenVT, Expand); if (RV64LegalI32 && Subtarget.is64Bit()) setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); } if (Subtarget.hasForcedAtomics()) { // Force __sync libcalls to be emitted for atomic rmw/cas operations. setOperationAction( {ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_SWAP, ISD::ATOMIC_LOAD_ADD, ISD::ATOMIC_LOAD_SUB, ISD::ATOMIC_LOAD_AND, ISD::ATOMIC_LOAD_OR, ISD::ATOMIC_LOAD_XOR, ISD::ATOMIC_LOAD_NAND, ISD::ATOMIC_LOAD_MIN, ISD::ATOMIC_LOAD_MAX, ISD::ATOMIC_LOAD_UMIN, ISD::ATOMIC_LOAD_UMAX}, XLenVT, LibCall); } if (Subtarget.hasVendorXTHeadMemIdx()) { for (unsigned im : {ISD::PRE_INC, ISD::POST_INC}) { setIndexedLoadAction(im, MVT::i8, Legal); setIndexedStoreAction(im, MVT::i8, Legal); setIndexedLoadAction(im, MVT::i16, Legal); setIndexedStoreAction(im, MVT::i16, Legal); setIndexedLoadAction(im, MVT::i32, Legal); setIndexedStoreAction(im, MVT::i32, Legal); if (Subtarget.is64Bit()) { setIndexedLoadAction(im, MVT::i64, Legal); setIndexedStoreAction(im, MVT::i64, Legal); } } } // Function alignments. const Align FunctionAlignment(Subtarget.hasStdExtCOrZca() ? 2 : 4); setMinFunctionAlignment(FunctionAlignment); // Set preferred alignments. setPrefFunctionAlignment(Subtarget.getPrefFunctionAlignment()); setPrefLoopAlignment(Subtarget.getPrefLoopAlignment()); setTargetDAGCombine({ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::MUL, ISD::AND, ISD::OR, ISD::XOR, ISD::SETCC, ISD::SELECT}); if (Subtarget.is64Bit()) setTargetDAGCombine(ISD::SRA); if (Subtarget.hasStdExtFOrZfinx()) setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM}); if (Subtarget.hasStdExtZbb()) setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}); if (Subtarget.hasStdExtZbs() && Subtarget.is64Bit()) setTargetDAGCombine(ISD::TRUNCATE); if (Subtarget.hasStdExtZbkb()) setTargetDAGCombine(ISD::BITREVERSE); if (Subtarget.hasStdExtZfhminOrZhinxmin()) setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); if (Subtarget.hasStdExtFOrZfinx()) setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); if (Subtarget.hasVInstructions()) setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR, ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, ISD::EXPERIMENTAL_VP_REVERSE, ISD::MUL, ISD::INSERT_VECTOR_ELT}); if (Subtarget.hasVendorXTHeadMemPair()) setTargetDAGCombine({ISD::LOAD, ISD::STORE}); if (Subtarget.useRVVForFixedLengthVectors()) setTargetDAGCombine(ISD::BITCAST); setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); // Disable strict node mutation. IsStrictFPEnabled = true; } EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const { if (!VT.isVector()) return getPointerTy(DL); if (Subtarget.hasVInstructions() && (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); return VT.changeVectorElementTypeToInteger(); } MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { return Subtarget.getXLenVT(); } // Return false if we can lower get_vector_length to a vsetvli intrinsic. bool RISCVTargetLowering::shouldExpandGetVectorLength(EVT TripCountVT, unsigned VF, bool IsScalable) const { if (!Subtarget.hasVInstructions()) return true; if (!IsScalable) return true; if (TripCountVT != MVT::i32 && TripCountVT != Subtarget.getXLenVT()) return true; // Don't allow VF=1 if those types are't legal. if (VF < RISCV::RVVBitsPerBlock / Subtarget.getELen()) return true; // VLEN=32 support is incomplete. if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock) return true; // The maximum VF is for the smallest element width with LMUL=8. // VF must be a power of 2. unsigned MaxVF = (RISCV::RVVBitsPerBlock / 8) * 8; return VF > MaxVF || !isPowerOf2_32(VF); } bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const { auto &DL = I.getModule()->getDataLayout(); auto SetRVVLoadStoreInfo = [&](unsigned PtrOp, bool IsStore, bool IsUnitStrided) { Info.opc = IsStore ? ISD::INTRINSIC_VOID : ISD::INTRINSIC_W_CHAIN; Info.ptrVal = I.getArgOperand(PtrOp); Type *MemTy; if (IsStore) { // Store value is the first operand. MemTy = I.getArgOperand(0)->getType(); } else { // Use return type. If it's segment load, return type is a struct. MemTy = I.getType(); if (MemTy->isStructTy()) MemTy = MemTy->getStructElementType(0); } if (!IsUnitStrided) MemTy = MemTy->getScalarType(); Info.memVT = getValueType(DL, MemTy); Info.align = Align(DL.getTypeSizeInBits(MemTy->getScalarType()) / 8); Info.size = MemoryLocation::UnknownSize; Info.flags |= IsStore ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad; return true; }; if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) Info.flags |= MachineMemOperand::MONonTemporal; Info.flags |= RISCVTargetLowering::getTargetMMOFlags(I); switch (Intrinsic) { default: return false; case Intrinsic::riscv_masked_atomicrmw_xchg_i32: case Intrinsic::riscv_masked_atomicrmw_add_i32: case Intrinsic::riscv_masked_atomicrmw_sub_i32: case Intrinsic::riscv_masked_atomicrmw_nand_i32: case Intrinsic::riscv_masked_atomicrmw_max_i32: case Intrinsic::riscv_masked_atomicrmw_min_i32: case Intrinsic::riscv_masked_atomicrmw_umax_i32: case Intrinsic::riscv_masked_atomicrmw_umin_i32: case Intrinsic::riscv_masked_cmpxchg_i32: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(4); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; case Intrinsic::riscv_masked_strided_load: return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ false, /*IsUnitStrided*/ false); case Intrinsic::riscv_masked_strided_store: return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ true, /*IsUnitStrided*/ false); case Intrinsic::riscv_seg2_load: case Intrinsic::riscv_seg3_load: case Intrinsic::riscv_seg4_load: case Intrinsic::riscv_seg5_load: case Intrinsic::riscv_seg6_load: case Intrinsic::riscv_seg7_load: case Intrinsic::riscv_seg8_load: return SetRVVLoadStoreInfo(/*PtrOp*/ 0, /*IsStore*/ false, /*IsUnitStrided*/ false); case Intrinsic::riscv_seg2_store: case Intrinsic::riscv_seg3_store: case Intrinsic::riscv_seg4_store: case Intrinsic::riscv_seg5_store: case Intrinsic::riscv_seg6_store: case Intrinsic::riscv_seg7_store: case Intrinsic::riscv_seg8_store: // Operands are (vec, ..., vec, ptr, vl) return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 2, /*IsStore*/ true, /*IsUnitStrided*/ false); case Intrinsic::riscv_vle: case Intrinsic::riscv_vle_mask: case Intrinsic::riscv_vleff: case Intrinsic::riscv_vleff_mask: return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ false, /*IsUnitStrided*/ true); case Intrinsic::riscv_vse: case Intrinsic::riscv_vse_mask: return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ true, /*IsUnitStrided*/ true); case Intrinsic::riscv_vlse: case Intrinsic::riscv_vlse_mask: case Intrinsic::riscv_vloxei: case Intrinsic::riscv_vloxei_mask: case Intrinsic::riscv_vluxei: case Intrinsic::riscv_vluxei_mask: return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ false, /*IsUnitStrided*/ false); case Intrinsic::riscv_vsse: case Intrinsic::riscv_vsse_mask: case Intrinsic::riscv_vsoxei: case Intrinsic::riscv_vsoxei_mask: case Intrinsic::riscv_vsuxei: case Intrinsic::riscv_vsuxei_mask: return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ true, /*IsUnitStrided*/ false); case Intrinsic::riscv_vlseg2: case Intrinsic::riscv_vlseg3: case Intrinsic::riscv_vlseg4: case Intrinsic::riscv_vlseg5: case Intrinsic::riscv_vlseg6: case Intrinsic::riscv_vlseg7: case Intrinsic::riscv_vlseg8: case Intrinsic::riscv_vlseg2ff: case Intrinsic::riscv_vlseg3ff: case Intrinsic::riscv_vlseg4ff: case Intrinsic::riscv_vlseg5ff: case Intrinsic::riscv_vlseg6ff: case Intrinsic::riscv_vlseg7ff: case Intrinsic::riscv_vlseg8ff: return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 2, /*IsStore*/ false, /*IsUnitStrided*/ false); case Intrinsic::riscv_vlseg2_mask: case Intrinsic::riscv_vlseg3_mask: case Intrinsic::riscv_vlseg4_mask: case Intrinsic::riscv_vlseg5_mask: case Intrinsic::riscv_vlseg6_mask: case Intrinsic::riscv_vlseg7_mask: case Intrinsic::riscv_vlseg8_mask: case Intrinsic::riscv_vlseg2ff_mask: case Intrinsic::riscv_vlseg3ff_mask: case Intrinsic::riscv_vlseg4ff_mask: case Intrinsic::riscv_vlseg5ff_mask: case Intrinsic::riscv_vlseg6ff_mask: case Intrinsic::riscv_vlseg7ff_mask: case Intrinsic::riscv_vlseg8ff_mask: return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 4, /*IsStore*/ false, /*IsUnitStrided*/ false); case Intrinsic::riscv_vlsseg2: case Intrinsic::riscv_vlsseg3: case Intrinsic::riscv_vlsseg4: case Intrinsic::riscv_vlsseg5: case Intrinsic::riscv_vlsseg6: case Intrinsic::riscv_vlsseg7: case Intrinsic::riscv_vlsseg8: case Intrinsic::riscv_vloxseg2: case Intrinsic::riscv_vloxseg3: case Intrinsic::riscv_vloxseg4: case Intrinsic::riscv_vloxseg5: case Intrinsic::riscv_vloxseg6: case Intrinsic::riscv_vloxseg7: case Intrinsic::riscv_vloxseg8: case Intrinsic::riscv_vluxseg2: case Intrinsic::riscv_vluxseg3: case Intrinsic::riscv_vluxseg4: case Intrinsic::riscv_vluxseg5: case Intrinsic::riscv_vluxseg6: case Intrinsic::riscv_vluxseg7: case Intrinsic::riscv_vluxseg8: return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3, /*IsStore*/ false, /*IsUnitStrided*/ false); case Intrinsic::riscv_vlsseg2_mask: case Intrinsic::riscv_vlsseg3_mask: case Intrinsic::riscv_vlsseg4_mask: case Intrinsic::riscv_vlsseg5_mask: case Intrinsic::riscv_vlsseg6_mask: case Intrinsic::riscv_vlsseg7_mask: case Intrinsic::riscv_vlsseg8_mask: case Intrinsic::riscv_vloxseg2_mask: case Intrinsic::riscv_vloxseg3_mask: case Intrinsic::riscv_vloxseg4_mask: case Intrinsic::riscv_vloxseg5_mask: case Intrinsic::riscv_vloxseg6_mask: case Intrinsic::riscv_vloxseg7_mask: case Intrinsic::riscv_vloxseg8_mask: case Intrinsic::riscv_vluxseg2_mask: case Intrinsic::riscv_vluxseg3_mask: case Intrinsic::riscv_vluxseg4_mask: case Intrinsic::riscv_vluxseg5_mask: case Intrinsic::riscv_vluxseg6_mask: case Intrinsic::riscv_vluxseg7_mask: case Intrinsic::riscv_vluxseg8_mask: return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 5, /*IsStore*/ false, /*IsUnitStrided*/ false); case Intrinsic::riscv_vsseg2: case Intrinsic::riscv_vsseg3: case Intrinsic::riscv_vsseg4: case Intrinsic::riscv_vsseg5: case Intrinsic::riscv_vsseg6: case Intrinsic::riscv_vsseg7: case Intrinsic::riscv_vsseg8: return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 2, /*IsStore*/ true, /*IsUnitStrided*/ false); case Intrinsic::riscv_vsseg2_mask: case Intrinsic::riscv_vsseg3_mask: case Intrinsic::riscv_vsseg4_mask: case Intrinsic::riscv_vsseg5_mask: case Intrinsic::riscv_vsseg6_mask: case Intrinsic::riscv_vsseg7_mask: case Intrinsic::riscv_vsseg8_mask: return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3, /*IsStore*/ true, /*IsUnitStrided*/ false); case Intrinsic::riscv_vssseg2: case Intrinsic::riscv_vssseg3: case Intrinsic::riscv_vssseg4: case Intrinsic::riscv_vssseg5: case Intrinsic::riscv_vssseg6: case Intrinsic::riscv_vssseg7: case Intrinsic::riscv_vssseg8: case Intrinsic::riscv_vsoxseg2: case Intrinsic::riscv_vsoxseg3: case Intrinsic::riscv_vsoxseg4: case Intrinsic::riscv_vsoxseg5: case Intrinsic::riscv_vsoxseg6: case Intrinsic::riscv_vsoxseg7: case Intrinsic::riscv_vsoxseg8: case Intrinsic::riscv_vsuxseg2: case Intrinsic::riscv_vsuxseg3: case Intrinsic::riscv_vsuxseg4: case Intrinsic::riscv_vsuxseg5: case Intrinsic::riscv_vsuxseg6: case Intrinsic::riscv_vsuxseg7: case Intrinsic::riscv_vsuxseg8: return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3, /*IsStore*/ true, /*IsUnitStrided*/ false); case Intrinsic::riscv_vssseg2_mask: case Intrinsic::riscv_vssseg3_mask: case Intrinsic::riscv_vssseg4_mask: case Intrinsic::riscv_vssseg5_mask: case Intrinsic::riscv_vssseg6_mask: case Intrinsic::riscv_vssseg7_mask: case Intrinsic::riscv_vssseg8_mask: case Intrinsic::riscv_vsoxseg2_mask: case Intrinsic::riscv_vsoxseg3_mask: case Intrinsic::riscv_vsoxseg4_mask: case Intrinsic::riscv_vsoxseg5_mask: case Intrinsic::riscv_vsoxseg6_mask: case Intrinsic::riscv_vsoxseg7_mask: case Intrinsic::riscv_vsoxseg8_mask: case Intrinsic::riscv_vsuxseg2_mask: case Intrinsic::riscv_vsuxseg3_mask: case Intrinsic::riscv_vsuxseg4_mask: case Intrinsic::riscv_vsuxseg5_mask: case Intrinsic::riscv_vsuxseg6_mask: case Intrinsic::riscv_vsuxseg7_mask: case Intrinsic::riscv_vsuxseg8_mask: return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 4, /*IsStore*/ true, /*IsUnitStrided*/ false); } } bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // No global is ever allowed as a base. if (AM.BaseGV) return false; // RVV instructions only support register addressing. if (Subtarget.hasVInstructions() && isa(Ty)) return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs; // Require a 12-bit signed offset. if (!isInt<12>(AM.BaseOffs)) return false; switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (!AM.HasBaseReg) // allow "r+i". break; return false; // disallow "r+r" or "r+r+i". default: return false; } return true; } bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { return isInt<12>(Imm); } bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { return isInt<12>(Imm); } // On RV32, 64-bit integers are split into their high and low parts and held // in two different registers, so the trunc is free since the low register can // just be used. // FIXME: Should we consider i64->i32 free on RV64 to match the EVT version of // isTruncateFree? bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) return false; unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); unsigned DestBits = DstTy->getPrimitiveSizeInBits(); return (SrcBits == 64 && DestBits == 32); } bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { // We consider i64->i32 free on RV64 since we have good selection of W // instructions that make promoting operations back to i64 free in many cases. if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() || !DstVT.isInteger()) return false; unsigned SrcBits = SrcVT.getSizeInBits(); unsigned DestBits = DstVT.getSizeInBits(); return (SrcBits == 64 && DestBits == 32); } bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { // Zexts are free if they can be combined with a load. // Don't advertise i32->i64 zextload as being free for RV64. It interacts // poorly with type legalization of compares preferring sext. if (auto *LD = dyn_cast(Val)) { EVT MemVT = LD->getMemoryVT(); if ((MemVT == MVT::i8 || MemVT == MVT::i16) && (LD->getExtensionType() == ISD::NON_EXTLOAD || LD->getExtensionType() == ISD::ZEXTLOAD)) return true; } return TargetLowering::isZExtFree(Val, VT2); } bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; } bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); } bool RISCVTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { return Subtarget.hasStdExtZbb() || Subtarget.hasVendorXCVbitmanip(); } bool RISCVTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { return Subtarget.hasStdExtZbb() || Subtarget.hasVendorXTHeadBb() || Subtarget.hasVendorXCVbitmanip(); } bool RISCVTargetLowering::isMaskAndCmp0FoldingBeneficial( const Instruction &AndI) const { // We expect to be able to match a bit extraction instruction if the Zbs // extension is supported and the mask is a power of two. However, we // conservatively return false if the mask would fit in an ANDI instruction, // on the basis that it's possible the sinking+duplication of the AND in // CodeGenPrepare triggered by this hook wouldn't decrease the instruction // count and would increase code size (e.g. ANDI+BNEZ => BEXTI+BNEZ). if (!Subtarget.hasStdExtZbs() && !Subtarget.hasVendorXTHeadBs()) return false; ConstantInt *Mask = dyn_cast(AndI.getOperand(1)); if (!Mask) return false; return !Mask->getValue().isSignedIntN(12) && Mask->getValue().isPowerOf2(); } bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { EVT VT = Y.getValueType(); // FIXME: Support vectors once we have tests. if (VT.isVector()) return false; return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) && !isa(Y); } bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { // Zbs provides BEXT[_I], which can be used with SEQZ/SNEZ as a bit test. if (Subtarget.hasStdExtZbs()) return X.getValueType().isScalarInteger(); auto *C = dyn_cast(Y); // XTheadBs provides th.tst (similar to bexti), if Y is a constant if (Subtarget.hasVendorXTHeadBs()) return C != nullptr; // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. return C && C->getAPIntValue().ule(10); } bool RISCVTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned Opcode, EVT VT) const { // Only enable for rvv. if (!VT.isVector() || !Subtarget.hasVInstructions()) return false; if (VT.isFixedLengthVector() && !isTypeLegal(VT)) return false; return true; } bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getIntegerBitWidth(); if (BitSize > Subtarget.getXLen()) return false; // Fast path, assume 32-bit immediates are cheap. int64_t Val = Imm.getSExtValue(); if (isInt<32>(Val)) return true; // A constant pool entry may be more aligned thant he load we're trying to // replace. If we don't support unaligned scalar mem, prefer the constant // pool. // TODO: Can the caller pass down the alignment? if (!Subtarget.hasFastUnalignedAccess()) return true; // Prefer to keep the load if it would require many instructions. // This uses the same threshold we use for constant pools but doesn't // check useConstantPoolForLargeInts. // TODO: Should we keep the load only when we're definitely going to emit a // constant pool? RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, Subtarget); return Seq.size() <= Subtarget.getMaxBuildIntsCost(); } bool RISCVTargetLowering:: shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const { // One interesting pattern that we'd want to form is 'bit extract': // ((1 >> Y) & 1) ==/!= 0 // But we also need to be careful not to try to reverse that fold. // Is this '((1 >> Y) & 1)'? if (XC && OldShiftOpcode == ISD::SRL && XC->isOne()) return false; // Keep the 'bit extract' pattern. // Will this be '((1 >> Y) & 1)' after the transform? if (NewShiftOpcode == ISD::SRL && CC->isOne()) return true; // Do form the 'bit extract' pattern. // If 'X' is a constant, and we transform, then we will immediately // try to undo the fold, thus causing endless combine loop. // So only do the transform if X is not a constant. This matches the default // implementation of this function. return !XC; } bool RISCVTargetLowering::canSplatOperand(unsigned Opcode, int Operand) const { switch (Opcode) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: case Instruction::FDiv: case Instruction::ICmp: case Instruction::FCmp: return true; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: return Operand == 1; default: return false; } } bool RISCVTargetLowering::canSplatOperand(Instruction *I, int Operand) const { if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) return false; if (canSplatOperand(I->getOpcode(), Operand)) return true; auto *II = dyn_cast(I); if (!II) return false; switch (II->getIntrinsicID()) { case Intrinsic::fma: case Intrinsic::vp_fma: return Operand == 0 || Operand == 1; case Intrinsic::vp_shl: case Intrinsic::vp_lshr: case Intrinsic::vp_ashr: case Intrinsic::vp_udiv: case Intrinsic::vp_sdiv: case Intrinsic::vp_urem: case Intrinsic::vp_srem: return Operand == 1; // These intrinsics are commutative. case Intrinsic::vp_add: case Intrinsic::vp_mul: case Intrinsic::vp_and: case Intrinsic::vp_or: case Intrinsic::vp_xor: case Intrinsic::vp_fadd: case Intrinsic::vp_fmul: case Intrinsic::vp_icmp: case Intrinsic::vp_fcmp: // These intrinsics have 'vr' versions. case Intrinsic::vp_sub: case Intrinsic::vp_fsub: case Intrinsic::vp_fdiv: return Operand == 0 || Operand == 1; default: return false; } } /// Check if sinking \p I's operands to I's basic block is profitable, because /// the operands can be folded into a target instruction, e.g. /// splats of scalars can fold into vector instructions. bool RISCVTargetLowering::shouldSinkOperands( Instruction *I, SmallVectorImpl &Ops) const { using namespace llvm::PatternMatch; if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) return false; for (auto OpIdx : enumerate(I->operands())) { if (!canSplatOperand(I, OpIdx.index())) continue; Instruction *Op = dyn_cast(OpIdx.value().get()); // Make sure we are not already sinking this operand if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) continue; // We are looking for a splat that can be sunk. if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), m_Undef(), m_ZeroMask()))) continue; // Don't sink i1 splats. if (cast(Op->getType())->getElementType()->isIntegerTy(1)) continue; // All uses of the shuffle should be sunk to avoid duplicating it across gpr // and vector registers for (Use &U : Op->uses()) { Instruction *Insn = cast(U.getUser()); if (!canSplatOperand(Insn, U.getOperandNo())) return false; } Ops.push_back(&Op->getOperandUse(0)); Ops.push_back(&OpIdx.value()); } return true; } bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { unsigned Opc = VecOp.getOpcode(); // Assume target opcodes can't be scalarized. // TODO - do we have any exceptions? if (Opc >= ISD::BUILTIN_OP_END) return false; // If the vector op is not supported, try to convert to scalar. EVT VecVT = VecOp.getValueType(); if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) return true; // If the vector op is supported, but the scalar op is not, the transform may // not be worthwhile. // Permit a vector binary operation can be converted to scalar binary // operation which is custom lowered with illegal type. EVT ScalarVT = VecVT.getScalarType(); return isOperationLegalOrCustomOrPromote(Opc, ScalarVT) || isOperationCustom(Opc, ScalarVT); } bool RISCVTargetLowering::isOffsetFoldingLegal( const GlobalAddressSDNode *GA) const { // In order to maximise the opportunity for common subexpression elimination, // keep a separate ADD node for the global address offset instead of folding // it in the global address node. Later peephole optimisations may choose to // fold it back in when profitable. return false; } // Return one of the followings: // (1) `{0-31 value, false}` if FLI is available for Imm's type and FP value. // (2) `{0-31 value, true}` if Imm is negative and FLI is available for its // positive counterpart, which will be materialized from the first returned // element. The second returned element indicated that there should be a FNEG // followed. // (3) `{-1, _}` if there is no way FLI can be used to materialize Imm. std::pair RISCVTargetLowering::getLegalZfaFPImm(const APFloat &Imm, EVT VT) const { if (!Subtarget.hasStdExtZfa()) return std::make_pair(-1, false); bool IsSupportedVT = false; if (VT == MVT::f16) { IsSupportedVT = Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZvfh(); } else if (VT == MVT::f32) { IsSupportedVT = true; } else if (VT == MVT::f64) { assert(Subtarget.hasStdExtD() && "Expect D extension"); IsSupportedVT = true; } if (!IsSupportedVT) return std::make_pair(-1, false); int Index = RISCVLoadFPImm::getLoadFPImm(Imm); if (Index < 0 && Imm.isNegative()) // Try the combination of its positive counterpart + FNEG. return std::make_pair(RISCVLoadFPImm::getLoadFPImm(-Imm), true); else return std::make_pair(Index, false); } bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const { bool IsLegalVT = false; if (VT == MVT::f16) IsLegalVT = Subtarget.hasStdExtZfhminOrZhinxmin(); else if (VT == MVT::f32) IsLegalVT = Subtarget.hasStdExtFOrZfinx(); else if (VT == MVT::f64) IsLegalVT = Subtarget.hasStdExtDOrZdinx(); else if (VT == MVT::bf16) IsLegalVT = Subtarget.hasStdExtZfbfmin(); if (!IsLegalVT) return false; if (getLegalZfaFPImm(Imm, VT).first >= 0) return true; // Cannot create a 64 bit floating-point immediate value for rv32. if (Subtarget.getXLen() < VT.getScalarSizeInBits()) { // td can handle +0.0 or -0.0 already. // -0.0 can be created by fmv + fneg. return Imm.isZero(); } // Special case: fmv + fneg if (Imm.isNegZero()) return true; // Building an integer and then converting requires a fmv at the end of // the integer sequence. const int Cost = 1 + RISCVMatInt::getIntMatCost(Imm.bitcastToAPInt(), Subtarget.getXLen(), Subtarget); return Cost <= FPImmCost; } // TODO: This is very conservative. bool RISCVTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const { if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) return false; // Only support extracting a fixed from a fixed vector for now. if (ResVT.isScalableVector() || SrcVT.isScalableVector()) return false; unsigned ResElts = ResVT.getVectorNumElements(); unsigned SrcElts = SrcVT.getVectorNumElements(); // Convervatively only handle extracting half of a vector. // TODO: Relax this. if ((ResElts * 2) != SrcElts) return false; // The smallest type we can slide is i8. // TODO: We can extract index 0 from a mask vector without a slide. if (ResVT.getVectorElementType() == MVT::i1) return false; // Slide can support arbitrary index, but we only treat vslidedown.vi as // cheap. if (Index >= 32) return false; // TODO: We can do arbitrary slidedowns, but for now only support extracting // the upper half of a vector until we have more test coverage. return Index == 0 || Index == ResElts; } MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const { // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled. // We might still end up using a GPR but that will be decided based on ABI. if (VT == MVT::f16 && Subtarget.hasStdExtFOrZfinx() && !Subtarget.hasStdExtZfhminOrZhinxmin()) return MVT::f32; MVT PartVT = TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); if (RV64LegalI32 && Subtarget.is64Bit() && PartVT == MVT::i32) return MVT::i64; return PartVT; } unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const { // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled. // We might still end up using a GPR but that will be decided based on ABI. if (VT == MVT::f16 && Subtarget.hasStdExtFOrZfinx() && !Subtarget.hasStdExtZfhminOrZhinxmin()) return 1; return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); } unsigned RISCVTargetLowering::getVectorTypeBreakdownForCallingConv( LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const { unsigned NumRegs = TargetLowering::getVectorTypeBreakdownForCallingConv( Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); if (RV64LegalI32 && Subtarget.is64Bit() && IntermediateVT == MVT::i32) IntermediateVT = MVT::i64; if (RV64LegalI32 && Subtarget.is64Bit() && RegisterVT == MVT::i32) RegisterVT = MVT::i64; return NumRegs; } // Changes the condition code and swaps operands if necessary, so the SetCC // operation matches one of the comparisons supported directly by branches // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare // with 1/-1. static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, ISD::CondCode &CC, SelectionDAG &DAG) { // If this is a single bit test that can't be handled by ANDI, shift the // bit to be tested to the MSB and perform a signed compare with 0. if (isIntEqualitySetCC(CC) && isNullConstant(RHS) && LHS.getOpcode() == ISD::AND && LHS.hasOneUse() && isa(LHS.getOperand(1))) { uint64_t Mask = LHS.getConstantOperandVal(1); if ((isPowerOf2_64(Mask) || isMask_64(Mask)) && !isInt<12>(Mask)) { unsigned ShAmt = 0; if (isPowerOf2_64(Mask)) { CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask); } else { ShAmt = LHS.getValueSizeInBits() - llvm::bit_width(Mask); } LHS = LHS.getOperand(0); if (ShAmt != 0) LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS, DAG.getConstant(ShAmt, DL, LHS.getValueType())); return; } } if (auto *RHSC = dyn_cast(RHS)) { int64_t C = RHSC->getSExtValue(); switch (CC) { default: break; case ISD::SETGT: // Convert X > -1 to X >= 0. if (C == -1) { RHS = DAG.getConstant(0, DL, RHS.getValueType()); CC = ISD::SETGE; return; } break; case ISD::SETLT: // Convert X < 1 to 0 >= X. if (C == 1) { RHS = LHS; LHS = DAG.getConstant(0, DL, RHS.getValueType()); CC = ISD::SETGE; return; } break; } } switch (CC) { default: break; case ISD::SETGT: case ISD::SETLE: case ISD::SETUGT: case ISD::SETULE: CC = ISD::getSetCCSwappedOperands(CC); std::swap(LHS, RHS); break; } } RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { assert(VT.isScalableVector() && "Expecting a scalable vector type"); unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); if (VT.getVectorElementType() == MVT::i1) KnownSize *= 8; switch (KnownSize) { default: llvm_unreachable("Invalid LMUL."); case 8: return RISCVII::VLMUL::LMUL_F8; case 16: return RISCVII::VLMUL::LMUL_F4; case 32: return RISCVII::VLMUL::LMUL_F2; case 64: return RISCVII::VLMUL::LMUL_1; case 128: return RISCVII::VLMUL::LMUL_2; case 256: return RISCVII::VLMUL::LMUL_4; case 512: return RISCVII::VLMUL::LMUL_8; } } unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { switch (LMul) { default: llvm_unreachable("Invalid LMUL."); case RISCVII::VLMUL::LMUL_F8: case RISCVII::VLMUL::LMUL_F4: case RISCVII::VLMUL::LMUL_F2: case RISCVII::VLMUL::LMUL_1: return RISCV::VRRegClassID; case RISCVII::VLMUL::LMUL_2: return RISCV::VRM2RegClassID; case RISCVII::VLMUL::LMUL_4: return RISCV::VRM4RegClassID; case RISCVII::VLMUL::LMUL_8: return RISCV::VRM8RegClassID; } } unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { RISCVII::VLMUL LMUL = getLMUL(VT); if (LMUL == RISCVII::VLMUL::LMUL_F8 || LMUL == RISCVII::VLMUL::LMUL_F4 || LMUL == RISCVII::VLMUL::LMUL_F2 || LMUL == RISCVII::VLMUL::LMUL_1) { static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, "Unexpected subreg numbering"); return RISCV::sub_vrm1_0 + Index; } if (LMUL == RISCVII::VLMUL::LMUL_2) { static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, "Unexpected subreg numbering"); return RISCV::sub_vrm2_0 + Index; } if (LMUL == RISCVII::VLMUL::LMUL_4) { static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, "Unexpected subreg numbering"); return RISCV::sub_vrm4_0 + Index; } llvm_unreachable("Invalid vector type."); } unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { if (VT.getVectorElementType() == MVT::i1) return RISCV::VRRegClassID; return getRegClassIDForLMUL(getLMUL(VT)); } // Attempt to decompose a subvector insert/extract between VecVT and // SubVecVT via subregister indices. Returns the subregister index that // can perform the subvector insert/extract with the given element index, as // well as the index corresponding to any leftover subvectors that must be // further inserted/extracted within the register class for SubVecVT. std::pair RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, const RISCVRegisterInfo *TRI) { static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && RISCV::VRM2RegClassID > RISCV::VRRegClassID), "Register classes not ordered"); unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); // Try to compose a subregister index that takes us from the incoming // LMUL>1 register class down to the outgoing one. At each step we half // the LMUL: // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 // Note that this is not guaranteed to find a subregister index, such as // when we are extracting from one VR type to another. unsigned SubRegIdx = RISCV::NoSubRegister; for (const unsigned RCID : {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) if (VecRegClassID > RCID && SubRegClassID <= RCID) { VecVT = VecVT.getHalfNumVectorElementsVT(); bool IsHi = InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, getSubregIndexByMVT(VecVT, IsHi)); if (IsHi) InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); } return {SubRegIdx, InsertExtractIdx}; } // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar // stores for those types. bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { return !Subtarget.useRVVForFixedLengthVectors() || (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); } bool RISCVTargetLowering::isLegalElementTypeForRVV(EVT ScalarTy) const { if (!ScalarTy.isSimple()) return false; switch (ScalarTy.getSimpleVT().SimpleTy) { case MVT::iPTR: return Subtarget.is64Bit() ? Subtarget.hasVInstructionsI64() : true; case MVT::i8: case MVT::i16: case MVT::i32: return true; case MVT::i64: return Subtarget.hasVInstructionsI64(); case MVT::f16: return Subtarget.hasVInstructionsF16(); case MVT::f32: return Subtarget.hasVInstructionsF32(); case MVT::f64: return Subtarget.hasVInstructionsF64(); default: return false; } } unsigned RISCVTargetLowering::combineRepeatedFPDivisors() const { return NumRepeatedDivisors; } static SDValue getVLOperand(SDValue Op) { assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && "Unexpected opcode"); bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); if (!II) return SDValue(); return Op.getOperand(II->VLOperand + 1 + HasChain); } static bool useRVVForFixedLengthVectorVT(MVT VT, const RISCVSubtarget &Subtarget) { assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); if (!Subtarget.useRVVForFixedLengthVectors()) return false; // We only support a set of vector types with a consistent maximum fixed size // across all supported vector element types to avoid legalization issues. // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest // fixed-length vector type we support is 1024 bytes. if (VT.getFixedSizeInBits() > 1024 * 8) return false; unsigned MinVLen = Subtarget.getRealMinVLen(); MVT EltVT = VT.getVectorElementType(); // Don't use RVV for vectors we cannot scalarize if required. switch (EltVT.SimpleTy) { // i1 is supported but has different rules. default: return false; case MVT::i1: // Masks can only use a single register. if (VT.getVectorNumElements() > MinVLen) return false; MinVLen /= 8; break; case MVT::i8: case MVT::i16: case MVT::i32: break; case MVT::i64: if (!Subtarget.hasVInstructionsI64()) return false; break; case MVT::f16: if (!Subtarget.hasVInstructionsF16Minimal()) return false; break; case MVT::f32: if (!Subtarget.hasVInstructionsF32()) return false; break; case MVT::f64: if (!Subtarget.hasVInstructionsF64()) return false; break; } // Reject elements larger than ELEN. if (EltVT.getSizeInBits() > Subtarget.getELen()) return false; unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); // Don't use RVV for types that don't fit. if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) return false; // TODO: Perhaps an artificial restriction, but worth having whilst getting // the base fixed length RVV support in place. if (!VT.isPow2VectorType()) return false; return true; } bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { return ::useRVVForFixedLengthVectorVT(VT, Subtarget); } // Return the largest legal scalable vector type that matches VT's element type. static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, const RISCVSubtarget &Subtarget) { // This may be called before legal types are setup. assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || useRVVForFixedLengthVectorVT(VT, Subtarget)) && "Expected legal fixed length vector!"); unsigned MinVLen = Subtarget.getRealMinVLen(); unsigned MaxELen = Subtarget.getELen(); MVT EltVT = VT.getVectorElementType(); switch (EltVT.SimpleTy) { default: llvm_unreachable("unexpected element type for RVV container"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: case MVT::f16: case MVT::f32: case MVT::f64: { // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within // each fractional LMUL we support SEW between 8 and LMUL*ELEN. unsigned NumElts = (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); return MVT::getScalableVectorVT(EltVT, NumElts); } } } static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) { return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, Subtarget); } MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); } // Grow V to consume an entire RVV register. static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(VT.isScalableVector() && "Expected to convert into a scalable vector!"); assert(V.getValueType().isFixedLengthVector() && "Expected a fixed length vector operand!"); SDLoc DL(V); SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); } // Shrink V so it's just big enough to maintain a VT's worth of data. static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(VT.isFixedLengthVector() && "Expected to convert into a fixed length vector!"); assert(V.getValueType().isScalableVector() && "Expected a scalable vector operand!"); SDLoc DL(V); SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); } /// Return the type of the mask type suitable for masking the provided /// vector type. This is simply an i1 element type vector of the same /// (possibly scalable) length. static MVT getMaskTypeFor(MVT VecVT) { assert(VecVT.isVector()); ElementCount EC = VecVT.getVectorElementCount(); return MVT::getVectorVT(MVT::i1, EC); } /// Creates an all ones mask suitable for masking a vector of type VecTy with /// vector length VL. . static SDValue getAllOnesMask(MVT VecVT, SDValue VL, const SDLoc &DL, SelectionDAG &DAG) { MVT MaskVT = getMaskTypeFor(VecVT); return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); } static SDValue getVLOp(uint64_t NumElts, MVT ContainerVT, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { // If we know the exact VLEN, and our VL is exactly equal to VLMAX, // canonicalize the representation. InsertVSETVLI will pick the immediate // encoding later if profitable. const auto [MinVLMAX, MaxVLMAX] = RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget); if (MinVLMAX == MaxVLMAX && NumElts == MinVLMAX) return DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()); return DAG.getConstant(NumElts, DL, Subtarget.getXLenVT()); } static std::pair getDefaultScalableVLOps(MVT VecVT, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(VecVT.isScalableVector() && "Expecting a scalable vector"); SDValue VL = DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()); SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG); return {Mask, VL}; } static std::pair getDefaultVLOps(uint64_t NumElts, MVT ContainerVT, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); SDValue VL = getVLOp(NumElts, ContainerVT, DL, DAG, Subtarget); SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); return {Mask, VL}; } // Gets the two common "VL" operands: an all-ones mask and the vector length. // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is // the vector type that the fixed-length vector is contained in. Otherwise if // VecVT is scalable, then ContainerVT should be the same as VecVT. static std::pair getDefaultVLOps(MVT VecVT, MVT ContainerVT, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (VecVT.isFixedLengthVector()) return getDefaultVLOps(VecVT.getVectorNumElements(), ContainerVT, DL, DAG, Subtarget); assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); return getDefaultScalableVLOps(ContainerVT, DL, DAG, Subtarget); } SDValue RISCVTargetLowering::computeVLMax(MVT VecVT, const SDLoc &DL, SelectionDAG &DAG) const { assert(VecVT.isScalableVector() && "Expected scalable vector"); return DAG.getElementCount(DL, Subtarget.getXLenVT(), VecVT.getVectorElementCount()); } std::pair RISCVTargetLowering::computeVLMAXBounds(MVT VecVT, const RISCVSubtarget &Subtarget) { assert(VecVT.isScalableVector() && "Expected scalable vector"); unsigned EltSize = VecVT.getScalarSizeInBits(); unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); unsigned MaxVLMAX = RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); unsigned VectorBitsMin = Subtarget.getRealMinVLen(); unsigned MinVLMAX = RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); return std::make_pair(MinVLMAX, MaxVLMAX); } // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few // of either is (currently) supported. This can get us into an infinite loop // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR // as a ..., etc. // Until either (or both) of these can reliably lower any node, reporting that // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, // which is not desirable. bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( EVT VT, unsigned DefinedValues) const { return false; } InstructionCost RISCVTargetLowering::getLMULCost(MVT VT) const { // TODO: Here assume reciprocal throughput is 1 for LMUL_1, it is // implementation-defined. if (!VT.isVector()) return InstructionCost::getInvalid(); unsigned DLenFactor = Subtarget.getDLenFactor(); unsigned Cost; if (VT.isScalableVector()) { unsigned LMul; bool Fractional; std::tie(LMul, Fractional) = RISCVVType::decodeVLMUL(RISCVTargetLowering::getLMUL(VT)); if (Fractional) Cost = LMul <= DLenFactor ? (DLenFactor / LMul) : 1; else Cost = (LMul * DLenFactor); } else { Cost = divideCeil(VT.getSizeInBits(), Subtarget.getRealMinVLen() / DLenFactor); } return Cost; } /// Return the cost of a vrgather.vv instruction for the type VT. vrgather.vv /// is generally quadratic in the number of vreg implied by LMUL. Note that /// operand (index and possibly mask) are handled separately. InstructionCost RISCVTargetLowering::getVRGatherVVCost(MVT VT) const { return getLMULCost(VT) * getLMULCost(VT); } /// Return the cost of a vrgather.vi (or vx) instruction for the type VT. /// vrgather.vi/vx may be linear in the number of vregs implied by LMUL, /// or may track the vrgather.vv cost. It is implementation-dependent. InstructionCost RISCVTargetLowering::getVRGatherVICost(MVT VT) const { return getLMULCost(VT); } /// Return the cost of a vslidedown.vx or vslideup.vx instruction /// for the type VT. (This does not cover the vslide1up or vslide1down /// variants.) Slides may be linear in the number of vregs implied by LMUL, /// or may track the vrgather.vv cost. It is implementation-dependent. InstructionCost RISCVTargetLowering::getVSlideVXCost(MVT VT) const { return getLMULCost(VT); } /// Return the cost of a vslidedown.vi or vslideup.vi instruction /// for the type VT. (This does not cover the vslide1up or vslide1down /// variants.) Slides may be linear in the number of vregs implied by LMUL, /// or may track the vrgather.vv cost. It is implementation-dependent. InstructionCost RISCVTargetLowering::getVSlideVICost(MVT VT) const { return getLMULCost(VT); } static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { // RISC-V FP-to-int conversions saturate to the destination register size, but // don't produce 0 for nan. We can use a conversion instruction and fix the // nan case with a compare and a select. SDValue Src = Op.getOperand(0); MVT DstVT = Op.getSimpleValueType(); EVT SatVT = cast(Op.getOperand(1))->getVT(); bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; if (!DstVT.isVector()) { // For bf16 or for f16 in absense of Zfh, promote to f32, then saturate // the result. if ((Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) || Src.getValueType() == MVT::bf16) { Src = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, Src); } unsigned Opc; if (SatVT == DstVT) Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; else if (DstVT == MVT::i64 && SatVT == MVT::i32) Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; else return SDValue(); // FIXME: Support other SatVTs by clamping before or after the conversion. SDLoc DL(Op); SDValue FpToInt = DAG.getNode( Opc, DL, DstVT, Src, DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); if (Opc == RISCVISD::FCVT_WU_RV64) FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32); SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); } // Vectors. MVT DstEltVT = DstVT.getVectorElementType(); MVT SrcVT = Src.getSimpleValueType(); MVT SrcEltVT = SrcVT.getVectorElementType(); unsigned SrcEltSize = SrcEltVT.getSizeInBits(); unsigned DstEltSize = DstEltVT.getSizeInBits(); // Only handle saturating to the destination type. if (SatVT != DstEltVT) return SDValue(); // FIXME: Don't support narrowing by more than 1 steps for now. if (SrcEltSize > (2 * DstEltSize)) return SDValue(); MVT DstContainerVT = DstVT; MVT SrcContainerVT = SrcVT; if (DstVT.isFixedLengthVector()) { DstContainerVT = getContainerForFixedLengthVector(DAG, DstVT, Subtarget); SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget); assert(DstContainerVT.getVectorElementCount() == SrcContainerVT.getVectorElementCount() && "Expected same element count"); Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); } SDLoc DL(Op); auto [Mask, VL] = getDefaultVLOps(DstVT, DstContainerVT, DL, DAG, Subtarget); SDValue IsNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(), {Src, Src, DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(Mask.getValueType()), Mask, VL}); // Need to widen by more than 1 step, promote the FP type, then do a widening // convert. if (DstEltSize > (2 * SrcEltSize)) { assert(SrcContainerVT.getVectorElementType() == MVT::f16 && "Unexpected VT!"); MVT InterVT = SrcContainerVT.changeVectorElementType(MVT::f32); Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterVT, Src, Mask, VL); } unsigned RVVOpc = IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL; SDValue Res = DAG.getNode(RVVOpc, DL, DstContainerVT, Src, Mask, VL); SDValue SplatZero = DAG.getNode( RISCVISD::VMV_V_X_VL, DL, DstContainerVT, DAG.getUNDEF(DstContainerVT), DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL); Res = DAG.getNode(RISCVISD::VMERGE_VL, DL, DstContainerVT, IsNan, SplatZero, Res, DAG.getUNDEF(DstContainerVT), VL); if (DstVT.isFixedLengthVector()) Res = convertFromScalableVector(DstVT, Res, DAG, Subtarget); return Res; } static RISCVFPRndMode::RoundingMode matchRoundingOp(unsigned Opc) { switch (Opc) { case ISD::FROUNDEVEN: case ISD::STRICT_FROUNDEVEN: case ISD::VP_FROUNDEVEN: return RISCVFPRndMode::RNE; case ISD::FTRUNC: case ISD::STRICT_FTRUNC: case ISD::VP_FROUNDTOZERO: return RISCVFPRndMode::RTZ; case ISD::FFLOOR: case ISD::STRICT_FFLOOR: case ISD::VP_FFLOOR: return RISCVFPRndMode::RDN; case ISD::FCEIL: case ISD::STRICT_FCEIL: case ISD::VP_FCEIL: return RISCVFPRndMode::RUP; case ISD::FROUND: case ISD::STRICT_FROUND: case ISD::VP_FROUND: return RISCVFPRndMode::RMM; case ISD::FRINT: return RISCVFPRndMode::DYN; } return RISCVFPRndMode::Invalid; } // Expand vector FTRUNC, FCEIL, FFLOOR, FROUND, VP_FCEIL, VP_FFLOOR, VP_FROUND // VP_FROUNDEVEN, VP_FROUNDTOZERO, VP_FRINT and VP_FNEARBYINT by converting to // the integer domain and back. Taking care to avoid converting values that are // nan or already correct. static SDValue lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { MVT VT = Op.getSimpleValueType(); assert(VT.isVector() && "Unexpected type"); SDLoc DL(Op); SDValue Src = Op.getOperand(0); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); } SDValue Mask, VL; if (Op->isVPOpcode()) { Mask = Op.getOperand(1); if (VT.isFixedLengthVector()) Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG, Subtarget); VL = Op.getOperand(2); } else { std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); } // Freeze the source since we are increasing the number of uses. Src = DAG.getFreeze(Src); // We do the conversion on the absolute value and fix the sign at the end. SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL); // Determine the largest integer that can be represented exactly. This and // values larger than it don't have any fractional bits so don't need to // be converted. const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(ContainerVT); unsigned Precision = APFloat::semanticsPrecision(FltSem); APFloat MaxVal = APFloat(FltSem); MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), /*IsSigned*/ false, APFloat::rmNearestTiesToEven); SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType()); SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), MaxValNode, VL); // If abs(Src) was larger than MaxVal or nan, keep it. MVT SetccVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); Mask = DAG.getNode(RISCVISD::SETCC_VL, DL, SetccVT, {Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT), Mask, Mask, VL}); // Truncate to integer and convert back to FP. MVT IntVT = ContainerVT.changeVectorElementTypeToInteger(); MVT XLenVT = Subtarget.getXLenVT(); SDValue Truncated; switch (Op.getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case ISD::FCEIL: case ISD::VP_FCEIL: case ISD::FFLOOR: case ISD::VP_FFLOOR: case ISD::FROUND: case ISD::FROUNDEVEN: case ISD::VP_FROUND: case ISD::VP_FROUNDEVEN: case ISD::VP_FROUNDTOZERO: { RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode()); assert(FRM != RISCVFPRndMode::Invalid); Truncated = DAG.getNode(RISCVISD::VFCVT_RM_X_F_VL, DL, IntVT, Src, Mask, DAG.getTargetConstant(FRM, DL, XLenVT), VL); break; } case ISD::FTRUNC: Truncated = DAG.getNode(RISCVISD::VFCVT_RTZ_X_F_VL, DL, IntVT, Src, Mask, VL); break; case ISD::FRINT: case ISD::VP_FRINT: Truncated = DAG.getNode(RISCVISD::VFCVT_X_F_VL, DL, IntVT, Src, Mask, VL); break; case ISD::FNEARBYINT: case ISD::VP_FNEARBYINT: Truncated = DAG.getNode(RISCVISD::VFROUND_NOEXCEPT_VL, DL, ContainerVT, Src, Mask, VL); break; } // VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL. if (Truncated.getOpcode() != RISCVISD::VFROUND_NOEXCEPT_VL) Truncated = DAG.getNode(RISCVISD::SINT_TO_FP_VL, DL, ContainerVT, Truncated, Mask, VL); // Restore the original sign so that -0.0 is preserved. Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated, Src, Src, Mask, VL); if (!VT.isFixedLengthVector()) return Truncated; return convertFromScalableVector(VT, Truncated, DAG, Subtarget); } // Expand vector STRICT_FTRUNC, STRICT_FCEIL, STRICT_FFLOOR, STRICT_FROUND // STRICT_FROUNDEVEN and STRICT_FNEARBYINT by converting sNan of the source to // qNan and coverting the new source to integer and back to FP. static SDValue lowerVectorStrictFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue Chain = Op.getOperand(0); SDValue Src = Op.getOperand(1); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); } auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); // Freeze the source since we are increasing the number of uses. Src = DAG.getFreeze(Src); // Covert sNan to qNan by executing x + x for all unordered elemenet x in Src. MVT MaskVT = Mask.getSimpleValueType(); SDValue Unorder = DAG.getNode(RISCVISD::STRICT_FSETCC_VL, DL, DAG.getVTList(MaskVT, MVT::Other), {Chain, Src, Src, DAG.getCondCode(ISD::SETUNE), DAG.getUNDEF(MaskVT), Mask, VL}); Chain = Unorder.getValue(1); Src = DAG.getNode(RISCVISD::STRICT_FADD_VL, DL, DAG.getVTList(ContainerVT, MVT::Other), {Chain, Src, Src, DAG.getUNDEF(ContainerVT), Unorder, VL}); Chain = Src.getValue(1); // We do the conversion on the absolute value and fix the sign at the end. SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL); // Determine the largest integer that can be represented exactly. This and // values larger than it don't have any fractional bits so don't need to // be converted. const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(ContainerVT); unsigned Precision = APFloat::semanticsPrecision(FltSem); APFloat MaxVal = APFloat(FltSem); MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), /*IsSigned*/ false, APFloat::rmNearestTiesToEven); SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType()); SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), MaxValNode, VL); // If abs(Src) was larger than MaxVal or nan, keep it. Mask = DAG.getNode( RISCVISD::SETCC_VL, DL, MaskVT, {Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT), Mask, Mask, VL}); // Truncate to integer and convert back to FP. MVT IntVT = ContainerVT.changeVectorElementTypeToInteger(); MVT XLenVT = Subtarget.getXLenVT(); SDValue Truncated; switch (Op.getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case ISD::STRICT_FCEIL: case ISD::STRICT_FFLOOR: case ISD::STRICT_FROUND: case ISD::STRICT_FROUNDEVEN: { RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode()); assert(FRM != RISCVFPRndMode::Invalid); Truncated = DAG.getNode( RISCVISD::STRICT_VFCVT_RM_X_F_VL, DL, DAG.getVTList(IntVT, MVT::Other), {Chain, Src, Mask, DAG.getTargetConstant(FRM, DL, XLenVT), VL}); break; } case ISD::STRICT_FTRUNC: Truncated = DAG.getNode(RISCVISD::STRICT_VFCVT_RTZ_X_F_VL, DL, DAG.getVTList(IntVT, MVT::Other), Chain, Src, Mask, VL); break; case ISD::STRICT_FNEARBYINT: Truncated = DAG.getNode(RISCVISD::STRICT_VFROUND_NOEXCEPT_VL, DL, DAG.getVTList(ContainerVT, MVT::Other), Chain, Src, Mask, VL); break; } Chain = Truncated.getValue(1); // VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL. if (Op.getOpcode() != ISD::STRICT_FNEARBYINT) { Truncated = DAG.getNode(RISCVISD::STRICT_SINT_TO_FP_VL, DL, DAG.getVTList(ContainerVT, MVT::Other), Chain, Truncated, Mask, VL); Chain = Truncated.getValue(1); } // Restore the original sign so that -0.0 is preserved. Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated, Src, Src, Mask, VL); if (VT.isFixedLengthVector()) Truncated = convertFromScalableVector(VT, Truncated, DAG, Subtarget); return DAG.getMergeValues({Truncated, Chain}, DL); } static SDValue lowerFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { MVT VT = Op.getSimpleValueType(); if (VT.isVector()) return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); if (DAG.shouldOptForSize()) return SDValue(); SDLoc DL(Op); SDValue Src = Op.getOperand(0); // Create an integer the size of the mantissa with the MSB set. This and all // values larger than it don't have any fractional bits so don't need to be // converted. const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); unsigned Precision = APFloat::semanticsPrecision(FltSem); APFloat MaxVal = APFloat(FltSem); MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), /*IsSigned*/ false, APFloat::rmNearestTiesToEven); SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode()); return DAG.getNode(RISCVISD::FROUND, DL, VT, Src, MaxValNode, DAG.getTargetConstant(FRM, DL, Subtarget.getXLenVT())); } // Expand vector LRINT and LLRINT by converting to the integer domain. static SDValue lowerVectorXRINT(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { MVT VT = Op.getSimpleValueType(); assert(VT.isVector() && "Unexpected type"); SDLoc DL(Op); SDValue Src = Op.getOperand(0); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); } auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); SDValue Truncated = DAG.getNode(RISCVISD::VFCVT_X_F_VL, DL, ContainerVT, Src, Mask, VL); if (!VT.isFixedLengthVector()) return Truncated; return convertFromScalableVector(VT, Truncated, DAG, Subtarget); } static SDValue getVSlidedown(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const SDLoc &DL, EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask, SDValue VL, unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) { if (Merge.isUndef()) Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC; SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT()); SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp}; return DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VT, Ops); } static SDValue getVSlideup(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const SDLoc &DL, EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask, SDValue VL, unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) { if (Merge.isUndef()) Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC; SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT()); SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp}; return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VT, Ops); } static MVT getLMUL1VT(MVT VT) { assert(VT.getVectorElementType().getSizeInBits() <= 64 && "Unexpected vector MVT"); return MVT::getScalableVectorVT( VT.getVectorElementType(), RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); } struct VIDSequence { int64_t StepNumerator; unsigned StepDenominator; int64_t Addend; }; static std::optional getExactInteger(const APFloat &APF, uint32_t BitWidth) { APSInt ValInt(BitWidth, !APF.isNegative()); // We use an arbitrary rounding mode here. If a floating-point is an exact // integer (e.g., 1.0), the rounding mode does not affect the output value. If // the rounding mode changes the output value, then it is not an exact // integer. RoundingMode ArbitraryRM = RoundingMode::TowardZero; bool IsExact; // If it is out of signed integer range, it will return an invalid operation. // If it is not an exact integer, IsExact is false. if ((APF.convertToInteger(ValInt, ArbitraryRM, &IsExact) == APFloatBase::opInvalidOp) || !IsExact) return std::nullopt; return ValInt.extractBitsAsZExtValue(BitWidth, 0); } // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] // to the (non-zero) step S and start value X. This can be then lowered as the // RVV sequence (VID * S) + X, for example. // The step S is represented as an integer numerator divided by a positive // denominator. Note that the implementation currently only identifies // sequences in which either the numerator is +/- 1 or the denominator is 1. It // cannot detect 2/3, for example. // Note that this method will also match potentially unappealing index // sequences, like , however it is left to the caller to // determine whether this is worth generating code for. static std::optional isSimpleVIDSequence(SDValue Op, unsigned EltSizeInBits) { unsigned NumElts = Op.getNumOperands(); assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); bool IsInteger = Op.getValueType().isInteger(); std::optional SeqStepDenom; std::optional SeqStepNum, SeqAddend; std::optional> PrevElt; assert(EltSizeInBits >= Op.getValueType().getScalarSizeInBits()); for (unsigned Idx = 0; Idx < NumElts; Idx++) { // Assume undef elements match the sequence; we just have to be careful // when interpolating across them. if (Op.getOperand(Idx).isUndef()) continue; uint64_t Val; if (IsInteger) { // The BUILD_VECTOR must be all constants. if (!isa(Op.getOperand(Idx))) return std::nullopt; Val = Op.getConstantOperandVal(Idx) & maskTrailingOnes(Op.getScalarValueSizeInBits()); } else { // The BUILD_VECTOR must be all constants. if (!isa(Op.getOperand(Idx))) return std::nullopt; if (auto ExactInteger = getExactInteger( cast(Op.getOperand(Idx))->getValueAPF(), Op.getScalarValueSizeInBits())) Val = *ExactInteger; else return std::nullopt; } if (PrevElt) { // Calculate the step since the last non-undef element, and ensure // it's consistent across the entire sequence. unsigned IdxDiff = Idx - PrevElt->second; int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); // A zero-value value difference means that we're somewhere in the middle // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a // step change before evaluating the sequence. if (ValDiff == 0) continue; int64_t Remainder = ValDiff % IdxDiff; // Normalize the step if it's greater than 1. if (Remainder != ValDiff) { // The difference must cleanly divide the element span. if (Remainder != 0) return std::nullopt; ValDiff /= IdxDiff; IdxDiff = 1; } if (!SeqStepNum) SeqStepNum = ValDiff; else if (ValDiff != SeqStepNum) return std::nullopt; if (!SeqStepDenom) SeqStepDenom = IdxDiff; else if (IdxDiff != *SeqStepDenom) return std::nullopt; } // Record this non-undef element for later. if (!PrevElt || PrevElt->first != Val) PrevElt = std::make_pair(Val, Idx); } // We need to have logged a step for this to count as a legal index sequence. if (!SeqStepNum || !SeqStepDenom) return std::nullopt; // Loop back through the sequence and validate elements we might have skipped // while waiting for a valid step. While doing this, log any sequence addend. for (unsigned Idx = 0; Idx < NumElts; Idx++) { if (Op.getOperand(Idx).isUndef()) continue; uint64_t Val; if (IsInteger) { Val = Op.getConstantOperandVal(Idx) & maskTrailingOnes(Op.getScalarValueSizeInBits()); } else { Val = *getExactInteger( cast(Op.getOperand(Idx))->getValueAPF(), Op.getScalarValueSizeInBits()); } uint64_t ExpectedVal = (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); if (!SeqAddend) SeqAddend = Addend; else if (Addend != SeqAddend) return std::nullopt; } assert(SeqAddend && "Must have an addend if we have a step"); return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; } // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT // and lower it as a VRGATHER_VX_VL from the source vector. static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue Vec = SplatVal.getOperand(0); // Only perform this optimization on vectors of the same size for simplicity. // Don't perform this optimization for i1 vectors. // FIXME: Support i1 vectors, maybe by promoting to i8? if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1) return SDValue(); SDValue Idx = SplatVal.getOperand(1); // The index must be a legal type. if (Idx.getValueType() != Subtarget.getXLenVT()) return SDValue(); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, Idx, DAG.getUNDEF(ContainerVT), Mask, VL); if (!VT.isFixedLengthVector()) return Gather; return convertFromScalableVector(VT, Gather, DAG, Subtarget); } /// Try and optimize BUILD_VECTORs with "dominant values" - these are values /// which constitute a large proportion of the elements. In such cases we can /// splat a vector with the dominant element and make up the shortfall with /// INSERT_VECTOR_ELTs. Returns SDValue if not profitable. /// Note that this includes vectors of 2 elements by association. The /// upper-most element is the "dominant" one, allowing us to use a splat to /// "insert" the upper element, and an insert of the lower element at position /// 0, which improves codegen. static SDValue lowerBuildVectorViaDominantValues(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { MVT VT = Op.getSimpleValueType(); assert(VT.isFixedLengthVector() && "Unexpected vector!"); MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); SDLoc DL(Op); auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); MVT XLenVT = Subtarget.getXLenVT(); unsigned NumElts = Op.getNumOperands(); SDValue DominantValue; unsigned MostCommonCount = 0; DenseMap ValueCounts; unsigned NumUndefElts = count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); // Track the number of scalar loads we know we'd be inserting, estimated as // any non-zero floating-point constant. Other kinds of element are either // already in registers or are materialized on demand. The threshold at which // a vector load is more desirable than several scalar materializion and // vector-insertion instructions is not known. unsigned NumScalarLoads = 0; for (SDValue V : Op->op_values()) { if (V.isUndef()) continue; ValueCounts.insert(std::make_pair(V, 0)); unsigned &Count = ValueCounts[V]; if (0 == Count) if (auto *CFP = dyn_cast(V)) NumScalarLoads += !CFP->isExactlyValue(+0.0); // Is this value dominant? In case of a tie, prefer the highest element as // it's cheaper to insert near the beginning of a vector than it is at the // end. if (++Count >= MostCommonCount) { DominantValue = V; MostCommonCount = Count; } } assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); unsigned NumDefElts = NumElts - NumUndefElts; unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; // Don't perform this optimization when optimizing for size, since // materializing elements and inserting them tends to cause code bloat. if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && (NumElts != 2 || ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) && ((MostCommonCount > DominantValueCountThreshold) || (ValueCounts.size() <= Log2_32(NumDefElts)))) { // Start by splatting the most common element. SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); DenseSet Processed{DominantValue}; // We can handle an insert into the last element (of a splat) via // v(f)slide1down. This is slightly better than the vslideup insert // lowering as it avoids the need for a vector group temporary. It // is also better than using vmerge.vx as it avoids the need to // materialize the mask in a vector register. if (SDValue LastOp = Op->getOperand(Op->getNumOperands() - 1); !LastOp.isUndef() && ValueCounts[LastOp] == 1 && LastOp != DominantValue) { Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); auto OpCode = VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL; if (!VT.isFloatingPoint()) LastOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, LastOp); Vec = DAG.getNode(OpCode, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec, LastOp, Mask, VL); Vec = convertFromScalableVector(VT, Vec, DAG, Subtarget); Processed.insert(LastOp); } MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); for (const auto &OpIdx : enumerate(Op->ops())) { const SDValue &V = OpIdx.value(); if (V.isUndef() || !Processed.insert(V).second) continue; if (ValueCounts[V] == 1) { Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, DAG.getConstant(OpIdx.index(), DL, XLenVT)); } else { // Blend in all instances of this value using a VSELECT, using a // mask where each bit signals whether that element is the one // we're after. SmallVector Ops; transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { return DAG.getConstant(V == V1, DL, XLenVT); }); Vec = DAG.getNode(ISD::VSELECT, DL, VT, DAG.getBuildVector(SelMaskTy, DL, Ops), DAG.getSplatBuildVector(VT, DL, V), Vec); } } return Vec; } return SDValue(); } static SDValue lowerBuildVectorOfConstants(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { MVT VT = Op.getSimpleValueType(); assert(VT.isFixedLengthVector() && "Unexpected vector!"); MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); SDLoc DL(Op); auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); MVT XLenVT = Subtarget.getXLenVT(); unsigned NumElts = Op.getNumOperands(); if (VT.getVectorElementType() == MVT::i1) { if (ISD::isBuildVectorAllZeros(Op.getNode())) { SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); return convertFromScalableVector(VT, VMClr, DAG, Subtarget); } if (ISD::isBuildVectorAllOnes(Op.getNode())) { SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); return convertFromScalableVector(VT, VMSet, DAG, Subtarget); } // Lower constant mask BUILD_VECTORs via an integer vector type, in // scalar integer chunks whose bit-width depends on the number of mask // bits and XLEN. // First, determine the most appropriate scalar integer type to use. This // is at most XLenVT, but may be shrunk to a smaller vector element type // according to the size of the final vector - use i8 chunks rather than // XLenVT if we're producing a v8i1. This results in more consistent // codegen across RV32 and RV64. unsigned NumViaIntegerBits = std::clamp(NumElts, 8u, Subtarget.getXLen()); NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELen()); // If we have to use more than one INSERT_VECTOR_ELT then this // optimization is likely to increase code size; avoid peforming it in // such a case. We can use a load from a constant pool in this case. if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) return SDValue(); // Now we can create our integer vector type. Note that it may be larger // than the resulting mask type: v4i1 would use v1i8 as its integer type. unsigned IntegerViaVecElts = divideCeil(NumElts, NumViaIntegerBits); MVT IntegerViaVecVT = MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), IntegerViaVecElts); uint64_t Bits = 0; unsigned BitPos = 0, IntegerEltIdx = 0; SmallVector Elts(IntegerViaVecElts); for (unsigned I = 0; I < NumElts;) { SDValue V = Op.getOperand(I); bool BitValue = !V.isUndef() && V->getAsZExtVal(); Bits |= ((uint64_t)BitValue << BitPos); ++BitPos; ++I; // Once we accumulate enough bits to fill our scalar type or process the // last element, insert into our vector and clear our accumulated data. if (I % NumViaIntegerBits == 0 || I == NumElts) { if (NumViaIntegerBits <= 32) Bits = SignExtend64<32>(Bits); SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); Elts[IntegerEltIdx] = Elt; Bits = 0; BitPos = 0; IntegerEltIdx++; } } SDValue Vec = DAG.getBuildVector(IntegerViaVecVT, DL, Elts); if (NumElts < NumViaIntegerBits) { // If we're producing a smaller vector than our minimum legal integer // type, bitcast to the equivalent (known-legal) mask type, and extract // our final mask. assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); Vec = DAG.getBitcast(MVT::v8i1, Vec); Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, DAG.getConstant(0, DL, XLenVT)); } else { // Else we must have produced an integer type with the same size as the // mask type; bitcast for the final result. assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); Vec = DAG.getBitcast(VT, Vec); } return Vec; } if (SDValue Splat = cast(Op)->getSplatValue()) { unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; if (!VT.isFloatingPoint()) Splat = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Splat); Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); return convertFromScalableVector(VT, Splat, DAG, Subtarget); } // Try and match index sequences, which we can lower to the vid instruction // with optional modifications. An all-undef vector is matched by // getSplatValue, above. if (auto SimpleVID = isSimpleVIDSequence(Op, Op.getScalarValueSizeInBits())) { int64_t StepNumerator = SimpleVID->StepNumerator; unsigned StepDenominator = SimpleVID->StepDenominator; int64_t Addend = SimpleVID->Addend; assert(StepNumerator != 0 && "Invalid step"); bool Negate = false; int64_t SplatStepVal = StepNumerator; unsigned StepOpcode = ISD::MUL; // Exclude INT64_MIN to avoid passing it to std::abs. We won't optimize it // anyway as the shift of 63 won't fit in uimm5. if (StepNumerator != 1 && StepNumerator != INT64_MIN && isPowerOf2_64(std::abs(StepNumerator))) { Negate = StepNumerator < 0; StepOpcode = ISD::SHL; SplatStepVal = Log2_64(std::abs(StepNumerator)); } // Only emit VIDs with suitably-small steps/addends. We use imm5 is a // threshold since it's the immediate value many RVV instructions accept. // There is no vmul.vi instruction so ensure multiply constant can fit in // a single addi instruction. if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && isPowerOf2_32(StepDenominator) && (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { MVT VIDVT = VT.isFloatingPoint() ? VT.changeVectorElementTypeToInteger() : VT; MVT VIDContainerVT = getContainerForFixedLengthVector(DAG, VIDVT, Subtarget); SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VIDContainerVT, Mask, VL); // Convert right out of the scalable type so we can use standard ISD // nodes for the rest of the computation. If we used scalable types with // these, we'd lose the fixed-length vector info and generate worse // vsetvli code. VID = convertFromScalableVector(VIDVT, VID, DAG, Subtarget); if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || (StepOpcode == ISD::SHL && SplatStepVal != 0)) { SDValue SplatStep = DAG.getConstant(SplatStepVal, DL, VIDVT); VID = DAG.getNode(StepOpcode, DL, VIDVT, VID, SplatStep); } if (StepDenominator != 1) { SDValue SplatStep = DAG.getConstant(Log2_64(StepDenominator), DL, VIDVT); VID = DAG.getNode(ISD::SRL, DL, VIDVT, VID, SplatStep); } if (Addend != 0 || Negate) { SDValue SplatAddend = DAG.getConstant(Addend, DL, VIDVT); VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VIDVT, SplatAddend, VID); } if (VT.isFloatingPoint()) { // TODO: Use vfwcvt to reduce register pressure. VID = DAG.getNode(ISD::SINT_TO_FP, DL, VT, VID); } return VID; } } // For very small build_vectors, use a single scalar insert of a constant. // TODO: Base this on constant rematerialization cost, not size. const unsigned EltBitSize = VT.getScalarSizeInBits(); if (VT.getSizeInBits() <= 32 && ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { MVT ViaIntVT = MVT::getIntegerVT(VT.getSizeInBits()); assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32) && "Unexpected sequence type"); // If we can use the original VL with the modified element type, this // means we only have a VTYPE toggle, not a VL toggle. TODO: Should this // be moved into InsertVSETVLI? unsigned ViaVecLen = (Subtarget.getRealMinVLen() >= VT.getSizeInBits() * NumElts) ? NumElts : 1; MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, ViaVecLen); uint64_t EltMask = maskTrailingOnes(EltBitSize); uint64_t SplatValue = 0; // Construct the amalgamated value at this larger vector type. for (const auto &OpIdx : enumerate(Op->op_values())) { const auto &SeqV = OpIdx.value(); if (!SeqV.isUndef()) SplatValue |= ((SeqV->getAsZExtVal() & EltMask) << (OpIdx.index() * EltBitSize)); } // On RV64, sign-extend from 32 to 64 bits where possible in order to // achieve better constant materializion. if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) SplatValue = SignExtend64<32>(SplatValue); SDValue Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ViaVecVT, DAG.getUNDEF(ViaVecVT), DAG.getConstant(SplatValue, DL, XLenVT), DAG.getConstant(0, DL, XLenVT)); if (ViaVecLen != 1) Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::getVectorVT(ViaIntVT, 1), Vec, DAG.getConstant(0, DL, XLenVT)); return DAG.getBitcast(VT, Vec); } // Attempt to detect "hidden" splats, which only reveal themselves as splats // when re-interpreted as a vector with a larger element type. For example, // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 // could be instead splat as // v2i32 = build_vector i32 0x00010000, i32 0x00010000 // TODO: This optimization could also work on non-constant splats, but it // would require bit-manipulation instructions to construct the splat value. SmallVector Sequence; const auto *BV = cast(Op); if (VT.isInteger() && EltBitSize < Subtarget.getELen() && ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && BV->getRepeatedSequence(Sequence) && (Sequence.size() * EltBitSize) <= Subtarget.getELen()) { unsigned SeqLen = Sequence.size(); MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || ViaIntVT == MVT::i64) && "Unexpected sequence type"); // If we can use the original VL with the modified element type, this // means we only have a VTYPE toggle, not a VL toggle. TODO: Should this // be moved into InsertVSETVLI? const unsigned RequiredVL = NumElts / SeqLen; const unsigned ViaVecLen = (Subtarget.getRealMinVLen() >= ViaIntVT.getSizeInBits() * NumElts) ? NumElts : RequiredVL; MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, ViaVecLen); unsigned EltIdx = 0; uint64_t EltMask = maskTrailingOnes(EltBitSize); uint64_t SplatValue = 0; // Construct the amalgamated value which can be splatted as this larger // vector type. for (const auto &SeqV : Sequence) { if (!SeqV.isUndef()) SplatValue |= ((SeqV->getAsZExtVal() & EltMask) << (EltIdx * EltBitSize)); EltIdx++; } // On RV64, sign-extend from 32 to 64 bits where possible in order to // achieve better constant materializion. if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) SplatValue = SignExtend64<32>(SplatValue); // Since we can't introduce illegal i64 types at this stage, we can only // perform an i64 splat on RV32 if it is its own sign-extended value. That // way we can use RVV instructions to splat. assert((ViaIntVT.bitsLE(XLenVT) || (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && "Unexpected bitcast sequence"); if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { SDValue ViaVL = DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); MVT ViaContainerVT = getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, DAG.getUNDEF(ViaContainerVT), DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); if (ViaVecLen != RequiredVL) Splat = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::getVectorVT(ViaIntVT, RequiredVL), Splat, DAG.getConstant(0, DL, XLenVT)); return DAG.getBitcast(VT, Splat); } } // If the number of signbits allows, see if we can lower as a . // Our main goal here is to reduce LMUL (and thus work) required to // build the constant, but we will also narrow if the resulting // narrow vector is known to materialize cheaply. // TODO: We really should be costing the smaller vector. There are // profitable cases this misses. if (EltBitSize > 8 && VT.isInteger() && (NumElts <= 4 || VT.getSizeInBits() > Subtarget.getRealMinVLen())) { unsigned SignBits = DAG.ComputeNumSignBits(Op); if (EltBitSize - SignBits < 8) { SDValue Source = DAG.getBuildVector(VT.changeVectorElementType(MVT::i8), DL, Op->ops()); Source = convertToScalableVector(ContainerVT.changeVectorElementType(MVT::i8), Source, DAG, Subtarget); SDValue Res = DAG.getNode(RISCVISD::VSEXT_VL, DL, ContainerVT, Source, Mask, VL); return convertFromScalableVector(VT, Res, DAG, Subtarget); } } if (SDValue Res = lowerBuildVectorViaDominantValues(Op, DAG, Subtarget)) return Res; // For constant vectors, use generic constant pool lowering. Otherwise, // we'd have to materialize constants in GPRs just to move them into the // vector. return SDValue(); } static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { MVT VT = Op.getSimpleValueType(); assert(VT.isFixedLengthVector() && "Unexpected vector!"); if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) return lowerBuildVectorOfConstants(Op, DAG, Subtarget); MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); SDLoc DL(Op); auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); MVT XLenVT = Subtarget.getXLenVT(); if (VT.getVectorElementType() == MVT::i1) { // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask // vector type, we have a legal equivalently-sized i8 type, so we can use // that. MVT WideVecVT = VT.changeVectorElementType(MVT::i8); SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); SDValue WideVec; if (SDValue Splat = cast(Op)->getSplatValue()) { // For a splat, perform a scalar truncate before creating the wider // vector. Splat = DAG.getNode(ISD::AND, DL, Splat.getValueType(), Splat, DAG.getConstant(1, DL, Splat.getValueType())); WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); } else { SmallVector Ops(Op->op_values()); WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); } return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); } if (SDValue Splat = cast(Op)->getSplatValue()) { if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) return Gather; unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; if (!VT.isFloatingPoint()) Splat = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Splat); Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); return convertFromScalableVector(VT, Splat, DAG, Subtarget); } if (SDValue Res = lowerBuildVectorViaDominantValues(Op, DAG, Subtarget)) return Res; // If we're compiling for an exact VLEN value, we can split our work per // register in the register group. const unsigned MinVLen = Subtarget.getRealMinVLen(); const unsigned MaxVLen = Subtarget.getRealMaxVLen(); if (MinVLen == MaxVLen && VT.getSizeInBits().getKnownMinValue() > MinVLen) { MVT ElemVT = VT.getVectorElementType(); unsigned ElemsPerVReg = MinVLen / ElemVT.getFixedSizeInBits(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); MVT OneRegVT = MVT::getVectorVT(ElemVT, ElemsPerVReg); MVT M1VT = getContainerForFixedLengthVector(DAG, OneRegVT, Subtarget); assert(M1VT == getLMUL1VT(M1VT)); // The following semantically builds up a fixed length concat_vector // of the component build_vectors. We eagerly lower to scalable and // insert_subvector here to avoid DAG combining it back to a large // build_vector. SmallVector BuildVectorOps(Op->op_begin(), Op->op_end()); unsigned NumOpElts = M1VT.getVectorMinNumElements(); SDValue Vec = DAG.getUNDEF(ContainerVT); for (unsigned i = 0; i < VT.getVectorNumElements(); i += ElemsPerVReg) { auto OneVRegOfOps = ArrayRef(BuildVectorOps).slice(i, ElemsPerVReg); SDValue SubBV = DAG.getNode(ISD::BUILD_VECTOR, DL, OneRegVT, OneVRegOfOps); SubBV = convertToScalableVector(M1VT, SubBV, DAG, Subtarget); unsigned InsertIdx = (i / ElemsPerVReg) * NumOpElts; Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, Vec, SubBV, DAG.getVectorIdxConstant(InsertIdx, DL)); } return convertFromScalableVector(VT, Vec, DAG, Subtarget); } // Cap the cost at a value linear to the number of elements in the vector. // The default lowering is to use the stack. The vector store + scalar loads // is linear in VL. However, at high lmuls vslide1down and vslidedown end up // being (at least) linear in LMUL. As a result, using the vslidedown // lowering for every element ends up being VL*LMUL.. // TODO: Should we be directly costing the stack alternative? Doing so might // give us a more accurate upper bound. InstructionCost LinearBudget = VT.getVectorNumElements() * 2; // TODO: unify with TTI getSlideCost. InstructionCost PerSlideCost = 1; switch (RISCVTargetLowering::getLMUL(ContainerVT)) { default: break; case RISCVII::VLMUL::LMUL_2: PerSlideCost = 2; break; case RISCVII::VLMUL::LMUL_4: PerSlideCost = 4; break; case RISCVII::VLMUL::LMUL_8: PerSlideCost = 8; break; } // TODO: Should we be using the build instseq then cost + evaluate scheme // we use for integer constants here? unsigned UndefCount = 0; for (const SDValue &V : Op->ops()) { if (V.isUndef()) { UndefCount++; continue; } if (UndefCount) { LinearBudget -= PerSlideCost; UndefCount = 0; } LinearBudget -= PerSlideCost; } if (UndefCount) { LinearBudget -= PerSlideCost; } if (LinearBudget < 0) return SDValue(); assert((!VT.isFloatingPoint() || VT.getVectorElementType().getSizeInBits() <= Subtarget.getFLen()) && "Illegal type which will result in reserved encoding"); const unsigned Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC; SDValue Vec; UndefCount = 0; for (SDValue V : Op->ops()) { if (V.isUndef()) { UndefCount++; continue; } // Start our sequence with a TA splat in the hopes that hardware is able to // recognize there's no dependency on the prior value of our temporary // register. if (!Vec) { Vec = DAG.getSplatVector(VT, DL, V); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); UndefCount = 0; continue; } if (UndefCount) { const SDValue Offset = DAG.getConstant(UndefCount, DL, Subtarget.getXLenVT()); Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec, Offset, Mask, VL, Policy); UndefCount = 0; } auto OpCode = VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL; if (!VT.isFloatingPoint()) V = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), V); Vec = DAG.getNode(OpCode, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec, V, Mask, VL); } if (UndefCount) { const SDValue Offset = DAG.getConstant(UndefCount, DL, Subtarget.getXLenVT()); Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec, Offset, Mask, VL, Policy); } return convertFromScalableVector(VT, Vec, DAG, Subtarget); } static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, SDValue Lo, SDValue Hi, SDValue VL, SelectionDAG &DAG) { if (!Passthru) Passthru = DAG.getUNDEF(VT); if (isa(Lo) && isa(Hi)) { int32_t LoC = cast(Lo)->getSExtValue(); int32_t HiC = cast(Hi)->getSExtValue(); // If Hi constant is all the same sign bit as Lo, lower this as a custom // node in order to try and match RVV vector/scalar instructions. if ((LoC >> 31) == HiC) return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); // If vl is equal to VLMAX or fits in 4 bits and Hi constant is equal to Lo, // we could use vmv.v.x whose EEW = 32 to lower it. This allows us to use // vlmax vsetvli or vsetivli to change the VL. // FIXME: Support larger constants? // FIXME: Support non-constant VLs by saturating? if (LoC == HiC) { SDValue NewVL; if (isAllOnesConstant(VL) || (isa(VL) && cast(VL)->getReg() == RISCV::X0)) NewVL = DAG.getRegister(RISCV::X0, MVT::i32); else if (isa(VL) && isUInt<4>(VL->getAsZExtVal())) NewVL = DAG.getNode(ISD::ADD, DL, VL.getValueType(), VL, VL); if (NewVL) { MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, DAG.getRegister(RISCV::X0, MVT::i32)); return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); } } } // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && isa(Hi.getOperand(1)) && Hi.getConstantOperandVal(1) == 31) return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); // If the hi bits of the splat are undefined, then it's fine to just splat Lo // even if it might be sign extended. if (Hi.isUndef()) return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); // Fall back to a stack store and stride x0 vector load. return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, Hi, VL); } // Called by type legalization to handle splat of i64 on RV32. // FIXME: We can optimize this when the type has sign or zero bits in one // of the halves. static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, SDValue Scalar, SDValue VL, SelectionDAG &DAG) { assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); SDValue Lo, Hi; std::tie(Lo, Hi) = DAG.SplitScalar(Scalar, DL, MVT::i32, MVT::i32); return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); } // This function lowers a splat of a scalar operand Splat with the vector // length VL. It ensures the final sequence is type legal, which is useful when // lowering a splat after type legalization. static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, MVT VT, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { bool HasPassthru = Passthru && !Passthru.isUndef(); if (!HasPassthru && !Passthru) Passthru = DAG.getUNDEF(VT); if (VT.isFloatingPoint()) return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); MVT XLenVT = Subtarget.getXLenVT(); // Simplest case is that the operand needs to be promoted to XLenVT. if (Scalar.getValueType().bitsLE(XLenVT)) { // If the operand is a constant, sign extend to increase our chances // of being able to use a .vi instruction. ANY_EXTEND would become a // a zero extend and the simm5 check in isel would fail. // FIXME: Should we ignore the upper bits in isel instead? unsigned ExtOpc = isa(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); } assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && "Unexpected scalar for splat lowering!"); if (isOneConstant(VL) && isNullConstant(Scalar)) return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, DAG.getConstant(0, DL, XLenVT), VL); // Otherwise use the more complicated splatting algorithm. return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); } // This function lowers an insert of a scalar operand Scalar into lane // 0 of the vector regardless of the value of VL. The contents of the // remaining lanes of the result vector are unspecified. VL is assumed // to be non-zero. static SDValue lowerScalarInsert(SDValue Scalar, SDValue VL, MVT VT, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(VT.isScalableVector() && "Expect VT is scalable vector type."); const MVT XLenVT = Subtarget.getXLenVT(); SDValue Passthru = DAG.getUNDEF(VT); if (Scalar.getOpcode() == ISD::EXTRACT_VECTOR_ELT && isNullConstant(Scalar.getOperand(1))) { SDValue ExtractedVal = Scalar.getOperand(0); // The element types must be the same. if (ExtractedVal.getValueType().getVectorElementType() == VT.getVectorElementType()) { MVT ExtractedVT = ExtractedVal.getSimpleValueType(); MVT ExtractedContainerVT = ExtractedVT; if (ExtractedContainerVT.isFixedLengthVector()) { ExtractedContainerVT = getContainerForFixedLengthVector( DAG, ExtractedContainerVT, Subtarget); ExtractedVal = convertToScalableVector(ExtractedContainerVT, ExtractedVal, DAG, Subtarget); } if (ExtractedContainerVT.bitsLE(VT)) return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Passthru, ExtractedVal, DAG.getConstant(0, DL, XLenVT)); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtractedVal, DAG.getConstant(0, DL, XLenVT)); } } if (VT.isFloatingPoint()) return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), Scalar, VL); // Avoid the tricky legalization cases by falling back to using the // splat code which already handles it gracefully. if (!Scalar.getValueType().bitsLE(XLenVT)) return lowerScalarSplat(DAG.getUNDEF(VT), Scalar, DAG.getConstant(1, DL, XLenVT), VT, DL, DAG, Subtarget); // If the operand is a constant, sign extend to increase our chances // of being able to use a .vi instruction. ANY_EXTEND would become a // a zero extend and the simm5 check in isel would fail. // FIXME: Should we ignore the upper bits in isel instead? unsigned ExtOpc = isa(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, VL); } // Is this a shuffle extracts either the even or odd elements of a vector? // That is, specifically, either (a) or (b) below. // t34: v8i8 = extract_subvector t11, Constant:i64<0> // t33: v8i8 = extract_subvector t11, Constant:i64<8> // a) t35: v8i8 = vector_shuffle<0,2,4,6,8,10,12,14> t34, t33 // b) t35: v8i8 = vector_shuffle<1,3,5,7,9,11,13,15> t34, t33 // Returns {Src Vector, Even Elements} om success static bool isDeinterleaveShuffle(MVT VT, MVT ContainerVT, SDValue V1, SDValue V2, ArrayRef Mask, const RISCVSubtarget &Subtarget) { // Need to be able to widen the vector. if (VT.getScalarSizeInBits() >= Subtarget.getELen()) return false; // Both input must be extracts. if (V1.getOpcode() != ISD::EXTRACT_SUBVECTOR || V2.getOpcode() != ISD::EXTRACT_SUBVECTOR) return false; // Extracting from the same source. SDValue Src = V1.getOperand(0); if (Src != V2.getOperand(0)) return false; // Src needs to have twice the number of elements. if (Src.getValueType().getVectorNumElements() != (Mask.size() * 2)) return false; // The extracts must extract the two halves of the source. if (V1.getConstantOperandVal(1) != 0 || V2.getConstantOperandVal(1) != Mask.size()) return false; // First index must be the first even or odd element from V1. if (Mask[0] != 0 && Mask[0] != 1) return false; // The others must increase by 2 each time. // TODO: Support undef elements? for (unsigned i = 1; i != Mask.size(); ++i) if (Mask[i] != Mask[i - 1] + 2) return false; return true; } /// Is this shuffle interleaving contiguous elements from one vector into the /// even elements and contiguous elements from another vector into the odd /// elements. \p EvenSrc will contain the element that should be in the first /// even element. \p OddSrc will contain the element that should be in the first /// odd element. These can be the first element in a source or the element half /// way through the source. static bool isInterleaveShuffle(ArrayRef Mask, MVT VT, int &EvenSrc, int &OddSrc, const RISCVSubtarget &Subtarget) { // We need to be able to widen elements to the next larger integer type. if (VT.getScalarSizeInBits() >= Subtarget.getELen()) return false; int Size = Mask.size(); int NumElts = VT.getVectorNumElements(); assert(Size == (int)NumElts && "Unexpected mask size"); SmallVector StartIndexes; if (!ShuffleVectorInst::isInterleaveMask(Mask, 2, Size * 2, StartIndexes)) return false; EvenSrc = StartIndexes[0]; OddSrc = StartIndexes[1]; // One source should be low half of first vector. if (EvenSrc != 0 && OddSrc != 0) return false; // Subvectors will be subtracted from either at the start of the two input // vectors, or at the start and middle of the first vector if it's an unary // interleave. // In both cases, HalfNumElts will be extracted. // We need to ensure that the extract indices are 0 or HalfNumElts otherwise // we'll create an illegal extract_subvector. // FIXME: We could support other values using a slidedown first. int HalfNumElts = NumElts / 2; return ((EvenSrc % HalfNumElts) == 0) && ((OddSrc % HalfNumElts) == 0); } /// Match shuffles that concatenate two vectors, rotate the concatenation, /// and then extract the original number of elements from the rotated result. /// This is equivalent to vector.splice or X86's PALIGNR instruction. The /// returned rotation amount is for a rotate right, where elements move from /// higher elements to lower elements. \p LoSrc indicates the first source /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be /// 0 or 1 if a rotation is found. /// /// NOTE: We talk about rotate to the right which matches how bit shift and /// rotate instructions are described where LSBs are on the right, but LLVM IR /// and the table below write vectors with the lowest elements on the left. static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef Mask) { int Size = Mask.size(); // We need to detect various ways of spelling a rotation: // [11, 12, 13, 14, 15, 0, 1, 2] // [-1, 12, 13, 14, -1, -1, 1, -1] // [-1, -1, -1, -1, -1, -1, 1, 2] // [ 3, 4, 5, 6, 7, 8, 9, 10] // [-1, 4, 5, 6, -1, -1, 9, -1] // [-1, 4, 5, 6, -1, -1, -1, -1] int Rotation = 0; LoSrc = -1; HiSrc = -1; for (int i = 0; i != Size; ++i) { int M = Mask[i]; if (M < 0) continue; // Determine where a rotate vector would have started. int StartIdx = i - (M % Size); // The identity rotation isn't interesting, stop. if (StartIdx == 0) return -1; // If we found the tail of a vector the rotation must be the missing // front. If we found the head of a vector, it must be how much of the // head. int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; if (Rotation == 0) Rotation = CandidateRotation; else if (Rotation != CandidateRotation) // The rotations don't match, so we can't match this mask. return -1; // Compute which value this mask is pointing at. int MaskSrc = M < Size ? 0 : 1; // Compute which of the two target values this index should be assigned to. // This reflects whether the high elements are remaining or the low elemnts // are remaining. int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; // Either set up this value if we've not encountered it before, or check // that it remains consistent. if (TargetSrc < 0) TargetSrc = MaskSrc; else if (TargetSrc != MaskSrc) // This may be a rotation, but it pulls from the inputs in some // unsupported interleaving. return -1; } // Check that we successfully analyzed the mask, and normalize the results. assert(Rotation != 0 && "Failed to locate a viable rotation!"); assert((LoSrc >= 0 || HiSrc >= 0) && "Failed to find a rotated input vector!"); return Rotation; } // Lower a deinterleave shuffle to vnsrl. // [a, p, b, q, c, r, d, s] -> [a, b, c, d] (EvenElts == true) // -> [p, q, r, s] (EvenElts == false) // VT is the type of the vector to return, <[vscale x ]n x ty> // Src is the vector to deinterleave of type <[vscale x ]n*2 x ty> static SDValue getDeinterleaveViaVNSRL(const SDLoc &DL, MVT VT, SDValue Src, bool EvenElts, const RISCVSubtarget &Subtarget, SelectionDAG &DAG) { // The result is a vector of type MVT ContainerVT = VT; // Convert fixed vectors to scalable if needed if (ContainerVT.isFixedLengthVector()) { assert(Src.getSimpleValueType().isFixedLengthVector()); ContainerVT = getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget); // The source is a vector of type MVT SrcContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), ContainerVT.getVectorElementCount() * 2); Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); } auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); // Bitcast the source vector from -> // This also converts FP to int. unsigned EltBits = ContainerVT.getScalarSizeInBits(); MVT WideSrcContainerVT = MVT::getVectorVT( MVT::getIntegerVT(EltBits * 2), ContainerVT.getVectorElementCount()); Src = DAG.getBitcast(WideSrcContainerVT, Src); // The integer version of the container type. MVT IntContainerVT = ContainerVT.changeVectorElementTypeToInteger(); // If we want even elements, then the shift amount is 0. Otherwise, shift by // the original element size. unsigned Shift = EvenElts ? 0 : EltBits; SDValue SplatShift = DAG.getNode( RISCVISD::VMV_V_X_VL, DL, IntContainerVT, DAG.getUNDEF(ContainerVT), DAG.getConstant(Shift, DL, Subtarget.getXLenVT()), VL); SDValue Res = DAG.getNode(RISCVISD::VNSRL_VL, DL, IntContainerVT, Src, SplatShift, DAG.getUNDEF(IntContainerVT), TrueMask, VL); // Cast back to FP if needed. Res = DAG.getBitcast(ContainerVT, Res); if (VT.isFixedLengthVector()) Res = convertFromScalableVector(VT, Res, DAG, Subtarget); return Res; } // Lower the following shuffle to vslidedown. // a) // t49: v8i8 = extract_subvector t13, Constant:i64<0> // t109: v8i8 = extract_subvector t13, Constant:i64<8> // t108: v8i8 = vector_shuffle<1,2,3,4,5,6,7,8> t49, t106 // b) // t69: v16i16 = extract_subvector t68, Constant:i64<0> // t23: v8i16 = extract_subvector t69, Constant:i64<0> // t29: v4i16 = extract_subvector t23, Constant:i64<4> // t26: v8i16 = extract_subvector t69, Constant:i64<8> // t30: v4i16 = extract_subvector t26, Constant:i64<0> // t54: v4i16 = vector_shuffle<1,2,3,4> t29, t30 static SDValue lowerVECTOR_SHUFFLEAsVSlidedown(const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, const RISCVSubtarget &Subtarget, SelectionDAG &DAG) { auto findNonEXTRACT_SUBVECTORParent = [](SDValue Parent) -> std::pair { uint64_t Offset = 0; while (Parent.getOpcode() == ISD::EXTRACT_SUBVECTOR && // EXTRACT_SUBVECTOR can be used to extract a fixed-width vector from // a scalable vector. But we don't want to match the case. Parent.getOperand(0).getSimpleValueType().isFixedLengthVector()) { Offset += Parent.getConstantOperandVal(1); Parent = Parent.getOperand(0); } return std::make_pair(Parent, Offset); }; auto [V1Src, V1IndexOffset] = findNonEXTRACT_SUBVECTORParent(V1); auto [V2Src, V2IndexOffset] = findNonEXTRACT_SUBVECTORParent(V2); // Extracting from the same source. SDValue Src = V1Src; if (Src != V2Src) return SDValue(); // Rebuild mask because Src may be from multiple EXTRACT_SUBVECTORs. SmallVector NewMask(Mask); for (size_t i = 0; i != NewMask.size(); ++i) { if (NewMask[i] == -1) continue; if (static_cast(NewMask[i]) < NewMask.size()) { NewMask[i] = NewMask[i] + V1IndexOffset; } else { // Minus NewMask.size() is needed. Otherwise, the b case would be // <5,6,7,12> instead of <5,6,7,8>. NewMask[i] = NewMask[i] - NewMask.size() + V2IndexOffset; } } // First index must be known and non-zero. It will be used as the slidedown // amount. if (NewMask[0] <= 0) return SDValue(); // NewMask is also continuous. for (unsigned i = 1; i != NewMask.size(); ++i) if (NewMask[i - 1] + 1 != NewMask[i]) return SDValue(); MVT XLenVT = Subtarget.getXLenVT(); MVT SrcVT = Src.getSimpleValueType(); MVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget); auto [TrueMask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); SDValue Slidedown = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), convertToScalableVector(ContainerVT, Src, DAG, Subtarget), DAG.getConstant(NewMask[0], DL, XLenVT), TrueMask, VL); return DAG.getNode( ISD::EXTRACT_SUBVECTOR, DL, VT, convertFromScalableVector(SrcVT, Slidedown, DAG, Subtarget), DAG.getConstant(0, DL, XLenVT)); } // Because vslideup leaves the destination elements at the start intact, we can // use it to perform shuffles that insert subvectors: // // vector_shuffle v8:v8i8, v9:v8i8, <0, 1, 2, 3, 8, 9, 10, 11> // -> // vsetvli zero, 8, e8, mf2, ta, ma // vslideup.vi v8, v9, 4 // // vector_shuffle v8:v8i8, v9:v8i8 <0, 1, 8, 9, 10, 5, 6, 7> // -> // vsetvli zero, 5, e8, mf2, tu, ma // vslideup.v1 v8, v9, 2 static SDValue lowerVECTOR_SHUFFLEAsVSlideup(const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, const RISCVSubtarget &Subtarget, SelectionDAG &DAG) { unsigned NumElts = VT.getVectorNumElements(); int NumSubElts, Index; if (!ShuffleVectorInst::isInsertSubvectorMask(Mask, NumElts, NumSubElts, Index)) return SDValue(); bool OpsSwapped = Mask[Index] < (int)NumElts; SDValue InPlace = OpsSwapped ? V2 : V1; SDValue ToInsert = OpsSwapped ? V1 : V2; MVT XLenVT = Subtarget.getXLenVT(); MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); auto TrueMask = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).first; // We slide up by the index that the subvector is being inserted at, and set // VL to the index + the number of elements being inserted. unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED | RISCVII::MASK_AGNOSTIC; // If the we're adding a suffix to the in place vector, i.e. inserting right // up to the very end of it, then we don't actually care about the tail. if (NumSubElts + Index >= (int)NumElts) Policy |= RISCVII::TAIL_AGNOSTIC; InPlace = convertToScalableVector(ContainerVT, InPlace, DAG, Subtarget); ToInsert = convertToScalableVector(ContainerVT, ToInsert, DAG, Subtarget); SDValue VL = DAG.getConstant(NumSubElts + Index, DL, XLenVT); SDValue Res; // If we're inserting into the lowest elements, use a tail undisturbed // vmv.v.v. if (Index == 0) Res = DAG.getNode(RISCVISD::VMV_V_V_VL, DL, ContainerVT, InPlace, ToInsert, VL); else Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, InPlace, ToInsert, DAG.getConstant(Index, DL, XLenVT), TrueMask, VL, Policy); return convertFromScalableVector(VT, Res, DAG, Subtarget); } /// Match v(f)slide1up/down idioms. These operations involve sliding /// N-1 elements to make room for an inserted scalar at one end. static SDValue lowerVECTOR_SHUFFLEAsVSlide1(const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef Mask, const RISCVSubtarget &Subtarget, SelectionDAG &DAG) { bool OpsSwapped = false; if (!isa(V1)) { if (!isa(V2)) return SDValue(); std::swap(V1, V2); OpsSwapped = true; } SDValue Splat = cast(V1)->getSplatValue(); if (!Splat) return SDValue(); // Return true if the mask could describe a slide of Mask.size() - 1 // elements from concat_vector(V1, V2)[Base:] to [Offset:]. auto isSlideMask = [](ArrayRef Mask, unsigned Base, int Offset) { const unsigned S = (Offset > 0) ? 0 : -Offset; const unsigned E = Mask.size() - ((Offset > 0) ? Offset : 0); for (unsigned i = S; i != E; ++i) if (Mask[i] >= 0 && (unsigned)Mask[i] != Base + i + Offset) return false; return true; }; const unsigned NumElts = VT.getVectorNumElements(); bool IsVSlidedown = isSlideMask(Mask, OpsSwapped ? 0 : NumElts, 1); if (!IsVSlidedown && !isSlideMask(Mask, OpsSwapped ? 0 : NumElts, -1)) return SDValue(); const int InsertIdx = Mask[IsVSlidedown ? (NumElts - 1) : 0]; // Inserted lane must come from splat, undef scalar is legal but not profitable. if (InsertIdx < 0 || InsertIdx / NumElts != (unsigned)OpsSwapped) return SDValue(); MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); auto OpCode = IsVSlidedown ? (VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL) : (VT.isFloatingPoint() ? RISCVISD::VFSLIDE1UP_VL : RISCVISD::VSLIDE1UP_VL); if (!VT.isFloatingPoint()) Splat = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Splat); auto Vec = DAG.getNode(OpCode, DL, ContainerVT, DAG.getUNDEF(ContainerVT), convertToScalableVector(ContainerVT, V2, DAG, Subtarget), Splat, TrueMask, VL); return convertFromScalableVector(VT, Vec, DAG, Subtarget); } // Given two input vectors of <[vscale x ]n x ty>, use vwaddu.vv and vwmaccu.vx // to create an interleaved vector of <[vscale x] n*2 x ty>. // This requires that the size of ty is less than the subtarget's maximum ELEN. static SDValue getWideningInterleave(SDValue EvenV, SDValue OddV, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { MVT VecVT = EvenV.getSimpleValueType(); MVT VecContainerVT = VecVT; // // Convert fixed vectors to scalable if needed if (VecContainerVT.isFixedLengthVector()) { VecContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget); EvenV = convertToScalableVector(VecContainerVT, EvenV, DAG, Subtarget); OddV = convertToScalableVector(VecContainerVT, OddV, DAG, Subtarget); } assert(VecVT.getScalarSizeInBits() < Subtarget.getELen()); // We're working with a vector of the same size as the resulting // interleaved vector, but with half the number of elements and // twice the SEW (Hence the restriction on not using the maximum // ELEN) MVT WideVT = MVT::getVectorVT(MVT::getIntegerVT(VecVT.getScalarSizeInBits() * 2), VecVT.getVectorElementCount()); MVT WideContainerVT = WideVT; // if (WideContainerVT.isFixedLengthVector()) WideContainerVT = getContainerForFixedLengthVector(DAG, WideVT, Subtarget); // Bitcast the input vectors to integers in case they are FP VecContainerVT = VecContainerVT.changeTypeToInteger(); EvenV = DAG.getBitcast(VecContainerVT, EvenV); OddV = DAG.getBitcast(VecContainerVT, OddV); auto [Mask, VL] = getDefaultVLOps(VecVT, VecContainerVT, DL, DAG, Subtarget); SDValue Passthru = DAG.getUNDEF(WideContainerVT); SDValue Interleaved; if (Subtarget.hasStdExtZvbb()) { // Interleaved = (OddV << VecVT.getScalarSizeInBits()) + EvenV. SDValue OffsetVec = DAG.getSplatVector(VecContainerVT, DL, DAG.getConstant(VecVT.getScalarSizeInBits(), DL, Subtarget.getXLenVT())); Interleaved = DAG.getNode(RISCVISD::VWSLL_VL, DL, WideContainerVT, OddV, OffsetVec, Passthru, Mask, VL); Interleaved = DAG.getNode(RISCVISD::VWADDU_W_VL, DL, WideContainerVT, Interleaved, EvenV, Passthru, Mask, VL); } else { // Widen EvenV and OddV with 0s and add one copy of OddV to EvenV with // vwaddu.vv Interleaved = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideContainerVT, EvenV, OddV, Passthru, Mask, VL); // Then get OddV * by 2^(VecVT.getScalarSizeInBits() - 1) SDValue AllOnesVec = DAG.getSplatVector( VecContainerVT, DL, DAG.getAllOnesConstant(DL, Subtarget.getXLenVT())); SDValue OddsMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideContainerVT, OddV, AllOnesVec, Passthru, Mask, VL); // Add the two together so we get // (OddV * 0xff...ff) + (OddV + EvenV) // = (OddV * 0x100...00) + EvenV // = (OddV << VecVT.getScalarSizeInBits()) + EvenV // Note the ADD_VL and VLMULU_VL should get selected as vwmaccu.vx Interleaved = DAG.getNode(RISCVISD::ADD_VL, DL, WideContainerVT, Interleaved, OddsMul, Passthru, Mask, VL); } // Bitcast from to MVT ResultContainerVT = MVT::getVectorVT( VecVT.getVectorElementType(), // Make sure to use original type VecContainerVT.getVectorElementCount().multiplyCoefficientBy(2)); Interleaved = DAG.getBitcast(ResultContainerVT, Interleaved); // Convert back to a fixed vector if needed MVT ResultVT = MVT::getVectorVT(VecVT.getVectorElementType(), VecVT.getVectorElementCount().multiplyCoefficientBy(2)); if (ResultVT.isFixedLengthVector()) Interleaved = convertFromScalableVector(ResultVT, Interleaved, DAG, Subtarget); return Interleaved; } // If we have a vector of bits that we want to reverse, we can use a vbrev on a // larger element type, e.g. v32i1 can be reversed with a v1i32 bitreverse. static SDValue lowerBitreverseShuffle(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDLoc DL(SVN); MVT VT = SVN->getSimpleValueType(0); SDValue V = SVN->getOperand(0); unsigned NumElts = VT.getVectorNumElements(); assert(VT.getVectorElementType() == MVT::i1); if (!ShuffleVectorInst::isReverseMask(SVN->getMask(), SVN->getMask().size()) || !SVN->getOperand(1).isUndef()) return SDValue(); unsigned ViaEltSize = std::max((uint64_t)8, PowerOf2Ceil(NumElts)); EVT ViaVT = EVT::getVectorVT( *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), ViaEltSize), 1); EVT ViaBitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, ViaVT.getScalarSizeInBits()); // If we don't have zvbb or the larger element type > ELEN, the operation will // be illegal. if (!Subtarget.getTargetLowering()->isOperationLegalOrCustom(ISD::BITREVERSE, ViaVT) || !Subtarget.getTargetLowering()->isTypeLegal(ViaBitVT)) return SDValue(); // If the bit vector doesn't fit exactly into the larger element type, we need // to insert it into the larger vector and then shift up the reversed bits // afterwards to get rid of the gap introduced. if (ViaEltSize > NumElts) V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ViaBitVT, DAG.getUNDEF(ViaBitVT), V, DAG.getVectorIdxConstant(0, DL)); SDValue Res = DAG.getNode(ISD::BITREVERSE, DL, ViaVT, DAG.getBitcast(ViaVT, V)); // Shift up the reversed bits if the vector didn't exactly fit into the larger // element type. if (ViaEltSize > NumElts) Res = DAG.getNode(ISD::SRL, DL, ViaVT, Res, DAG.getConstant(ViaEltSize - NumElts, DL, ViaVT)); Res = DAG.getBitcast(ViaBitVT, Res); if (ViaEltSize > NumElts) Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res, DAG.getVectorIdxConstant(0, DL)); return Res; } // Given a shuffle mask like <3, 0, 1, 2, 7, 4, 5, 6> for v8i8, we can // reinterpret it as a v2i32 and rotate it right by 8 instead. We can lower this // as a vror.vi if we have Zvkb, or otherwise as a vsll, vsrl and vor. static SDValue lowerVECTOR_SHUFFLEAsRotate(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDLoc DL(SVN); EVT VT = SVN->getValueType(0); unsigned NumElts = VT.getVectorNumElements(); unsigned EltSizeInBits = VT.getScalarSizeInBits(); unsigned NumSubElts, RotateAmt; if (!ShuffleVectorInst::isBitRotateMask(SVN->getMask(), EltSizeInBits, 2, NumElts, NumSubElts, RotateAmt)) return SDValue(); MVT RotateVT = MVT::getVectorVT(MVT::getIntegerVT(EltSizeInBits * NumSubElts), NumElts / NumSubElts); // We might have a RotateVT that isn't legal, e.g. v4i64 on zve32x. if (!Subtarget.getTargetLowering()->isTypeLegal(RotateVT)) return SDValue(); SDValue Op = DAG.getBitcast(RotateVT, SVN->getOperand(0)); SDValue Rotate; // A rotate of an i16 by 8 bits either direction is equivalent to a byteswap, // so canonicalize to vrev8. if (RotateVT.getScalarType() == MVT::i16 && RotateAmt == 8) Rotate = DAG.getNode(ISD::BSWAP, DL, RotateVT, Op); else Rotate = DAG.getNode(ISD::ROTL, DL, RotateVT, Op, DAG.getConstant(RotateAmt, DL, RotateVT)); return DAG.getBitcast(VT, Rotate); } // If compiling with an exactly known VLEN, see if we can split a // shuffle on m2 or larger into a small number of m1 sized shuffles // which write each destination registers exactly once. static SDValue lowerShuffleViaVRegSplitting(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDLoc DL(SVN); MVT VT = SVN->getSimpleValueType(0); SDValue V1 = SVN->getOperand(0); SDValue V2 = SVN->getOperand(1); ArrayRef Mask = SVN->getMask(); unsigned NumElts = VT.getVectorNumElements(); // If we don't know exact data layout, not much we can do. If this // is already m1 or smaller, no point in splitting further. const unsigned MinVLen = Subtarget.getRealMinVLen(); const unsigned MaxVLen = Subtarget.getRealMaxVLen(); if (MinVLen != MaxVLen || VT.getSizeInBits().getFixedValue() <= MinVLen) return SDValue(); MVT ElemVT = VT.getVectorElementType(); unsigned ElemsPerVReg = MinVLen / ElemVT.getFixedSizeInBits(); unsigned VRegsPerSrc = NumElts / ElemsPerVReg; SmallVector>> OutMasks(VRegsPerSrc, {-1, {}}); // Check if our mask can be done as a 1-to-1 mapping from source // to destination registers in the group without needing to // write each destination more than once. for (unsigned DstIdx = 0; DstIdx < Mask.size(); DstIdx++) { int DstVecIdx = DstIdx / ElemsPerVReg; int DstSubIdx = DstIdx % ElemsPerVReg; int SrcIdx = Mask[DstIdx]; if (SrcIdx < 0 || (unsigned)SrcIdx >= 2 * NumElts) continue; int SrcVecIdx = SrcIdx / ElemsPerVReg; int SrcSubIdx = SrcIdx % ElemsPerVReg; if (OutMasks[DstVecIdx].first == -1) OutMasks[DstVecIdx].first = SrcVecIdx; if (OutMasks[DstVecIdx].first != SrcVecIdx) // Note: This case could easily be handled by keeping track of a chain // of source values and generating two element shuffles below. This is // less an implementation question, and more a profitability one. return SDValue(); OutMasks[DstVecIdx].second.resize(ElemsPerVReg, -1); OutMasks[DstVecIdx].second[DstSubIdx] = SrcSubIdx; } EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); MVT OneRegVT = MVT::getVectorVT(ElemVT, ElemsPerVReg); MVT M1VT = getContainerForFixedLengthVector(DAG, OneRegVT, Subtarget); assert(M1VT == getLMUL1VT(M1VT)); unsigned NumOpElts = M1VT.getVectorMinNumElements(); SDValue Vec = DAG.getUNDEF(ContainerVT); // The following semantically builds up a fixed length concat_vector // of the component shuffle_vectors. We eagerly lower to scalable here // to avoid DAG combining it back to a large shuffle_vector again. V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); for (unsigned DstVecIdx = 0 ; DstVecIdx < OutMasks.size(); DstVecIdx++) { auto &[SrcVecIdx, SrcSubMask] = OutMasks[DstVecIdx]; if (SrcVecIdx == -1) continue; unsigned ExtractIdx = (SrcVecIdx % VRegsPerSrc) * NumOpElts; SDValue SrcVec = (unsigned)SrcVecIdx >= VRegsPerSrc ? V2 : V1; SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, SrcVec, DAG.getVectorIdxConstant(ExtractIdx, DL)); SubVec = convertFromScalableVector(OneRegVT, SubVec, DAG, Subtarget); SubVec = DAG.getVectorShuffle(OneRegVT, DL, SubVec, SubVec, SrcSubMask); SubVec = convertToScalableVector(M1VT, SubVec, DAG, Subtarget); unsigned InsertIdx = DstVecIdx * NumOpElts; Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, Vec, SubVec, DAG.getVectorIdxConstant(InsertIdx, DL)); } return convertFromScalableVector(VT, Vec, DAG, Subtarget); } static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc DL(Op); MVT XLenVT = Subtarget.getXLenVT(); MVT VT = Op.getSimpleValueType(); unsigned NumElts = VT.getVectorNumElements(); ShuffleVectorSDNode *SVN = cast(Op.getNode()); if (VT.getVectorElementType() == MVT::i1) { // Lower to a vror.vi of a larger element type if possible before we promote // i1s to i8s. if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget)) return V; if (SDValue V = lowerBitreverseShuffle(SVN, DAG, Subtarget)) return V; // Promote i1 shuffle to i8 shuffle. MVT WidenVT = MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()); V1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, V1); V2 = V2.isUndef() ? DAG.getUNDEF(WidenVT) : DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, V2); SDValue Shuffled = DAG.getVectorShuffle(WidenVT, DL, V1, V2, SVN->getMask()); return DAG.getSetCC(DL, VT, Shuffled, DAG.getConstant(0, DL, WidenVT), ISD::SETNE); } MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); if (SVN->isSplat()) { const int Lane = SVN->getSplatIndex(); if (Lane >= 0) { MVT SVT = VT.getVectorElementType(); // Turn splatted vector load into a strided load with an X0 stride. SDValue V = V1; // Peek through CONCAT_VECTORS as VectorCombine can concat a vector // with undef. // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? int Offset = Lane; if (V.getOpcode() == ISD::CONCAT_VECTORS) { int OpElements = V.getOperand(0).getSimpleValueType().getVectorNumElements(); V = V.getOperand(Offset / OpElements); Offset %= OpElements; } // We need to ensure the load isn't atomic or volatile. if (ISD::isNormalLoad(V.getNode()) && cast(V)->isSimple()) { auto *Ld = cast(V); Offset *= SVT.getStoreSize(); SDValue NewAddr = DAG.getMemBasePlusOffset( Ld->getBasePtr(), TypeSize::getFixed(Offset), DL); // If this is SEW=64 on RV32, use a strided load with a stride of x0. if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); SDValue Ops[] = {Ld->getChain(), IntID, DAG.getUNDEF(ContainerVT), NewAddr, DAG.getRegister(RISCV::X0, XLenVT), VL}; SDValue NewLoad = DAG.getMemIntrinsicNode( ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, DAG.getMachineFunction().getMachineMemOperand( Ld->getMemOperand(), Offset, SVT.getStoreSize())); DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); } // Otherwise use a scalar load and splat. This will give the best // opportunity to fold a splat into the operation. ISel can turn it into // the x0 strided load if we aren't able to fold away the select. if (SVT.isFloatingPoint()) V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, Ld->getPointerInfo().getWithOffset(Offset), Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags()); else V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, Ld->getPointerInfo().getWithOffset(Offset), SVT, Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags()); DAG.makeEquivalentMemoryOrdering(Ld, V); unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); return convertFromScalableVector(VT, Splat, DAG, Subtarget); } V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); assert(Lane < (int)NumElts && "Unexpected lane!"); SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, DAG.getConstant(Lane, DL, XLenVT), DAG.getUNDEF(ContainerVT), TrueMask, VL); return convertFromScalableVector(VT, Gather, DAG, Subtarget); } } // For exact VLEN m2 or greater, try to split to m1 operations if we // can split cleanly. if (SDValue V = lowerShuffleViaVRegSplitting(SVN, DAG, Subtarget)) return V; ArrayRef Mask = SVN->getMask(); if (SDValue V = lowerVECTOR_SHUFFLEAsVSlide1(DL, VT, V1, V2, Mask, Subtarget, DAG)) return V; if (SDValue V = lowerVECTOR_SHUFFLEAsVSlidedown(DL, VT, V1, V2, Mask, Subtarget, DAG)) return V; // A bitrotate will be one instruction on Zvkb, so try to lower to it first if // available. if (Subtarget.hasStdExtZvkb()) if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget)) return V; // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may // be undef which can be handled with a single SLIDEDOWN/UP. int LoSrc, HiSrc; int Rotation = isElementRotate(LoSrc, HiSrc, Mask); if (Rotation > 0) { SDValue LoV, HiV; if (LoSrc >= 0) { LoV = LoSrc == 0 ? V1 : V2; LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); } if (HiSrc >= 0) { HiV = HiSrc == 0 ? V1 : V2; HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); } // We found a rotation. We need to slide HiV down by Rotation. Then we need // to slide LoV up by (NumElts - Rotation). unsigned InvRotate = NumElts - Rotation; SDValue Res = DAG.getUNDEF(ContainerVT); if (HiV) { // Even though we could use a smaller VL, don't to avoid a vsetivli // toggle. Res = getVSlidedown(DAG, Subtarget, DL, ContainerVT, Res, HiV, DAG.getConstant(Rotation, DL, XLenVT), TrueMask, VL); } if (LoV) Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, Res, LoV, DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL, RISCVII::TAIL_AGNOSTIC); return convertFromScalableVector(VT, Res, DAG, Subtarget); } // If this is a deinterleave and we can widen the vector, then we can use // vnsrl to deinterleave. if (isDeinterleaveShuffle(VT, ContainerVT, V1, V2, Mask, Subtarget)) { return getDeinterleaveViaVNSRL(DL, VT, V1.getOperand(0), Mask[0] == 0, Subtarget, DAG); } if (SDValue V = lowerVECTOR_SHUFFLEAsVSlideup(DL, VT, V1, V2, Mask, Subtarget, DAG)) return V; // Detect an interleave shuffle and lower to // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) int EvenSrc, OddSrc; if (isInterleaveShuffle(Mask, VT, EvenSrc, OddSrc, Subtarget)) { // Extract the halves of the vectors. MVT HalfVT = VT.getHalfNumVectorElementsVT(); int Size = Mask.size(); SDValue EvenV, OddV; assert(EvenSrc >= 0 && "Undef source?"); EvenV = (EvenSrc / Size) == 0 ? V1 : V2; EvenV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, EvenV, DAG.getConstant(EvenSrc % Size, DL, XLenVT)); assert(OddSrc >= 0 && "Undef source?"); OddV = (OddSrc / Size) == 0 ? V1 : V2; OddV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, OddV, DAG.getConstant(OddSrc % Size, DL, XLenVT)); return getWideningInterleave(EvenV, OddV, DL, DAG, Subtarget); } // Detect shuffles which can be re-expressed as vector selects; these are // shuffles in which each element in the destination is taken from an element // at the corresponding index in either source vectors. bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { int MaskIndex = MaskIdx.value(); return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; }); assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); // By default we preserve the original operand order, and use a mask to // select LHS as true and RHS as false. However, since RVV vector selects may // feature splats but only on the LHS, we may choose to invert our mask and // instead select between RHS and LHS. bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); if (IsSelect) { // Now construct the mask that will be used by the vselect operation. SmallVector MaskVals; for (int MaskIndex : Mask) { bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ SwapOps; MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); } if (SwapOps) std::swap(V1, V2); assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); } // We might be able to express the shuffle as a bitrotate. But even if we // don't have Zvkb and have to expand, the expanded sequence of approx. 2 // shifts and a vor will have a higher throughput than a vrgather. if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget)) return V; if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { // On such a large vector we're unable to use i8 as the index type. // FIXME: We could promote the index to i16 and use vrgatherei16, but that // may involve vector splitting if we're already at LMUL=8, or our // user-supplied maximum fixed-length LMUL. return SDValue(); } // As a backup, shuffles can be lowered via a vrgather instruction, possibly // merged with a second vrgather. SmallVector GatherIndicesLHS, GatherIndicesRHS; // Keep a track of which non-undef indices are used by each LHS/RHS shuffle // half. DenseMap LHSIndexCounts, RHSIndexCounts; SmallVector MaskVals; // Now construct the mask that will be used by the blended vrgather operation. // Cconstruct the appropriate indices into each vector. for (int MaskIndex : Mask) { bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ !SwapOps; MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 ? DAG.getConstant(MaskIndex, DL, XLenVT) : DAG.getUNDEF(XLenVT)); GatherIndicesRHS.push_back( IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); if (IsLHSOrUndefIndex && MaskIndex >= 0) ++LHSIndexCounts[MaskIndex]; if (!IsLHSOrUndefIndex) ++RHSIndexCounts[MaskIndex - NumElts]; } if (SwapOps) { std::swap(V1, V2); std::swap(GatherIndicesLHS, GatherIndicesRHS); } assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; MVT IndexVT = VT.changeTypeToInteger(); // Since we can't introduce illegal index types at this stage, use i16 and // vrgatherei16 if the corresponding index type for plain vrgather is greater // than XLenVT. if (IndexVT.getScalarType().bitsGT(XLenVT)) { GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; IndexVT = IndexVT.changeVectorElementType(MVT::i16); } // If the mask allows, we can do all the index computation in 16 bits. This // requires less work and less register pressure at high LMUL, and creates // smaller constants which may be cheaper to materialize. if (IndexVT.getScalarType().bitsGT(MVT::i16) && isUInt<16>(NumElts - 1) && (IndexVT.getSizeInBits() / Subtarget.getRealMinVLen()) > 1) { GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; IndexVT = IndexVT.changeVectorElementType(MVT::i16); } MVT IndexContainerVT = ContainerVT.changeVectorElementType(IndexVT.getScalarType()); SDValue Gather; // TODO: This doesn't trigger for i64 vectors on RV32, since there we // encounter a bitcasted BUILD_VECTOR with low/high i32 values. if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, Subtarget); } else { V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); // If only one index is used, we can use a "splat" vrgather. // TODO: We can splat the most-common index and fix-up any stragglers, if // that's beneficial. if (LHSIndexCounts.size() == 1) { int SplatIndex = LHSIndexCounts.begin()->getFirst(); Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, DAG.getConstant(SplatIndex, DL, XLenVT), DAG.getUNDEF(ContainerVT), TrueMask, VL); } else { SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); LHSIndices = convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, DAG.getUNDEF(ContainerVT), TrueMask, VL); } } // If a second vector operand is used by this shuffle, blend it in with an // additional vrgather. if (!V2.isUndef()) { V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); SelectMask = convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); // If only one index is used, we can use a "splat" vrgather. // TODO: We can splat the most-common index and fix-up any stragglers, if // that's beneficial. if (RHSIndexCounts.size() == 1) { int SplatIndex = RHSIndexCounts.begin()->getFirst(); Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, DAG.getConstant(SplatIndex, DL, XLenVT), Gather, SelectMask, VL); } else { SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); RHSIndices = convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, Gather, SelectMask, VL); } } return convertFromScalableVector(VT, Gather, DAG, Subtarget); } bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef M, EVT VT) const { // Support splats for any type. These should type legalize well. if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) return true; // Only support legal VTs for other shuffles for now. if (!isTypeLegal(VT)) return false; MVT SVT = VT.getSimpleVT(); // Not for i1 vectors. if (SVT.getScalarType() == MVT::i1) return false; int Dummy1, Dummy2; return (isElementRotate(Dummy1, Dummy2, M) > 0) || isInterleaveShuffle(M, SVT, Dummy1, Dummy2, Subtarget); } // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting // the exponent. SDValue RISCVTargetLowering::lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); unsigned EltSize = VT.getScalarSizeInBits(); SDValue Src = Op.getOperand(0); SDLoc DL(Op); MVT ContainerVT = VT; SDValue Mask, VL; if (Op->isVPOpcode()) { Mask = Op.getOperand(1); if (VT.isFixedLengthVector()) Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG, Subtarget); VL = Op.getOperand(2); } // We choose FP type that can represent the value if possible. Otherwise, we // use rounding to zero conversion for correct exponent of the result. // TODO: Use f16 for i8 when possible? MVT FloatEltVT = (EltSize >= 32) ? MVT::f64 : MVT::f32; if (!isTypeLegal(MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()))) FloatEltVT = MVT::f32; MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); // Legal types should have been checked in the RISCVTargetLowering // constructor. // TODO: Splitting may make sense in some cases. assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && "Expected legal float type!"); // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. // The trailing zero count is equal to log2 of this single bit value. if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { SDValue Neg = DAG.getNegative(Src, DL, VT); Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); } else if (Op.getOpcode() == ISD::VP_CTTZ_ZERO_UNDEF) { SDValue Neg = DAG.getNode(ISD::VP_SUB, DL, VT, DAG.getConstant(0, DL, VT), Src, Mask, VL); Src = DAG.getNode(ISD::VP_AND, DL, VT, Src, Neg, Mask, VL); } // We have a legal FP type, convert to it. SDValue FloatVal; if (FloatVT.bitsGT(VT)) { if (Op->isVPOpcode()) FloatVal = DAG.getNode(ISD::VP_UINT_TO_FP, DL, FloatVT, Src, Mask, VL); else FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); } else { // Use RTZ to avoid rounding influencing exponent of FloatVal. if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); } if (!Op->isVPOpcode()) std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); SDValue RTZRM = DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()); MVT ContainerFloatVT = MVT::getVectorVT(FloatEltVT, ContainerVT.getVectorElementCount()); FloatVal = DAG.getNode(RISCVISD::VFCVT_RM_F_XU_VL, DL, ContainerFloatVT, Src, Mask, RTZRM, VL); if (VT.isFixedLengthVector()) FloatVal = convertFromScalableVector(FloatVT, FloatVal, DAG, Subtarget); } // Bitcast to integer and shift the exponent to the LSB. EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; SDValue Exp; // Restore back to original type. Truncation after SRL is to generate vnsrl. if (Op->isVPOpcode()) { Exp = DAG.getNode(ISD::VP_LSHR, DL, IntVT, Bitcast, DAG.getConstant(ShiftAmt, DL, IntVT), Mask, VL); Exp = DAG.getVPZExtOrTrunc(DL, VT, Exp, Mask, VL); } else { Exp = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, DAG.getConstant(ShiftAmt, DL, IntVT)); if (IntVT.bitsLT(VT)) Exp = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Exp); else if (IntVT.bitsGT(VT)) Exp = DAG.getNode(ISD::TRUNCATE, DL, VT, Exp); } // The exponent contains log2 of the value in biased form. unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; // For trailing zeros, we just need to subtract the bias. if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) return DAG.getNode(ISD::SUB, DL, VT, Exp, DAG.getConstant(ExponentBias, DL, VT)); if (Op.getOpcode() == ISD::VP_CTTZ_ZERO_UNDEF) return DAG.getNode(ISD::VP_SUB, DL, VT, Exp, DAG.getConstant(ExponentBias, DL, VT), Mask, VL); // For leading zeros, we need to remove the bias and convert from log2 to // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). unsigned Adjust = ExponentBias + (EltSize - 1); SDValue Res; if (Op->isVPOpcode()) Res = DAG.getNode(ISD::VP_SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp, Mask, VL); else Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp); // The above result with zero input equals to Adjust which is greater than // EltSize. Hence, we can do min(Res, EltSize) for CTLZ. if (Op.getOpcode() == ISD::CTLZ) Res = DAG.getNode(ISD::UMIN, DL, VT, Res, DAG.getConstant(EltSize, DL, VT)); else if (Op.getOpcode() == ISD::VP_CTLZ) Res = DAG.getNode(ISD::VP_UMIN, DL, VT, Res, DAG.getConstant(EltSize, DL, VT), Mask, VL); return Res; } // While RVV has alignment restrictions, we should always be able to load as a // legal equivalently-sized byte-typed vector instead. This method is // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If // the load is already correctly-aligned, it returns SDValue(). SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, SelectionDAG &DAG) const { auto *Load = cast(Op); assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), Load->getMemoryVT(), *Load->getMemOperand())) return SDValue(); SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); unsigned EltSizeBits = VT.getScalarSizeInBits(); assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && "Unexpected unaligned RVV load type"); MVT NewVT = MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); assert(NewVT.isValid() && "Expecting equally-sized RVV vector types to be legal"); SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), Load->getPointerInfo(), Load->getOriginalAlign(), Load->getMemOperand()->getFlags()); return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); } // While RVV has alignment restrictions, we should always be able to store as a // legal equivalently-sized byte-typed vector instead. This method is // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It // returns SDValue() if the store is already correctly aligned. SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, SelectionDAG &DAG) const { auto *Store = cast(Op); assert(Store && Store->getValue().getValueType().isVector() && "Expected vector store"); if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), Store->getMemoryVT(), *Store->getMemOperand())) return SDValue(); SDLoc DL(Op); SDValue StoredVal = Store->getValue(); MVT VT = StoredVal.getSimpleValueType(); unsigned EltSizeBits = VT.getScalarSizeInBits(); assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && "Unexpected unaligned RVV store type"); MVT NewVT = MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); assert(NewVT.isValid() && "Expecting equally-sized RVV vector types to be legal"); StoredVal = DAG.getBitcast(NewVT, StoredVal); return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), Store->getPointerInfo(), Store->getOriginalAlign(), Store->getMemOperand()->getFlags()); } static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(Op.getValueType() == MVT::i64 && "Unexpected VT"); int64_t Imm = cast(Op)->getSExtValue(); // All simm32 constants should be handled by isel. // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making // this check redundant, but small immediates are common so this check // should have better compile time. if (isInt<32>(Imm)) return Op; // We only need to cost the immediate, if constant pool lowering is enabled. if (!Subtarget.useConstantPoolForLargeInts()) return Op; RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Imm, Subtarget); if (Seq.size() <= Subtarget.getMaxBuildIntsCost()) return Op; // Optimizations below are disabled for opt size. If we're optimizing for // size, use a constant pool. if (DAG.shouldOptForSize()) return SDValue(); // Special case. See if we can build the constant as (ADD (SLLI X, C), X) do // that if it will avoid a constant pool. // It will require an extra temporary register though. // If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where // low and high 32 bits are the same and bit 31 and 63 are set. unsigned ShiftAmt, AddOpc; RISCVMatInt::InstSeq SeqLo = RISCVMatInt::generateTwoRegInstSeq(Imm, Subtarget, ShiftAmt, AddOpc); if (!SeqLo.empty() && (SeqLo.size() + 2) <= Subtarget.getMaxBuildIntsCost()) return Op; return SDValue(); } static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDLoc dl(Op); AtomicOrdering FenceOrdering = static_cast(Op.getConstantOperandVal(1)); SyncScope::ID FenceSSID = static_cast(Op.getConstantOperandVal(2)); if (Subtarget.hasStdExtZtso()) { // The only fence that needs an instruction is a sequentially-consistent // cross-thread fence. if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && FenceSSID == SyncScope::System) return Op; // MEMBARRIER is a compiler barrier; it codegens to a no-op. return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); } // singlethread fences only synchronize with signal handlers on the same // thread and thus only need to preserve instruction order, not actually // enforce memory ordering. if (FenceSSID == SyncScope::SingleThread) // MEMBARRIER is a compiler barrier; it codegens to a no-op. return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); return Op; } SDValue RISCVTargetLowering::LowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); unsigned Check = Op.getConstantOperandVal(1); unsigned TDCMask = 0; if (Check & fcSNan) TDCMask |= RISCV::FPMASK_Signaling_NaN; if (Check & fcQNan) TDCMask |= RISCV::FPMASK_Quiet_NaN; if (Check & fcPosInf) TDCMask |= RISCV::FPMASK_Positive_Infinity; if (Check & fcNegInf) TDCMask |= RISCV::FPMASK_Negative_Infinity; if (Check & fcPosNormal) TDCMask |= RISCV::FPMASK_Positive_Normal; if (Check & fcNegNormal) TDCMask |= RISCV::FPMASK_Negative_Normal; if (Check & fcPosSubnormal) TDCMask |= RISCV::FPMASK_Positive_Subnormal; if (Check & fcNegSubnormal) TDCMask |= RISCV::FPMASK_Negative_Subnormal; if (Check & fcPosZero) TDCMask |= RISCV::FPMASK_Positive_Zero; if (Check & fcNegZero) TDCMask |= RISCV::FPMASK_Negative_Zero; bool IsOneBitMask = isPowerOf2_32(TDCMask); SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, XLenVT); if (VT.isVector()) { SDValue Op0 = Op.getOperand(0); MVT VT0 = Op.getOperand(0).getSimpleValueType(); if (VT.isScalableVector()) { MVT DstVT = VT0.changeVectorElementTypeToInteger(); auto [Mask, VL] = getDefaultScalableVLOps(VT0, DL, DAG, Subtarget); if (Op.getOpcode() == ISD::VP_IS_FPCLASS) { Mask = Op.getOperand(2); VL = Op.getOperand(3); } SDValue FPCLASS = DAG.getNode(RISCVISD::FCLASS_VL, DL, DstVT, Op0, Mask, VL, Op->getFlags()); if (IsOneBitMask) return DAG.getSetCC(DL, VT, FPCLASS, DAG.getConstant(TDCMask, DL, DstVT), ISD::CondCode::SETEQ); SDValue AND = DAG.getNode(ISD::AND, DL, DstVT, FPCLASS, DAG.getConstant(TDCMask, DL, DstVT)); return DAG.getSetCC(DL, VT, AND, DAG.getConstant(0, DL, DstVT), ISD::SETNE); } MVT ContainerVT0 = getContainerForFixedLengthVector(VT0); MVT ContainerVT = getContainerForFixedLengthVector(VT); MVT ContainerDstVT = ContainerVT0.changeVectorElementTypeToInteger(); auto [Mask, VL] = getDefaultVLOps(VT0, ContainerVT0, DL, DAG, Subtarget); if (Op.getOpcode() == ISD::VP_IS_FPCLASS) { Mask = Op.getOperand(2); MVT MaskContainerVT = getContainerForFixedLengthVector(Mask.getSimpleValueType()); Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); VL = Op.getOperand(3); } Op0 = convertToScalableVector(ContainerVT0, Op0, DAG, Subtarget); SDValue FPCLASS = DAG.getNode(RISCVISD::FCLASS_VL, DL, ContainerDstVT, Op0, Mask, VL, Op->getFlags()); TDCMaskV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerDstVT, DAG.getUNDEF(ContainerDstVT), TDCMaskV, VL); if (IsOneBitMask) { SDValue VMSEQ = DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT, {FPCLASS, TDCMaskV, DAG.getCondCode(ISD::SETEQ), DAG.getUNDEF(ContainerVT), Mask, VL}); return convertFromScalableVector(VT, VMSEQ, DAG, Subtarget); } SDValue AND = DAG.getNode(RISCVISD::AND_VL, DL, ContainerDstVT, FPCLASS, TDCMaskV, DAG.getUNDEF(ContainerDstVT), Mask, VL); SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerDstVT, DAG.getUNDEF(ContainerDstVT), SplatZero, VL); SDValue VMSNE = DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT, {AND, SplatZero, DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(ContainerVT), Mask, VL}); return convertFromScalableVector(VT, VMSNE, DAG, Subtarget); } SDValue FCLASS = DAG.getNode(RISCVISD::FCLASS, DL, XLenVT, Op.getOperand(0)); SDValue AND = DAG.getNode(ISD::AND, DL, XLenVT, FCLASS, TDCMaskV); SDValue Res = DAG.getSetCC(DL, XLenVT, AND, DAG.getConstant(0, DL, XLenVT), ISD::CondCode::SETNE); return DAG.getNode(ISD::TRUNCATE, DL, VT, Res); } // Lower fmaximum and fminimum. Unlike our fmax and fmin instructions, these // operations propagate nans. static SDValue lowerFMAXIMUM_FMINIMUM(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); if (!VT.isVector()) { MVT XLenVT = Subtarget.getXLenVT(); // If X is a nan, replace Y with X. If Y is a nan, replace X with Y. This // ensures that when one input is a nan, the other will also be a nan // allowing the nan to propagate. If both inputs are nan, this will swap the // inputs which is harmless. SDValue NewY = Y; if (!Op->getFlags().hasNoNaNs() && !DAG.isKnownNeverNaN(X)) { SDValue XIsNonNan = DAG.getSetCC(DL, XLenVT, X, X, ISD::SETOEQ); NewY = DAG.getSelect(DL, VT, XIsNonNan, Y, X); } SDValue NewX = X; if (!Op->getFlags().hasNoNaNs() && !DAG.isKnownNeverNaN(Y)) { SDValue YIsNonNan = DAG.getSetCC(DL, XLenVT, Y, Y, ISD::SETOEQ); NewX = DAG.getSelect(DL, VT, YIsNonNan, X, Y); } unsigned Opc = Op.getOpcode() == ISD::FMAXIMUM ? RISCVISD::FMAX : RISCVISD::FMIN; return DAG.getNode(Opc, DL, VT, NewX, NewY); } // Check no NaNs before converting to fixed vector scalable. bool XIsNeverNan = Op->getFlags().hasNoNaNs() || DAG.isKnownNeverNaN(X); bool YIsNeverNan = Op->getFlags().hasNoNaNs() || DAG.isKnownNeverNaN(Y); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); Y = convertToScalableVector(ContainerVT, Y, DAG, Subtarget); } SDValue Mask, VL; if (Op->isVPOpcode()) { Mask = Op.getOperand(2); if (VT.isFixedLengthVector()) Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG, Subtarget); VL = Op.getOperand(3); } else { std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); } SDValue NewY = Y; if (!XIsNeverNan) { SDValue XIsNonNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(), {X, X, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(ContainerVT), Mask, VL}); NewY = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, XIsNonNan, Y, X, DAG.getUNDEF(ContainerVT), VL); } SDValue NewX = X; if (!YIsNeverNan) { SDValue YIsNonNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(), {Y, Y, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(ContainerVT), Mask, VL}); NewX = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, YIsNonNan, X, Y, DAG.getUNDEF(ContainerVT), VL); } unsigned Opc = Op.getOpcode() == ISD::FMAXIMUM || Op->getOpcode() == ISD::VP_FMAXIMUM ? RISCVISD::VFMAX_VL : RISCVISD::VFMIN_VL; SDValue Res = DAG.getNode(Opc, DL, ContainerVT, NewX, NewY, DAG.getUNDEF(ContainerVT), Mask, VL); if (VT.isFixedLengthVector()) Res = convertFromScalableVector(VT, Res, DAG, Subtarget); return Res; } /// Get a RISC-V target specified VL op for a given SDNode. static unsigned getRISCVVLOp(SDValue Op) { #define OP_CASE(NODE) \ case ISD::NODE: \ return RISCVISD::NODE##_VL; #define VP_CASE(NODE) \ case ISD::VP_##NODE: \ return RISCVISD::NODE##_VL; // clang-format off switch (Op.getOpcode()) { default: llvm_unreachable("don't have RISC-V specified VL op for this SDNode"); OP_CASE(ADD) OP_CASE(SUB) OP_CASE(MUL) OP_CASE(MULHS) OP_CASE(MULHU) OP_CASE(SDIV) OP_CASE(SREM) OP_CASE(UDIV) OP_CASE(UREM) OP_CASE(SHL) OP_CASE(SRA) OP_CASE(SRL) OP_CASE(ROTL) OP_CASE(ROTR) OP_CASE(BSWAP) OP_CASE(CTTZ) OP_CASE(CTLZ) OP_CASE(CTPOP) OP_CASE(BITREVERSE) OP_CASE(SADDSAT) OP_CASE(UADDSAT) OP_CASE(SSUBSAT) OP_CASE(USUBSAT) OP_CASE(AVGFLOORU) OP_CASE(AVGCEILU) OP_CASE(FADD) OP_CASE(FSUB) OP_CASE(FMUL) OP_CASE(FDIV) OP_CASE(FNEG) OP_CASE(FABS) OP_CASE(FSQRT) OP_CASE(SMIN) OP_CASE(SMAX) OP_CASE(UMIN) OP_CASE(UMAX) OP_CASE(STRICT_FADD) OP_CASE(STRICT_FSUB) OP_CASE(STRICT_FMUL) OP_CASE(STRICT_FDIV) OP_CASE(STRICT_FSQRT) VP_CASE(ADD) // VP_ADD VP_CASE(SUB) // VP_SUB VP_CASE(MUL) // VP_MUL VP_CASE(SDIV) // VP_SDIV VP_CASE(SREM) // VP_SREM VP_CASE(UDIV) // VP_UDIV VP_CASE(UREM) // VP_UREM VP_CASE(SHL) // VP_SHL VP_CASE(FADD) // VP_FADD VP_CASE(FSUB) // VP_FSUB VP_CASE(FMUL) // VP_FMUL VP_CASE(FDIV) // VP_FDIV VP_CASE(FNEG) // VP_FNEG VP_CASE(FABS) // VP_FABS VP_CASE(SMIN) // VP_SMIN VP_CASE(SMAX) // VP_SMAX VP_CASE(UMIN) // VP_UMIN VP_CASE(UMAX) // VP_UMAX VP_CASE(FCOPYSIGN) // VP_FCOPYSIGN VP_CASE(SETCC) // VP_SETCC VP_CASE(SINT_TO_FP) // VP_SINT_TO_FP VP_CASE(UINT_TO_FP) // VP_UINT_TO_FP VP_CASE(BITREVERSE) // VP_BITREVERSE VP_CASE(BSWAP) // VP_BSWAP VP_CASE(CTLZ) // VP_CTLZ VP_CASE(CTTZ) // VP_CTTZ VP_CASE(CTPOP) // VP_CTPOP case ISD::CTLZ_ZERO_UNDEF: case ISD::VP_CTLZ_ZERO_UNDEF: return RISCVISD::CTLZ_VL; case ISD::CTTZ_ZERO_UNDEF: case ISD::VP_CTTZ_ZERO_UNDEF: return RISCVISD::CTTZ_VL; case ISD::FMA: case ISD::VP_FMA: return RISCVISD::VFMADD_VL; case ISD::STRICT_FMA: return RISCVISD::STRICT_VFMADD_VL; case ISD::AND: case ISD::VP_AND: if (Op.getSimpleValueType().getVectorElementType() == MVT::i1) return RISCVISD::VMAND_VL; return RISCVISD::AND_VL; case ISD::OR: case ISD::VP_OR: if (Op.getSimpleValueType().getVectorElementType() == MVT::i1) return RISCVISD::VMOR_VL; return RISCVISD::OR_VL; case ISD::XOR: case ISD::VP_XOR: if (Op.getSimpleValueType().getVectorElementType() == MVT::i1) return RISCVISD::VMXOR_VL; return RISCVISD::XOR_VL; case ISD::VP_SELECT: case ISD::VP_MERGE: return RISCVISD::VMERGE_VL; case ISD::VP_ASHR: return RISCVISD::SRA_VL; case ISD::VP_LSHR: return RISCVISD::SRL_VL; case ISD::VP_SQRT: return RISCVISD::FSQRT_VL; case ISD::VP_SIGN_EXTEND: return RISCVISD::VSEXT_VL; case ISD::VP_ZERO_EXTEND: return RISCVISD::VZEXT_VL; case ISD::VP_FP_TO_SINT: return RISCVISD::VFCVT_RTZ_X_F_VL; case ISD::VP_FP_TO_UINT: return RISCVISD::VFCVT_RTZ_XU_F_VL; case ISD::FMINNUM: case ISD::VP_FMINNUM: return RISCVISD::VFMIN_VL; case ISD::FMAXNUM: case ISD::VP_FMAXNUM: return RISCVISD::VFMAX_VL; } // clang-format on #undef OP_CASE #undef VP_CASE } /// Return true if a RISC-V target specified op has a merge operand. static bool hasMergeOp(unsigned Opcode) { assert(Opcode > RISCVISD::FIRST_NUMBER && Opcode <= RISCVISD::LAST_RISCV_STRICTFP_OPCODE && "not a RISC-V target specific op"); static_assert(RISCVISD::LAST_VL_VECTOR_OP - RISCVISD::FIRST_VL_VECTOR_OP == 126 && RISCVISD::LAST_RISCV_STRICTFP_OPCODE - ISD::FIRST_TARGET_STRICTFP_OPCODE == 21 && "adding target specific op should update this function"); if (Opcode >= RISCVISD::ADD_VL && Opcode <= RISCVISD::VFMAX_VL) return true; if (Opcode == RISCVISD::FCOPYSIGN_VL) return true; if (Opcode >= RISCVISD::VWMUL_VL && Opcode <= RISCVISD::VFWSUB_W_VL) return true; if (Opcode == RISCVISD::SETCC_VL) return true; if (Opcode >= RISCVISD::STRICT_FADD_VL && Opcode <= RISCVISD::STRICT_FDIV_VL) return true; if (Opcode == RISCVISD::VMERGE_VL) return true; return false; } /// Return true if a RISC-V target specified op has a mask operand. static bool hasMaskOp(unsigned Opcode) { assert(Opcode > RISCVISD::FIRST_NUMBER && Opcode <= RISCVISD::LAST_RISCV_STRICTFP_OPCODE && "not a RISC-V target specific op"); static_assert(RISCVISD::LAST_VL_VECTOR_OP - RISCVISD::FIRST_VL_VECTOR_OP == 126 && RISCVISD::LAST_RISCV_STRICTFP_OPCODE - ISD::FIRST_TARGET_STRICTFP_OPCODE == 21 && "adding target specific op should update this function"); if (Opcode >= RISCVISD::TRUNCATE_VECTOR_VL && Opcode <= RISCVISD::SETCC_VL) return true; if (Opcode >= RISCVISD::VRGATHER_VX_VL && Opcode <= RISCVISD::VFIRST_VL) return true; if (Opcode >= RISCVISD::STRICT_FADD_VL && Opcode <= RISCVISD::STRICT_VFROUND_NOEXCEPT_VL) return true; return false; } static SDValue SplitVectorOp(SDValue Op, SelectionDAG &DAG) { auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op.getValueType()); SDLoc DL(Op); SmallVector LoOperands(Op.getNumOperands()); SmallVector HiOperands(Op.getNumOperands()); for (unsigned j = 0; j != Op.getNumOperands(); ++j) { if (!Op.getOperand(j).getValueType().isVector()) { LoOperands[j] = Op.getOperand(j); HiOperands[j] = Op.getOperand(j); continue; } std::tie(LoOperands[j], HiOperands[j]) = DAG.SplitVector(Op.getOperand(j), DL); } SDValue LoRes = DAG.getNode(Op.getOpcode(), DL, LoVT, LoOperands, Op->getFlags()); SDValue HiRes = DAG.getNode(Op.getOpcode(), DL, HiVT, HiOperands, Op->getFlags()); return DAG.getNode(ISD::CONCAT_VECTORS, DL, Op.getValueType(), LoRes, HiRes); } static SDValue SplitVPOp(SDValue Op, SelectionDAG &DAG) { assert(ISD::isVPOpcode(Op.getOpcode()) && "Not a VP op"); auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op.getValueType()); SDLoc DL(Op); SmallVector LoOperands(Op.getNumOperands()); SmallVector HiOperands(Op.getNumOperands()); for (unsigned j = 0; j != Op.getNumOperands(); ++j) { if (ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()) == j) { std::tie(LoOperands[j], HiOperands[j]) = DAG.SplitEVL(Op.getOperand(j), Op.getValueType(), DL); continue; } if (!Op.getOperand(j).getValueType().isVector()) { LoOperands[j] = Op.getOperand(j); HiOperands[j] = Op.getOperand(j); continue; } std::tie(LoOperands[j], HiOperands[j]) = DAG.SplitVector(Op.getOperand(j), DL); } SDValue LoRes = DAG.getNode(Op.getOpcode(), DL, LoVT, LoOperands, Op->getFlags()); SDValue HiRes = DAG.getNode(Op.getOpcode(), DL, HiVT, HiOperands, Op->getFlags()); return DAG.getNode(ISD::CONCAT_VECTORS, DL, Op.getValueType(), LoRes, HiRes); } static SDValue SplitVectorReductionOp(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); auto [Lo, Hi] = DAG.SplitVector(Op.getOperand(1), DL); auto [MaskLo, MaskHi] = DAG.SplitVector(Op.getOperand(2), DL); auto [EVLLo, EVLHi] = DAG.SplitEVL(Op.getOperand(3), Op.getOperand(1).getValueType(), DL); SDValue ResLo = DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), {Op.getOperand(0), Lo, MaskLo, EVLLo}, Op->getFlags()); return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), {ResLo, Hi, MaskHi, EVLHi}, Op->getFlags()); } static SDValue SplitStrictFPVectorOp(SDValue Op, SelectionDAG &DAG) { assert(Op->isStrictFPOpcode()); auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op->getValueType(0)); SDVTList LoVTs = DAG.getVTList(LoVT, Op->getValueType(1)); SDVTList HiVTs = DAG.getVTList(HiVT, Op->getValueType(1)); SDLoc DL(Op); SmallVector LoOperands(Op.getNumOperands()); SmallVector HiOperands(Op.getNumOperands()); for (unsigned j = 0; j != Op.getNumOperands(); ++j) { if (!Op.getOperand(j).getValueType().isVector()) { LoOperands[j] = Op.getOperand(j); HiOperands[j] = Op.getOperand(j); continue; } std::tie(LoOperands[j], HiOperands[j]) = DAG.SplitVector(Op.getOperand(j), DL); } SDValue LoRes = DAG.getNode(Op.getOpcode(), DL, LoVTs, LoOperands, Op->getFlags()); HiOperands[0] = LoRes.getValue(1); SDValue HiRes = DAG.getNode(Op.getOpcode(), DL, HiVTs, HiOperands, Op->getFlags()); SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, Op->getValueType(0), LoRes.getValue(0), HiRes.getValue(0)); return DAG.getMergeValues({V, HiRes.getValue(1)}, DL); } SDValue RISCVTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: report_fatal_error("unimplemented operand"); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG); case ISD::BlockAddress: return lowerBlockAddress(Op, DAG); case ISD::ConstantPool: return lowerConstantPool(Op, DAG); case ISD::JumpTable: return lowerJumpTable(Op, DAG); case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG); case ISD::Constant: return lowerConstant(Op, DAG, Subtarget); case ISD::SELECT: return lowerSELECT(Op, DAG); case ISD::BRCOND: return lowerBRCOND(Op, DAG); case ISD::VASTART: return lowerVASTART(Op, DAG); case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG); case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true); case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false); case ISD::ROTL: case ISD::ROTR: if (Op.getValueType().isFixedLengthVector()) { assert(Subtarget.hasStdExtZvkb()); return lowerToScalableOp(Op, DAG); } assert(Subtarget.hasVendorXTHeadBb() && !(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) && "Unexpected custom legalization"); // XTHeadBb only supports rotate by constant. if (!isa(Op.getOperand(1))) return SDValue(); return Op; case ISD::BITCAST: { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Op0 = Op.getOperand(0); EVT Op0VT = Op0.getValueType(); MVT XLenVT = Subtarget.getXLenVT(); if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfhminOrZhinxmin()) { SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); return FPConv; } if (VT == MVT::bf16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfbfmin()) { SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::bf16, NewOp0); return FPConv; } if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && Subtarget.hasStdExtFOrZfinx()) { SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); return FPConv; } if (VT == MVT::f64 && Op0VT == MVT::i64 && XLenVT == MVT::i32 && Subtarget.hasStdExtZfa()) { SDValue Lo, Hi; std::tie(Lo, Hi) = DAG.SplitScalar(Op0, DL, MVT::i32, MVT::i32); SDValue RetReg = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); return RetReg; } // Consider other scalar<->scalar casts as legal if the types are legal. // Otherwise expand them. if (!VT.isVector() && !Op0VT.isVector()) { if (isTypeLegal(VT) && isTypeLegal(Op0VT)) return Op; return SDValue(); } assert(!VT.isScalableVector() && !Op0VT.isScalableVector() && "Unexpected types"); if (VT.isFixedLengthVector()) { // We can handle fixed length vector bitcasts with a simple replacement // in isel. if (Op0VT.isFixedLengthVector()) return Op; // When bitcasting from scalar to fixed-length vector, insert the scalar // into a one-element vector of the result type, and perform a vector // bitcast. if (!Op0VT.isVector()) { EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); if (!isTypeLegal(BVT)) return SDValue(); return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, DAG.getUNDEF(BVT), Op0, DAG.getConstant(0, DL, XLenVT))); } return SDValue(); } // Custom-legalize bitcasts from fixed-length vector types to scalar types // thus: bitcast the vector to a one-element vector type whose element type // is the same as the result type, and extract the first element. if (!VT.isVector() && Op0VT.isFixedLengthVector()) { EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); if (!isTypeLegal(BVT)) return SDValue(); SDValue BVec = DAG.getBitcast(BVT, Op0); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, DAG.getConstant(0, DL, XLenVT)); } return SDValue(); } case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); case ISD::IS_FPCLASS: return LowerIS_FPCLASS(Op, DAG); case ISD::BITREVERSE: { MVT VT = Op.getSimpleValueType(); if (VT.isFixedLengthVector()) { assert(Subtarget.hasStdExtZvbb()); return lowerToScalableOp(Op, DAG); } SDLoc DL(Op); assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); // Expand bitreverse to a bswap(rev8) followed by brev8. SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); return DAG.getNode(RISCVISD::BREV8, DL, VT, BSwap); } case ISD::TRUNCATE: // Only custom-lower vector truncates if (!Op.getSimpleValueType().isVector()) return Op; return lowerVectorTruncLike(Op, DAG); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: if (Op.getOperand(0).getValueType().isVector() && Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); case ISD::SIGN_EXTEND: if (Op.getOperand(0).getValueType().isVector() && Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); case ISD::SPLAT_VECTOR_PARTS: return lowerSPLAT_VECTOR_PARTS(Op, DAG); case ISD::INSERT_VECTOR_ELT: return lowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::SCALAR_TO_VECTOR: { MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); SDValue Scalar = Op.getOperand(0); if (VT.getVectorElementType() == MVT::i1) { MVT WideVT = VT.changeVectorElementType(MVT::i8); SDValue V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, WideVT, Scalar); return DAG.getNode(ISD::TRUNCATE, DL, VT, V); } MVT ContainerVT = VT; if (VT.isFixedLengthVector()) ContainerVT = getContainerForFixedLengthVector(VT); SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Scalar); SDValue V = DAG.getNode(RISCVISD::VMV_S_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Scalar, VL); if (VT.isFixedLengthVector()) V = convertFromScalableVector(VT, V, DAG, Subtarget); return V; } case ISD::VSCALE: { MVT XLenVT = Subtarget.getXLenVT(); MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); SDValue Res = DAG.getNode(RISCVISD::READ_VLENB, DL, XLenVT); // We define our scalable vector types for lmul=1 to use a 64 bit known // minimum size. e.g. . VLENB is in bytes so we calculate // vscale as VLENB / 8. static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock) report_fatal_error("Support for VLEN==32 is incomplete."); // We assume VLENB is a multiple of 8. We manually choose the best shift // here because SimplifyDemandedBits isn't always able to simplify it. uint64_t Val = Op.getConstantOperandVal(0); if (isPowerOf2_64(Val)) { uint64_t Log2 = Log2_64(Val); if (Log2 < 3) Res = DAG.getNode(ISD::SRL, DL, XLenVT, Res, DAG.getConstant(3 - Log2, DL, VT)); else if (Log2 > 3) Res = DAG.getNode(ISD::SHL, DL, XLenVT, Res, DAG.getConstant(Log2 - 3, DL, XLenVT)); } else if ((Val % 8) == 0) { // If the multiplier is a multiple of 8, scale it down to avoid needing // to shift the VLENB value. Res = DAG.getNode(ISD::MUL, DL, XLenVT, Res, DAG.getConstant(Val / 8, DL, XLenVT)); } else { SDValue VScale = DAG.getNode(ISD::SRL, DL, XLenVT, Res, DAG.getConstant(3, DL, XLenVT)); Res = DAG.getNode(ISD::MUL, DL, XLenVT, VScale, DAG.getConstant(Val, DL, XLenVT)); } return DAG.getNode(ISD::TRUNCATE, DL, VT, Res); } case ISD::FPOWI: { // Custom promote f16 powi with illegal i32 integer type on RV64. Once // promoted this will be legalized into a libcall by LegalizeIntegerTypes. if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && Op.getOperand(1).getValueType() == MVT::i32) { SDLoc DL(Op); SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); SDValue Powi = DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); } return SDValue(); } case ISD::FMAXIMUM: case ISD::FMINIMUM: if (Op.getValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitVectorOp(Op, DAG); return lowerFMAXIMUM_FMINIMUM(Op, DAG, Subtarget); case ISD::FP_EXTEND: { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Op0 = Op.getOperand(0); EVT Op0VT = Op0.getValueType(); if (VT == MVT::f32 && Op0VT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()) return DAG.getNode(RISCVISD::FP_EXTEND_BF16, DL, MVT::f32, Op0); if (VT == MVT::f64 && Op0VT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()) { SDValue FloatVal = DAG.getNode(RISCVISD::FP_EXTEND_BF16, DL, MVT::f32, Op0); return DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, FloatVal); } if (!Op.getValueType().isVector()) return Op; return lowerVectorFPExtendOrRoundLike(Op, DAG); } case ISD::FP_ROUND: { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Op0 = Op.getOperand(0); EVT Op0VT = Op0.getValueType(); if (VT == MVT::bf16 && Op0VT == MVT::f32 && Subtarget.hasStdExtZfbfmin()) return DAG.getNode(RISCVISD::FP_ROUND_BF16, DL, MVT::bf16, Op0); if (VT == MVT::bf16 && Op0VT == MVT::f64 && Subtarget.hasStdExtZfbfmin() && Subtarget.hasStdExtDOrZdinx()) { SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, DL, MVT::f32, Op0, DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); return DAG.getNode(RISCVISD::FP_ROUND_BF16, DL, MVT::bf16, FloatVal); } if (!Op.getValueType().isVector()) return Op; return lowerVectorFPExtendOrRoundLike(Op, DAG); } case ISD::STRICT_FP_ROUND: case ISD::STRICT_FP_EXTEND: return lowerStrictFPExtendOrRoundLike(Op, DAG); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: if (Op.getValueType().isVector() && Op.getValueType().getScalarType() == MVT::f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) { if (Op.getValueType() == MVT::nxv32f16) return SplitVectorOp(Op, DAG); // int -> f32 SDLoc DL(Op); MVT NVT = MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount()); SDValue NC = DAG.getNode(Op.getOpcode(), DL, NVT, Op->ops()); // f32 -> f16 return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NC, DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); } [[fallthrough]]; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: if (SDValue Op1 = Op.getOperand(0); Op1.getValueType().isVector() && Op1.getValueType().getScalarType() == MVT::f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) { if (Op1.getValueType() == MVT::nxv32f16) return SplitVectorOp(Op, DAG); // f16 -> f32 SDLoc DL(Op); MVT NVT = MVT::getVectorVT(MVT::f32, Op1.getValueType().getVectorElementCount()); SDValue WidenVec = DAG.getNode(ISD::FP_EXTEND, DL, NVT, Op1); // f32 -> int return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), WidenVec); } [[fallthrough]]; case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: { // RVV can only do fp<->int conversions to types half/double the size as // the source. We custom-lower any conversions that do two hops into // sequences. MVT VT = Op.getSimpleValueType(); if (!VT.isVector()) return Op; SDLoc DL(Op); bool IsStrict = Op->isStrictFPOpcode(); SDValue Src = Op.getOperand(0 + IsStrict); MVT EltVT = VT.getVectorElementType(); MVT SrcVT = Src.getSimpleValueType(); MVT SrcEltVT = SrcVT.getVectorElementType(); unsigned EltSize = EltVT.getSizeInBits(); unsigned SrcEltSize = SrcEltVT.getSizeInBits(); assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && "Unexpected vector element types"); bool IsInt2FP = SrcEltVT.isInteger(); // Widening conversions if (EltSize > (2 * SrcEltSize)) { if (IsInt2FP) { // Do a regular integer sign/zero extension then convert to float. MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize / 2), VT.getVectorElementCount()); unsigned ExtOpcode = (Op.getOpcode() == ISD::UINT_TO_FP || Op.getOpcode() == ISD::STRICT_UINT_TO_FP) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); if (IsStrict) return DAG.getNode(Op.getOpcode(), DL, Op->getVTList(), Op.getOperand(0), Ext); return DAG.getNode(Op.getOpcode(), DL, VT, Ext); } // FP2Int assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); // Do one doubling fp_extend then complete the operation by converting // to int. MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); if (IsStrict) { auto [FExt, Chain] = DAG.getStrictFPExtendOrRound(Src, Op.getOperand(0), DL, InterimFVT); return DAG.getNode(Op.getOpcode(), DL, Op->getVTList(), Chain, FExt); } SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); return DAG.getNode(Op.getOpcode(), DL, VT, FExt); } // Narrowing conversions if (SrcEltSize > (2 * EltSize)) { if (IsInt2FP) { // One narrowing int_to_fp, then an fp_round. assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); if (IsStrict) { SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, DAG.getVTList(InterimFVT, MVT::Other), Op.getOperand(0), Src); SDValue Chain = Int2FP.getValue(1); return DAG.getStrictFPExtendOrRound(Int2FP, Chain, DL, VT).first; } SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); return DAG.getFPExtendOrRound(Int2FP, DL, VT); } // FP2Int // One narrowing fp_to_int, then truncate the integer. If the float isn't // representable by the integer, the result is poison. MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), VT.getVectorElementCount()); if (IsStrict) { SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, DAG.getVTList(IVecVT, MVT::Other), Op.getOperand(0), Src); SDValue Res = DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); return DAG.getMergeValues({Res, FP2Int.getValue(1)}, DL); } SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); } // Scalable vectors can exit here. Patterns will handle equally-sized // conversions halving/doubling ones. if (!VT.isFixedLengthVector()) return Op; // For fixed-length vectors we lower to a custom "VL" node. unsigned RVVOpc = 0; switch (Op.getOpcode()) { default: llvm_unreachable("Impossible opcode"); case ISD::FP_TO_SINT: RVVOpc = RISCVISD::VFCVT_RTZ_X_F_VL; break; case ISD::FP_TO_UINT: RVVOpc = RISCVISD::VFCVT_RTZ_XU_F_VL; break; case ISD::SINT_TO_FP: RVVOpc = RISCVISD::SINT_TO_FP_VL; break; case ISD::UINT_TO_FP: RVVOpc = RISCVISD::UINT_TO_FP_VL; break; case ISD::STRICT_FP_TO_SINT: RVVOpc = RISCVISD::STRICT_VFCVT_RTZ_X_F_VL; break; case ISD::STRICT_FP_TO_UINT: RVVOpc = RISCVISD::STRICT_VFCVT_RTZ_XU_F_VL; break; case ISD::STRICT_SINT_TO_FP: RVVOpc = RISCVISD::STRICT_SINT_TO_FP_VL; break; case ISD::STRICT_UINT_TO_FP: RVVOpc = RISCVISD::STRICT_UINT_TO_FP_VL; break; } MVT ContainerVT = getContainerForFixedLengthVector(VT); MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); assert(ContainerVT.getVectorElementCount() == SrcContainerVT.getVectorElementCount() && "Expected same element count"); auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); if (IsStrict) { Src = DAG.getNode(RVVOpc, DL, DAG.getVTList(ContainerVT, MVT::Other), Op.getOperand(0), Src, Mask, VL); SDValue SubVec = convertFromScalableVector(VT, Src, DAG, Subtarget); return DAG.getMergeValues({SubVec, Src.getValue(1)}, DL); } Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); return convertFromScalableVector(VT, Src, DAG, Subtarget); } case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); case ISD::FP_TO_BF16: { // Custom lower to ensure the libcall return is passed in an FPR on hard // float ABIs. assert(!Subtarget.isSoftFPABI() && "Unexpected custom legalization"); SDLoc DL(Op); MakeLibCallOptions CallOptions; RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), MVT::bf16); SDValue Res = makeLibCall(DAG, LC, MVT::f32, Op.getOperand(0), CallOptions, DL).first; if (Subtarget.is64Bit() && !RV64LegalI32) return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Res); return DAG.getBitcast(MVT::i32, Res); } case ISD::BF16_TO_FP: { assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalization"); MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); Op = DAG.getNode( ISD::SHL, DL, Op.getOperand(0).getValueType(), Op.getOperand(0), DAG.getShiftAmountConstant(16, Op.getOperand(0).getValueType(), DL)); SDValue Res = Subtarget.is64Bit() ? DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Op) : DAG.getBitcast(MVT::f32, Op); // fp_extend if the target VT is bigger than f32. if (VT != MVT::f32) return DAG.getNode(ISD::FP_EXTEND, DL, VT, Res); return Res; } case ISD::FP_TO_FP16: { // Custom lower to ensure the libcall return is passed in an FPR on hard // float ABIs. assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalisation"); SDLoc DL(Op); MakeLibCallOptions CallOptions; RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), MVT::f16); SDValue Res = makeLibCall(DAG, LC, MVT::f32, Op.getOperand(0), CallOptions, DL).first; if (Subtarget.is64Bit() && !RV64LegalI32) return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Res); return DAG.getBitcast(MVT::i32, Res); } case ISD::FP16_TO_FP: { // Custom lower to ensure the libcall argument is passed in an FPR on hard // float ABIs. assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalisation"); SDLoc DL(Op); MakeLibCallOptions CallOptions; SDValue Arg = Subtarget.is64Bit() ? DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Op.getOperand(0)) : DAG.getBitcast(MVT::f32, Op.getOperand(0)); SDValue Res = makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Arg, CallOptions, DL) .first; return Res; } case ISD::FTRUNC: case ISD::FCEIL: case ISD::FFLOOR: case ISD::FNEARBYINT: case ISD::FRINT: case ISD::FROUND: case ISD::FROUNDEVEN: return lowerFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); case ISD::LRINT: case ISD::LLRINT: return lowerVectorXRINT(Op, DAG, Subtarget); case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_UMIN: case ISD::VECREDUCE_SMIN: return lowerVECREDUCE(Op, DAG); case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); return lowerVECREDUCE(Op, DAG); case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_SEQ_FADD: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAX: return lowerFPVECREDUCE(Op, DAG); case ISD::VP_REDUCE_ADD: case ISD::VP_REDUCE_UMAX: case ISD::VP_REDUCE_SMAX: case ISD::VP_REDUCE_UMIN: case ISD::VP_REDUCE_SMIN: case ISD::VP_REDUCE_FADD: case ISD::VP_REDUCE_SEQ_FADD: case ISD::VP_REDUCE_FMIN: case ISD::VP_REDUCE_FMAX: if (Op.getOperand(1).getValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitVectorReductionOp(Op, DAG); return lowerVPREDUCE(Op, DAG); case ISD::VP_REDUCE_AND: case ISD::VP_REDUCE_OR: case ISD::VP_REDUCE_XOR: if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); return lowerVPREDUCE(Op, DAG); case ISD::UNDEF: { MVT ContainerVT = getContainerForFixedLengthVector(Op.getSimpleValueType()); return convertFromScalableVector(Op.getSimpleValueType(), DAG.getUNDEF(ContainerVT), DAG, Subtarget); } case ISD::INSERT_SUBVECTOR: return lowerINSERT_SUBVECTOR(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return lowerEXTRACT_SUBVECTOR(Op, DAG); case ISD::VECTOR_DEINTERLEAVE: return lowerVECTOR_DEINTERLEAVE(Op, DAG); case ISD::VECTOR_INTERLEAVE: return lowerVECTOR_INTERLEAVE(Op, DAG); case ISD::STEP_VECTOR: return lowerSTEP_VECTOR(Op, DAG); case ISD::VECTOR_REVERSE: return lowerVECTOR_REVERSE(Op, DAG); case ISD::VECTOR_SPLICE: return lowerVECTOR_SPLICE(Op, DAG); case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG, Subtarget); case ISD::SPLAT_VECTOR: if (Op.getValueType().getScalarType() == MVT::f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) { if (Op.getValueType() == MVT::nxv32f16) return SplitVectorOp(Op, DAG); SDLoc DL(Op); SDValue NewScalar = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); SDValue NewSplat = DAG.getNode( ISD::SPLAT_VECTOR, DL, MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount()), NewScalar); return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NewSplat, DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); } if (Op.getValueType().getVectorElementType() == MVT::i1) return lowerVectorMaskSplat(Op, DAG); return SDValue(); case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); case ISD::CONCAT_VECTORS: { // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is // better than going through the stack, as the default expansion does. SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); unsigned NumOpElts = Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); SDValue Vec = DAG.getUNDEF(VT); for (const auto &OpIdx : enumerate(Op->ops())) { SDValue SubVec = OpIdx.value(); // Don't insert undef subvectors. if (SubVec.isUndef()) continue; Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); } return Vec; } case ISD::LOAD: if (auto V = expandUnalignedRVVLoad(Op, DAG)) return V; if (Op.getValueType().isFixedLengthVector()) return lowerFixedLengthVectorLoadToRVV(Op, DAG); return Op; case ISD::STORE: if (auto V = expandUnalignedRVVStore(Op, DAG)) return V; if (Op.getOperand(1).getValueType().isFixedLengthVector()) return lowerFixedLengthVectorStoreToRVV(Op, DAG); return Op; case ISD::MLOAD: case ISD::VP_LOAD: return lowerMaskedLoad(Op, DAG); case ISD::MSTORE: case ISD::VP_STORE: return lowerMaskedStore(Op, DAG); case ISD::SELECT_CC: { // This occurs because we custom legalize SETGT and SETUGT for setcc. That // causes LegalizeDAG to think we need to custom legalize select_cc. Expand // into separate SETCC+SELECT just like LegalizeDAG. SDValue Tmp1 = Op.getOperand(0); SDValue Tmp2 = Op.getOperand(1); SDValue True = Op.getOperand(2); SDValue False = Op.getOperand(3); EVT VT = Op.getValueType(); SDValue CC = Op.getOperand(4); EVT CmpVT = Tmp1.getValueType(); EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); SDLoc DL(Op); SDValue Cond = DAG.getNode(ISD::SETCC, DL, CCVT, Tmp1, Tmp2, CC, Op->getFlags()); return DAG.getSelect(DL, VT, Cond, True, False); } case ISD::SETCC: { MVT OpVT = Op.getOperand(0).getSimpleValueType(); if (OpVT.isScalarInteger()) { MVT VT = Op.getSimpleValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CCVal = cast(Op.getOperand(2))->get(); assert((CCVal == ISD::SETGT || CCVal == ISD::SETUGT) && "Unexpected CondCode"); SDLoc DL(Op); // If the RHS is a constant in the range [-2049, 0) or (0, 2046], we can // convert this to the equivalent of (set(u)ge X, C+1) by using // (xori (slti(u) X, C+1), 1). This avoids materializing a small constant // in a register. if (isa(RHS)) { int64_t Imm = cast(RHS)->getSExtValue(); if (Imm != 0 && isInt<12>((uint64_t)Imm + 1)) { // If this is an unsigned compare and the constant is -1, incrementing // the constant would change behavior. The result should be false. if (CCVal == ISD::SETUGT && Imm == -1) return DAG.getConstant(0, DL, VT); // Using getSetCCSwappedOperands will convert SET(U)GT->SET(U)LT. CCVal = ISD::getSetCCSwappedOperands(CCVal); SDValue SetCC = DAG.getSetCC( DL, VT, LHS, DAG.getConstant(Imm + 1, DL, OpVT), CCVal); return DAG.getLogicalNOT(DL, SetCC, VT); } } // Not a constant we could handle, swap the operands and condition code to // SETLT/SETULT. CCVal = ISD::getSetCCSwappedOperands(CCVal); return DAG.getSetCC(DL, VT, RHS, LHS, CCVal); } if (Op.getOperand(0).getSimpleValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitVectorOp(Op, DAG); return lowerFixedLengthVectorSetccToRVV(Op, DAG); } case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::MULHS: case ISD::MULHU: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SDIV: case ISD::SREM: case ISD::UDIV: case ISD::UREM: case ISD::BSWAP: case ISD::CTPOP: return lowerToScalableOp(Op, DAG); case ISD::SHL: case ISD::SRA: case ISD::SRL: if (Op.getSimpleValueType().isFixedLengthVector()) return lowerToScalableOp(Op, DAG); // This can be called for an i32 shift amount that needs to be promoted. assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); return SDValue(); case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FNEG: case ISD::FABS: case ISD::FSQRT: case ISD::FMA: case ISD::FMINNUM: case ISD::FMAXNUM: if (Op.getValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitVectorOp(Op, DAG); [[fallthrough]]; case ISD::AVGFLOORU: case ISD::AVGCEILU: case ISD::SADDSAT: case ISD::UADDSAT: case ISD::SSUBSAT: case ISD::USUBSAT: case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: return lowerToScalableOp(Op, DAG); case ISD::ABS: case ISD::VP_ABS: return lowerABS(Op, DAG); case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: if (Subtarget.hasStdExtZvbb()) return lowerToScalableOp(Op, DAG); assert(Op.getOpcode() != ISD::CTTZ); return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); case ISD::VSELECT: return lowerFixedLengthVectorSelectToRVV(Op, DAG); case ISD::FCOPYSIGN: if (Op.getValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitVectorOp(Op, DAG); return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); case ISD::STRICT_FADD: case ISD::STRICT_FSUB: case ISD::STRICT_FMUL: case ISD::STRICT_FDIV: case ISD::STRICT_FSQRT: case ISD::STRICT_FMA: if (Op.getValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitStrictFPVectorOp(Op, DAG); return lowerToScalableOp(Op, DAG); case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: return lowerVectorStrictFSetcc(Op, DAG); case ISD::STRICT_FCEIL: case ISD::STRICT_FRINT: case ISD::STRICT_FFLOOR: case ISD::STRICT_FTRUNC: case ISD::STRICT_FNEARBYINT: case ISD::STRICT_FROUND: case ISD::STRICT_FROUNDEVEN: return lowerVectorStrictFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); case ISD::MGATHER: case ISD::VP_GATHER: return lowerMaskedGather(Op, DAG); case ISD::MSCATTER: case ISD::VP_SCATTER: return lowerMaskedScatter(Op, DAG); case ISD::GET_ROUNDING: return lowerGET_ROUNDING(Op, DAG); case ISD::SET_ROUNDING: return lowerSET_ROUNDING(Op, DAG); case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG); case ISD::VP_SELECT: case ISD::VP_MERGE: case ISD::VP_ADD: case ISD::VP_SUB: case ISD::VP_MUL: case ISD::VP_SDIV: case ISD::VP_UDIV: case ISD::VP_SREM: case ISD::VP_UREM: return lowerVPOp(Op, DAG); case ISD::VP_AND: case ISD::VP_OR: case ISD::VP_XOR: return lowerLogicVPOp(Op, DAG); case ISD::VP_FADD: case ISD::VP_FSUB: case ISD::VP_FMUL: case ISD::VP_FDIV: case ISD::VP_FNEG: case ISD::VP_FABS: case ISD::VP_SQRT: case ISD::VP_FMA: case ISD::VP_FMINNUM: case ISD::VP_FMAXNUM: case ISD::VP_FCOPYSIGN: if (Op.getValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitVPOp(Op, DAG); [[fallthrough]]; case ISD::VP_ASHR: case ISD::VP_LSHR: case ISD::VP_SHL: return lowerVPOp(Op, DAG); case ISD::VP_IS_FPCLASS: return LowerIS_FPCLASS(Op, DAG); case ISD::VP_SIGN_EXTEND: case ISD::VP_ZERO_EXTEND: if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) return lowerVPExtMaskOp(Op, DAG); return lowerVPOp(Op, DAG); case ISD::VP_TRUNCATE: return lowerVectorTruncLike(Op, DAG); case ISD::VP_FP_EXTEND: case ISD::VP_FP_ROUND: return lowerVectorFPExtendOrRoundLike(Op, DAG); case ISD::VP_SINT_TO_FP: case ISD::VP_UINT_TO_FP: if (Op.getValueType().isVector() && Op.getValueType().getScalarType() == MVT::f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) { if (Op.getValueType() == MVT::nxv32f16) return SplitVPOp(Op, DAG); // int -> f32 SDLoc DL(Op); MVT NVT = MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount()); auto NC = DAG.getNode(Op.getOpcode(), DL, NVT, Op->ops()); // f32 -> f16 return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NC, DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); } [[fallthrough]]; case ISD::VP_FP_TO_SINT: case ISD::VP_FP_TO_UINT: if (SDValue Op1 = Op.getOperand(0); Op1.getValueType().isVector() && Op1.getValueType().getScalarType() == MVT::f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) { if (Op1.getValueType() == MVT::nxv32f16) return SplitVPOp(Op, DAG); // f16 -> f32 SDLoc DL(Op); MVT NVT = MVT::getVectorVT(MVT::f32, Op1.getValueType().getVectorElementCount()); SDValue WidenVec = DAG.getNode(ISD::FP_EXTEND, DL, NVT, Op1); // f32 -> int return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), {WidenVec, Op.getOperand(1), Op.getOperand(2)}); } return lowerVPFPIntConvOp(Op, DAG); case ISD::VP_SETCC: if (Op.getOperand(0).getSimpleValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitVPOp(Op, DAG); if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) return lowerVPSetCCMaskOp(Op, DAG); [[fallthrough]]; case ISD::VP_SMIN: case ISD::VP_SMAX: case ISD::VP_UMIN: case ISD::VP_UMAX: case ISD::VP_BITREVERSE: case ISD::VP_BSWAP: return lowerVPOp(Op, DAG); case ISD::VP_CTLZ: case ISD::VP_CTLZ_ZERO_UNDEF: if (Subtarget.hasStdExtZvbb()) return lowerVPOp(Op, DAG); return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); case ISD::VP_CTTZ: case ISD::VP_CTTZ_ZERO_UNDEF: if (Subtarget.hasStdExtZvbb()) return lowerVPOp(Op, DAG); return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); case ISD::VP_CTPOP: return lowerVPOp(Op, DAG); case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: return lowerVPStridedLoad(Op, DAG); case ISD::EXPERIMENTAL_VP_STRIDED_STORE: return lowerVPStridedStore(Op, DAG); case ISD::VP_FCEIL: case ISD::VP_FFLOOR: case ISD::VP_FRINT: case ISD::VP_FNEARBYINT: case ISD::VP_FROUND: case ISD::VP_FROUNDEVEN: case ISD::VP_FROUNDTOZERO: if (Op.getValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitVPOp(Op, DAG); return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); case ISD::VP_FMAXIMUM: case ISD::VP_FMINIMUM: if (Op.getValueType() == MVT::nxv32f16 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) return SplitVPOp(Op, DAG); return lowerFMAXIMUM_FMINIMUM(Op, DAG, Subtarget); case ISD::EXPERIMENTAL_VP_SPLICE: return lowerVPSpliceExperimental(Op, DAG); case ISD::EXPERIMENTAL_VP_REVERSE: return lowerVPReverseExperimental(Op, DAG); } } static SDValue getTargetNode(GlobalAddressSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags) { return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); } static SDValue getTargetNode(BlockAddressSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags) { return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), Flags); } static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags) { return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), N->getOffset(), Flags); } static SDValue getTargetNode(JumpTableSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags) { return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); } template SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, bool IsLocal, bool IsExternWeak) const { SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); // When HWASAN is used and tagging of global variables is enabled // they should be accessed via the GOT, since the tagged address of a global // is incompatible with existing code models. This also applies to non-pic // mode. if (isPositionIndependent() || Subtarget.allowTaggedGlobals()) { SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); if (IsLocal && !Subtarget.allowTaggedGlobals()) // Use PC-relative addressing to access the symbol. This generates the // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) // %pcrel_lo(auipc)). return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); // Use PC-relative addressing to access the GOT for this symbol, then load // the address from the GOT. This generates the pattern (PseudoLGA sym), // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). SDValue Load = SDValue(DAG.getMachineNode(RISCV::PseudoLGA, DL, Ty, Addr), 0); MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *MemOp = MF.getMachineMemOperand( MachinePointerInfo::getGOT(MF), MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); DAG.setNodeMemRefs(cast(Load.getNode()), {MemOp}); return Load; } switch (getTargetMachine().getCodeModel()) { default: report_fatal_error("Unsupported code model for lowering"); case CodeModel::Small: { // Generate a sequence for accessing addresses within the first 2 GiB of // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo); } case CodeModel::Medium: { SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); if (IsExternWeak) { // An extern weak symbol may be undefined, i.e. have value 0, which may // not be within 2GiB of PC, so use GOT-indirect addressing to access the // symbol. This generates the pattern (PseudoLGA sym), which expands to // (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). SDValue Load = SDValue(DAG.getMachineNode(RISCV::PseudoLGA, DL, Ty, Addr), 0); MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *MemOp = MF.getMachineMemOperand( MachinePointerInfo::getGOT(MF), MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); DAG.setNodeMemRefs(cast(Load.getNode()), {MemOp}); return Load; } // Generate a sequence for accessing addresses within any 2GiB range within // the address space. This generates the pattern (PseudoLLA sym), which // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); } } } SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *N = cast(Op); assert(N->getOffset() == 0 && "unexpected offset in global node"); const GlobalValue *GV = N->getGlobal(); return getAddr(N, DAG, GV->isDSOLocal(), GV->hasExternalWeakLinkage()); } SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { BlockAddressSDNode *N = cast(Op); return getAddr(N, DAG); } SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, SelectionDAG &DAG) const { ConstantPoolSDNode *N = cast(Op); return getAddr(N, DAG); } SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { JumpTableSDNode *N = cast(Op); return getAddr(N, DAG); } SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, SelectionDAG &DAG, bool UseGOT) const { SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); const GlobalValue *GV = N->getGlobal(); MVT XLenVT = Subtarget.getXLenVT(); if (UseGOT) { // Use PC-relative addressing to access the GOT for this TLS symbol, then // load the address from the GOT and add the thread pointer. This generates // the pattern (PseudoLA_TLS_IE sym), which expands to // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); SDValue Load = SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *MemOp = MF.getMachineMemOperand( MachinePointerInfo::getGOT(MF), MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); DAG.setNodeMemRefs(cast(Load.getNode()), {MemOp}); // Add the thread pointer. SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); } // Generate a sequence for accessing the address relative to the thread // pointer, with the appropriate adjustment for the thread pointer offset. // This generates the pattern // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) SDValue AddrHi = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); SDValue AddrAdd = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); SDValue AddrLo = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); SDValue MNAdd = DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd); return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo); } SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, SelectionDAG &DAG) const { SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); const GlobalValue *GV = N->getGlobal(); // Use a PC-relative addressing mode to access the global dynamic GOT address. // This generates the pattern (PseudoLA_TLS_GD sym), which expands to // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); SDValue Load = SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); // Prepare argument list to generate call. ArgListTy Args; ArgListEntry Entry; Entry.Node = Load; Entry.Ty = CallTy; Args.push_back(Entry); // Setup call to __tls_get_addr. TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(DL) .setChain(DAG.getEntryNode()) .setLibCallee(CallingConv::C, CallTy, DAG.getExternalSymbol("__tls_get_addr", Ty), std::move(Args)); return LowerCallTo(CLI).first; } SDValue RISCVTargetLowering::getTLSDescAddr(GlobalAddressSDNode *N, SelectionDAG &DAG) const { SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); const GlobalValue *GV = N->getGlobal(); // Use a PC-relative addressing mode to access the global dynamic GOT address. // This generates the pattern (PseudoLA_TLSDESC sym), which expands to // // auipc tX, %tlsdesc_hi(symbol) // R_RISCV_TLSDESC_HI20(symbol) // lw tY, tX, %tlsdesc_lo_load(label) // R_RISCV_TLSDESC_LOAD_LO12_I(label) // addi a0, tX, %tlsdesc_lo_add(label) // R_RISCV_TLSDESC_ADD_LO12_I(label) // jalr t0, tY // R_RISCV_TLSDESC_CALL(label) SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); return SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLSDESC, DL, Ty, Addr), 0); } SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *N = cast(Op); assert(N->getOffset() == 0 && "unexpected offset in global node"); if (DAG.getTarget().useEmulatedTLS()) return LowerToTLSEmulatedModel(N, DAG); TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); if (DAG.getMachineFunction().getFunction().getCallingConv() == CallingConv::GHC) report_fatal_error("In GHC calling convention TLS is not supported"); SDValue Addr; switch (Model) { case TLSModel::LocalExec: Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); break; case TLSModel::InitialExec: Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); break; case TLSModel::LocalDynamic: case TLSModel::GeneralDynamic: Addr = DAG.getTarget().useTLSDESC() ? getTLSDescAddr(N, DAG) : getDynamicTLSAddr(N, DAG); break; } return Addr; } // Return true if Val is equal to (setcc LHS, RHS, CC). // Return false if Val is the inverse of (setcc LHS, RHS, CC). // Otherwise, return std::nullopt. static std::optional matchSetCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue Val) { assert(Val->getOpcode() == ISD::SETCC); SDValue LHS2 = Val.getOperand(0); SDValue RHS2 = Val.getOperand(1); ISD::CondCode CC2 = cast(Val.getOperand(2))->get(); if (LHS == LHS2 && RHS == RHS2) { if (CC == CC2) return true; if (CC == ISD::getSetCCInverse(CC2, LHS2.getValueType())) return false; } else if (LHS == RHS2 && RHS == LHS2) { CC2 = ISD::getSetCCSwappedOperands(CC2); if (CC == CC2) return true; if (CC == ISD::getSetCCInverse(CC2, LHS2.getValueType())) return false; } return std::nullopt; } static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDValue CondV = N->getOperand(0); SDValue TrueV = N->getOperand(1); SDValue FalseV = N->getOperand(2); MVT VT = N->getSimpleValueType(0); SDLoc DL(N); if (!Subtarget.hasConditionalMoveFusion()) { // (select c, -1, y) -> -c | y if (isAllOnesConstant(TrueV)) { SDValue Neg = DAG.getNegative(CondV, DL, VT); return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV); } // (select c, y, -1) -> (c-1) | y if (isAllOnesConstant(FalseV)) { SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV, DAG.getAllOnesConstant(DL, VT)); return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV); } // (select c, 0, y) -> (c-1) & y if (isNullConstant(TrueV)) { SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV, DAG.getAllOnesConstant(DL, VT)); return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV); } // (select c, y, 0) -> -c & y if (isNullConstant(FalseV)) { SDValue Neg = DAG.getNegative(CondV, DL, VT); return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV); } } // Try to fold (select (setcc lhs, rhs, cc), truev, falsev) into bitwise ops // when both truev and falsev are also setcc. if (CondV.getOpcode() == ISD::SETCC && TrueV.getOpcode() == ISD::SETCC && FalseV.getOpcode() == ISD::SETCC) { SDValue LHS = CondV.getOperand(0); SDValue RHS = CondV.getOperand(1); ISD::CondCode CC = cast(CondV.getOperand(2))->get(); // (select x, x, y) -> x | y // (select !x, x, y) -> x & y if (std::optional MatchResult = matchSetCC(LHS, RHS, CC, TrueV)) { return DAG.getNode(*MatchResult ? ISD::OR : ISD::AND, DL, VT, TrueV, FalseV); } // (select x, y, x) -> x & y // (select !x, y, x) -> x | y if (std::optional MatchResult = matchSetCC(LHS, RHS, CC, FalseV)) { return DAG.getNode(*MatchResult ? ISD::AND : ISD::OR, DL, VT, TrueV, FalseV); } } return SDValue(); } // Transform `binOp (select cond, x, c0), c1` where `c0` and `c1` are constants // into `select cond, binOp(x, c1), binOp(c0, c1)` if profitable. // For now we only consider transformation profitable if `binOp(c0, c1)` ends up // being `0` or `-1`. In such cases we can replace `select` with `and`. // TODO: Should we also do this if `binOp(c0, c1)` is cheaper to materialize // than `c0`? static SDValue foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (Subtarget.hasShortForwardBranchOpt()) return SDValue(); unsigned SelOpNo = 0; SDValue Sel = BO->getOperand(0); if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { SelOpNo = 1; Sel = BO->getOperand(1); } if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) return SDValue(); unsigned ConstSelOpNo = 1; unsigned OtherSelOpNo = 2; if (!dyn_cast(Sel->getOperand(ConstSelOpNo))) { ConstSelOpNo = 2; OtherSelOpNo = 1; } SDValue ConstSelOp = Sel->getOperand(ConstSelOpNo); ConstantSDNode *ConstSelOpNode = dyn_cast(ConstSelOp); if (!ConstSelOpNode || ConstSelOpNode->isOpaque()) return SDValue(); SDValue ConstBinOp = BO->getOperand(SelOpNo ^ 1); ConstantSDNode *ConstBinOpNode = dyn_cast(ConstBinOp); if (!ConstBinOpNode || ConstBinOpNode->isOpaque()) return SDValue(); SDLoc DL(Sel); EVT VT = BO->getValueType(0); SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp}; if (SelOpNo == 1) std::swap(NewConstOps[0], NewConstOps[1]); SDValue NewConstOp = DAG.FoldConstantArithmetic(BO->getOpcode(), DL, VT, NewConstOps); if (!NewConstOp) return SDValue(); const APInt &NewConstAPInt = NewConstOp->getAsAPIntVal(); if (!NewConstAPInt.isZero() && !NewConstAPInt.isAllOnes()) return SDValue(); SDValue OtherSelOp = Sel->getOperand(OtherSelOpNo); SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp}; if (SelOpNo == 1) std::swap(NewNonConstOps[0], NewNonConstOps[1]); SDValue NewNonConstOp = DAG.getNode(BO->getOpcode(), DL, VT, NewNonConstOps); SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp; SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp; return DAG.getSelect(DL, VT, Sel.getOperand(0), NewT, NewF); } SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue CondV = Op.getOperand(0); SDValue TrueV = Op.getOperand(1); SDValue FalseV = Op.getOperand(2); SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); // Lower vector SELECTs to VSELECTs by splatting the condition. if (VT.isVector()) { MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); SDValue CondSplat = DAG.getSplat(SplatCondVT, DL, CondV); return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); } // When Zicond or XVentanaCondOps is present, emit CZERO_EQZ and CZERO_NEZ // nodes to implement the SELECT. Performing the lowering here allows for // greater control over when CZERO_{EQZ/NEZ} are used vs another branchless // sequence or RISCVISD::SELECT_CC node (branch-based select). if ((Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps()) && VT.isScalarInteger()) { // (select c, t, 0) -> (czero_eqz t, c) if (isNullConstant(FalseV)) return DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV); // (select c, 0, f) -> (czero_nez f, c) if (isNullConstant(TrueV)) return DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV); // (select c, (and f, x), f) -> (or (and f, x), (czero_nez f, c)) if (TrueV.getOpcode() == ISD::AND && (TrueV.getOperand(0) == FalseV || TrueV.getOperand(1) == FalseV)) return DAG.getNode( ISD::OR, DL, VT, TrueV, DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV)); // (select c, t, (and t, x)) -> (or (czero_eqz t, c), (and t, x)) if (FalseV.getOpcode() == ISD::AND && (FalseV.getOperand(0) == TrueV || FalseV.getOperand(1) == TrueV)) return DAG.getNode( ISD::OR, DL, VT, FalseV, DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV)); // Try some other optimizations before falling back to generic lowering. if (SDValue V = combineSelectToBinOp(Op.getNode(), DAG, Subtarget)) return V; // (select c, t, f) -> (or (czero_eqz t, c), (czero_nez f, c)) // Unless we have the short forward branch optimization. if (!Subtarget.hasConditionalMoveFusion()) return DAG.getNode( ISD::OR, DL, VT, DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV), DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV)); } if (SDValue V = combineSelectToBinOp(Op.getNode(), DAG, Subtarget)) return V; if (Op.hasOneUse()) { unsigned UseOpc = Op->use_begin()->getOpcode(); if (isBinOp(UseOpc) && DAG.isSafeToSpeculativelyExecute(UseOpc)) { SDNode *BinOp = *Op->use_begin(); if (SDValue NewSel = foldBinOpIntoSelectIfProfitable(*Op->use_begin(), DAG, Subtarget)) { DAG.ReplaceAllUsesWith(BinOp, &NewSel); return lowerSELECT(NewSel, DAG); } } } // (select cc, 1.0, 0.0) -> (sint_to_fp (zext cc)) // (select cc, 0.0, 1.0) -> (sint_to_fp (zext (xor cc, 1))) const ConstantFPSDNode *FPTV = dyn_cast(TrueV); const ConstantFPSDNode *FPFV = dyn_cast(FalseV); if (FPTV && FPFV) { if (FPTV->isExactlyValue(1.0) && FPFV->isExactlyValue(0.0)) return DAG.getNode(ISD::SINT_TO_FP, DL, VT, CondV); if (FPTV->isExactlyValue(0.0) && FPFV->isExactlyValue(1.0)) { SDValue XOR = DAG.getNode(ISD::XOR, DL, XLenVT, CondV, DAG.getConstant(1, DL, XLenVT)); return DAG.getNode(ISD::SINT_TO_FP, DL, VT, XOR); } } // If the condition is not an integer SETCC which operates on XLenVT, we need // to emit a RISCVISD::SELECT_CC comparing the condition to zero. i.e.: // (select condv, truev, falsev) // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) if (CondV.getOpcode() != ISD::SETCC || CondV.getOperand(0).getSimpleValueType() != XLenVT) { SDValue Zero = DAG.getConstant(0, DL, XLenVT); SDValue SetNE = DAG.getCondCode(ISD::SETNE); SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops); } // If the CondV is the output of a SETCC node which operates on XLenVT inputs, // then merge the SETCC node into the lowered RISCVISD::SELECT_CC to take // advantage of the integer compare+branch instructions. i.e.: // (select (setcc lhs, rhs, cc), truev, falsev) // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) SDValue LHS = CondV.getOperand(0); SDValue RHS = CondV.getOperand(1); ISD::CondCode CCVal = cast(CondV.getOperand(2))->get(); // Special case for a select of 2 constants that have a diffence of 1. // Normally this is done by DAGCombine, but if the select is introduced by // type legalization or op legalization, we miss it. Restricting to SETLT // case for now because that is what signed saturating add/sub need. // FIXME: We don't need the condition to be SETLT or even a SETCC, // but we would probably want to swap the true/false values if the condition // is SETGE/SETLE to avoid an XORI. if (isa(TrueV) && isa(FalseV) && CCVal == ISD::SETLT) { const APInt &TrueVal = TrueV->getAsAPIntVal(); const APInt &FalseVal = FalseV->getAsAPIntVal(); if (TrueVal - 1 == FalseVal) return DAG.getNode(ISD::ADD, DL, VT, CondV, FalseV); if (TrueVal + 1 == FalseVal) return DAG.getNode(ISD::SUB, DL, VT, FalseV, CondV); } translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); // 1 < x ? x : 1 -> 0 < x ? x : 1 if (isOneConstant(LHS) && (CCVal == ISD::SETLT || CCVal == ISD::SETULT) && RHS == TrueV && LHS == FalseV) { LHS = DAG.getConstant(0, DL, VT); // 0 x (TrueV) && !isa(FalseV)) { // (select (setcc lhs, rhs, CC), constant, falsev) // -> (select (setcc lhs, rhs, InverseCC), falsev, constant) std::swap(TrueV, FalseV); TargetCC = DAG.getCondCode(ISD::getSetCCInverse(CCVal, LHS.getValueType())); } SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops); } SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { SDValue CondV = Op.getOperand(1); SDLoc DL(Op); MVT XLenVT = Subtarget.getXLenVT(); if (CondV.getOpcode() == ISD::SETCC && CondV.getOperand(0).getValueType() == XLenVT) { SDValue LHS = CondV.getOperand(0); SDValue RHS = CondV.getOperand(1); ISD::CondCode CCVal = cast(CondV.getOperand(2))->get(); translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); SDValue TargetCC = DAG.getCondCode(CCVal); return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), LHS, RHS, TargetCC, Op.getOperand(2)); } return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), CondV, DAG.getConstant(0, DL, XLenVT), DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); } SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); RISCVMachineFunctionInfo *FuncInfo = MF.getInfo(); SDLoc DL(Op); SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy(MF.getDataLayout())); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), MachinePointerInfo(SV)); } SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setFrameAddressIsTaken(true); Register FrameReg = RI.getFrameRegister(MF); int XLenInBytes = Subtarget.getXLen() / 8; EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); unsigned Depth = Op.getConstantOperandVal(0); while (Depth--) { int Offset = -(XLenInBytes * 2); SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, DAG.getIntPtrConstant(Offset, DL)); FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); } return FrameAddr; } SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); MVT XLenVT = Subtarget.getXLenVT(); int XLenInBytes = Subtarget.getXLen() / 8; if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Depth = Op.getConstantOperandVal(0); if (Depth) { int Off = -XLenInBytes; SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(Off, DL, VT); return DAG.getLoad(VT, DL, DAG.getEntryNode(), DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), MachinePointerInfo()); } // Return the value of the return address register, marking it an implicit // live-in. Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); } SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Shamt = Op.getOperand(2); EVT VT = Lo.getValueType(); // if Shamt-XLEN < 0: // Shamt < XLEN // Lo = Lo << Shamt // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) // else: // Lo = 0 // Hi = Lo << (Shamt-XLEN) SDValue Zero = DAG.getConstant(0, DL, VT); SDValue One = DAG.getConstant(1, DL, VT); SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); SDValue Parts[2] = {Lo, Hi}; return DAG.getMergeValues(Parts, DL); } SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, bool IsSRA) const { SDLoc DL(Op); SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Shamt = Op.getOperand(2); EVT VT = Lo.getValueType(); // SRA expansion: // if Shamt-XLEN < 0: // Shamt < XLEN // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - ShAmt)) // Hi = Hi >>s Shamt // else: // Lo = Hi >>s (Shamt-XLEN); // Hi = Hi >>s (XLEN-1) // // SRL expansion: // if Shamt-XLEN < 0: // Shamt < XLEN // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - ShAmt)) // Hi = Hi >>u Shamt // else: // Lo = Hi >>u (Shamt-XLEN); // Hi = 0; unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; SDValue Zero = DAG.getConstant(0, DL, VT); SDValue One = DAG.getConstant(1, DL, VT); SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); SDValue HiFalse = IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); SDValue Parts[2] = {Lo, Hi}; return DAG.getMergeValues(Parts, DL); } // Lower splats of i1 types to SETCC. For each mask vector type, we have a // legal equivalently-sized i8 type, so we can use that as a go-between. SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue SplatVal = Op.getOperand(0); // All-zeros or all-ones splats are handled specially. if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); } if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); } MVT InterVT = VT.changeVectorElementType(MVT::i8); SplatVal = DAG.getNode(ISD::AND, DL, SplatVal.getValueType(), SplatVal, DAG.getConstant(1, DL, SplatVal.getValueType())); SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); SDValue Zero = DAG.getConstant(0, DL, InterVT); return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); } // Custom-lower a SPLAT_VECTOR_PARTS where XLEN (vXiN = vselect vmask, (-1 or 1), 0) // Note that any-extension is lowered identically to zero-extension. SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, int64_t ExtTrueVal) const { SDLoc DL(Op); MVT VecVT = Op.getSimpleValueType(); SDValue Src = Op.getOperand(0); // Only custom-lower extensions from mask types assert(Src.getValueType().isVector() && Src.getValueType().getVectorElementType() == MVT::i1); if (VecVT.isScalableVector()) { SDValue SplatZero = DAG.getConstant(0, DL, VecVT); SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); } MVT ContainerVT = getContainerForFixedLengthVector(VecVT); MVT I1ContainerVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); SDValue VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second; MVT XLenVT = Subtarget.getXLenVT(); SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), SplatZero, VL); SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); SDValue Select = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, CC, SplatTrueVal, SplatZero, DAG.getUNDEF(ContainerVT), VL); return convertFromScalableVector(VecVT, Select, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { MVT ExtVT = Op.getSimpleValueType(); // Only custom-lower extensions from fixed-length vector types. if (!ExtVT.isFixedLengthVector()) return Op; MVT VT = Op.getOperand(0).getSimpleValueType(); // Grab the canonical container type for the extended type. Infer the smaller // type from that to ensure the same number of vector elements, as we know // the LMUL will be sufficient to hold the smaller type. MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); // Get the extended container type manually to ensure the same number of // vector elements between source and dest. MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), ContainerExtVT.getVectorElementCount()); SDValue Op1 = convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); SDLoc DL(Op); auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); } // Custom-lower truncations from vectors to mask vectors by using a mask and a // setcc operation: // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, SelectionDAG &DAG) const { bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; SDLoc DL(Op); EVT MaskVT = Op.getValueType(); // Only expect to custom-lower truncations to mask types assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && "Unexpected type for vector mask lowering"); SDValue Src = Op.getOperand(0); MVT VecVT = Src.getSimpleValueType(); SDValue Mask, VL; if (IsVPTrunc) { Mask = Op.getOperand(1); VL = Op.getOperand(2); } // If this is a fixed vector, we need to convert it to a scalable vector. MVT ContainerVT = VecVT; if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); if (IsVPTrunc) { MVT MaskContainerVT = getContainerForFixedLengthVector(Mask.getSimpleValueType()); Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); } } if (!IsVPTrunc) { std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); } SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), SplatOne, VL); SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), SplatZero, VL); MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); SDValue Trunc = DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, DAG.getUNDEF(ContainerVT), Mask, VL); Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, {Trunc, SplatZero, DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(MaskContainerVT), Mask, VL}); if (MaskVT.isFixedLengthVector()) Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); return Trunc; } SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, SelectionDAG &DAG) const { bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); // Only custom-lower vector truncates assert(VT.isVector() && "Unexpected type for vector truncate lowering"); // Truncates to mask types are handled differently if (VT.getVectorElementType() == MVT::i1) return lowerVectorMaskTruncLike(Op, DAG); // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which // truncate by one power of two at a time. MVT DstEltVT = VT.getVectorElementType(); SDValue Src = Op.getOperand(0); MVT SrcVT = Src.getSimpleValueType(); MVT SrcEltVT = SrcVT.getVectorElementType(); assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && isPowerOf2_64(SrcEltVT.getSizeInBits()) && "Unexpected vector truncate lowering"); MVT ContainerVT = SrcVT; SDValue Mask, VL; if (IsVPTrunc) { Mask = Op.getOperand(1); VL = Op.getOperand(2); } if (SrcVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(SrcVT); Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); if (IsVPTrunc) { MVT MaskVT = getMaskTypeFor(ContainerVT); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } } SDValue Result = Src; if (!IsVPTrunc) { std::tie(Mask, VL) = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); } LLVMContext &Context = *DAG.getContext(); const ElementCount Count = ContainerVT.getVectorElementCount(); do { SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, Mask, VL); } while (SrcEltVT != DstEltVT); if (SrcVT.isFixedLengthVector()) Result = convertFromScalableVector(VT, Result, DAG, Subtarget); return Result; } SDValue RISCVTargetLowering::lowerStrictFPExtendOrRoundLike(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue Src = Op.getOperand(1); MVT VT = Op.getSimpleValueType(); MVT SrcVT = Src.getSimpleValueType(); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); ContainerVT = SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); } auto [Mask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); // RVV can only widen/truncate fp to types double/half the size as the source. if ((VT.getVectorElementType() == MVT::f64 && SrcVT.getVectorElementType() == MVT::f16) || (VT.getVectorElementType() == MVT::f16 && SrcVT.getVectorElementType() == MVT::f64)) { // For double rounding, the intermediate rounding should be round-to-odd. unsigned InterConvOpc = Op.getOpcode() == ISD::STRICT_FP_EXTEND ? RISCVISD::STRICT_FP_EXTEND_VL : RISCVISD::STRICT_VFNCVT_ROD_VL; MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); Src = DAG.getNode(InterConvOpc, DL, DAG.getVTList(InterVT, MVT::Other), Chain, Src, Mask, VL); Chain = Src.getValue(1); } unsigned ConvOpc = Op.getOpcode() == ISD::STRICT_FP_EXTEND ? RISCVISD::STRICT_FP_EXTEND_VL : RISCVISD::STRICT_FP_ROUND_VL; SDValue Res = DAG.getNode(ConvOpc, DL, DAG.getVTList(ContainerVT, MVT::Other), Chain, Src, Mask, VL); if (VT.isFixedLengthVector()) { // StrictFP operations have two result values. Their lowered result should // have same result count. SDValue SubVec = convertFromScalableVector(VT, Res, DAG, Subtarget); Res = DAG.getMergeValues({SubVec, Res.getValue(1)}, DL); } return Res; } SDValue RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op, SelectionDAG &DAG) const { bool IsVP = Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND; bool IsExtend = Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND; // RVV can only do truncate fp to types half the size as the source. We // custom-lower f64->f16 rounds via RVV's round-to-odd float // conversion instruction. SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); assert(VT.isVector() && "Unexpected type for vector truncate lowering"); SDValue Src = Op.getOperand(0); MVT SrcVT = Src.getSimpleValueType(); bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 || SrcVT.getVectorElementType() != MVT::f16); bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 || SrcVT.getVectorElementType() != MVT::f64); bool IsDirectConv = IsDirectExtend || IsDirectTrunc; // Prepare any fixed-length vector operands. MVT ContainerVT = VT; SDValue Mask, VL; if (IsVP) { Mask = Op.getOperand(1); VL = Op.getOperand(2); } if (VT.isFixedLengthVector()) { MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); ContainerVT = SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); if (IsVP) { MVT MaskVT = getMaskTypeFor(ContainerVT); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } } if (!IsVP) std::tie(Mask, VL) = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL; if (IsDirectConv) { Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL); if (VT.isFixedLengthVector()) Src = convertFromScalableVector(VT, Src, DAG, Subtarget); return Src; } unsigned InterConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL; MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); SDValue IntermediateConv = DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL); SDValue Result = DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL); if (VT.isFixedLengthVector()) return convertFromScalableVector(VT, Result, DAG, Subtarget); return Result; } // Given a scalable vector type and an index into it, returns the type for the // smallest subvector that the index fits in. This can be used to reduce LMUL // for operations like vslidedown. // // E.g. With Zvl128b, index 3 in a nxv4i32 fits within the first nxv2i32. static std::optional getSmallestVTForIndex(MVT VecVT, unsigned MaxIdx, SDLoc DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(VecVT.isScalableVector()); const unsigned EltSize = VecVT.getScalarSizeInBits(); const unsigned VectorBitsMin = Subtarget.getRealMinVLen(); const unsigned MinVLMAX = VectorBitsMin / EltSize; MVT SmallerVT; if (MaxIdx < MinVLMAX) SmallerVT = getLMUL1VT(VecVT); else if (MaxIdx < MinVLMAX * 2) SmallerVT = getLMUL1VT(VecVT).getDoubleNumVectorElementsVT(); else if (MaxIdx < MinVLMAX * 4) SmallerVT = getLMUL1VT(VecVT) .getDoubleNumVectorElementsVT() .getDoubleNumVectorElementsVT(); if (!SmallerVT.isValid() || !VecVT.bitsGT(SmallerVT)) return std::nullopt; return SmallerVT; } // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the // first position of a vector, and that vector is slid up to the insert index. // By limiting the active vector length to index+1 and merging with the // original vector (with an undisturbed tail policy for elements >= VL), we // achieve the desired result of leaving all elements untouched except the one // at VL-1, which is replaced with the desired value. SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VecVT = Op.getSimpleValueType(); SDValue Vec = Op.getOperand(0); SDValue Val = Op.getOperand(1); SDValue Idx = Op.getOperand(2); if (VecVT.getVectorElementType() == MVT::i1) { // FIXME: For now we just promote to an i8 vector and insert into that, // but this is probably not optimal. MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); } MVT ContainerVT = VecVT; // If the operand is a fixed-length vector, convert to a scalable one. if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } // If we know the index we're going to insert at, we can shrink Vec so that // we're performing the scalar inserts and slideup on a smaller LMUL. MVT OrigContainerVT = ContainerVT; SDValue OrigVec = Vec; SDValue AlignedIdx; if (auto *IdxC = dyn_cast(Idx)) { const unsigned OrigIdx = IdxC->getZExtValue(); // Do we know an upper bound on LMUL? if (auto ShrunkVT = getSmallestVTForIndex(ContainerVT, OrigIdx, DL, DAG, Subtarget)) { ContainerVT = *ShrunkVT; AlignedIdx = DAG.getVectorIdxConstant(0, DL); } // If we're compiling for an exact VLEN value, we can always perform // the insert in m1 as we can determine the register corresponding to // the index in the register group. const unsigned MinVLen = Subtarget.getRealMinVLen(); const unsigned MaxVLen = Subtarget.getRealMaxVLen(); const MVT M1VT = getLMUL1VT(ContainerVT); if (MinVLen == MaxVLen && ContainerVT.bitsGT(M1VT)) { EVT ElemVT = VecVT.getVectorElementType(); unsigned ElemsPerVReg = MinVLen / ElemVT.getFixedSizeInBits(); unsigned RemIdx = OrigIdx % ElemsPerVReg; unsigned SubRegIdx = OrigIdx / ElemsPerVReg; unsigned ExtractIdx = SubRegIdx * M1VT.getVectorElementCount().getKnownMinValue(); AlignedIdx = DAG.getVectorIdxConstant(ExtractIdx, DL); Idx = DAG.getVectorIdxConstant(RemIdx, DL); ContainerVT = M1VT; } if (AlignedIdx) Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ContainerVT, Vec, AlignedIdx); } MVT XLenVT = Subtarget.getXLenVT(); bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; // Even i64-element vectors on RV32 can be lowered without scalar // legalization if the most-significant 32 bits of the value are not affected // by the sign-extension of the lower 32 bits. // TODO: We could also catch sign extensions of a 32-bit value. if (!IsLegalInsert && isa(Val)) { const auto *CVal = cast(Val); if (isInt<32>(CVal->getSExtValue())) { IsLegalInsert = true; Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); } } auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); SDValue ValInVec; if (IsLegalInsert) { unsigned Opc = VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; if (isNullConstant(Idx)) { if (!VecVT.isFloatingPoint()) Val = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Val); Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); if (AlignedIdx) Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, OrigContainerVT, OrigVec, Vec, AlignedIdx); if (!VecVT.isFixedLengthVector()) return Vec; return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); } ValInVec = lowerScalarInsert(Val, VL, ContainerVT, DL, DAG, Subtarget); } else { // On RV32, i64-element vectors must be specially handled to place the // value at element 0, by using two vslide1down instructions in sequence on // the i32 split lo/hi value. Use an equivalently-sized i32 vector for // this. SDValue ValLo, ValHi; std::tie(ValLo, ValHi) = DAG.SplitScalar(Val, DL, MVT::i32, MVT::i32); MVT I32ContainerVT = MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); SDValue I32Mask = getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; // Limit the active VL to two. SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); // If the Idx is 0 we can insert directly into the vector. if (isNullConstant(Idx)) { // First slide in the lo value, then the hi in above it. We use slide1down // to avoid the register group overlap constraint of vslide1up. ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, Vec, Vec, ValLo, I32Mask, InsertI64VL); // If the source vector is undef don't pass along the tail elements from // the previous slide1down. SDValue Tail = Vec.isUndef() ? Vec : ValInVec; ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, Tail, ValInVec, ValHi, I32Mask, InsertI64VL); // Bitcast back to the right container type. ValInVec = DAG.getBitcast(ContainerVT, ValInVec); if (AlignedIdx) ValInVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, OrigContainerVT, OrigVec, ValInVec, AlignedIdx); if (!VecVT.isFixedLengthVector()) return ValInVec; return convertFromScalableVector(VecVT, ValInVec, DAG, Subtarget); } // First slide in the lo value, then the hi in above it. We use slide1down // to avoid the register group overlap constraint of vslide1up. ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, DAG.getUNDEF(I32ContainerVT), DAG.getUNDEF(I32ContainerVT), ValLo, I32Mask, InsertI64VL); ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, I32Mask, InsertI64VL); // Bitcast back to the right container type. ValInVec = DAG.getBitcast(ContainerVT, ValInVec); } // Now that the value is in a vector, slide it into position. SDValue InsertVL = DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); // Use tail agnostic policy if Idx is the last index of Vec. unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED; if (VecVT.isFixedLengthVector() && isa(Idx) && Idx->getAsZExtVal() + 1 == VecVT.getVectorNumElements()) Policy = RISCVII::TAIL_AGNOSTIC; SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, ValInVec, Idx, Mask, InsertVL, Policy); if (AlignedIdx) Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, OrigContainerVT, OrigVec, Slideup, AlignedIdx); if (!VecVT.isFixedLengthVector()) return Slideup; return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); } // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then // extract the first element: (extractelt (slidedown vec, idx), 0). For integer // types this is done using VMV_X_S to allow us to glean information about the // sign bits of the result. SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Idx = Op.getOperand(1); SDValue Vec = Op.getOperand(0); EVT EltVT = Op.getValueType(); MVT VecVT = Vec.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); if (VecVT.getVectorElementType() == MVT::i1) { // Use vfirst.m to extract the first bit. if (isNullConstant(Idx)) { MVT ContainerVT = VecVT; if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); SDValue Vfirst = DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Vec, Mask, VL); SDValue Res = DAG.getSetCC(DL, XLenVT, Vfirst, DAG.getConstant(0, DL, XLenVT), ISD::SETEQ); return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res); } if (VecVT.isFixedLengthVector()) { unsigned NumElts = VecVT.getVectorNumElements(); if (NumElts >= 8) { MVT WideEltVT; unsigned WidenVecLen; SDValue ExtractElementIdx; SDValue ExtractBitIdx; unsigned MaxEEW = Subtarget.getELen(); MVT LargestEltVT = MVT::getIntegerVT( std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); if (NumElts <= LargestEltVT.getSizeInBits()) { assert(isPowerOf2_32(NumElts) && "the number of elements should be power of 2"); WideEltVT = MVT::getIntegerVT(NumElts); WidenVecLen = 1; ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); ExtractBitIdx = Idx; } else { WideEltVT = LargestEltVT; WidenVecLen = NumElts / WideEltVT.getSizeInBits(); // extract element index = index / element width ExtractElementIdx = DAG.getNode( ISD::SRL, DL, XLenVT, Idx, DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); // mask bit index = index % element width ExtractBitIdx = DAG.getNode( ISD::AND, DL, XLenVT, Idx, DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); } MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, Vec, ExtractElementIdx); // Extract the bit from GPR. SDValue ShiftRight = DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); SDValue Res = DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, DAG.getConstant(1, DL, XLenVT)); return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res); } } // Otherwise, promote to an i8 vector and extract from that. MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); } // If this is a fixed vector, we need to convert it to a scalable vector. MVT ContainerVT = VecVT; if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } // If we're compiling for an exact VLEN value and we have a known // constant index, we can always perform the extract in m1 (or // smaller) as we can determine the register corresponding to // the index in the register group. const unsigned MinVLen = Subtarget.getRealMinVLen(); const unsigned MaxVLen = Subtarget.getRealMaxVLen(); if (auto *IdxC = dyn_cast(Idx); IdxC && MinVLen == MaxVLen && VecVT.getSizeInBits().getKnownMinValue() > MinVLen) { MVT M1VT = getLMUL1VT(ContainerVT); unsigned OrigIdx = IdxC->getZExtValue(); EVT ElemVT = VecVT.getVectorElementType(); unsigned ElemsPerVReg = MinVLen / ElemVT.getFixedSizeInBits(); unsigned RemIdx = OrigIdx % ElemsPerVReg; unsigned SubRegIdx = OrigIdx / ElemsPerVReg; unsigned ExtractIdx = SubRegIdx * M1VT.getVectorElementCount().getKnownMinValue(); Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, Vec, DAG.getVectorIdxConstant(ExtractIdx, DL)); Idx = DAG.getVectorIdxConstant(RemIdx, DL); ContainerVT = M1VT; } // Reduce the LMUL of our slidedown and vmv.x.s to the smallest LMUL which // contains our index. std::optional MaxIdx; if (VecVT.isFixedLengthVector()) MaxIdx = VecVT.getVectorNumElements() - 1; if (auto *IdxC = dyn_cast(Idx)) MaxIdx = IdxC->getZExtValue(); if (MaxIdx) { if (auto SmallerVT = getSmallestVTForIndex(ContainerVT, *MaxIdx, DL, DAG, Subtarget)) { ContainerVT = *SmallerVT; Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ContainerVT, Vec, DAG.getConstant(0, DL, XLenVT)); } } // If after narrowing, the required slide is still greater than LMUL2, // fallback to generic expansion and go through the stack. This is done // for a subtle reason: extracting *all* elements out of a vector is // widely expected to be linear in vector size, but because vslidedown // is linear in LMUL, performing N extracts using vslidedown becomes // O(n^2) / (VLEN/ETYPE) work. On the surface, going through the stack // seems to have the same problem (the store is linear in LMUL), but the // generic expansion *memoizes* the store, and thus for many extracts of // the same vector we end up with one store and a bunch of loads. // TODO: We don't have the same code for insert_vector_elt because we // have BUILD_VECTOR and handle the degenerate case there. Should we // consider adding an inverse BUILD_VECTOR node? MVT LMUL2VT = getLMUL1VT(ContainerVT).getDoubleNumVectorElementsVT(); if (ContainerVT.bitsGT(LMUL2VT) && VecVT.isFixedLengthVector()) return SDValue(); // If the index is 0, the vector is already in the right position. if (!isNullConstant(Idx)) { // Use a VL of 1 to avoid processing more elements than we need. auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget); Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); } if (!EltVT.isInteger()) { // Floating-point extracts are handled in TableGen. return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, DAG.getConstant(0, DL, XLenVT)); } SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); } // Some RVV intrinsics may claim that they want an integer operand to be // promoted or expanded. static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert((Op.getOpcode() == ISD::INTRINSIC_VOID || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && "Unexpected opcode"); if (!Subtarget.hasVInstructions()) return SDValue(); bool HasChain = Op.getOpcode() == ISD::INTRINSIC_VOID || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); SDLoc DL(Op); const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); if (!II || !II->hasScalarOperand()) return SDValue(); unsigned SplatOp = II->ScalarOperand + 1 + HasChain; assert(SplatOp < Op.getNumOperands()); SmallVector Operands(Op->op_begin(), Op->op_end()); SDValue &ScalarOp = Operands[SplatOp]; MVT OpVT = ScalarOp.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); // If this isn't a scalar, or its type is XLenVT we're done. if (!OpVT.isScalarInteger() || OpVT == XLenVT) return SDValue(); // Simplest case is that the operand needs to be promoted to XLenVT. if (OpVT.bitsLT(XLenVT)) { // If the operand is a constant, sign extend to increase our chances // of being able to use a .vi instruction. ANY_EXTEND would become a // a zero extend and the simm5 check in isel would fail. // FIXME: Should we ignore the upper bits in isel instead? unsigned ExtOpc = isa(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); } // Use the previous operand to get the vXi64 VT. The result might be a mask // VT for compares. Using the previous operand assumes that the previous // operand will never have a smaller element size than a scalar operand and // that a widening operation never uses SEW=64. // NOTE: If this fails the below assert, we can probably just find the // element count from any operand or result and use it to construct the VT. assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); // The more complex case is when the scalar is larger than XLenVT. assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); // If this is a sign-extended 32-bit value, we can truncate it and rely on the // instruction to sign-extend since SEW>XLEN. if (DAG.ComputeNumSignBits(ScalarOp) > 32) { ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); } switch (IntNo) { case Intrinsic::riscv_vslide1up: case Intrinsic::riscv_vslide1down: case Intrinsic::riscv_vslide1up_mask: case Intrinsic::riscv_vslide1down_mask: { // We need to special case these when the scalar is larger than XLen. unsigned NumOps = Op.getNumOperands(); bool IsMasked = NumOps == 7; // Convert the vector source to the equivalent nxvXi32 vector. MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); SDValue ScalarLo, ScalarHi; std::tie(ScalarLo, ScalarHi) = DAG.SplitScalar(ScalarOp, DL, MVT::i32, MVT::i32); // Double the VL since we halved SEW. SDValue AVL = getVLOperand(Op); SDValue I32VL; // Optimize for constant AVL if (isa(AVL)) { const auto [MinVLMAX, MaxVLMAX] = RISCVTargetLowering::computeVLMAXBounds(VT, Subtarget); uint64_t AVLInt = AVL->getAsZExtVal(); if (AVLInt <= MinVLMAX) { I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); } else if (AVLInt >= 2 * MaxVLMAX) { // Just set vl to VLMAX in this situation RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); SDValue SETVLMAX = DAG.getTargetConstant( Intrinsic::riscv_vsetvlimax, DL, MVT::i32); I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, LMUL); } else { // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl // is related to the hardware implementation. // So let the following code handle } } if (!I32VL) { RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); SDValue SETVL = DAG.getTargetConstant(Intrinsic::riscv_vsetvli, DL, MVT::i32); // Using vsetvli instruction to get actually used length which related to // the hardware implementation SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, SEW, LMUL); I32VL = DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); } SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG); // Shift the two scalar parts in using SEW=32 slide1up/slide1down // instructions. SDValue Passthru; if (IsMasked) Passthru = DAG.getUNDEF(I32VT); else Passthru = DAG.getBitcast(I32VT, Operands[1]); if (IntNo == Intrinsic::riscv_vslide1up || IntNo == Intrinsic::riscv_vslide1up_mask) { Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, ScalarHi, I32Mask, I32VL); Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, ScalarLo, I32Mask, I32VL); } else { Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, ScalarLo, I32Mask, I32VL); Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, ScalarHi, I32Mask, I32VL); } // Convert back to nxvXi64. Vec = DAG.getBitcast(VT, Vec); if (!IsMasked) return Vec; // Apply mask after the operation. SDValue Mask = Operands[NumOps - 3]; SDValue MaskedOff = Operands[1]; // Assume Policy operand is the last operand. uint64_t Policy = Operands[NumOps - 1]->getAsZExtVal(); // We don't need to select maskedoff if it's undef. if (MaskedOff.isUndef()) return Vec; // TAMU if (Policy == RISCVII::TAIL_AGNOSTIC) return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, Mask, Vec, MaskedOff, DAG.getUNDEF(VT), AVL); // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. // It's fine because vmerge does not care mask policy. return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, Mask, Vec, MaskedOff, MaskedOff, AVL); } } // We need to convert the scalar to a splat vector. SDValue VL = getVLOperand(Op); assert(VL.getValueType() == XLenVT); ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); } // Lower the llvm.get.vector.length intrinsic to vsetvli. We only support // scalable vector llvm.get.vector.length for now. // // We need to convert from a scalable VF to a vsetvli with VLMax equal to // (vscale * VF). The vscale and VF are independent of element width. We use // SEW=8 for the vsetvli because it is the only element width that supports all // fractional LMULs. The LMUL is choosen so that with SEW=8 the VLMax is // (vscale * VF). Where vscale is defined as VLEN/RVVBitsPerBlock. The // InsertVSETVLI pass can fix up the vtype of the vsetvli if a different // SEW and LMUL are better for the surrounding vector instructions. static SDValue lowerGetVectorLength(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { MVT XLenVT = Subtarget.getXLenVT(); // The smallest LMUL is only valid for the smallest element width. const unsigned ElementWidth = 8; // Determine the VF that corresponds to LMUL 1 for ElementWidth. unsigned LMul1VF = RISCV::RVVBitsPerBlock / ElementWidth; // We don't support VF==1 with ELEN==32. unsigned MinVF = RISCV::RVVBitsPerBlock / Subtarget.getELen(); unsigned VF = N->getConstantOperandVal(2); assert(VF >= MinVF && VF <= (LMul1VF * 8) && isPowerOf2_32(VF) && "Unexpected VF"); (void)MinVF; bool Fractional = VF < LMul1VF; unsigned LMulVal = Fractional ? LMul1VF / VF : VF / LMul1VF; unsigned VLMUL = (unsigned)RISCVVType::encodeLMUL(LMulVal, Fractional); unsigned VSEW = RISCVVType::encodeSEW(ElementWidth); SDLoc DL(N); SDValue LMul = DAG.getTargetConstant(VLMUL, DL, XLenVT); SDValue Sew = DAG.getTargetConstant(VSEW, DL, XLenVT); SDValue AVL = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); SDValue ID = DAG.getTargetConstant(Intrinsic::riscv_vsetvli, DL, XLenVT); SDValue Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, ID, AVL, Sew, LMul); return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), Res); } static void getVCIXOperands(SDValue &Op, SelectionDAG &DAG, SmallVector &Ops) { SDLoc DL(Op); const RISCVSubtarget &Subtarget = DAG.getMachineFunction().getSubtarget(); for (const SDValue &V : Op->op_values()) { EVT ValType = V.getValueType(); if (ValType.isScalableVector() && ValType.isFloatingPoint()) { MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(ValType.getScalarSizeInBits()), ValType.getVectorElementCount()); Ops.push_back(DAG.getBitcast(InterimIVT, V)); } else if (ValType.isFixedLengthVector()) { MVT OpContainerVT = getContainerForFixedLengthVector( DAG, V.getSimpleValueType(), Subtarget); Ops.push_back(convertToScalableVector(OpContainerVT, V, DAG, Subtarget)); } else Ops.push_back(V); } } // LMUL * VLEN should be greater than or equal to EGS * SEW static inline bool isValidEGW(int EGS, EVT VT, const RISCVSubtarget &Subtarget) { return (Subtarget.getRealMinVLen() * VT.getSizeInBits().getKnownMinValue()) / RISCV::RVVBitsPerBlock >= EGS * VT.getScalarSizeInBits(); } SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntNo = Op.getConstantOperandVal(0); SDLoc DL(Op); MVT XLenVT = Subtarget.getXLenVT(); switch (IntNo) { default: break; // Don't custom lower most intrinsics. case Intrinsic::thread_pointer: { EVT PtrVT = getPointerTy(DAG.getDataLayout()); return DAG.getRegister(RISCV::X4, PtrVT); } case Intrinsic::riscv_orc_b: case Intrinsic::riscv_brev8: case Intrinsic::riscv_sha256sig0: case Intrinsic::riscv_sha256sig1: case Intrinsic::riscv_sha256sum0: case Intrinsic::riscv_sha256sum1: case Intrinsic::riscv_sm3p0: case Intrinsic::riscv_sm3p1: { unsigned Opc; switch (IntNo) { case Intrinsic::riscv_orc_b: Opc = RISCVISD::ORC_B; break; case Intrinsic::riscv_brev8: Opc = RISCVISD::BREV8; break; case Intrinsic::riscv_sha256sig0: Opc = RISCVISD::SHA256SIG0; break; case Intrinsic::riscv_sha256sig1: Opc = RISCVISD::SHA256SIG1; break; case Intrinsic::riscv_sha256sum0: Opc = RISCVISD::SHA256SUM0; break; case Intrinsic::riscv_sha256sum1: Opc = RISCVISD::SHA256SUM1; break; case Intrinsic::riscv_sm3p0: Opc = RISCVISD::SM3P0; break; case Intrinsic::riscv_sm3p1: Opc = RISCVISD::SM3P1; break; } if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); } return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1)); } case Intrinsic::riscv_sm4ks: case Intrinsic::riscv_sm4ed: { unsigned Opc = IntNo == Intrinsic::riscv_sm4ks ? RISCVISD::SM4KS : RISCVISD::SM4ED; if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2)); SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, Op.getOperand(3)); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); } return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); } case Intrinsic::riscv_zip: case Intrinsic::riscv_unzip: { unsigned Opc = IntNo == Intrinsic::riscv_zip ? RISCVISD::ZIP : RISCVISD::UNZIP; return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1)); } case Intrinsic::riscv_clmul: if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2)); SDValue Res = DAG.getNode(RISCVISD::CLMUL, DL, MVT::i64, NewOp0, NewOp1); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); } return DAG.getNode(RISCVISD::CLMUL, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::riscv_clmulh: case Intrinsic::riscv_clmulr: { unsigned Opc = IntNo == Intrinsic::riscv_clmulh ? RISCVISD::CLMULH : RISCVISD::CLMULR; if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) { SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1)); SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2)); NewOp0 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, DAG.getConstant(32, DL, MVT::i64)); NewOp1 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp1, DAG.getConstant(32, DL, MVT::i64)); SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1); Res = DAG.getNode(ISD::SRL, DL, MVT::i64, Res, DAG.getConstant(32, DL, MVT::i64)); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res); } return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::experimental_get_vector_length: return lowerGetVectorLength(Op.getNode(), DAG, Subtarget); case Intrinsic::riscv_vmv_x_s: { SDValue Res = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Op.getOperand(1)); return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Res); } case Intrinsic::riscv_vfmv_f_s: return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(), Op.getOperand(1), DAG.getConstant(0, DL, XLenVT)); case Intrinsic::riscv_vmv_v_x: return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, Subtarget); case Intrinsic::riscv_vfmv_v_f: return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::riscv_vmv_s_x: { SDValue Scalar = Op.getOperand(2); if (Scalar.getValueType().bitsLE(XLenVT)) { Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), Op.getOperand(1), Scalar, Op.getOperand(3)); } assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); // This is an i64 value that lives in two scalar registers. We have to // insert this in a convoluted way. First we build vXi64 splat containing // the two values that we assemble using some bit math. Next we'll use // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask // to merge element 0 from our splat into the source vector. // FIXME: This is probably not the best way to do this, but it is // consistent with INSERT_VECTOR_ELT lowering so it is a good starting // point. // sw lo, (a0) // sw hi, 4(a0) // vlse vX, (a0) // // vid.v vVid // vmseq.vx mMask, vVid, 0 // vmerge.vvm vDest, vSrc, vVal, mMask MVT VT = Op.getSimpleValueType(); SDValue Vec = Op.getOperand(1); SDValue VL = getVLOperand(Op); SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); if (Op.getOperand(1).isUndef()) return SplattedVal; SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), DAG.getConstant(0, DL, MVT::i32), VL); MVT MaskVT = getMaskTypeFor(VT); SDValue Mask = getAllOnesMask(VT, VL, DL, DAG); SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); SDValue SelectCond = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, {VID, SplattedIdx, DAG.getCondCode(ISD::SETEQ), DAG.getUNDEF(MaskVT), Mask, VL}); return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, SelectCond, SplattedVal, Vec, DAG.getUNDEF(VT), VL); } case Intrinsic::riscv_vfmv_s_f: return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, Op.getSimpleValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); // EGS * EEW >= 128 bits case Intrinsic::riscv_vaesdf_vv: case Intrinsic::riscv_vaesdf_vs: case Intrinsic::riscv_vaesdm_vv: case Intrinsic::riscv_vaesdm_vs: case Intrinsic::riscv_vaesef_vv: case Intrinsic::riscv_vaesef_vs: case Intrinsic::riscv_vaesem_vv: case Intrinsic::riscv_vaesem_vs: case Intrinsic::riscv_vaeskf1: case Intrinsic::riscv_vaeskf2: case Intrinsic::riscv_vaesz_vs: case Intrinsic::riscv_vsm4k: case Intrinsic::riscv_vsm4r_vv: case Intrinsic::riscv_vsm4r_vs: { if (!isValidEGW(4, Op.getSimpleValueType(), Subtarget) || !isValidEGW(4, Op->getOperand(1).getSimpleValueType(), Subtarget) || !isValidEGW(4, Op->getOperand(2).getSimpleValueType(), Subtarget)) report_fatal_error("EGW should be greater than or equal to 4 * SEW."); return Op; } // EGS * EEW >= 256 bits case Intrinsic::riscv_vsm3c: case Intrinsic::riscv_vsm3me: { if (!isValidEGW(8, Op.getSimpleValueType(), Subtarget) || !isValidEGW(8, Op->getOperand(1).getSimpleValueType(), Subtarget)) report_fatal_error("EGW should be greater than or equal to 8 * SEW."); return Op; } // zvknha(SEW=32)/zvknhb(SEW=[32|64]) case Intrinsic::riscv_vsha2ch: case Intrinsic::riscv_vsha2cl: case Intrinsic::riscv_vsha2ms: { if (Op->getSimpleValueType(0).getScalarSizeInBits() == 64 && !Subtarget.hasStdExtZvknhb()) report_fatal_error("SEW=64 needs Zvknhb to be enabled."); if (!isValidEGW(4, Op.getSimpleValueType(), Subtarget) || !isValidEGW(4, Op->getOperand(1).getSimpleValueType(), Subtarget) || !isValidEGW(4, Op->getOperand(2).getSimpleValueType(), Subtarget)) report_fatal_error("EGW should be greater than or equal to 4 * SEW."); return Op; } case Intrinsic::riscv_sf_vc_v_x: case Intrinsic::riscv_sf_vc_v_i: case Intrinsic::riscv_sf_vc_v_xv: case Intrinsic::riscv_sf_vc_v_iv: case Intrinsic::riscv_sf_vc_v_vv: case Intrinsic::riscv_sf_vc_v_fv: case Intrinsic::riscv_sf_vc_v_xvv: case Intrinsic::riscv_sf_vc_v_ivv: case Intrinsic::riscv_sf_vc_v_vvv: case Intrinsic::riscv_sf_vc_v_fvv: case Intrinsic::riscv_sf_vc_v_xvw: case Intrinsic::riscv_sf_vc_v_ivw: case Intrinsic::riscv_sf_vc_v_vvw: case Intrinsic::riscv_sf_vc_v_fvw: { MVT VT = Op.getSimpleValueType(); SmallVector Ops; getVCIXOperands(Op, DAG, Ops); MVT RetVT = VT; if (VT.isFixedLengthVector()) RetVT = getContainerForFixedLengthVector(VT); else if (VT.isFloatingPoint()) RetVT = MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits()), VT.getVectorElementCount()); SDValue NewNode = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, RetVT, Ops); if (VT.isFixedLengthVector()) NewNode = convertFromScalableVector(VT, NewNode, DAG, Subtarget); else if (VT.isFloatingPoint()) NewNode = DAG.getBitcast(VT, NewNode); if (Op == NewNode) break; return NewNode; } } return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); } SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntNo = Op.getConstantOperandVal(1); switch (IntNo) { default: break; case Intrinsic::riscv_masked_strided_load: { SDLoc DL(Op); MVT XLenVT = Subtarget.getXLenVT(); // If the mask is known to be all ones, optimize to an unmasked intrinsic; // the selection of the masked intrinsics doesn't do this for us. SDValue Mask = Op.getOperand(5); bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); MVT VT = Op->getSimpleValueType(0); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) ContainerVT = getContainerForFixedLengthVector(VT); SDValue PassThru = Op.getOperand(2); if (!IsUnmasked) { MVT MaskVT = getMaskTypeFor(ContainerVT); if (VT.isFixedLengthVector()) { Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); } } auto *Load = cast(Op); SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; SDValue Ptr = Op.getOperand(3); SDValue Stride = Op.getOperand(4); SDValue Result, Chain; // TODO: We restrict this to unmasked loads currently in consideration of // the complexity of hanlding all falses masks. if (IsUnmasked && isNullConstant(Stride)) { MVT ScalarVT = ContainerVT.getVectorElementType(); SDValue ScalarLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, XLenVT, Load->getChain(), Ptr, ScalarVT, Load->getMemOperand()); Chain = ScalarLoad.getValue(1); Result = lowerScalarSplat(SDValue(), ScalarLoad, VL, ContainerVT, DL, DAG, Subtarget); } else { SDValue IntID = DAG.getTargetConstant( IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, XLenVT); SmallVector Ops{Load->getChain(), IntID}; if (IsUnmasked) Ops.push_back(DAG.getUNDEF(ContainerVT)); else Ops.push_back(PassThru); Ops.push_back(Ptr); Ops.push_back(Stride); if (!IsUnmasked) Ops.push_back(Mask); Ops.push_back(VL); if (!IsUnmasked) { SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); Ops.push_back(Policy); } SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); Result = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, Load->getMemoryVT(), Load->getMemOperand()); Chain = Result.getValue(1); } if (VT.isFixedLengthVector()) Result = convertFromScalableVector(VT, Result, DAG, Subtarget); return DAG.getMergeValues({Result, Chain}, DL); } case Intrinsic::riscv_seg2_load: case Intrinsic::riscv_seg3_load: case Intrinsic::riscv_seg4_load: case Intrinsic::riscv_seg5_load: case Intrinsic::riscv_seg6_load: case Intrinsic::riscv_seg7_load: case Intrinsic::riscv_seg8_load: { SDLoc DL(Op); static const Intrinsic::ID VlsegInts[7] = { Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, Intrinsic::riscv_vlseg8}; unsigned NF = Op->getNumValues() - 1; assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); MVT XLenVT = Subtarget.getXLenVT(); MVT VT = Op->getSimpleValueType(0); MVT ContainerVT = getContainerForFixedLengthVector(VT); SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG, Subtarget); SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); auto *Load = cast(Op); SmallVector ContainerVTs(NF, ContainerVT); ContainerVTs.push_back(MVT::Other); SDVTList VTs = DAG.getVTList(ContainerVTs); SmallVector Ops = {Load->getChain(), IntID}; Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT)); Ops.push_back(Op.getOperand(2)); Ops.push_back(VL); SDValue Result = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, Load->getMemoryVT(), Load->getMemOperand()); SmallVector Results; for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), DAG, Subtarget)); Results.push_back(Result.getValue(NF)); return DAG.getMergeValues(Results, DL); } case Intrinsic::riscv_sf_vc_v_x_se: case Intrinsic::riscv_sf_vc_v_i_se: case Intrinsic::riscv_sf_vc_v_xv_se: case Intrinsic::riscv_sf_vc_v_iv_se: case Intrinsic::riscv_sf_vc_v_vv_se: case Intrinsic::riscv_sf_vc_v_fv_se: case Intrinsic::riscv_sf_vc_v_xvv_se: case Intrinsic::riscv_sf_vc_v_ivv_se: case Intrinsic::riscv_sf_vc_v_vvv_se: case Intrinsic::riscv_sf_vc_v_fvv_se: case Intrinsic::riscv_sf_vc_v_xvw_se: case Intrinsic::riscv_sf_vc_v_ivw_se: case Intrinsic::riscv_sf_vc_v_vvw_se: case Intrinsic::riscv_sf_vc_v_fvw_se: { MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); SmallVector Ops; getVCIXOperands(Op, DAG, Ops); MVT RetVT = VT; if (VT.isFixedLengthVector()) RetVT = getContainerForFixedLengthVector(VT); else if (VT.isFloatingPoint()) RetVT = MVT::getVectorVT(MVT::getIntegerVT(RetVT.getScalarSizeInBits()), RetVT.getVectorElementCount()); SDVTList VTs = DAG.getVTList({RetVT, MVT::Other}); SDValue NewNode = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops); if (VT.isFixedLengthVector()) { SDValue FixedVector = convertFromScalableVector(VT, NewNode, DAG, Subtarget); NewNode = DAG.getMergeValues({FixedVector, NewNode.getValue(1)}, DL); } else if (VT.isFloatingPoint()) { SDValue BitCast = DAG.getBitcast(VT, NewNode.getValue(0)); NewNode = DAG.getMergeValues({BitCast, NewNode.getValue(1)}, DL); } if (Op == NewNode) break; return NewNode; } } return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); } SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { unsigned IntNo = Op.getConstantOperandVal(1); switch (IntNo) { default: break; case Intrinsic::riscv_masked_strided_store: { SDLoc DL(Op); MVT XLenVT = Subtarget.getXLenVT(); // If the mask is known to be all ones, optimize to an unmasked intrinsic; // the selection of the masked intrinsics doesn't do this for us. SDValue Mask = Op.getOperand(5); bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); SDValue Val = Op.getOperand(2); MVT VT = Val.getSimpleValueType(); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); } if (!IsUnmasked) { MVT MaskVT = getMaskTypeFor(ContainerVT); if (VT.isFixedLengthVector()) Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; SDValue IntID = DAG.getTargetConstant( IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, XLenVT); auto *Store = cast(Op); SmallVector Ops{Store->getChain(), IntID}; Ops.push_back(Val); Ops.push_back(Op.getOperand(3)); // Ptr Ops.push_back(Op.getOperand(4)); // Stride if (!IsUnmasked) Ops.push_back(Mask); Ops.push_back(VL); return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), Ops, Store->getMemoryVT(), Store->getMemOperand()); } case Intrinsic::riscv_seg2_store: case Intrinsic::riscv_seg3_store: case Intrinsic::riscv_seg4_store: case Intrinsic::riscv_seg5_store: case Intrinsic::riscv_seg6_store: case Intrinsic::riscv_seg7_store: case Intrinsic::riscv_seg8_store: { SDLoc DL(Op); static const Intrinsic::ID VssegInts[] = { Intrinsic::riscv_vsseg2, Intrinsic::riscv_vsseg3, Intrinsic::riscv_vsseg4, Intrinsic::riscv_vsseg5, Intrinsic::riscv_vsseg6, Intrinsic::riscv_vsseg7, Intrinsic::riscv_vsseg8}; // Operands are (chain, int_id, vec*, ptr, vl) unsigned NF = Op->getNumOperands() - 4; assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); MVT XLenVT = Subtarget.getXLenVT(); MVT VT = Op->getOperand(2).getSimpleValueType(); MVT ContainerVT = getContainerForFixedLengthVector(VT); SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG, Subtarget); SDValue IntID = DAG.getTargetConstant(VssegInts[NF - 2], DL, XLenVT); SDValue Ptr = Op->getOperand(NF + 2); auto *FixedIntrinsic = cast(Op); SmallVector Ops = {FixedIntrinsic->getChain(), IntID}; for (unsigned i = 0; i < NF; i++) Ops.push_back(convertToScalableVector( ContainerVT, FixedIntrinsic->getOperand(2 + i), DAG, Subtarget)); Ops.append({Ptr, VL}); return DAG.getMemIntrinsicNode( ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), Ops, FixedIntrinsic->getMemoryVT(), FixedIntrinsic->getMemOperand()); } case Intrinsic::riscv_sf_vc_x_se_e8mf8: case Intrinsic::riscv_sf_vc_x_se_e8mf4: case Intrinsic::riscv_sf_vc_x_se_e8mf2: case Intrinsic::riscv_sf_vc_x_se_e8m1: case Intrinsic::riscv_sf_vc_x_se_e8m2: case Intrinsic::riscv_sf_vc_x_se_e8m4: case Intrinsic::riscv_sf_vc_x_se_e8m8: case Intrinsic::riscv_sf_vc_x_se_e16mf4: case Intrinsic::riscv_sf_vc_x_se_e16mf2: case Intrinsic::riscv_sf_vc_x_se_e16m1: case Intrinsic::riscv_sf_vc_x_se_e16m2: case Intrinsic::riscv_sf_vc_x_se_e16m4: case Intrinsic::riscv_sf_vc_x_se_e16m8: case Intrinsic::riscv_sf_vc_x_se_e32mf2: case Intrinsic::riscv_sf_vc_x_se_e32m1: case Intrinsic::riscv_sf_vc_x_se_e32m2: case Intrinsic::riscv_sf_vc_x_se_e32m4: case Intrinsic::riscv_sf_vc_x_se_e32m8: case Intrinsic::riscv_sf_vc_x_se_e64m1: case Intrinsic::riscv_sf_vc_x_se_e64m2: case Intrinsic::riscv_sf_vc_x_se_e64m4: case Intrinsic::riscv_sf_vc_x_se_e64m8: case Intrinsic::riscv_sf_vc_i_se_e8mf8: case Intrinsic::riscv_sf_vc_i_se_e8mf4: case Intrinsic::riscv_sf_vc_i_se_e8mf2: case Intrinsic::riscv_sf_vc_i_se_e8m1: case Intrinsic::riscv_sf_vc_i_se_e8m2: case Intrinsic::riscv_sf_vc_i_se_e8m4: case Intrinsic::riscv_sf_vc_i_se_e8m8: case Intrinsic::riscv_sf_vc_i_se_e16mf4: case Intrinsic::riscv_sf_vc_i_se_e16mf2: case Intrinsic::riscv_sf_vc_i_se_e16m1: case Intrinsic::riscv_sf_vc_i_se_e16m2: case Intrinsic::riscv_sf_vc_i_se_e16m4: case Intrinsic::riscv_sf_vc_i_se_e16m8: case Intrinsic::riscv_sf_vc_i_se_e32mf2: case Intrinsic::riscv_sf_vc_i_se_e32m1: case Intrinsic::riscv_sf_vc_i_se_e32m2: case Intrinsic::riscv_sf_vc_i_se_e32m4: case Intrinsic::riscv_sf_vc_i_se_e32m8: case Intrinsic::riscv_sf_vc_i_se_e64m1: case Intrinsic::riscv_sf_vc_i_se_e64m2: case Intrinsic::riscv_sf_vc_i_se_e64m4: case Intrinsic::riscv_sf_vc_i_se_e64m8: case Intrinsic::riscv_sf_vc_xv_se: case Intrinsic::riscv_sf_vc_iv_se: case Intrinsic::riscv_sf_vc_vv_se: case Intrinsic::riscv_sf_vc_fv_se: case Intrinsic::riscv_sf_vc_xvv_se: case Intrinsic::riscv_sf_vc_ivv_se: case Intrinsic::riscv_sf_vc_vvv_se: case Intrinsic::riscv_sf_vc_fvv_se: case Intrinsic::riscv_sf_vc_xvw_se: case Intrinsic::riscv_sf_vc_ivw_se: case Intrinsic::riscv_sf_vc_vvw_se: case Intrinsic::riscv_sf_vc_fvw_se: { SmallVector Ops; getVCIXOperands(Op, DAG, Ops); SDValue NewNode = DAG.getNode(ISD::INTRINSIC_VOID, SDLoc(Op), Op->getVTList(), Ops); if (Op == NewNode) break; return NewNode; } } return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); } static unsigned getRVVReductionOp(unsigned ISDOpcode) { switch (ISDOpcode) { default: llvm_unreachable("Unhandled reduction"); case ISD::VP_REDUCE_ADD: case ISD::VECREDUCE_ADD: return RISCVISD::VECREDUCE_ADD_VL; case ISD::VP_REDUCE_UMAX: case ISD::VECREDUCE_UMAX: return RISCVISD::VECREDUCE_UMAX_VL; case ISD::VP_REDUCE_SMAX: case ISD::VECREDUCE_SMAX: return RISCVISD::VECREDUCE_SMAX_VL; case ISD::VP_REDUCE_UMIN: case ISD::VECREDUCE_UMIN: return RISCVISD::VECREDUCE_UMIN_VL; case ISD::VP_REDUCE_SMIN: case ISD::VECREDUCE_SMIN: return RISCVISD::VECREDUCE_SMIN_VL; case ISD::VP_REDUCE_AND: case ISD::VECREDUCE_AND: return RISCVISD::VECREDUCE_AND_VL; case ISD::VP_REDUCE_OR: case ISD::VECREDUCE_OR: return RISCVISD::VECREDUCE_OR_VL; case ISD::VP_REDUCE_XOR: case ISD::VECREDUCE_XOR: return RISCVISD::VECREDUCE_XOR_VL; case ISD::VP_REDUCE_FADD: return RISCVISD::VECREDUCE_FADD_VL; case ISD::VP_REDUCE_SEQ_FADD: return RISCVISD::VECREDUCE_SEQ_FADD_VL; case ISD::VP_REDUCE_FMAX: return RISCVISD::VECREDUCE_FMAX_VL; case ISD::VP_REDUCE_FMIN: return RISCVISD::VECREDUCE_FMIN_VL; } } SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, SelectionDAG &DAG, bool IsVP) const { SDLoc DL(Op); SDValue Vec = Op.getOperand(IsVP ? 1 : 0); MVT VecVT = Vec.getSimpleValueType(); assert((Op.getOpcode() == ISD::VECREDUCE_AND || Op.getOpcode() == ISD::VECREDUCE_OR || Op.getOpcode() == ISD::VECREDUCE_XOR || Op.getOpcode() == ISD::VP_REDUCE_AND || Op.getOpcode() == ISD::VP_REDUCE_OR || Op.getOpcode() == ISD::VP_REDUCE_XOR) && "Unexpected reduction lowering"); MVT XLenVT = Subtarget.getXLenVT(); MVT ContainerVT = VecVT; if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } SDValue Mask, VL; if (IsVP) { Mask = Op.getOperand(2); VL = Op.getOperand(3); } else { std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); } unsigned BaseOpc; ISD::CondCode CC; SDValue Zero = DAG.getConstant(0, DL, XLenVT); switch (Op.getOpcode()) { default: llvm_unreachable("Unhandled reduction"); case ISD::VECREDUCE_AND: case ISD::VP_REDUCE_AND: { // vcpop ~x == 0 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); CC = ISD::SETEQ; BaseOpc = ISD::AND; break; } case ISD::VECREDUCE_OR: case ISD::VP_REDUCE_OR: // vcpop x != 0 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); CC = ISD::SETNE; BaseOpc = ISD::OR; break; case ISD::VECREDUCE_XOR: case ISD::VP_REDUCE_XOR: { // ((vcpop x) & 1) != 0 SDValue One = DAG.getConstant(1, DL, XLenVT); Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); CC = ISD::SETNE; BaseOpc = ISD::XOR; break; } } SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); SetCC = DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), SetCC); if (!IsVP) return SetCC; // Now include the start value in the operation. // Note that we must return the start value when no elements are operated // upon. The vcpop instructions we've emitted in each case above will return // 0 for an inactive vector, and so we've already received the neutral value: // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we // can simply include the start value. return DAG.getNode(BaseOpc, DL, Op.getValueType(), SetCC, Op.getOperand(0)); } static bool isNonZeroAVL(SDValue AVL) { auto *RegisterAVL = dyn_cast(AVL); auto *ImmAVL = dyn_cast(AVL); return (RegisterAVL && RegisterAVL->getReg() == RISCV::X0) || (ImmAVL && ImmAVL->getZExtValue() >= 1); } /// Helper to lower a reduction sequence of the form: /// scalar = reduce_op vec, scalar_start static SDValue lowerReductionSeq(unsigned RVVOpcode, MVT ResVT, SDValue StartValue, SDValue Vec, SDValue Mask, SDValue VL, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { const MVT VecVT = Vec.getSimpleValueType(); const MVT M1VT = getLMUL1VT(VecVT); const MVT XLenVT = Subtarget.getXLenVT(); const bool NonZeroAVL = isNonZeroAVL(VL); // The reduction needs an LMUL1 input; do the splat at either LMUL1 // or the original VT if fractional. auto InnerVT = VecVT.bitsLE(M1VT) ? VecVT : M1VT; // We reuse the VL of the reduction to reduce vsetvli toggles if we can // prove it is non-zero. For the AVL=0 case, we need the scalar to // be the result of the reduction operation. auto InnerVL = NonZeroAVL ? VL : DAG.getConstant(1, DL, XLenVT); SDValue InitialValue = lowerScalarInsert(StartValue, InnerVL, InnerVT, DL, DAG, Subtarget); if (M1VT != InnerVT) InitialValue = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, M1VT, DAG.getUNDEF(M1VT), InitialValue, DAG.getConstant(0, DL, XLenVT)); SDValue PassThru = NonZeroAVL ? DAG.getUNDEF(M1VT) : InitialValue; SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); SDValue Ops[] = {PassThru, Vec, InitialValue, Mask, VL, Policy}; SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, Ops); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, DAG.getConstant(0, DL, XLenVT)); } SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Vec = Op.getOperand(0); EVT VecEVT = Vec.getValueType(); unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); // Due to ordering in legalize types we may have a vector type that needs to // be split. Do that manually so we can get down to a legal type. while (getTypeAction(*DAG.getContext(), VecEVT) == TargetLowering::TypeSplitVector) { auto [Lo, Hi] = DAG.SplitVector(Vec, DL); VecEVT = Lo.getValueType(); Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); } // TODO: The type may need to be widened rather than split. Or widened before // it can be split. if (!isTypeLegal(VecEVT)) return SDValue(); MVT VecVT = VecEVT.getSimpleVT(); MVT VecEltVT = VecVT.getVectorElementType(); unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); MVT ContainerVT = VecVT; if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); SDValue StartV = DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); switch (BaseOpc) { case ISD::AND: case ISD::OR: case ISD::UMAX: case ISD::UMIN: case ISD::SMAX: case ISD::SMIN: MVT XLenVT = Subtarget.getXLenVT(); StartV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Vec, DAG.getConstant(0, DL, XLenVT)); } return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), StartV, Vec, Mask, VL, DL, DAG, Subtarget); } // Given a reduction op, this function returns the matching reduction opcode, // the vector SDValue and the scalar SDValue required to lower this to a // RISCVISD node. static std::tuple getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT, const RISCVSubtarget &Subtarget) { SDLoc DL(Op); auto Flags = Op->getFlags(); unsigned Opcode = Op.getOpcode(); switch (Opcode) { default: llvm_unreachable("Unhandled reduction"); case ISD::VECREDUCE_FADD: { // Use positive zero if we can. It is cheaper to materialize. SDValue Zero = DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); } case ISD::VECREDUCE_SEQ_FADD: return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), Op.getOperand(0)); case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAX: { MVT XLenVT = Subtarget.getXLenVT(); SDValue Front = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Op.getOperand(0), DAG.getConstant(0, DL, XLenVT)); unsigned RVVOpc = (Opcode == ISD::VECREDUCE_FMIN) ? RISCVISD::VECREDUCE_FMIN_VL : RISCVISD::VECREDUCE_FMAX_VL; return std::make_tuple(RVVOpc, Op.getOperand(0), Front); } } } SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VecEltVT = Op.getSimpleValueType(); unsigned RVVOpcode; SDValue VectorVal, ScalarVal; std::tie(RVVOpcode, VectorVal, ScalarVal) = getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT, Subtarget); MVT VecVT = VectorVal.getSimpleValueType(); MVT ContainerVT = VecVT; if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); } auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), ScalarVal, VectorVal, Mask, VL, DL, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Vec = Op.getOperand(1); EVT VecEVT = Vec.getValueType(); // TODO: The type may need to be widened rather than split. Or widened before // it can be split. if (!isTypeLegal(VecEVT)) return SDValue(); MVT VecVT = VecEVT.getSimpleVT(); unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); if (VecVT.isFixedLengthVector()) { auto ContainerVT = getContainerForFixedLengthVector(VecVT); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } SDValue VL = Op.getOperand(3); SDValue Mask = Op.getOperand(2); return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), Op.getOperand(0), Vec, Mask, VL, DL, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { SDValue Vec = Op.getOperand(0); SDValue SubVec = Op.getOperand(1); MVT VecVT = Vec.getSimpleValueType(); MVT SubVecVT = SubVec.getSimpleValueType(); SDLoc DL(Op); MVT XLenVT = Subtarget.getXLenVT(); unsigned OrigIdx = Op.getConstantOperandVal(2); const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); // We don't have the ability to slide mask vectors up indexed by their i1 // elements; the smallest we can do is i8. Often we are able to bitcast to // equivalent i8 vectors. Note that when inserting a fixed-length vector // into a scalable one, we might not necessarily have enough scalable // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. if (SubVecVT.getVectorElementType() == MVT::i1 && (OrigIdx != 0 || !Vec.isUndef())) { if (VecVT.getVectorMinNumElements() >= 8 && SubVecVT.getVectorMinNumElements() >= 8) { assert(OrigIdx % 8 == 0 && "Invalid index"); assert(VecVT.getVectorMinNumElements() % 8 == 0 && SubVecVT.getVectorMinNumElements() % 8 == 0 && "Unexpected mask vector lowering"); OrigIdx /= 8; SubVecVT = MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, SubVecVT.isScalableVector()); VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, VecVT.isScalableVector()); Vec = DAG.getBitcast(VecVT, Vec); SubVec = DAG.getBitcast(SubVecVT, SubVec); } else { // We can't slide this mask vector up indexed by its i1 elements. // This poses a problem when we wish to insert a scalable vector which // can't be re-expressed as a larger type. Just choose the slow path and // extend to a larger type, then truncate back down. MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, Op.getOperand(2)); SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); } } // If the subvector vector is a fixed-length type, we cannot use subregister // manipulation to simplify the codegen; we don't know which register of a // LMUL group contains the specific subvector as we only know the minimum // register size. Therefore we must slide the vector group up the full // amount. if (SubVecVT.isFixedLengthVector()) { if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) return Op; MVT ContainerVT = VecVT; if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, DAG.getUNDEF(ContainerVT), SubVec, DAG.getConstant(0, DL, XLenVT)); SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); return DAG.getBitcast(Op.getValueType(), SubVec); } SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, DAG.getUNDEF(ContainerVT), SubVec, DAG.getConstant(0, DL, XLenVT)); SDValue Mask = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; // Set the vector length to only the number of elements we care about. Note // that for slideup this includes the offset. unsigned EndIndex = OrigIdx + SubVecVT.getVectorNumElements(); SDValue VL = getVLOp(EndIndex, ContainerVT, DL, DAG, Subtarget); // Use tail agnostic policy if we're inserting over Vec's tail. unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED; if (VecVT.isFixedLengthVector() && EndIndex == VecVT.getVectorNumElements()) Policy = RISCVII::TAIL_AGNOSTIC; // If we're inserting into the lowest elements, use a tail undisturbed // vmv.v.v. if (OrigIdx == 0) { SubVec = DAG.getNode(RISCVISD::VMV_V_V_VL, DL, ContainerVT, Vec, SubVec, VL); } else { SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); SubVec = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, SubVec, SlideupAmt, Mask, VL, Policy); } if (VecVT.isFixedLengthVector()) SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); return DAG.getBitcast(Op.getValueType(), SubVec); } unsigned SubRegIdx, RemIdx; std::tie(SubRegIdx, RemIdx) = RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( VecVT, SubVecVT, OrigIdx, TRI); RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || SubVecLMUL == RISCVII::VLMUL::LMUL_F8; // 1. If the Idx has been completely eliminated and this subvector's size is // a vector register or a multiple thereof, or the surrounding elements are // undef, then this is a subvector insert which naturally aligns to a vector // register. These can easily be handled using subregister manipulation. // 2. If the subvector is smaller than a vector register, then the insertion // must preserve the undisturbed elements of the register. We do this by // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type // (which resolves to a subregister copy), performing a VSLIDEUP to place the // subvector within the vector register, and an INSERT_SUBVECTOR of that // LMUL=1 type back into the larger vector (resolving to another subregister // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type // to avoid allocating a large register group to hold our subvector. if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) return Op; // VSLIDEUP works by leaving elements 0= 8 && SubVecVT.getVectorMinNumElements() >= 8) { assert(OrigIdx % 8 == 0 && "Invalid index"); assert(VecVT.getVectorMinNumElements() % 8 == 0 && SubVecVT.getVectorMinNumElements() % 8 == 0 && "Unexpected mask vector lowering"); OrigIdx /= 8; SubVecVT = MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, SubVecVT.isScalableVector()); VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, VecVT.isScalableVector()); Vec = DAG.getBitcast(VecVT, Vec); } else { // We can't slide this mask vector down, indexed by its i1 elements. // This poses a problem when we wish to extract a scalable vector which // can't be re-expressed as a larger type. Just choose the slow path and // extend to a larger type, then truncate back down. // TODO: We could probably improve this when extracting certain fixed // from fixed, where we can extract as i8 and shift the correct element // right to reach the desired subvector? MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, Op.getOperand(1)); SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); } } // With an index of 0 this is a cast-like subvector, which can be performed // with subregister operations. if (OrigIdx == 0) return Op; // If the subvector vector is a fixed-length type, we cannot use subregister // manipulation to simplify the codegen; we don't know which register of a // LMUL group contains the specific subvector as we only know the minimum // register size. Therefore we must slide the vector group down the full // amount. if (SubVecVT.isFixedLengthVector()) { MVT ContainerVT = VecVT; if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } // Shrink down Vec so we're performing the slidedown on a smaller LMUL. unsigned LastIdx = OrigIdx + SubVecVT.getVectorNumElements() - 1; if (auto ShrunkVT = getSmallestVTForIndex(ContainerVT, LastIdx, DL, DAG, Subtarget)) { ContainerVT = *ShrunkVT; Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ContainerVT, Vec, DAG.getVectorIdxConstant(0, DL)); } SDValue Mask = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; // Set the vector length to only the number of elements we care about. This // avoids sliding down elements we're going to discard straight away. SDValue VL = getVLOp(SubVecVT.getVectorNumElements(), ContainerVT, DL, DAG, Subtarget); SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); SDValue Slidedown = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); // Now we can use a cast-like subvector extract to get the result. Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, DAG.getConstant(0, DL, XLenVT)); return DAG.getBitcast(Op.getValueType(), Slidedown); } unsigned SubRegIdx, RemIdx; std::tie(SubRegIdx, RemIdx) = RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( VecVT, SubVecVT, OrigIdx, TRI); // If the Idx has been completely eliminated then this is a subvector extract // which naturally aligns to a vector register. These can easily be handled // using subregister manipulation. if (RemIdx == 0) return Op; // Else SubVecVT is a fractional LMUL and may need to be slid down. assert(RISCVVType::decodeVLMUL(getLMUL(SubVecVT)).second); // If the vector type is an LMUL-group type, extract a subvector equal to the // nearest full vector register type. MVT InterSubVT = VecVT; if (VecVT.bitsGT(getLMUL1VT(VecVT))) { // If VecVT has an LMUL > 1, then SubVecVT should have a smaller LMUL, and // we should have successfully decomposed the extract into a subregister. assert(SubRegIdx != RISCV::NoSubRegister); InterSubVT = getLMUL1VT(VecVT); Vec = DAG.getTargetExtractSubreg(SubRegIdx, DL, InterSubVT, Vec); } // Slide this vector register down by the desired number of elements in order // to place the desired subvector starting at element 0. SDValue SlidedownAmt = DAG.getVScale(DL, XLenVT, APInt(XLenVT.getSizeInBits(), RemIdx)); auto [Mask, VL] = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); SDValue Slidedown = getVSlidedown(DAG, Subtarget, DL, InterSubVT, DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); // Now the vector is in the right position, extract our final subvector. This // should resolve to a COPY. Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, DAG.getConstant(0, DL, XLenVT)); // We might have bitcast from a mask type: cast back to the original type if // required. return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); } // Widen a vector's operands to i8, then truncate its results back to the // original type, typically i1. All operand and result types must be the same. static SDValue widenVectorOpsToi8(SDValue N, const SDLoc &DL, SelectionDAG &DAG) { MVT VT = N.getSimpleValueType(); MVT WideVT = VT.changeVectorElementType(MVT::i8); SmallVector WideOps; for (SDValue Op : N->ops()) { assert(Op.getSimpleValueType() == VT && "Operands and result must be same type"); WideOps.push_back(DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Op)); } unsigned NumVals = N->getNumValues(); SDVTList VTs = DAG.getVTList(SmallVector( NumVals, N.getValueType().changeVectorElementType(MVT::i8))); SDValue WideN = DAG.getNode(N.getOpcode(), DL, VTs, WideOps); SmallVector TruncVals; for (unsigned I = 0; I < NumVals; I++) { TruncVals.push_back( DAG.getSetCC(DL, N->getSimpleValueType(I), WideN.getValue(I), DAG.getConstant(0, DL, WideVT), ISD::SETNE)); } if (TruncVals.size() > 1) return DAG.getMergeValues(TruncVals, DL); return TruncVals.front(); } SDValue RISCVTargetLowering::lowerVECTOR_DEINTERLEAVE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VecVT = Op.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); assert(VecVT.isScalableVector() && "vector_interleave on non-scalable vector!"); // 1 bit element vectors need to be widened to e8 if (VecVT.getVectorElementType() == MVT::i1) return widenVectorOpsToi8(Op, DL, DAG); // If the VT is LMUL=8, we need to split and reassemble. if (VecVT.getSizeInBits().getKnownMinValue() == (8 * RISCV::RVVBitsPerBlock)) { auto [Op0Lo, Op0Hi] = DAG.SplitVectorOperand(Op.getNode(), 0); auto [Op1Lo, Op1Hi] = DAG.SplitVectorOperand(Op.getNode(), 1); EVT SplitVT = Op0Lo.getValueType(); SDValue ResLo = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, DAG.getVTList(SplitVT, SplitVT), Op0Lo, Op0Hi); SDValue ResHi = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, DAG.getVTList(SplitVT, SplitVT), Op1Lo, Op1Hi); SDValue Even = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, ResLo.getValue(0), ResHi.getValue(0)); SDValue Odd = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, ResLo.getValue(1), ResHi.getValue(1)); return DAG.getMergeValues({Even, Odd}, DL); } // Concatenate the two vectors as one vector to deinterleave MVT ConcatVT = MVT::getVectorVT(VecVT.getVectorElementType(), VecVT.getVectorElementCount().multiplyCoefficientBy(2)); SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT, Op.getOperand(0), Op.getOperand(1)); // We want to operate on all lanes, so get the mask and VL and mask for it auto [Mask, VL] = getDefaultScalableVLOps(ConcatVT, DL, DAG, Subtarget); SDValue Passthru = DAG.getUNDEF(ConcatVT); // We can deinterleave through vnsrl.wi if the element type is smaller than // ELEN if (VecVT.getScalarSizeInBits() < Subtarget.getELen()) { SDValue Even = getDeinterleaveViaVNSRL(DL, VecVT, Concat, true, Subtarget, DAG); SDValue Odd = getDeinterleaveViaVNSRL(DL, VecVT, Concat, false, Subtarget, DAG); return DAG.getMergeValues({Even, Odd}, DL); } // For the indices, use the same SEW to avoid an extra vsetvli MVT IdxVT = ConcatVT.changeVectorElementTypeToInteger(); // Create a vector of even indices {0, 2, 4, ...} SDValue EvenIdx = DAG.getStepVector(DL, IdxVT, APInt(IdxVT.getScalarSizeInBits(), 2)); // Create a vector of odd indices {1, 3, 5, ... } SDValue OddIdx = DAG.getNode(ISD::ADD, DL, IdxVT, EvenIdx, DAG.getConstant(1, DL, IdxVT)); // Gather the even and odd elements into two separate vectors SDValue EvenWide = DAG.getNode(RISCVISD::VRGATHER_VV_VL, DL, ConcatVT, Concat, EvenIdx, Passthru, Mask, VL); SDValue OddWide = DAG.getNode(RISCVISD::VRGATHER_VV_VL, DL, ConcatVT, Concat, OddIdx, Passthru, Mask, VL); // Extract the result half of the gather for even and odd SDValue Even = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VecVT, EvenWide, DAG.getConstant(0, DL, XLenVT)); SDValue Odd = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VecVT, OddWide, DAG.getConstant(0, DL, XLenVT)); return DAG.getMergeValues({Even, Odd}, DL); } SDValue RISCVTargetLowering::lowerVECTOR_INTERLEAVE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VecVT = Op.getSimpleValueType(); assert(VecVT.isScalableVector() && "vector_interleave on non-scalable vector!"); // i1 vectors need to be widened to i8 if (VecVT.getVectorElementType() == MVT::i1) return widenVectorOpsToi8(Op, DL, DAG); MVT XLenVT = Subtarget.getXLenVT(); SDValue VL = DAG.getRegister(RISCV::X0, XLenVT); // If the VT is LMUL=8, we need to split and reassemble. if (VecVT.getSizeInBits().getKnownMinValue() == (8 * RISCV::RVVBitsPerBlock)) { auto [Op0Lo, Op0Hi] = DAG.SplitVectorOperand(Op.getNode(), 0); auto [Op1Lo, Op1Hi] = DAG.SplitVectorOperand(Op.getNode(), 1); EVT SplitVT = Op0Lo.getValueType(); SDValue ResLo = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, DAG.getVTList(SplitVT, SplitVT), Op0Lo, Op1Lo); SDValue ResHi = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, DAG.getVTList(SplitVT, SplitVT), Op0Hi, Op1Hi); SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, ResLo.getValue(0), ResLo.getValue(1)); SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, ResHi.getValue(0), ResHi.getValue(1)); return DAG.getMergeValues({Lo, Hi}, DL); } SDValue Interleaved; // If the element type is smaller than ELEN, then we can interleave with // vwaddu.vv and vwmaccu.vx if (VecVT.getScalarSizeInBits() < Subtarget.getELen()) { Interleaved = getWideningInterleave(Op.getOperand(0), Op.getOperand(1), DL, DAG, Subtarget); } else { // Otherwise, fallback to using vrgathere16.vv MVT ConcatVT = MVT::getVectorVT(VecVT.getVectorElementType(), VecVT.getVectorElementCount().multiplyCoefficientBy(2)); SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT, Op.getOperand(0), Op.getOperand(1)); MVT IdxVT = ConcatVT.changeVectorElementType(MVT::i16); // 0 1 2 3 4 5 6 7 ... SDValue StepVec = DAG.getStepVector(DL, IdxVT); // 1 1 1 1 1 1 1 1 ... SDValue Ones = DAG.getSplatVector(IdxVT, DL, DAG.getConstant(1, DL, XLenVT)); // 1 0 1 0 1 0 1 0 ... SDValue OddMask = DAG.getNode(ISD::AND, DL, IdxVT, StepVec, Ones); OddMask = DAG.getSetCC( DL, IdxVT.changeVectorElementType(MVT::i1), OddMask, DAG.getSplatVector(IdxVT, DL, DAG.getConstant(0, DL, XLenVT)), ISD::CondCode::SETNE); SDValue VLMax = DAG.getSplatVector(IdxVT, DL, computeVLMax(VecVT, DL, DAG)); // Build up the index vector for interleaving the concatenated vector // 0 0 1 1 2 2 3 3 ... SDValue Idx = DAG.getNode(ISD::SRL, DL, IdxVT, StepVec, Ones); // 0 n 1 n+1 2 n+2 3 n+3 ... Idx = DAG.getNode(RISCVISD::ADD_VL, DL, IdxVT, Idx, VLMax, Idx, OddMask, VL); // Then perform the interleave // v[0] v[n] v[1] v[n+1] v[2] v[n+2] v[3] v[n+3] ... SDValue TrueMask = getAllOnesMask(IdxVT, VL, DL, DAG); Interleaved = DAG.getNode(RISCVISD::VRGATHEREI16_VV_VL, DL, ConcatVT, Concat, Idx, DAG.getUNDEF(ConcatVT), TrueMask, VL); } // Extract the two halves from the interleaved result SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VecVT, Interleaved, DAG.getVectorIdxConstant(0, DL)); SDValue Hi = DAG.getNode( ISD::EXTRACT_SUBVECTOR, DL, VecVT, Interleaved, DAG.getVectorIdxConstant(VecVT.getVectorMinNumElements(), DL)); return DAG.getMergeValues({Lo, Hi}, DL); } // Lower step_vector to the vid instruction. Any non-identity step value must // be accounted for my manual expansion. SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); assert(VT.isScalableVector() && "Expected scalable vector"); MVT XLenVT = Subtarget.getXLenVT(); auto [Mask, VL] = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); uint64_t StepValImm = Op.getConstantOperandVal(0); if (StepValImm != 1) { if (isPowerOf2_64(StepValImm)) { SDValue StepVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), DAG.getConstant(Log2_64(StepValImm), DL, XLenVT), VL); StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); } else { SDValue StepVal = lowerScalarSplat( SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, DL, DAG, Subtarget); StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); } } return StepVec; } // Implement vector_reverse using vrgather.vv with indices determined by // subtracting the id of each element from (VLMAX-1). This will convert // the indices like so: // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VecVT = Op.getSimpleValueType(); if (VecVT.getVectorElementType() == MVT::i1) { MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0)); SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1); return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2); } unsigned EltSize = VecVT.getScalarSizeInBits(); unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); unsigned MaxVLMAX = RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; MVT IntVT = VecVT.changeVectorElementTypeToInteger(); // If this is SEW=8 and VLMAX is potentially more than 256, we need // to use vrgatherei16.vv. // TODO: It's also possible to use vrgatherei16.vv for other types to // decrease register width for the index calculation. if (MaxVLMAX > 256 && EltSize == 8) { // If this is LMUL=8, we have to split before can use vrgatherei16.vv. // Reverse each half, then reassemble them in reverse order. // NOTE: It's also possible that after splitting that VLMAX no longer // requires vrgatherei16.vv. if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0); auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VecVT); Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); // Reassemble the low and high pieces reversed. // FIXME: This is a CONCAT_VECTORS. SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, DAG.getIntPtrConstant(0, DL)); return DAG.getNode( ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); } // Just promote the int type to i16 which will double the LMUL. IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; } MVT XLenVT = Subtarget.getXLenVT(); auto [Mask, VL] = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); // Calculate VLMAX-1 for the desired SEW. SDValue VLMinus1 = DAG.getNode(ISD::SUB, DL, XLenVT, computeVLMax(VecVT, DL, DAG), DAG.getConstant(1, DL, XLenVT)); // Splat VLMAX-1 taking care to handle SEW==64 on RV32. bool IsRV32E64 = !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; SDValue SplatVL; if (!IsRV32E64) SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); else SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); SDValue Indices = DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, DAG.getUNDEF(IntVT), Mask, VL); return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, DAG.getUNDEF(VecVT), Mask, VL); } SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); MVT XLenVT = Subtarget.getXLenVT(); MVT VecVT = Op.getSimpleValueType(); SDValue VLMax = computeVLMax(VecVT, DL, DAG); int64_t ImmValue = cast(Op.getOperand(2))->getSExtValue(); SDValue DownOffset, UpOffset; if (ImmValue >= 0) { // The operand is a TargetConstant, we need to rebuild it as a regular // constant. DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); } else { // The operand is a TargetConstant, we need to rebuild it as a regular // constant rather than negating the original operand. UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); } SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG); SDValue SlideDown = getVSlidedown(DAG, Subtarget, DL, VecVT, DAG.getUNDEF(VecVT), V1, DownOffset, TrueMask, UpOffset); return getVSlideup(DAG, Subtarget, DL, VecVT, SlideDown, V2, UpOffset, TrueMask, DAG.getRegister(RISCV::X0, XLenVT), RISCVII::TAIL_AGNOSTIC); } SDValue RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); auto *Load = cast(Op); assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), Load->getMemoryVT(), *Load->getMemOperand()) && "Expecting a correctly-aligned load"); MVT VT = Op.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); MVT ContainerVT = getContainerForFixedLengthVector(VT); // If we know the exact VLEN and our fixed length vector completely fills // the container, use a whole register load instead. const auto [MinVLMAX, MaxVLMAX] = RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget); if (MinVLMAX == MaxVLMAX && MinVLMAX == VT.getVectorNumElements() && getLMUL1VT(ContainerVT).bitsLE(ContainerVT)) { SDValue NewLoad = DAG.getLoad(ContainerVT, DL, Load->getChain(), Load->getBasePtr(), Load->getMemOperand()); SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); } SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG, Subtarget); bool IsMaskOp = VT.getVectorElementType() == MVT::i1; SDValue IntID = DAG.getTargetConstant( IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); SmallVector Ops{Load->getChain(), IntID}; if (!IsMaskOp) Ops.push_back(DAG.getUNDEF(ContainerVT)); Ops.push_back(Load->getBasePtr()); Ops.push_back(VL); SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); SDValue NewLoad = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, Load->getMemoryVT(), Load->getMemOperand()); SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); } SDValue RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); auto *Store = cast(Op); assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), Store->getMemoryVT(), *Store->getMemOperand()) && "Expecting a correctly-aligned store"); SDValue StoreVal = Store->getValue(); MVT VT = StoreVal.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); // If the size less than a byte, we need to pad with zeros to make a byte. if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { VT = MVT::v8i1; StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getConstant(0, DL, VT), StoreVal, DAG.getIntPtrConstant(0, DL)); } MVT ContainerVT = getContainerForFixedLengthVector(VT); SDValue NewValue = convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); // If we know the exact VLEN and our fixed length vector completely fills // the container, use a whole register store instead. const auto [MinVLMAX, MaxVLMAX] = RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget); if (MinVLMAX == MaxVLMAX && MinVLMAX == VT.getVectorNumElements() && getLMUL1VT(ContainerVT).bitsLE(ContainerVT)) return DAG.getStore(Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getMemOperand()); SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG, Subtarget); bool IsMaskOp = VT.getVectorElementType() == MVT::i1; SDValue IntID = DAG.getTargetConstant( IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); return DAG.getMemIntrinsicNode( ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, Store->getMemoryVT(), Store->getMemOperand()); } SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); const auto *MemSD = cast(Op); EVT MemVT = MemSD->getMemoryVT(); MachineMemOperand *MMO = MemSD->getMemOperand(); SDValue Chain = MemSD->getChain(); SDValue BasePtr = MemSD->getBasePtr(); SDValue Mask, PassThru, VL; if (const auto *VPLoad = dyn_cast(Op)) { Mask = VPLoad->getMask(); PassThru = DAG.getUNDEF(VT); VL = VPLoad->getVectorLength(); } else { const auto *MLoad = cast(Op); Mask = MLoad->getMask(); PassThru = MLoad->getPassThru(); } bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); MVT XLenVT = Subtarget.getXLenVT(); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); if (!IsUnmasked) { MVT MaskVT = getMaskTypeFor(ContainerVT); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } } if (!VL) VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; unsigned IntID = IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; SmallVector Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; if (IsUnmasked) Ops.push_back(DAG.getUNDEF(ContainerVT)); else Ops.push_back(PassThru); Ops.push_back(BasePtr); if (!IsUnmasked) Ops.push_back(Mask); Ops.push_back(VL); if (!IsUnmasked) Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); SDValue Result = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); Chain = Result.getValue(1); if (VT.isFixedLengthVector()) Result = convertFromScalableVector(VT, Result, DAG, Subtarget); return DAG.getMergeValues({Result, Chain}, DL); } SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const auto *MemSD = cast(Op); EVT MemVT = MemSD->getMemoryVT(); MachineMemOperand *MMO = MemSD->getMemOperand(); SDValue Chain = MemSD->getChain(); SDValue BasePtr = MemSD->getBasePtr(); SDValue Val, Mask, VL; if (const auto *VPStore = dyn_cast(Op)) { Val = VPStore->getValue(); Mask = VPStore->getMask(); VL = VPStore->getVectorLength(); } else { const auto *MStore = cast(Op); Val = MStore->getValue(); Mask = MStore->getMask(); } bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); MVT VT = Val.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); if (!IsUnmasked) { MVT MaskVT = getMaskTypeFor(ContainerVT); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } } if (!VL) VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; unsigned IntID = IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; SmallVector Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; Ops.push_back(Val); Ops.push_back(BasePtr); if (!IsUnmasked) Ops.push_back(Mask); Ops.push_back(VL); return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), Ops, MemVT, MMO); } SDValue RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, SelectionDAG &DAG) const { MVT InVT = Op.getOperand(0).getSimpleValueType(); MVT ContainerVT = getContainerForFixedLengthVector(InVT); MVT VT = Op.getSimpleValueType(); SDValue Op1 = convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); SDValue Op2 = convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); SDLoc DL(Op); auto [Mask, VL] = getDefaultVLOps(VT.getVectorNumElements(), ContainerVT, DL, DAG, Subtarget); MVT MaskVT = getMaskTypeFor(ContainerVT); SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, {Op1, Op2, Op.getOperand(2), DAG.getUNDEF(MaskVT), Mask, VL}); return convertFromScalableVector(VT, Cmp, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerVectorStrictFSetcc(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); SDValue CC = Op.getOperand(3); ISD::CondCode CCVal = cast(CC)->get(); MVT VT = Op.getSimpleValueType(); MVT InVT = Op1.getSimpleValueType(); // RVV VMFEQ/VMFNE ignores qNan, so we expand strict_fsetccs with OEQ/UNE // condition code. if (Opc == ISD::STRICT_FSETCCS) { // Expand strict_fsetccs(x, oeq) to // (and strict_fsetccs(x, y, oge), strict_fsetccs(x, y, ole)) SDVTList VTList = Op->getVTList(); if (CCVal == ISD::SETEQ || CCVal == ISD::SETOEQ) { SDValue OLECCVal = DAG.getCondCode(ISD::SETOLE); SDValue Tmp1 = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op1, Op2, OLECCVal); SDValue Tmp2 = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op2, Op1, OLECCVal); SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Tmp1.getValue(1), Tmp2.getValue(1)); // Tmp1 and Tmp2 might be the same node. if (Tmp1 != Tmp2) Tmp1 = DAG.getNode(ISD::AND, DL, VT, Tmp1, Tmp2); return DAG.getMergeValues({Tmp1, OutChain}, DL); } // Expand (strict_fsetccs x, y, une) to (not (strict_fsetccs x, y, oeq)) if (CCVal == ISD::SETNE || CCVal == ISD::SETUNE) { SDValue OEQCCVal = DAG.getCondCode(ISD::SETOEQ); SDValue OEQ = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op1, Op2, OEQCCVal); SDValue Res = DAG.getNOT(DL, OEQ, VT); return DAG.getMergeValues({Res, OEQ.getValue(1)}, DL); } } MVT ContainerInVT = InVT; if (InVT.isFixedLengthVector()) { ContainerInVT = getContainerForFixedLengthVector(InVT); Op1 = convertToScalableVector(ContainerInVT, Op1, DAG, Subtarget); Op2 = convertToScalableVector(ContainerInVT, Op2, DAG, Subtarget); } MVT MaskVT = getMaskTypeFor(ContainerInVT); auto [Mask, VL] = getDefaultVLOps(InVT, ContainerInVT, DL, DAG, Subtarget); SDValue Res; if (Opc == ISD::STRICT_FSETCC && (CCVal == ISD::SETLT || CCVal == ISD::SETOLT || CCVal == ISD::SETLE || CCVal == ISD::SETOLE)) { // VMFLT/VMFLE/VMFGT/VMFGE raise exception for qNan. Generate a mask to only // active when both input elements are ordered. SDValue True = getAllOnesMask(ContainerInVT, VL, DL, DAG); SDValue OrderMask1 = DAG.getNode( RISCVISD::STRICT_FSETCC_VL, DL, DAG.getVTList(MaskVT, MVT::Other), {Chain, Op1, Op1, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(MaskVT), True, VL}); SDValue OrderMask2 = DAG.getNode( RISCVISD::STRICT_FSETCC_VL, DL, DAG.getVTList(MaskVT, MVT::Other), {Chain, Op2, Op2, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(MaskVT), True, VL}); Mask = DAG.getNode(RISCVISD::VMAND_VL, DL, MaskVT, OrderMask1, OrderMask2, VL); // Use Mask as the merge operand to let the result be 0 if either of the // inputs is unordered. Res = DAG.getNode(RISCVISD::STRICT_FSETCCS_VL, DL, DAG.getVTList(MaskVT, MVT::Other), {Chain, Op1, Op2, CC, Mask, Mask, VL}); } else { unsigned RVVOpc = Opc == ISD::STRICT_FSETCC ? RISCVISD::STRICT_FSETCC_VL : RISCVISD::STRICT_FSETCCS_VL; Res = DAG.getNode(RVVOpc, DL, DAG.getVTList(MaskVT, MVT::Other), {Chain, Op1, Op2, CC, DAG.getUNDEF(MaskVT), Mask, VL}); } if (VT.isFixedLengthVector()) { SDValue SubVec = convertFromScalableVector(VT, Res, DAG, Subtarget); return DAG.getMergeValues({SubVec, Res.getValue(1)}, DL); } return Res; } // Lower vector ABS to smax(X, sub(0, X)). SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue X = Op.getOperand(0); assert((Op.getOpcode() == ISD::VP_ABS || VT.isFixedLengthVector()) && "Unexpected type for ISD::ABS"); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); } SDValue Mask, VL; if (Op->getOpcode() == ISD::VP_ABS) { Mask = Op->getOperand(1); if (VT.isFixedLengthVector()) Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG, Subtarget); VL = Op->getOperand(2); } else std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); SDValue SplatZero = DAG.getNode( RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL); SDValue NegX = DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, DAG.getUNDEF(ContainerVT), Mask, VL); SDValue Max = DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, DAG.getUNDEF(ContainerVT), Mask, VL); if (VT.isFixedLengthVector()) Max = convertFromScalableVector(VT, Max, DAG, Subtarget); return Max; } SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue Mag = Op.getOperand(0); SDValue Sign = Op.getOperand(1); assert(Mag.getValueType() == Sign.getValueType() && "Can only handle COPYSIGN with matching types."); MVT ContainerVT = getContainerForFixedLengthVector(VT); Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); SDValue CopySign = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, DAG.getUNDEF(ContainerVT), Mask, VL); return convertFromScalableVector(VT, CopySign, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); MVT ContainerVT = getContainerForFixedLengthVector(VT); MVT I1ContainerVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); SDValue CC = convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); SDValue Op1 = convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); SDValue Op2 = convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); SDLoc DL(Op); SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; SDValue Select = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, CC, Op1, Op2, DAG.getUNDEF(ContainerVT), VL); return convertFromScalableVector(VT, Select, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG) const { unsigned NewOpc = getRISCVVLOp(Op); bool HasMergeOp = hasMergeOp(NewOpc); bool HasMask = hasMaskOp(NewOpc); MVT VT = Op.getSimpleValueType(); MVT ContainerVT = getContainerForFixedLengthVector(VT); // Create list of operands by converting existing ones to scalable types. SmallVector Ops; for (const SDValue &V : Op->op_values()) { assert(!isa(V) && "Unexpected VTSDNode node!"); // Pass through non-vector operands. if (!V.getValueType().isVector()) { Ops.push_back(V); continue; } // "cast" fixed length vector to a scalable vector. assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && "Only fixed length vectors are supported!"); Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); } SDLoc DL(Op); auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); if (HasMergeOp) Ops.push_back(DAG.getUNDEF(ContainerVT)); if (HasMask) Ops.push_back(Mask); Ops.push_back(VL); // StrictFP operations have two result values. Their lowered result should // have same result count. if (Op->isStrictFPOpcode()) { SDValue ScalableRes = DAG.getNode(NewOpc, DL, DAG.getVTList(ContainerVT, MVT::Other), Ops, Op->getFlags()); SDValue SubVec = convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); return DAG.getMergeValues({SubVec, ScalableRes.getValue(1)}, DL); } SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops, Op->getFlags()); return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); } // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: // * Operands of each node are assumed to be in the same order. // * The EVL operand is promoted from i32 to i64 on RV64. // * Fixed-length vectors are converted to their scalable-vector container // types. SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG) const { unsigned RISCVISDOpc = getRISCVVLOp(Op); bool HasMergeOp = hasMergeOp(RISCVISDOpc); SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SmallVector Ops; MVT ContainerVT = VT; if (VT.isFixedLengthVector()) ContainerVT = getContainerForFixedLengthVector(VT); for (const auto &OpIdx : enumerate(Op->ops())) { SDValue V = OpIdx.value(); assert(!isa(V) && "Unexpected VTSDNode node!"); // Add dummy merge value before the mask. Or if there isn't a mask, before // EVL. if (HasMergeOp) { auto MaskIdx = ISD::getVPMaskIdx(Op.getOpcode()); if (MaskIdx) { if (*MaskIdx == OpIdx.index()) Ops.push_back(DAG.getUNDEF(ContainerVT)); } else if (ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()) == OpIdx.index()) { if (Op.getOpcode() == ISD::VP_MERGE) { // For VP_MERGE, copy the false operand instead of an undef value. Ops.push_back(Ops.back()); } else { assert(Op.getOpcode() == ISD::VP_SELECT); // For VP_SELECT, add an undef value. Ops.push_back(DAG.getUNDEF(ContainerVT)); } } } // Pass through operands which aren't fixed-length vectors. if (!V.getValueType().isFixedLengthVector()) { Ops.push_back(V); continue; } // "cast" fixed length vector to a scalable vector. MVT OpVT = V.getSimpleValueType(); MVT ContainerVT = getContainerForFixedLengthVector(OpVT); assert(useRVVForFixedLengthVectorVT(OpVT) && "Only fixed length vectors are supported!"); Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); } if (!VT.isFixedLengthVector()) return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags()); SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags()); return convertFromScalableVector(VT, VPOp, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue Src = Op.getOperand(0); // NOTE: Mask is dropped. SDValue VL = Op.getOperand(2); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); } MVT XLenVT = Subtarget.getXLenVT(); SDValue Zero = DAG.getConstant(0, DL, XLenVT); SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Zero, VL); SDValue SplatValue = DAG.getConstant( Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT); SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), SplatValue, VL); SDValue Result = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Src, Splat, ZeroSplat, DAG.getUNDEF(ContainerVT), VL); if (!VT.isFixedLengthVector()) return Result; return convertFromScalableVector(VT, Result, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); SDValue Op1 = Op.getOperand(0); SDValue Op2 = Op.getOperand(1); ISD::CondCode Condition = cast(Op.getOperand(2))->get(); // NOTE: Mask is dropped. SDValue VL = Op.getOperand(4); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); } SDValue Result; SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); switch (Condition) { default: break; // X != Y --> (X^Y) case ISD::SETNE: Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); break; // X == Y --> ~(X^Y) case ISD::SETEQ: { SDValue Temp = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL); break; } // X >s Y --> X == 0 & Y == 1 --> ~X & Y // X X == 0 & Y == 1 --> ~X & Y case ISD::SETGT: case ISD::SETULT: { SDValue Temp = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL); break; } // X X == 1 & Y == 0 --> ~Y & X // X >u Y --> X == 1 & Y == 0 --> ~Y & X case ISD::SETLT: case ISD::SETUGT: { SDValue Temp = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL); break; } // X >=s Y --> X == 0 | Y == 1 --> ~X | Y // X <=u Y --> X == 0 | Y == 1 --> ~X | Y case ISD::SETGE: case ISD::SETULE: { SDValue Temp = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL); break; } // X <=s Y --> X == 1 | Y == 0 --> ~Y | X // X >=u Y --> X == 1 | Y == 0 --> ~Y | X case ISD::SETLE: case ISD::SETUGE: { SDValue Temp = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL); break; } } if (!VT.isFixedLengthVector()) return Result; return convertFromScalableVector(VT, Result, DAG, Subtarget); } // Lower Floating-Point/Integer Type-Convert VP SDNodes SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Src = Op.getOperand(0); SDValue Mask = Op.getOperand(1); SDValue VL = Op.getOperand(2); unsigned RISCVISDOpc = getRISCVVLOp(Op); MVT DstVT = Op.getSimpleValueType(); MVT SrcVT = Src.getSimpleValueType(); if (DstVT.isFixedLengthVector()) { DstVT = getContainerForFixedLengthVector(DstVT); SrcVT = getContainerForFixedLengthVector(SrcVT); Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); MVT MaskVT = getMaskTypeFor(DstVT); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } unsigned DstEltSize = DstVT.getScalarSizeInBits(); unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); SDValue Result; if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. if (SrcVT.isInteger()) { assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); unsigned RISCVISDExtOpc = RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; // Do we need to do any pre-widening before converting? if (SrcEltSize == 1) { MVT IntVT = DstVT.changeVectorElementTypeToInteger(); MVT XLenVT = Subtarget.getXLenVT(); SDValue Zero = DAG.getConstant(0, DL, XLenVT); SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), Zero, VL); SDValue One = DAG.getConstant( RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), One, VL); Src = DAG.getNode(RISCVISD::VMERGE_VL, DL, IntVT, Src, OneSplat, ZeroSplat, DAG.getUNDEF(IntVT), VL); } else if (DstEltSize > (2 * SrcEltSize)) { // Widen before converting. MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), DstVT.getVectorElementCount()); Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); } Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); } else { assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && "Wrong input/output vector types"); // Convert f16 to f32 then convert f32 to i64. if (DstEltSize > (2 * SrcEltSize)) { assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); MVT InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); } Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); } } else { // Narrowing + Conversion if (SrcVT.isInteger()) { assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); // First do a narrowing convert to an FP type half the size, then round // the FP type to a small FP type if needed. MVT InterimFVT = DstVT; if (SrcEltSize > (2 * DstEltSize)) { assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); } Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); if (InterimFVT != DstVT) { Src = Result; Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); } } else { assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && "Wrong input/output vector types"); // First do a narrowing conversion to an integer half the size, then // truncate if needed. if (DstEltSize == 1) { // First convert to the same size integer, then convert to mask using // setcc. assert(SrcEltSize >= 16 && "Unexpected FP type!"); MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), DstVT.getVectorElementCount()); Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); // Compare the integer result to 0. The integer should be 0 or 1/-1, // otherwise the conversion was undefined. MVT XLenVT = Subtarget.getXLenVT(); SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, DAG.getUNDEF(InterimIVT), SplatZero, VL); Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, {Result, SplatZero, DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(DstVT), Mask, VL}); } else { MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), DstVT.getVectorElementCount()); Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); while (InterimIVT != DstVT) { SrcEltSize /= 2; Src = Result; InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), DstVT.getVectorElementCount()); Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, Src, Mask, VL); } } } } MVT VT = Op.getSimpleValueType(); if (!VT.isFixedLengthVector()) return Result; return convertFromScalableVector(VT, Result, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerVPSpliceExperimental(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Op1 = Op.getOperand(0); SDValue Op2 = Op.getOperand(1); SDValue Offset = Op.getOperand(2); SDValue Mask = Op.getOperand(3); SDValue EVL1 = Op.getOperand(4); SDValue EVL2 = Op.getOperand(5); const MVT XLenVT = Subtarget.getXLenVT(); MVT VT = Op.getSimpleValueType(); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); MVT MaskVT = getMaskTypeFor(ContainerVT); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } bool IsMaskVector = VT.getVectorElementType() == MVT::i1; if (IsMaskVector) { ContainerVT = ContainerVT.changeVectorElementType(MVT::i8); // Expand input operands SDValue SplatOneOp1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), DAG.getConstant(1, DL, XLenVT), EVL1); SDValue SplatZeroOp1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), DAG.getConstant(0, DL, XLenVT), EVL1); Op1 = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Op1, SplatOneOp1, SplatZeroOp1, DAG.getUNDEF(ContainerVT), EVL1); SDValue SplatOneOp2 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), DAG.getConstant(1, DL, XLenVT), EVL2); SDValue SplatZeroOp2 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), DAG.getConstant(0, DL, XLenVT), EVL2); Op2 = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Op2, SplatOneOp2, SplatZeroOp2, DAG.getUNDEF(ContainerVT), EVL2); } int64_t ImmValue = cast(Offset)->getSExtValue(); SDValue DownOffset, UpOffset; if (ImmValue >= 0) { // The operand is a TargetConstant, we need to rebuild it as a regular // constant. DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, EVL1, DownOffset); } else { // The operand is a TargetConstant, we need to rebuild it as a regular // constant rather than negating the original operand. UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, EVL1, UpOffset); } SDValue SlideDown = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Op1, DownOffset, Mask, UpOffset); SDValue Result = getVSlideup(DAG, Subtarget, DL, ContainerVT, SlideDown, Op2, UpOffset, Mask, EVL2, RISCVII::TAIL_AGNOSTIC); if (IsMaskVector) { // Truncate Result back to a mask vector (Result has same EVL as Op2) Result = DAG.getNode( RISCVISD::SETCC_VL, DL, ContainerVT.changeVectorElementType(MVT::i1), {Result, DAG.getConstant(0, DL, ContainerVT), DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(getMaskTypeFor(ContainerVT)), Mask, EVL2}); } if (!VT.isFixedLengthVector()) return Result; return convertFromScalableVector(VT, Result, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerVPReverseExperimental(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); SDValue Op1 = Op.getOperand(0); SDValue Mask = Op.getOperand(1); SDValue EVL = Op.getOperand(2); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); MVT MaskVT = getMaskTypeFor(ContainerVT); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } MVT GatherVT = ContainerVT; MVT IndicesVT = ContainerVT.changeVectorElementTypeToInteger(); // Check if we are working with mask vectors bool IsMaskVector = ContainerVT.getVectorElementType() == MVT::i1; if (IsMaskVector) { GatherVT = IndicesVT = ContainerVT.changeVectorElementType(MVT::i8); // Expand input operand SDValue SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT, DAG.getUNDEF(IndicesVT), DAG.getConstant(1, DL, XLenVT), EVL); SDValue SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT, DAG.getUNDEF(IndicesVT), DAG.getConstant(0, DL, XLenVT), EVL); Op1 = DAG.getNode(RISCVISD::VMERGE_VL, DL, IndicesVT, Op1, SplatOne, SplatZero, DAG.getUNDEF(IndicesVT), EVL); } unsigned EltSize = GatherVT.getScalarSizeInBits(); unsigned MinSize = GatherVT.getSizeInBits().getKnownMinValue(); unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); unsigned MaxVLMAX = RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; // If this is SEW=8 and VLMAX is unknown or more than 256, we need // to use vrgatherei16.vv. // TODO: It's also possible to use vrgatherei16.vv for other types to // decrease register width for the index calculation. // NOTE: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. if (MaxVLMAX > 256 && EltSize == 8) { // If this is LMUL=8, we have to split before using vrgatherei16.vv. // Split the vector in half and reverse each half using a full register // reverse. // Swap the halves and concatenate them. // Slide the concatenated result by (VLMax - VL). if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { auto [LoVT, HiVT] = DAG.GetSplitDestVTs(GatherVT); auto [Lo, Hi] = DAG.SplitVector(Op1, DL); SDValue LoRev = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); SDValue HiRev = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); // Reassemble the low and high pieces reversed. // NOTE: this Result is unmasked (because we do not need masks for // shuffles). If in the future this has to change, we can use a SELECT_VL // between Result and UNDEF using the mask originally passed to VP_REVERSE SDValue Result = DAG.getNode(ISD::CONCAT_VECTORS, DL, GatherVT, HiRev, LoRev); // Slide off any elements from past EVL that were reversed into the low // elements. unsigned MinElts = GatherVT.getVectorMinNumElements(); SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, DAG.getConstant(MinElts, DL, XLenVT)); SDValue Diff = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, EVL); Result = getVSlidedown(DAG, Subtarget, DL, GatherVT, DAG.getUNDEF(GatherVT), Result, Diff, Mask, EVL); if (IsMaskVector) { // Truncate Result back to a mask vector Result = DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT, {Result, DAG.getConstant(0, DL, GatherVT), DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(getMaskTypeFor(ContainerVT)), Mask, EVL}); } if (!VT.isFixedLengthVector()) return Result; return convertFromScalableVector(VT, Result, DAG, Subtarget); } // Just promote the int type to i16 which will double the LMUL. IndicesVT = MVT::getVectorVT(MVT::i16, IndicesVT.getVectorElementCount()); GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; } SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IndicesVT, Mask, EVL); SDValue VecLen = DAG.getNode(ISD::SUB, DL, XLenVT, EVL, DAG.getConstant(1, DL, XLenVT)); SDValue VecLenSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT, DAG.getUNDEF(IndicesVT), VecLen, EVL); SDValue VRSUB = DAG.getNode(RISCVISD::SUB_VL, DL, IndicesVT, VecLenSplat, VID, DAG.getUNDEF(IndicesVT), Mask, EVL); SDValue Result = DAG.getNode(GatherOpc, DL, GatherVT, Op1, VRSUB, DAG.getUNDEF(GatherVT), Mask, EVL); if (IsMaskVector) { // Truncate Result back to a mask vector Result = DAG.getNode( RISCVISD::SETCC_VL, DL, ContainerVT, {Result, DAG.getConstant(0, DL, GatherVT), DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(getMaskTypeFor(ContainerVT)), Mask, EVL}); } if (!VT.isFixedLengthVector()) return Result; return convertFromScalableVector(VT, Result, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); if (VT.getVectorElementType() != MVT::i1) return lowerVPOp(Op, DAG); // It is safe to drop mask parameter as masked-off elements are undef. SDValue Op1 = Op->getOperand(0); SDValue Op2 = Op->getOperand(1); SDValue VL = Op->getOperand(3); MVT ContainerVT = VT; const bool IsFixed = VT.isFixedLengthVector(); if (IsFixed) { ContainerVT = getContainerForFixedLengthVector(VT); Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); } SDLoc DL(Op); SDValue Val = DAG.getNode(getRISCVVLOp(Op), DL, ContainerVT, Op1, Op2, VL); if (!IsFixed) return Val; return convertFromScalableVector(VT, Val, DAG, Subtarget); } SDValue RISCVTargetLowering::lowerVPStridedLoad(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT XLenVT = Subtarget.getXLenVT(); MVT VT = Op.getSimpleValueType(); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) ContainerVT = getContainerForFixedLengthVector(VT); SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); auto *VPNode = cast(Op); // Check if the mask is known to be all ones SDValue Mask = VPNode->getMask(); bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, XLenVT); SmallVector Ops{VPNode->getChain(), IntID, DAG.getUNDEF(ContainerVT), VPNode->getBasePtr(), VPNode->getStride()}; if (!IsUnmasked) { if (VT.isFixedLengthVector()) { MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } Ops.push_back(Mask); } Ops.push_back(VPNode->getVectorLength()); if (!IsUnmasked) { SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); Ops.push_back(Policy); } SDValue Result = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, VPNode->getMemoryVT(), VPNode->getMemOperand()); SDValue Chain = Result.getValue(1); if (VT.isFixedLengthVector()) Result = convertFromScalableVector(VT, Result, DAG, Subtarget); return DAG.getMergeValues({Result, Chain}, DL); } SDValue RISCVTargetLowering::lowerVPStridedStore(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT XLenVT = Subtarget.getXLenVT(); auto *VPNode = cast(Op); SDValue StoreVal = VPNode->getValue(); MVT VT = StoreVal.getSimpleValueType(); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); StoreVal = convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); } // Check if the mask is known to be all ones SDValue Mask = VPNode->getMask(); bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, XLenVT); SmallVector Ops{VPNode->getChain(), IntID, StoreVal, VPNode->getBasePtr(), VPNode->getStride()}; if (!IsUnmasked) { if (VT.isFixedLengthVector()) { MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } Ops.push_back(Mask); } Ops.push_back(VPNode->getVectorLength()); return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, VPNode->getVTList(), Ops, VPNode->getMemoryVT(), VPNode->getMemOperand()); } // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be // matched to a RVV indexed load. The RVV indexed load instructions only // support the "unsigned unscaled" addressing mode; indices are implicitly // zero-extended or truncated to XLEN and are treated as byte offsets. Any // signed or scaled indexing is extended to the XLEN value type and scaled // accordingly. SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); const auto *MemSD = cast(Op.getNode()); EVT MemVT = MemSD->getMemoryVT(); MachineMemOperand *MMO = MemSD->getMemOperand(); SDValue Chain = MemSD->getChain(); SDValue BasePtr = MemSD->getBasePtr(); ISD::LoadExtType LoadExtType; SDValue Index, Mask, PassThru, VL; if (auto *VPGN = dyn_cast(Op.getNode())) { Index = VPGN->getIndex(); Mask = VPGN->getMask(); PassThru = DAG.getUNDEF(VT); VL = VPGN->getVectorLength(); // VP doesn't support extending loads. LoadExtType = ISD::NON_EXTLOAD; } else { // Else it must be a MGATHER. auto *MGN = cast(Op.getNode()); Index = MGN->getIndex(); Mask = MGN->getMask(); PassThru = MGN->getPassThru(); LoadExtType = MGN->getExtensionType(); } MVT IndexVT = Index.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && "Unexpected VTs!"); assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); // Targets have to explicitly opt-in for extending vector loads. assert(LoadExtType == ISD::NON_EXTLOAD && "Unexpected extending MGATHER/VP_GATHER"); (void)LoadExtType; // If the mask is known to be all ones, optimize to an unmasked intrinsic; // the selection of the masked intrinsics doesn't do this for us. bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), ContainerVT.getVectorElementCount()); Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); if (!IsUnmasked) { MVT MaskVT = getMaskTypeFor(ContainerVT); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); } } if (!VL) VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { IndexVT = IndexVT.changeVectorElementType(XLenVT); Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); } unsigned IntID = IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; SmallVector Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; if (IsUnmasked) Ops.push_back(DAG.getUNDEF(ContainerVT)); else Ops.push_back(PassThru); Ops.push_back(BasePtr); Ops.push_back(Index); if (!IsUnmasked) Ops.push_back(Mask); Ops.push_back(VL); if (!IsUnmasked) Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); SDValue Result = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); Chain = Result.getValue(1); if (VT.isFixedLengthVector()) Result = convertFromScalableVector(VT, Result, DAG, Subtarget); return DAG.getMergeValues({Result, Chain}, DL); } // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be // matched to a RVV indexed store. The RVV indexed store instructions only // support the "unsigned unscaled" addressing mode; indices are implicitly // zero-extended or truncated to XLEN and are treated as byte offsets. Any // signed or scaled indexing is extended to the XLEN value type and scaled // accordingly. SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const auto *MemSD = cast(Op.getNode()); EVT MemVT = MemSD->getMemoryVT(); MachineMemOperand *MMO = MemSD->getMemOperand(); SDValue Chain = MemSD->getChain(); SDValue BasePtr = MemSD->getBasePtr(); bool IsTruncatingStore = false; SDValue Index, Mask, Val, VL; if (auto *VPSN = dyn_cast(Op.getNode())) { Index = VPSN->getIndex(); Mask = VPSN->getMask(); Val = VPSN->getValue(); VL = VPSN->getVectorLength(); // VP doesn't support truncating stores. IsTruncatingStore = false; } else { // Else it must be a MSCATTER. auto *MSN = cast(Op.getNode()); Index = MSN->getIndex(); Mask = MSN->getMask(); Val = MSN->getValue(); IsTruncatingStore = MSN->isTruncatingStore(); } MVT VT = Val.getSimpleValueType(); MVT IndexVT = Index.getSimpleValueType(); MVT XLenVT = Subtarget.getXLenVT(); assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && "Unexpected VTs!"); assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); // Targets have to explicitly opt-in for extending vector loads and // truncating vector stores. assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); (void)IsTruncatingStore; // If the mask is known to be all ones, optimize to an unmasked intrinsic; // the selection of the masked intrinsics doesn't do this for us. bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); MVT ContainerVT = VT; if (VT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VT); IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), ContainerVT.getVectorElementCount()); Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); if (!IsUnmasked) { MVT MaskVT = getMaskTypeFor(ContainerVT); Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); } } if (!VL) VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { IndexVT = IndexVT.changeVectorElementType(XLenVT); Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); } unsigned IntID = IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; SmallVector Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; Ops.push_back(Val); Ops.push_back(BasePtr); Ops.push_back(Index); if (!IsUnmasked) Ops.push_back(Mask); Ops.push_back(VL); return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), Ops, MemVT, MMO); } SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const { const MVT XLenVT = Subtarget.getXLenVT(); SDLoc DL(Op); SDValue Chain = Op->getOperand(0); SDValue SysRegNo = DAG.getTargetConstant( RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); // Encoding used for rounding mode in RISC-V differs from that used in // FLT_ROUNDS. To convert it the RISC-V rounding mode is used as an index in a // table, which consists of a sequence of 4-bit fields, each representing // corresponding FLT_ROUNDS mode. static const int Table = (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, DAG.getConstant(Table, DL, XLenVT), Shift); SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, DAG.getConstant(7, DL, XLenVT)); return DAG.getMergeValues({Masked, Chain}, DL); } SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const { const MVT XLenVT = Subtarget.getXLenVT(); SDLoc DL(Op); SDValue Chain = Op->getOperand(0); SDValue RMValue = Op->getOperand(1); SDValue SysRegNo = DAG.getTargetConstant( RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); // Encoding used for rounding mode in RISC-V differs from that used in // FLT_ROUNDS. To convert it the C rounding mode is used as an index in // a table, which consists of a sequence of 4-bit fields, each representing // corresponding RISC-V mode. static const unsigned Table = (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); RMValue = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, RMValue); SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, DAG.getConstant(2, DL, XLenVT)); SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, DAG.getConstant(Table, DL, XLenVT), Shift); RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, DAG.getConstant(0x7, DL, XLenVT)); return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, RMValue); } SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool isRISCV64 = Subtarget.is64Bit(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false); return DAG.getFrameIndex(FI, PtrVT); } // Returns the opcode of the target-specific SDNode that implements the 32-bit // form of the given Opcode. static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("Unexpected opcode"); case ISD::SHL: return RISCVISD::SLLW; case ISD::SRA: return RISCVISD::SRAW; case ISD::SRL: return RISCVISD::SRLW; case ISD::SDIV: return RISCVISD::DIVW; case ISD::UDIV: return RISCVISD::DIVUW; case ISD::UREM: return RISCVISD::REMUW; case ISD::ROTL: return RISCVISD::ROLW; case ISD::ROTR: return RISCVISD::RORW; } } // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would // otherwise be promoted to i64, making it difficult to select the // SLLW/DIVUW/.../*W later one because the fact the operation was originally of // type i8/i16/i32 is lost. static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, unsigned ExtOpc = ISD::ANY_EXTEND) { SDLoc DL(N); RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); // ReplaceNodeResults requires we maintain the same type for the return value. return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); } // Converts the given 32-bit operation to a i64 operation with signed extension // semantic to reduce the signed extension instructions. static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, DAG.getValueType(MVT::i32)); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); } void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { SDLoc DL(N); switch (N->getOpcode()) { default: llvm_unreachable("Don't know how to custom type legalize this operation!"); case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: { assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); bool IsStrict = N->isStrictFPOpcode(); bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || N->getOpcode() == ISD::STRICT_FP_TO_SINT; SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != TargetLowering::TypeSoftenFloat) { if (!isTypeLegal(Op0.getValueType())) return; if (IsStrict) { SDValue Chain = N->getOperand(0); // In absense of Zfh, promote f16 to f32, then convert. if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) { Op0 = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other}, {Chain, Op0}); Chain = Op0.getValue(1); } unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 : RISCVISD::STRICT_FCVT_WU_RV64; SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); SDValue Res = DAG.getNode( Opc, DL, VTs, Chain, Op0, DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); Results.push_back(Res.getValue(1)); return; } // For bf16, or f16 in absense of Zfh, promote [b]f16 to f32 and then // convert. if ((Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) || Op0.getValueType() == MVT::bf16) Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0); unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0, DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); return; } // If the FP type needs to be softened, emit a library call using the 'si' // version. If we left it to default legalization we'd end up with 'di'. If // the FP type doesn't need to be softened just let generic type // legalization promote the result type. RTLIB::Libcall LC; if (IsSigned) LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); else LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); MakeLibCallOptions CallOptions; EVT OpVT = Op0.getValueType(); CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); SDValue Result; std::tie(Result, Chain) = makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); Results.push_back(Result); if (IsStrict) Results.push_back(Chain); break; } case ISD::LROUND: { SDValue Op0 = N->getOperand(0); EVT Op0VT = Op0.getValueType(); if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != TargetLowering::TypeSoftenFloat) { if (!isTypeLegal(Op0VT)) return; // In absense of Zfh, promote f16 to f32, then convert. if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0); SDValue Res = DAG.getNode(RISCVISD::FCVT_W_RV64, DL, MVT::i64, Op0, DAG.getTargetConstant(RISCVFPRndMode::RMM, DL, MVT::i64)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); return; } // If the FP type needs to be softened, emit a library call to lround. We'll // need to truncate the result. We assume any value that doesn't fit in i32 // is allowed to return an unspecified value. RTLIB::Libcall LC = Op0.getValueType() == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32; MakeLibCallOptions CallOptions; EVT OpVT = Op0.getValueType(); CallOptions.setTypeListBeforeSoften(OpVT, MVT::i64, true); SDValue Result = makeLibCall(DAG, LC, MVT::i64, Op0, CallOptions, DL).first; Result = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Result); Results.push_back(Result); break; } case ISD::READCYCLECOUNTER: { assert(!Subtarget.is64Bit() && "READCYCLECOUNTER only has custom type legalization on riscv32"); SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); SDValue RCW = DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); Results.push_back( DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); Results.push_back(RCW.getValue(2)); break; } case ISD::LOAD: { if (!ISD::isNON_EXTLoad(N)) return; // Use a SEXTLOAD instead of the default EXTLOAD. Similar to the // sext_inreg we emit for ADD/SUB/MUL/SLLI. LoadSDNode *Ld = cast(N); SDLoc dl(N); SDValue Res = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Ld->getChain(), Ld->getBasePtr(), Ld->getMemoryVT(), Ld->getMemOperand()); Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Res)); Results.push_back(Res.getValue(1)); return; } case ISD::MUL: { unsigned Size = N->getSimpleValueType(0).getSizeInBits(); unsigned XLen = Subtarget.getXLen(); // This multiply needs to be expanded, try to use MULHSU+MUL if possible. if (Size > XLen) { assert(Size == (XLen * 2) && "Unexpected custom legalisation"); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); APInt HighMask = APInt::getHighBitsSet(Size, XLen); bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); // We need exactly one side to be unsigned. if (LHSIsU == RHSIsU) return; auto MakeMULPair = [&](SDValue S, SDValue U) { MVT XLenVT = Subtarget.getXLenVT(); S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); }; bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; // The other operand should be signed, but still prefer MULH when // possible. if (RHSIsU && LHSIsS && !RHSIsS) Results.push_back(MakeMULPair(LHS, RHS)); else if (LHSIsU && RHSIsS && !LHSIsS) Results.push_back(MakeMULPair(RHS, LHS)); return; } [[fallthrough]]; } case ISD::ADD: case ISD::SUB: assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); if (N->getOperand(1).getOpcode() != ISD::Constant) { // If we can use a BSET instruction, allow default promotion to apply. if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() && isOneConstant(N->getOperand(0))) break; Results.push_back(customLegalizeToWOp(N, DAG)); break; } // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is // similar to customLegalizeToWOpWithSExt, but we must zero_extend the // shift amount. if (N->getOpcode() == ISD::SHL) { SDLoc DL(N); SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); SDValue NewOp1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, DAG.getValueType(MVT::i32)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); } break; case ISD::ROTL: case ISD::ROTR: assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); assert((Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() || Subtarget.hasVendorXTHeadBb()) && "Unexpected custom legalization"); if (!isa(N->getOperand(1)) && !(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())) return; Results.push_back(customLegalizeToWOp(N, DAG)); break; case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: { assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); bool IsCTZ = N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); return; } case ISD::SDIV: case ISD::UDIV: case ISD::UREM: { MVT VT = N->getSimpleValueType(0); assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && Subtarget.is64Bit() && Subtarget.hasStdExtM() && "Unexpected custom legalisation"); // Don't promote division/remainder by constant since we should expand those // to multiply by magic constant. AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); if (N->getOperand(1).getOpcode() == ISD::Constant && !isIntDivCheap(N->getValueType(0), Attr)) return; // If the input is i32, use ANY_EXTEND since the W instructions don't read // the upper 32 bits. For other types we need to sign or zero extend // based on the opcode. unsigned ExtOpc = ISD::ANY_EXTEND; if (VT != MVT::i32) ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); break; } case ISD::SADDO: { assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); // If the RHS is a constant, we can simplify ConditionRHS below. Otherwise // use the default legalization. if (!isa(N->getOperand(1))) return; SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); SDValue Res = DAG.getNode(ISD::ADD, DL, MVT::i64, LHS, RHS); Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, DAG.getValueType(MVT::i32)); SDValue Zero = DAG.getConstant(0, DL, MVT::i64); // For an addition, the result should be less than one of the operands (LHS) // if and only if the other operand (RHS) is negative, otherwise there will // be overflow. // For a subtraction, the result should be less than one of the operands // (LHS) if and only if the other operand (RHS) is (non-zero) positive, // otherwise there will be overflow. EVT OType = N->getValueType(1); SDValue ResultLowerThanLHS = DAG.getSetCC(DL, OType, Res, LHS, ISD::SETLT); SDValue ConditionRHS = DAG.getSetCC(DL, OType, RHS, Zero, ISD::SETLT); SDValue Overflow = DAG.getNode(ISD::XOR, DL, OType, ConditionRHS, ResultLowerThanLHS); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); Results.push_back(Overflow); return; } case ISD::UADDO: case ISD::USUBO: { assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); bool IsAdd = N->getOpcode() == ISD::UADDO; // Create an ADDW or SUBW. SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); SDValue Res = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, DAG.getValueType(MVT::i32)); SDValue Overflow; if (IsAdd && isOneConstant(RHS)) { // Special case uaddo X, 1 overflowed if the addition result is 0. // The general case (X + C) < C is not necessarily beneficial. Although we // reduce the live range of X, we may introduce the materialization of // constant C, especially when the setcc result is used by branch. We have // no compare with constant and branch instructions. Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); } else if (IsAdd && isAllOnesConstant(RHS)) { // Special case uaddo X, -1 overflowed if X != 0. Overflow = DAG.getSetCC(DL, N->getValueType(1), N->getOperand(0), DAG.getConstant(0, DL, MVT::i32), ISD::SETNE); } else { // Sign extend the LHS and perform an unsigned compare with the ADDW // result. Since the inputs are sign extended from i32, this is equivalent // to comparing the lower 32 bits. LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, IsAdd ? ISD::SETULT : ISD::SETUGT); } Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); Results.push_back(Overflow); return; } case ISD::UADDSAT: case ISD::USUBSAT: { assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); if (Subtarget.hasStdExtZbb()) { // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using // sign extend allows overflow of the lower 32 bits to be detected on // the promoted size. SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); return; } // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom // promotion for UADDO/USUBO. Results.push_back(expandAddSubSat(N, DAG)); return; } case ISD::ABS: { assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && "Unexpected custom legalisation"); if (Subtarget.hasStdExtZbb()) { // Emit a special ABSW node that will be expanded to NEGW+MAX at isel. // This allows us to remember that the result is sign extended. Expanding // to NEGW+MAX here requires a Freeze which breaks ComputeNumSignBits. SDValue Src = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); SDValue Abs = DAG.getNode(RISCVISD::ABSW, DL, MVT::i64, Src); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Abs)); return; } // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); // Freeze the source so we can increase it's use count. Src = DAG.getFreeze(Src); // Copy sign bit to all bits using the sraiw pattern. SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, DAG.getValueType(MVT::i32)); SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, DAG.getConstant(31, DL, MVT::i64)); SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); // NOTE: The result is only required to be anyextended, but sext is // consistent with type legalization of sub. NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, DAG.getValueType(MVT::i32)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); return; } case ISD::BITCAST: { EVT VT = N->getValueType(0); assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); SDValue Op0 = N->getOperand(0); EVT Op0VT = Op0.getValueType(); MVT XLenVT = Subtarget.getXLenVT(); if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfhminOrZhinxmin()) { SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); } else if (VT == MVT::i16 && Op0VT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()) { SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && Subtarget.hasStdExtFOrZfinx()) { SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); } else if (VT == MVT::i64 && Op0VT == MVT::f64 && XLenVT == MVT::i32 && Subtarget.hasStdExtZfa()) { SDValue NewReg = DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), Op0); SDValue RetReg = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, NewReg.getValue(0), NewReg.getValue(1)); Results.push_back(RetReg); } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && isTypeLegal(Op0VT)) { // Custom-legalize bitcasts from fixed-length vector types to illegal // scalar types in order to improve codegen. Bitcast the vector to a // one-element vector type whose element type is the same as the result // type, and extract the first element. EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); if (isTypeLegal(BVT)) { SDValue BVec = DAG.getBitcast(BVT, Op0); Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, DAG.getConstant(0, DL, XLenVT))); } } break; } case RISCVISD::BREV8: { MVT VT = N->getSimpleValueType(0); MVT XLenVT = Subtarget.getXLenVT(); assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && "Unexpected custom legalisation"); assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp); // ReplaceNodeResults requires we maintain the same type for the return // value. Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); break; } case ISD::EXTRACT_VECTOR_ELT: { // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN XLEN, only the least-significant XLEN bits are // transferred to the destination register. We issue two of these from the // upper- and lower- halves of the SEW-bit vector element, slid down to the // first element. SDValue Vec = N->getOperand(0); SDValue Idx = N->getOperand(1); // The vector type hasn't been legalized yet so we can't issue target // specific nodes if it needs legalization. // FIXME: We would manually legalize if it's important. if (!isTypeLegal(Vec.getValueType())) return; MVT VecVT = Vec.getSimpleValueType(); assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && VecVT.getVectorElementType() == MVT::i64 && "Unexpected EXTRACT_VECTOR_ELT legalization"); // If this is a fixed vector, we need to convert it to a scalable vector. MVT ContainerVT = VecVT; if (VecVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(VecVT); Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); } MVT XLenVT = Subtarget.getXLenVT(); // Use a VL of 1 to avoid processing more elements than we need. auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget); // Unless the index is known to be 0, we must slide the vector down to get // the desired element into index 0. if (!isNullConstant(Idx)) { Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); } // Extract the lower XLEN bits of the correct vector element. SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); // To extract the upper XLEN bits of the vector element, shift the first // element right by 32 bits and re-extract the lower XLEN bits. SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), DAG.getConstant(32, DL, XLenVT), VL); SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, ThirtyTwoV, DAG.getUNDEF(ContainerVT), Mask, VL); SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); break; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IntNo = N->getConstantOperandVal(0); switch (IntNo) { default: llvm_unreachable( "Don't know how to custom type legalize this intrinsic!"); case Intrinsic::experimental_get_vector_length: { SDValue Res = lowerGetVectorLength(N, DAG, Subtarget); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); return; } case Intrinsic::riscv_orc_b: case Intrinsic::riscv_brev8: case Intrinsic::riscv_sha256sig0: case Intrinsic::riscv_sha256sig1: case Intrinsic::riscv_sha256sum0: case Intrinsic::riscv_sha256sum1: case Intrinsic::riscv_sm3p0: case Intrinsic::riscv_sm3p1: { if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32) return; unsigned Opc; switch (IntNo) { case Intrinsic::riscv_orc_b: Opc = RISCVISD::ORC_B; break; case Intrinsic::riscv_brev8: Opc = RISCVISD::BREV8; break; case Intrinsic::riscv_sha256sig0: Opc = RISCVISD::SHA256SIG0; break; case Intrinsic::riscv_sha256sig1: Opc = RISCVISD::SHA256SIG1; break; case Intrinsic::riscv_sha256sum0: Opc = RISCVISD::SHA256SUM0; break; case Intrinsic::riscv_sha256sum1: Opc = RISCVISD::SHA256SUM1; break; case Intrinsic::riscv_sm3p0: Opc = RISCVISD::SM3P0; break; case Intrinsic::riscv_sm3p1: Opc = RISCVISD::SM3P1; break; } SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); return; } case Intrinsic::riscv_sm4ks: case Intrinsic::riscv_sm4ed: { unsigned Opc = IntNo == Intrinsic::riscv_sm4ks ? RISCVISD::SM4KS : RISCVISD::SM4ED; SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, N->getOperand(3)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); return; } case Intrinsic::riscv_clmul: { if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32) return; SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); SDValue Res = DAG.getNode(RISCVISD::CLMUL, DL, MVT::i64, NewOp0, NewOp1); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); return; } case Intrinsic::riscv_clmulh: case Intrinsic::riscv_clmulr: { if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32) return; // Extend inputs to XLen, and shift by 32. This will add 64 trailing zeros // to the full 128-bit clmul result of multiplying two xlen values. // Perform clmulr or clmulh on the shifted values. Finally, extract the // upper 32 bits. // // The alternative is to mask the inputs to 32 bits and use clmul, but // that requires two shifts to mask each input without zext.w. // FIXME: If the inputs are known zero extended or could be freely // zero extended, the mask form would be better. SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); NewOp0 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, DAG.getConstant(32, DL, MVT::i64)); NewOp1 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp1, DAG.getConstant(32, DL, MVT::i64)); unsigned Opc = IntNo == Intrinsic::riscv_clmulh ? RISCVISD::CLMULH : RISCVISD::CLMULR; SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1); Res = DAG.getNode(ISD::SRL, DL, MVT::i64, Res, DAG.getConstant(32, DL, MVT::i64)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); return; } case Intrinsic::riscv_vmv_x_s: { EVT VT = N->getValueType(0); MVT XLenVT = Subtarget.getXLenVT(); if (VT.bitsLT(XLenVT)) { // Simple case just extract using vmv.x.s and truncate. SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, Subtarget.getXLenVT(), N->getOperand(1)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); return; } assert(VT == MVT::i64 && !Subtarget.is64Bit() && "Unexpected custom legalization"); // We need to do the move in two steps. SDValue Vec = N->getOperand(1); MVT VecVT = Vec.getSimpleValueType(); // First extract the lower XLEN bits of the element. SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); // To extract the upper XLEN bits of the vector element, shift the first // element right by 32 bits and re-extract the lower XLEN bits. auto [Mask, VL] = getDefaultVLOps(1, VecVT, DL, DAG, Subtarget); SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), DAG.getConstant(32, DL, XLenVT), VL); SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, DAG.getUNDEF(VecVT), Mask, VL); SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); Results.push_back( DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); break; } } break; } case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMIN: if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) Results.push_back(V); break; case ISD::VP_REDUCE_ADD: case ISD::VP_REDUCE_AND: case ISD::VP_REDUCE_OR: case ISD::VP_REDUCE_XOR: case ISD::VP_REDUCE_SMAX: case ISD::VP_REDUCE_UMAX: case ISD::VP_REDUCE_SMIN: case ISD::VP_REDUCE_UMIN: if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) Results.push_back(V); break; case ISD::GET_ROUNDING: { SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); SDValue Res = DAG.getNode(ISD::GET_ROUNDING, DL, VTs, N->getOperand(0)); Results.push_back(Res.getValue(0)); Results.push_back(Res.getValue(1)); break; } } } /// Given a binary operator, return the *associative* generic ISD::VECREDUCE_OP /// which corresponds to it. static unsigned getVecReduceOpcode(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Unhandled binary to transfrom reduction"); case ISD::ADD: return ISD::VECREDUCE_ADD; case ISD::UMAX: return ISD::VECREDUCE_UMAX; case ISD::SMAX: return ISD::VECREDUCE_SMAX; case ISD::UMIN: return ISD::VECREDUCE_UMIN; case ISD::SMIN: return ISD::VECREDUCE_SMIN; case ISD::AND: return ISD::VECREDUCE_AND; case ISD::OR: return ISD::VECREDUCE_OR; case ISD::XOR: return ISD::VECREDUCE_XOR; case ISD::FADD: // Note: This is the associative form of the generic reduction opcode. return ISD::VECREDUCE_FADD; } } /// Perform two related transforms whose purpose is to incrementally recognize /// an explode_vector followed by scalar reduction as a vector reduction node. /// This exists to recover from a deficiency in SLP which can't handle /// forests with multiple roots sharing common nodes. In some cases, one /// of the trees will be vectorized, and the other will remain (unprofitably) /// scalarized. static SDValue combineBinOpOfExtractToReduceTree(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { // This transforms need to run before all integer types have been legalized // to i64 (so that the vector element type matches the add type), and while // it's safe to introduce odd sized vector types. if (DAG.NewNodesMustHaveLegalTypes) return SDValue(); // Without V, this transform isn't useful. We could form the (illegal) // operations and let them be scalarized again, but there's really no point. if (!Subtarget.hasVInstructions()) return SDValue(); const SDLoc DL(N); const EVT VT = N->getValueType(0); const unsigned Opc = N->getOpcode(); // For FADD, we only handle the case with reassociation allowed. We // could handle strict reduction order, but at the moment, there's no // known reason to, and the complexity isn't worth it. // TODO: Handle fminnum and fmaxnum here if (!VT.isInteger() && (Opc != ISD::FADD || !N->getFlags().hasAllowReassociation())) return SDValue(); const unsigned ReduceOpc = getVecReduceOpcode(Opc); assert(Opc == ISD::getVecReduceBaseOpcode(ReduceOpc) && "Inconsistent mappings"); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (!LHS.hasOneUse() || !RHS.hasOneUse()) return SDValue(); if (RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT) std::swap(LHS, RHS); if (RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || !isa(RHS.getOperand(1))) return SDValue(); uint64_t RHSIdx = cast(RHS.getOperand(1))->getLimitedValue(); SDValue SrcVec = RHS.getOperand(0); EVT SrcVecVT = SrcVec.getValueType(); assert(SrcVecVT.getVectorElementType() == VT); if (SrcVecVT.isScalableVector()) return SDValue(); if (SrcVecVT.getScalarSizeInBits() > Subtarget.getELen()) return SDValue(); // match binop (extract_vector_elt V, 0), (extract_vector_elt V, 1) to // reduce_op (extract_subvector [2 x VT] from V). This will form the // root of our reduction tree. TODO: We could extend this to any two // adjacent aligned constant indices if desired. if (LHS.getOpcode() == ISD::EXTRACT_VECTOR_ELT && LHS.getOperand(0) == SrcVec && isa(LHS.getOperand(1))) { uint64_t LHSIdx = cast(LHS.getOperand(1))->getLimitedValue(); if (0 == std::min(LHSIdx, RHSIdx) && 1 == std::max(LHSIdx, RHSIdx)) { EVT ReduceVT = EVT::getVectorVT(*DAG.getContext(), VT, 2); SDValue Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ReduceVT, SrcVec, DAG.getVectorIdxConstant(0, DL)); return DAG.getNode(ReduceOpc, DL, VT, Vec, N->getFlags()); } } // Match (binop (reduce (extract_subvector V, 0), // (extract_vector_elt V, sizeof(SubVec)))) // into a reduction of one more element from the original vector V. if (LHS.getOpcode() != ReduceOpc) return SDValue(); SDValue ReduceVec = LHS.getOperand(0); if (ReduceVec.getOpcode() == ISD::EXTRACT_SUBVECTOR && ReduceVec.hasOneUse() && ReduceVec.getOperand(0) == RHS.getOperand(0) && isNullConstant(ReduceVec.getOperand(1)) && ReduceVec.getValueType().getVectorNumElements() == RHSIdx) { // For illegal types (e.g. 3xi32), most will be combined again into a // wider (hopefully legal) type. If this is a terminal state, we are // relying on type legalization here to produce something reasonable // and this lowering quality could probably be improved. (TODO) EVT ReduceVT = EVT::getVectorVT(*DAG.getContext(), VT, RHSIdx + 1); SDValue Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ReduceVT, SrcVec, DAG.getVectorIdxConstant(0, DL)); auto Flags = ReduceVec->getFlags(); Flags.intersectWith(N->getFlags()); return DAG.getNode(ReduceOpc, DL, VT, Vec, Flags); } return SDValue(); } // Try to fold ( x, (reduction. vec, start)) static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { auto BinOpToRVVReduce = [](unsigned Opc) { switch (Opc) { default: llvm_unreachable("Unhandled binary to transfrom reduction"); case ISD::ADD: return RISCVISD::VECREDUCE_ADD_VL; case ISD::UMAX: return RISCVISD::VECREDUCE_UMAX_VL; case ISD::SMAX: return RISCVISD::VECREDUCE_SMAX_VL; case ISD::UMIN: return RISCVISD::VECREDUCE_UMIN_VL; case ISD::SMIN: return RISCVISD::VECREDUCE_SMIN_VL; case ISD::AND: return RISCVISD::VECREDUCE_AND_VL; case ISD::OR: return RISCVISD::VECREDUCE_OR_VL; case ISD::XOR: return RISCVISD::VECREDUCE_XOR_VL; case ISD::FADD: return RISCVISD::VECREDUCE_FADD_VL; case ISD::FMAXNUM: return RISCVISD::VECREDUCE_FMAX_VL; case ISD::FMINNUM: return RISCVISD::VECREDUCE_FMIN_VL; } }; auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) { return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT && isNullConstant(V.getOperand(1)) && V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc); }; unsigned Opc = N->getOpcode(); unsigned ReduceIdx; if (IsReduction(N->getOperand(0), Opc)) ReduceIdx = 0; else if (IsReduction(N->getOperand(1), Opc)) ReduceIdx = 1; else return SDValue(); // Skip if FADD disallows reassociation but the combiner needs. if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation()) return SDValue(); SDValue Extract = N->getOperand(ReduceIdx); SDValue Reduce = Extract.getOperand(0); if (!Extract.hasOneUse() || !Reduce.hasOneUse()) return SDValue(); SDValue ScalarV = Reduce.getOperand(2); EVT ScalarVT = ScalarV.getValueType(); if (ScalarV.getOpcode() == ISD::INSERT_SUBVECTOR && ScalarV.getOperand(0)->isUndef() && isNullConstant(ScalarV.getOperand(2))) ScalarV = ScalarV.getOperand(1); // Make sure that ScalarV is a splat with VL=1. if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL && ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL && ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL) return SDValue(); if (!isNonZeroAVL(ScalarV.getOperand(2))) return SDValue(); // Check the scalar of ScalarV is neutral element // TODO: Deal with value other than neutral element. if (!isNeutralConstant(N->getOpcode(), N->getFlags(), ScalarV.getOperand(1), 0)) return SDValue(); // If the AVL is zero, operand 0 will be returned. So it's not safe to fold. // FIXME: We might be able to improve this if operand 0 is undef. if (!isNonZeroAVL(Reduce.getOperand(5))) return SDValue(); SDValue NewStart = N->getOperand(1 - ReduceIdx); SDLoc DL(N); SDValue NewScalarV = lowerScalarInsert(NewStart, ScalarV.getOperand(2), ScalarV.getSimpleValueType(), DL, DAG, Subtarget); // If we looked through an INSERT_SUBVECTOR we need to restore it. if (ScalarVT != ScalarV.getValueType()) NewScalarV = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ScalarVT, DAG.getUNDEF(ScalarVT), NewScalarV, DAG.getConstant(0, DL, Subtarget.getXLenVT())); SDValue Ops[] = {Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV, Reduce.getOperand(3), Reduce.getOperand(4), Reduce.getOperand(5)}; SDValue NewReduce = DAG.getNode(Reduce.getOpcode(), DL, Reduce.getValueType(), Ops); return DAG.getNode(Extract.getOpcode(), DL, Extract.getValueType(), NewReduce, Extract.getOperand(1)); } // Optimize (add (shl x, c0), (shl y, c1)) -> // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { // Perform this optimization only in the zba extension. if (!Subtarget.hasStdExtZba()) return SDValue(); // Skip for vector types and larger types. EVT VT = N->getValueType(0); if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) return SDValue(); // The two operand nodes must be SHL and have no other use. SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || !N0->hasOneUse() || !N1->hasOneUse()) return SDValue(); // Check c0 and c1. auto *N0C = dyn_cast(N0->getOperand(1)); auto *N1C = dyn_cast(N1->getOperand(1)); if (!N0C || !N1C) return SDValue(); int64_t C0 = N0C->getSExtValue(); int64_t C1 = N1C->getSExtValue(); if (C0 <= 0 || C1 <= 0) return SDValue(); // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. int64_t Bits = std::min(C0, C1); int64_t Diff = std::abs(C0 - C1); if (Diff != 1 && Diff != 2 && Diff != 3) return SDValue(); // Build nodes. SDLoc DL(N); SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); SDValue NA0 = DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); } // Combine a constant select operand into its use: // // (and (select cond, -1, c), x) // -> (select cond, x, (and x, c)) [AllOnes=1] // (or (select cond, 0, c), x) // -> (select cond, x, (or x, c)) [AllOnes=0] // (xor (select cond, 0, c), x) // -> (select cond, x, (xor x, c)) [AllOnes=0] // (add (select cond, 0, c), x) // -> (select cond, x, (add x, c)) [AllOnes=0] // (sub x, (select cond, 0, c)) // -> (select cond, x, (sub x, c)) [AllOnes=0] static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, SelectionDAG &DAG, bool AllOnes, const RISCVSubtarget &Subtarget) { EVT VT = N->getValueType(0); // Skip vectors. if (VT.isVector()) return SDValue(); if (!Subtarget.hasConditionalMoveFusion()) { // (select cond, x, (and x, c)) has custom lowering with Zicond. if ((!Subtarget.hasStdExtZicond() && !Subtarget.hasVendorXVentanaCondOps()) || N->getOpcode() != ISD::AND) return SDValue(); // Maybe harmful when condition code has multiple use. if (Slct.getOpcode() == ISD::SELECT && !Slct.getOperand(0).hasOneUse()) return SDValue(); // Maybe harmful when VT is wider than XLen. if (VT.getSizeInBits() > Subtarget.getXLen()) return SDValue(); } if ((Slct.getOpcode() != ISD::SELECT && Slct.getOpcode() != RISCVISD::SELECT_CC) || !Slct.hasOneUse()) return SDValue(); auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); }; bool SwapSelectOps; unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; SDValue TrueVal = Slct.getOperand(1 + OpOffset); SDValue FalseVal = Slct.getOperand(2 + OpOffset); SDValue NonConstantVal; if (isZeroOrAllOnes(TrueVal, AllOnes)) { SwapSelectOps = false; NonConstantVal = FalseVal; } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { SwapSelectOps = true; NonConstantVal = TrueVal; } else return SDValue(); // Slct is now know to be the desired identity constant when CC is true. TrueVal = OtherOp; FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); // Unless SwapSelectOps says the condition should be false. if (SwapSelectOps) std::swap(TrueVal, FalseVal); if (Slct.getOpcode() == RISCVISD::SELECT_CC) return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, {Slct.getOperand(0), Slct.getOperand(1), Slct.getOperand(2), TrueVal, FalseVal}); return DAG.getNode(ISD::SELECT, SDLoc(N), VT, {Slct.getOperand(0), TrueVal, FalseVal}); } // Attempt combineSelectAndUse on each operand of a commutative operator N. static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, bool AllOnes, const RISCVSubtarget &Subtarget) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes, Subtarget)) return Result; if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes, Subtarget)) return Result; return SDValue(); } // Transform (add (mul x, c0), c1) -> // (add (mul (add x, c1/c0), c0), c1%c0). // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case // that should be excluded is when c0*(c1/c0) is simm12, which will lead // to an infinite loop in DAGCombine if transformed. // Or transform (add (mul x, c0), c1) -> // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner // case that should be excluded is when c0*(c1/c0+1) is simm12, which will // lead to an infinite loop in DAGCombine if transformed. // Or transform (add (mul x, c0), c1) -> // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner // case that should be excluded is when c0*(c1/c0-1) is simm12, which will // lead to an infinite loop in DAGCombine if transformed. // Or transform (add (mul x, c0), c1) -> // (mul (add x, c1/c0), c0). // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { // Skip for vector types and larger types. EVT VT = N->getValueType(0); if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) return SDValue(); // The first operand node must be a MUL and has no other use. SDValue N0 = N->getOperand(0); if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) return SDValue(); // Check if c0 and c1 match above conditions. auto *N0C = dyn_cast(N0->getOperand(1)); auto *N1C = dyn_cast(N->getOperand(1)); if (!N0C || !N1C) return SDValue(); // If N0C has multiple uses it's possible one of the cases in // DAGCombiner::isMulAddWithConstProfitable will be true, which would result // in an infinite loop. if (!N0C->hasOneUse()) return SDValue(); int64_t C0 = N0C->getSExtValue(); int64_t C1 = N1C->getSExtValue(); int64_t CA, CB; if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) return SDValue(); // Search for proper CA (non-zero) and CB that both are simm12. if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && !isInt<12>(C0 * (C1 / C0))) { CA = C1 / C0; CB = C1 % C0; } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { CA = C1 / C0 + 1; CB = C1 % C0 - C0; } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { CA = C1 / C0 - 1; CB = C1 % C0 + C0; } else return SDValue(); // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). SDLoc DL(N); SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), DAG.getConstant(CA, DL, VT)); SDValue New1 = DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); } // Try to turn (add (xor bool, 1) -1) into (neg bool). static SDValue combineAddOfBooleanXor(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc DL(N); // RHS should be -1. if (!isAllOnesConstant(N1)) return SDValue(); // Look for (xor X, 1). if (N0.getOpcode() != ISD::XOR || !isOneConstant(N0.getOperand(1))) return SDValue(); // First xor input should be 0 or 1. APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1); if (!DAG.MaskedValueIsZero(N0.getOperand(0), Mask)) return SDValue(); // Emit a negate of the setcc. return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0.getOperand(0)); } static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (SDValue V = combineAddOfBooleanXor(N, DAG)) return V; if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) return V; if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) return V; if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) return V; if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) return V; // fold (add (select lhs, rhs, cc, 0, y), x) -> // (select lhs, rhs, cc, x, (add x, y)) return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget); } // Try to turn a sub boolean RHS and constant LHS into an addi. static SDValue combineSubOfBoolean(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc DL(N); // Require a constant LHS. auto *N0C = dyn_cast(N0); if (!N0C) return SDValue(); // All our optimizations involve subtracting 1 from the immediate and forming // an ADDI. Make sure the new immediate is valid for an ADDI. APInt ImmValMinus1 = N0C->getAPIntValue() - 1; if (!ImmValMinus1.isSignedIntN(12)) return SDValue(); SDValue NewLHS; if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse()) { // (sub constant, (setcc x, y, eq/neq)) -> // (add (setcc x, y, neq/eq), constant - 1) ISD::CondCode CCVal = cast(N1.getOperand(2))->get(); EVT SetCCOpVT = N1.getOperand(0).getValueType(); if (!isIntEqualitySetCC(CCVal) || !SetCCOpVT.isInteger()) return SDValue(); CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT); NewLHS = DAG.getSetCC(SDLoc(N1), VT, N1.getOperand(0), N1.getOperand(1), CCVal); } else if (N1.getOpcode() == ISD::XOR && isOneConstant(N1.getOperand(1)) && N1.getOperand(0).getOpcode() == ISD::SETCC) { // (sub C, (xor (setcc), 1)) -> (add (setcc), C-1). // Since setcc returns a bool the xor is equivalent to 1-setcc. NewLHS = N1.getOperand(0); } else return SDValue(); SDValue NewRHS = DAG.getConstant(ImmValMinus1, DL, VT); return DAG.getNode(ISD::ADD, DL, VT, NewLHS, NewRHS); } static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (SDValue V = combineSubOfBoolean(N, DAG)) return V; SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // fold (sub 0, (setcc x, 0, setlt)) -> (sra x, xlen - 1) if (isNullConstant(N0) && N1.getOpcode() == ISD::SETCC && N1.hasOneUse() && isNullConstant(N1.getOperand(1))) { ISD::CondCode CCVal = cast(N1.getOperand(2))->get(); if (CCVal == ISD::SETLT) { EVT VT = N->getValueType(0); SDLoc DL(N); unsigned ShAmt = N0.getValueSizeInBits() - 1; return DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), DAG.getConstant(ShAmt, DL, VT)); } } // fold (sub x, (select lhs, rhs, cc, 0, y)) -> // (select lhs, rhs, cc, x, (sub x, y)) return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false, Subtarget); } // Apply DeMorgan's law to (and/or (xor X, 1), (xor Y, 1)) if X and Y are 0/1. // Legalizing setcc can introduce xors like this. Doing this transform reduces // the number of xors and may allow the xor to fold into a branch condition. static SDValue combineDeMorganOfBoolean(SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); bool IsAnd = N->getOpcode() == ISD::AND; if (N0.getOpcode() != ISD::XOR || N1.getOpcode() != ISD::XOR) return SDValue(); if (!N0.hasOneUse() || !N1.hasOneUse()) return SDValue(); SDValue N01 = N0.getOperand(1); SDValue N11 = N1.getOperand(1); // For AND, SimplifyDemandedBits may have turned one of the (xor X, 1) into // (xor X, -1) based on the upper bits of the other operand being 0. If the // operation is And, allow one of the Xors to use -1. if (isOneConstant(N01)) { if (!isOneConstant(N11) && !(IsAnd && isAllOnesConstant(N11))) return SDValue(); } else if (isOneConstant(N11)) { // N01 and N11 being 1 was already handled. Handle N11==1 and N01==-1. if (!(IsAnd && isAllOnesConstant(N01))) return SDValue(); } else return SDValue(); EVT VT = N->getValueType(0); SDValue N00 = N0.getOperand(0); SDValue N10 = N1.getOperand(0); // The LHS of the xors needs to be 0/1. APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1); if (!DAG.MaskedValueIsZero(N00, Mask) || !DAG.MaskedValueIsZero(N10, Mask)) return SDValue(); // Invert the opcode and insert a new xor. SDLoc DL(N); unsigned Opc = IsAnd ? ISD::OR : ISD::AND; SDValue Logic = DAG.getNode(Opc, DL, VT, N00, N10); return DAG.getNode(ISD::XOR, DL, VT, Logic, DAG.getConstant(1, DL, VT)); } static SDValue performTRUNCATECombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // Pre-promote (i1 (truncate (srl X, Y))) on RV64 with Zbs without zero // extending X. This is safe since we only need the LSB after the shift and // shift amounts larger than 31 would produce poison. If we wait until // type legalization, we'll create RISCVISD::SRLW and we can't recover it // to use a BEXT instruction. if (!RV64LegalI32 && Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && VT == MVT::i1 && N0.getValueType() == MVT::i32 && N0.getOpcode() == ISD::SRL && !isa(N0.getOperand(1)) && N0.hasOneUse()) { SDLoc DL(N0); SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Srl); } return SDValue(); } // Combines two comparison operation and logic operation to one selection // operation(min, max) and logic operation. Returns new constructed Node if // conditions for optimization are satisfied. static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const RISCVSubtarget &Subtarget) { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero // extending X. This is safe since we only need the LSB after the shift and // shift amounts larger than 31 would produce poison. If we wait until // type legalization, we'll create RISCVISD::SRLW and we can't recover it // to use a BEXT instruction. if (!RV64LegalI32 && Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) && N0.getOpcode() == ISD::SRL && !isa(N0.getOperand(1)) && N0.hasOneUse()) { SDLoc DL(N); SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl, DAG.getConstant(1, DL, MVT::i64)); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); } if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) return V; if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) return V; if (DCI.isAfterLegalizeDAG()) if (SDValue V = combineDeMorganOfBoolean(N, DAG)) return V; // fold (and (select lhs, rhs, cc, -1, y), x) -> // (select lhs, rhs, cc, x, (and x, y)) return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true, Subtarget); } // Try to pull an xor with 1 through a select idiom that uses czero_eqz/nez. // FIXME: Generalize to other binary operators with same operand. static SDValue combineOrOfCZERO(SDNode *N, SDValue N0, SDValue N1, SelectionDAG &DAG) { assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); if (N0.getOpcode() != RISCVISD::CZERO_EQZ || N1.getOpcode() != RISCVISD::CZERO_NEZ || !N0.hasOneUse() || !N1.hasOneUse()) return SDValue(); // Should have the same condition. SDValue Cond = N0.getOperand(1); if (Cond != N1.getOperand(1)) return SDValue(); SDValue TrueV = N0.getOperand(0); SDValue FalseV = N1.getOperand(0); if (TrueV.getOpcode() != ISD::XOR || FalseV.getOpcode() != ISD::XOR || TrueV.getOperand(1) != FalseV.getOperand(1) || !isOneConstant(TrueV.getOperand(1)) || !TrueV.hasOneUse() || !FalseV.hasOneUse()) return SDValue(); EVT VT = N->getValueType(0); SDLoc DL(N); SDValue NewN0 = DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV.getOperand(0), Cond); SDValue NewN1 = DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV.getOperand(0), Cond); SDValue NewOr = DAG.getNode(ISD::OR, DL, VT, NewN0, NewN1); return DAG.getNode(ISD::XOR, DL, VT, NewOr, TrueV.getOperand(1)); } static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const RISCVSubtarget &Subtarget) { SelectionDAG &DAG = DCI.DAG; if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) return V; if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) return V; if (DCI.isAfterLegalizeDAG()) if (SDValue V = combineDeMorganOfBoolean(N, DAG)) return V; // Look for Or of CZERO_EQZ/NEZ with same condition which is the select idiom. // We may be able to pull a common operation out of the true and false value. SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (SDValue V = combineOrOfCZERO(N, N0, N1, DAG)) return V; if (SDValue V = combineOrOfCZERO(N, N1, N0, DAG)) return V; // fold (or (select cond, 0, y), x) -> // (select cond, x, (or x, y)) return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget); } static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // Pre-promote (i32 (xor (shl -1, X), ~0)) on RV64 with Zbs so we can use // (ADDI (BSET X0, X), -1). If we wait until/ type legalization, we'll create // RISCVISD:::SLLW and we can't recover it to use a BSET instruction. if (!RV64LegalI32 && Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && N->getValueType(0) == MVT::i32 && isAllOnesConstant(N1) && N0.getOpcode() == ISD::SHL && isAllOnesConstant(N0.getOperand(0)) && !isa(N0.getOperand(1)) && N0.hasOneUse()) { SDLoc DL(N); SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); SDValue Shl = DAG.getNode(ISD::SHL, DL, MVT::i64, Op0, Op1); SDValue And = DAG.getNOT(DL, Shl, MVT::i64); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); } // fold (xor (sllw 1, x), -1) -> (rolw ~1, x) // NOTE: Assumes ROL being legal means ROLW is legal. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (N0.getOpcode() == RISCVISD::SLLW && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) && TLI.isOperationLegal(ISD::ROTL, MVT::i64)) { SDLoc DL(N); return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64, DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1)); } // Fold (xor (setcc constant, y, setlt), 1) -> (setcc y, constant + 1, setlt) if (N0.getOpcode() == ISD::SETCC && isOneConstant(N1) && N0.hasOneUse()) { auto *ConstN00 = dyn_cast(N0.getOperand(0)); ISD::CondCode CC = cast(N0.getOperand(2))->get(); if (ConstN00 && CC == ISD::SETLT) { EVT VT = N0.getValueType(); SDLoc DL(N0); const APInt &Imm = ConstN00->getAPIntValue(); if ((Imm + 1).isSignedIntN(12)) return DAG.getSetCC(DL, VT, N0.getOperand(1), DAG.getConstant(Imm + 1, DL, VT), CC); } } if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) return V; if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) return V; // fold (xor (select cond, 0, y), x) -> // (select cond, x, (xor x, y)) return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget); } static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (!VT.isVector()) return SDValue(); SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue MulOper; unsigned AddSubOpc; // vmadd: (mul (add x, 1), y) -> (add (mul x, y), y) // (mul x, add (y, 1)) -> (add x, (mul x, y)) // vnmsub: (mul (sub 1, x), y) -> (sub y, (mul x, y)) // (mul x, (sub 1, y)) -> (sub x, (mul x, y)) auto IsAddSubWith1 = [&](SDValue V) -> bool { AddSubOpc = V->getOpcode(); if ((AddSubOpc == ISD::ADD || AddSubOpc == ISD::SUB) && V->hasOneUse()) { SDValue Opnd = V->getOperand(1); MulOper = V->getOperand(0); if (AddSubOpc == ISD::SUB) std::swap(Opnd, MulOper); if (isOneOrOneSplat(Opnd)) return true; } return false; }; if (IsAddSubWith1(N0)) { SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N1, MulOper); return DAG.getNode(AddSubOpc, DL, VT, N1, MulVal); } if (IsAddSubWith1(N1)) { SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N0, MulOper); return DAG.getNode(AddSubOpc, DL, VT, N0, MulVal); } return SDValue(); } /// According to the property that indexed load/store instructions zero-extend /// their indices, try to narrow the type of index operand. static bool narrowIndex(SDValue &N, ISD::MemIndexType IndexType, SelectionDAG &DAG) { if (isIndexTypeSigned(IndexType)) return false; if (!N->hasOneUse()) return false; EVT VT = N.getValueType(); SDLoc DL(N); // In general, what we're doing here is seeing if we can sink a truncate to // a smaller element type into the expression tree building our index. // TODO: We can generalize this and handle a bunch more cases if useful. // Narrow a buildvector to the narrowest element type. This requires less // work and less register pressure at high LMUL, and creates smaller constants // which may be cheaper to materialize. if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) { KnownBits Known = DAG.computeKnownBits(N); unsigned ActiveBits = std::max(8u, Known.countMaxActiveBits()); LLVMContext &C = *DAG.getContext(); EVT ResultVT = EVT::getIntegerVT(C, ActiveBits).getRoundIntegerType(C); if (ResultVT.bitsLT(VT.getVectorElementType())) { N = DAG.getNode(ISD::TRUNCATE, DL, VT.changeVectorElementType(ResultVT), N); return true; } } // Handle the pattern (shl (zext x to ty), C) and bits(x) + C < bits(ty). if (N.getOpcode() != ISD::SHL) return false; SDValue N0 = N.getOperand(0); if (N0.getOpcode() != ISD::ZERO_EXTEND && N0.getOpcode() != RISCVISD::VZEXT_VL) return false; if (!N0->hasOneUse()) return false; APInt ShAmt; SDValue N1 = N.getOperand(1); if (!ISD::isConstantSplatVector(N1.getNode(), ShAmt)) return false; SDValue Src = N0.getOperand(0); EVT SrcVT = Src.getValueType(); unsigned SrcElen = SrcVT.getScalarSizeInBits(); unsigned ShAmtV = ShAmt.getZExtValue(); unsigned NewElen = PowerOf2Ceil(SrcElen + ShAmtV); NewElen = std::max(NewElen, 8U); // Skip if NewElen is not narrower than the original extended type. if (NewElen >= N0.getValueType().getScalarSizeInBits()) return false; EVT NewEltVT = EVT::getIntegerVT(*DAG.getContext(), NewElen); EVT NewVT = SrcVT.changeVectorElementType(NewEltVT); SDValue NewExt = DAG.getNode(N0->getOpcode(), DL, NewVT, N0->ops()); SDValue NewShAmtVec = DAG.getConstant(ShAmtV, DL, NewVT); N = DAG.getNode(ISD::SHL, DL, NewVT, NewExt, NewShAmtVec); return true; } // Replace (seteq (i64 (and X, 0xffffffff)), C1) with // (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from // bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg // can become a sext.w instead of a shift pair. static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N->getValueType(0); EVT OpVT = N0.getValueType(); if (OpVT != MVT::i64 || !Subtarget.is64Bit()) return SDValue(); // RHS needs to be a constant. auto *N1C = dyn_cast(N1); if (!N1C) return SDValue(); // LHS needs to be (and X, 0xffffffff). if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() || !isa(N0.getOperand(1)) || N0.getConstantOperandVal(1) != UINT64_C(0xffffffff)) return SDValue(); // Looking for an equality compare. ISD::CondCode Cond = cast(N->getOperand(2))->get(); if (!isIntEqualitySetCC(Cond)) return SDValue(); // Don't do this if the sign bit is provably zero, it will be turned back into // an AND. APInt SignMask = APInt::getOneBitSet(64, 31); if (DAG.MaskedValueIsZero(N0.getOperand(0), SignMask)) return SDValue(); const APInt &C1 = N1C->getAPIntValue(); SDLoc dl(N); // If the constant is larger than 2^32 - 1 it is impossible for both sides // to be equal. if (C1.getActiveBits() > 32) return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT, N0.getOperand(0), DAG.getValueType(MVT::i32)); return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64), dl, OpVT), Cond); } static SDValue performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDValue Src = N->getOperand(0); EVT VT = N->getValueType(0); // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && cast(N->getOperand(1))->getVT().bitsGE(MVT::i16)) return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, Src.getOperand(0)); return SDValue(); } namespace { // Forward declaration of the structure holding the necessary information to // apply a combine. struct CombineResult; /// Helper class for folding sign/zero extensions. /// In particular, this class is used for the following combines: /// add | add_vl -> vwadd(u) | vwadd(u)_w /// sub | sub_vl -> vwsub(u) | vwsub(u)_w /// mul | mul_vl -> vwmul(u) | vwmul_su /// /// An object of this class represents an operand of the operation we want to /// combine. /// E.g., when trying to combine `mul_vl a, b`, we will have one instance of /// NodeExtensionHelper for `a` and one for `b`. /// /// This class abstracts away how the extension is materialized and /// how its Mask, VL, number of users affect the combines. /// /// In particular: /// - VWADD_W is conceptually == add(op0, sext(op1)) /// - VWADDU_W == add(op0, zext(op1)) /// - VWSUB_W == sub(op0, sext(op1)) /// - VWSUBU_W == sub(op0, zext(op1)) /// /// And VMV_V_X_VL, depending on the value, is conceptually equivalent to /// zext|sext(smaller_value). struct NodeExtensionHelper { /// Records if this operand is like being zero extended. bool SupportsZExt; /// Records if this operand is like being sign extended. /// Note: SupportsZExt and SupportsSExt are not mutually exclusive. For /// instance, a splat constant (e.g., 3), would support being both sign and /// zero extended. bool SupportsSExt; /// This boolean captures whether we care if this operand would still be /// around after the folding happens. bool EnforceOneUse; /// Records if this operand's mask needs to match the mask of the operation /// that it will fold into. bool CheckMask; /// Value of the Mask for this operand. /// It may be SDValue(). SDValue Mask; /// Value of the vector length operand. /// It may be SDValue(). SDValue VL; /// Original value that this NodeExtensionHelper represents. SDValue OrigOperand; /// Get the value feeding the extension or the value itself. /// E.g., for zext(a), this would return a. SDValue getSource() const { switch (OrigOperand.getOpcode()) { case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case RISCVISD::VSEXT_VL: case RISCVISD::VZEXT_VL: return OrigOperand.getOperand(0); default: return OrigOperand; } } /// Check if this instance represents a splat. bool isSplat() const { return OrigOperand.getOpcode() == RISCVISD::VMV_V_X_VL; } /// Get or create a value that can feed \p Root with the given extension \p /// SExt. If \p SExt is std::nullopt, this returns the source of this operand. /// \see ::getSource(). SDValue getOrCreateExtendedOp(SDNode *Root, SelectionDAG &DAG, const RISCVSubtarget &Subtarget, std::optional SExt) const { if (!SExt.has_value()) return OrigOperand; MVT NarrowVT = getNarrowType(Root); SDValue Source = getSource(); if (Source.getValueType() == NarrowVT) return Source; unsigned ExtOpc = *SExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; // If we need an extension, we should be changing the type. SDLoc DL(Root); auto [Mask, VL] = getMaskAndVL(Root, DAG, Subtarget); switch (OrigOperand.getOpcode()) { case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case RISCVISD::VSEXT_VL: case RISCVISD::VZEXT_VL: return DAG.getNode(ExtOpc, DL, NarrowVT, Source, Mask, VL); case RISCVISD::VMV_V_X_VL: return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, DAG.getUNDEF(NarrowVT), Source.getOperand(1), VL); default: // Other opcodes can only come from the original LHS of VW(ADD|SUB)_W_VL // and that operand should already have the right NarrowVT so no // extension should be required at this point. llvm_unreachable("Unsupported opcode"); } } /// Helper function to get the narrow type for \p Root. /// The narrow type is the type of \p Root where we divided the size of each /// element by 2. E.g., if Root's type <2xi16> -> narrow type <2xi8>. /// \pre The size of the type of the elements of Root must be a multiple of 2 /// and be greater than 16. static MVT getNarrowType(const SDNode *Root) { MVT VT = Root->getSimpleValueType(0); // Determine the narrow size. unsigned NarrowSize = VT.getScalarSizeInBits() / 2; assert(NarrowSize >= 8 && "Trying to extend something we can't represent"); MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), VT.getVectorElementCount()); return NarrowVT; } /// Return the opcode required to materialize the folding of the sign /// extensions (\p IsSExt == true) or zero extensions (IsSExt == false) for /// both operands for \p Opcode. /// Put differently, get the opcode to materialize: /// - ISExt == true: \p Opcode(sext(a), sext(b)) -> newOpcode(a, b) /// - ISExt == false: \p Opcode(zext(a), zext(b)) -> newOpcode(a, b) /// \pre \p Opcode represents a supported root (\see ::isSupportedRoot()). static unsigned getSameExtensionOpcode(unsigned Opcode, bool IsSExt) { switch (Opcode) { case ISD::ADD: case RISCVISD::ADD_VL: case RISCVISD::VWADD_W_VL: case RISCVISD::VWADDU_W_VL: return IsSExt ? RISCVISD::VWADD_VL : RISCVISD::VWADDU_VL; case ISD::MUL: case RISCVISD::MUL_VL: return IsSExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; case ISD::SUB: case RISCVISD::SUB_VL: case RISCVISD::VWSUB_W_VL: case RISCVISD::VWSUBU_W_VL: return IsSExt ? RISCVISD::VWSUB_VL : RISCVISD::VWSUBU_VL; default: llvm_unreachable("Unexpected opcode"); } } /// Get the opcode to materialize \p Opcode(sext(a), zext(b)) -> /// newOpcode(a, b). static unsigned getSUOpcode(unsigned Opcode) { assert((Opcode == RISCVISD::MUL_VL || Opcode == ISD::MUL) && "SU is only supported for MUL"); return RISCVISD::VWMULSU_VL; } /// Get the opcode to materialize \p Opcode(a, s|zext(b)) -> /// newOpcode(a, b). static unsigned getWOpcode(unsigned Opcode, bool IsSExt) { switch (Opcode) { case ISD::ADD: case RISCVISD::ADD_VL: return IsSExt ? RISCVISD::VWADD_W_VL : RISCVISD::VWADDU_W_VL; case ISD::SUB: case RISCVISD::SUB_VL: return IsSExt ? RISCVISD::VWSUB_W_VL : RISCVISD::VWSUBU_W_VL; default: llvm_unreachable("Unexpected opcode"); } } using CombineToTry = std::function( SDNode * /*Root*/, const NodeExtensionHelper & /*LHS*/, const NodeExtensionHelper & /*RHS*/, SelectionDAG &, const RISCVSubtarget &)>; /// Check if this node needs to be fully folded or extended for all users. bool needToPromoteOtherUsers() const { return EnforceOneUse; } /// Helper method to set the various fields of this struct based on the /// type of \p Root. void fillUpExtensionSupport(SDNode *Root, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SupportsZExt = false; SupportsSExt = false; EnforceOneUse = true; CheckMask = true; unsigned Opc = OrigOperand.getOpcode(); switch (Opc) { case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: { MVT VT = OrigOperand.getSimpleValueType(); if (!VT.isVector()) break; SDValue NarrowElt = OrigOperand.getOperand(0); MVT NarrowVT = NarrowElt.getSimpleValueType(); unsigned ScalarBits = VT.getScalarSizeInBits(); unsigned NarrowScalarBits = NarrowVT.getScalarSizeInBits(); // Ensure the narrowing element type is legal if (!Subtarget.getTargetLowering()->isTypeLegal(NarrowElt.getValueType())) break; // Ensure the extension's semantic is equivalent to rvv vzext or vsext. if (ScalarBits != NarrowScalarBits * 2) break; SupportsZExt = Opc == ISD::ZERO_EXTEND; SupportsSExt = Opc == ISD::SIGN_EXTEND; SDLoc DL(Root); std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); break; } case RISCVISD::VZEXT_VL: SupportsZExt = true; Mask = OrigOperand.getOperand(1); VL = OrigOperand.getOperand(2); break; case RISCVISD::VSEXT_VL: SupportsSExt = true; Mask = OrigOperand.getOperand(1); VL = OrigOperand.getOperand(2); break; case RISCVISD::VMV_V_X_VL: { // Historically, we didn't care about splat values not disappearing during // combines. EnforceOneUse = false; CheckMask = false; VL = OrigOperand.getOperand(2); // The operand is a splat of a scalar. // The pasthru must be undef for tail agnostic. if (!OrigOperand.getOperand(0).isUndef()) break; // Get the scalar value. SDValue Op = OrigOperand.getOperand(1); // See if we have enough sign bits or zero bits in the scalar to use a // widening opcode by splatting to smaller element size. MVT VT = Root->getSimpleValueType(0); unsigned EltBits = VT.getScalarSizeInBits(); unsigned ScalarBits = Op.getValueSizeInBits(); // Make sure we're getting all element bits from the scalar register. // FIXME: Support implicit sign extension of vmv.v.x? if (ScalarBits < EltBits) break; unsigned NarrowSize = VT.getScalarSizeInBits() / 2; // If the narrow type cannot be expressed with a legal VMV, // this is not a valid candidate. if (NarrowSize < 8) break; if (DAG.ComputeMaxSignificantBits(Op) <= NarrowSize) SupportsSExt = true; if (DAG.MaskedValueIsZero(Op, APInt::getBitsSetFrom(ScalarBits, NarrowSize))) SupportsZExt = true; break; } default: break; } } /// Check if \p Root supports any extension folding combines. static bool isSupportedRoot(const SDNode *Root, const SelectionDAG &DAG) { switch (Root->getOpcode()) { case ISD::ADD: case ISD::SUB: case ISD::MUL: { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isTypeLegal(Root->getValueType(0))) return false; return Root->getValueType(0).isScalableVector(); } case RISCVISD::ADD_VL: case RISCVISD::MUL_VL: case RISCVISD::VWADD_W_VL: case RISCVISD::VWADDU_W_VL: case RISCVISD::SUB_VL: case RISCVISD::VWSUB_W_VL: case RISCVISD::VWSUBU_W_VL: return true; default: return false; } } /// Build a NodeExtensionHelper for \p Root.getOperand(\p OperandIdx). NodeExtensionHelper(SDNode *Root, unsigned OperandIdx, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(isSupportedRoot(Root, DAG) && "Trying to build an helper with an " "unsupported root"); assert(OperandIdx < 2 && "Requesting something else than LHS or RHS"); OrigOperand = Root->getOperand(OperandIdx); unsigned Opc = Root->getOpcode(); switch (Opc) { // We consider VW(U)_W(LHS, RHS) as if they were // (LHS, S|ZEXT(RHS)) case RISCVISD::VWADD_W_VL: case RISCVISD::VWADDU_W_VL: case RISCVISD::VWSUB_W_VL: case RISCVISD::VWSUBU_W_VL: if (OperandIdx == 1) { SupportsZExt = Opc == RISCVISD::VWADDU_W_VL || Opc == RISCVISD::VWSUBU_W_VL; SupportsSExt = !SupportsZExt; std::tie(Mask, VL) = getMaskAndVL(Root, DAG, Subtarget); CheckMask = true; // There's no existing extension here, so we don't have to worry about // making sure it gets removed. EnforceOneUse = false; break; } [[fallthrough]]; default: fillUpExtensionSupport(Root, DAG, Subtarget); break; } } /// Check if this operand is compatible with the given vector length \p VL. bool isVLCompatible(SDValue VL) const { return this->VL != SDValue() && this->VL == VL; } /// Check if this operand is compatible with the given \p Mask. bool isMaskCompatible(SDValue Mask) const { return !CheckMask || (this->Mask != SDValue() && this->Mask == Mask); } /// Helper function to get the Mask and VL from \p Root. static std::pair getMaskAndVL(const SDNode *Root, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(isSupportedRoot(Root, DAG) && "Unexpected root"); switch (Root->getOpcode()) { case ISD::ADD: case ISD::SUB: case ISD::MUL: { SDLoc DL(Root); MVT VT = Root->getSimpleValueType(0); return getDefaultScalableVLOps(VT, DL, DAG, Subtarget); } default: return std::make_pair(Root->getOperand(3), Root->getOperand(4)); } } /// Check if the Mask and VL of this operand are compatible with \p Root. bool areVLAndMaskCompatible(SDNode *Root, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) const { auto [Mask, VL] = getMaskAndVL(Root, DAG, Subtarget); return isMaskCompatible(Mask) && isVLCompatible(VL); } /// Helper function to check if \p N is commutative with respect to the /// foldings that are supported by this class. static bool isCommutative(const SDNode *N) { switch (N->getOpcode()) { case ISD::ADD: case ISD::MUL: case RISCVISD::ADD_VL: case RISCVISD::MUL_VL: case RISCVISD::VWADD_W_VL: case RISCVISD::VWADDU_W_VL: return true; case ISD::SUB: case RISCVISD::SUB_VL: case RISCVISD::VWSUB_W_VL: case RISCVISD::VWSUBU_W_VL: return false; default: llvm_unreachable("Unexpected opcode"); } } /// Get a list of combine to try for folding extensions in \p Root. /// Note that each returned CombineToTry function doesn't actually modify /// anything. Instead they produce an optional CombineResult that if not None, /// need to be materialized for the combine to be applied. /// \see CombineResult::materialize. /// If the related CombineToTry function returns std::nullopt, that means the /// combine didn't match. static SmallVector getSupportedFoldings(const SDNode *Root); }; /// Helper structure that holds all the necessary information to materialize a /// combine that does some extension folding. struct CombineResult { /// Opcode to be generated when materializing the combine. unsigned TargetOpcode; // No value means no extension is needed. If extension is needed, the value // indicates if it needs to be sign extended. std::optional SExtLHS; std::optional SExtRHS; /// Root of the combine. SDNode *Root; /// LHS of the TargetOpcode. NodeExtensionHelper LHS; /// RHS of the TargetOpcode. NodeExtensionHelper RHS; CombineResult(unsigned TargetOpcode, SDNode *Root, const NodeExtensionHelper &LHS, std::optional SExtLHS, const NodeExtensionHelper &RHS, std::optional SExtRHS) : TargetOpcode(TargetOpcode), SExtLHS(SExtLHS), SExtRHS(SExtRHS), Root(Root), LHS(LHS), RHS(RHS) {} /// Return a value that uses TargetOpcode and that can be used to replace /// Root. /// The actual replacement is *not* done in that method. SDValue materialize(SelectionDAG &DAG, const RISCVSubtarget &Subtarget) const { SDValue Mask, VL, Merge; std::tie(Mask, VL) = NodeExtensionHelper::getMaskAndVL(Root, DAG, Subtarget); switch (Root->getOpcode()) { default: Merge = Root->getOperand(2); break; case ISD::ADD: case ISD::SUB: case ISD::MUL: Merge = DAG.getUNDEF(Root->getValueType(0)); break; } return DAG.getNode(TargetOpcode, SDLoc(Root), Root->getValueType(0), LHS.getOrCreateExtendedOp(Root, DAG, Subtarget, SExtLHS), RHS.getOrCreateExtendedOp(Root, DAG, Subtarget, SExtRHS), Merge, Mask, VL); } }; /// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS)) /// where `ext` is the same for both LHS and RHS (i.e., both are sext or both /// are zext) and LHS and RHS can be folded into Root. /// AllowSExt and AllozZExt define which form `ext` can take in this pattern. /// /// \note If the pattern can match with both zext and sext, the returned /// CombineResult will feature the zext result. /// /// \returns std::nullopt if the pattern doesn't match or a CombineResult that /// can be used to apply the pattern. static std::optional canFoldToVWWithSameExtensionImpl(SDNode *Root, const NodeExtensionHelper &LHS, const NodeExtensionHelper &RHS, bool AllowSExt, bool AllowZExt, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert((AllowSExt || AllowZExt) && "Forgot to set what you want?"); if (!LHS.areVLAndMaskCompatible(Root, DAG, Subtarget) || !RHS.areVLAndMaskCompatible(Root, DAG, Subtarget)) return std::nullopt; if (AllowZExt && LHS.SupportsZExt && RHS.SupportsZExt) return CombineResult(NodeExtensionHelper::getSameExtensionOpcode( Root->getOpcode(), /*IsSExt=*/false), Root, LHS, /*SExtLHS=*/false, RHS, /*SExtRHS=*/false); if (AllowSExt && LHS.SupportsSExt && RHS.SupportsSExt) return CombineResult(NodeExtensionHelper::getSameExtensionOpcode( Root->getOpcode(), /*IsSExt=*/true), Root, LHS, /*SExtLHS=*/true, RHS, /*SExtRHS=*/true); return std::nullopt; } /// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS)) /// where `ext` is the same for both LHS and RHS (i.e., both are sext or both /// are zext) and LHS and RHS can be folded into Root. /// /// \returns std::nullopt if the pattern doesn't match or a CombineResult that /// can be used to apply the pattern. static std::optional canFoldToVWWithSameExtension(SDNode *Root, const NodeExtensionHelper &LHS, const NodeExtensionHelper &RHS, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/true, /*AllowZExt=*/true, DAG, Subtarget); } /// Check if \p Root follows a pattern Root(LHS, ext(RHS)) /// /// \returns std::nullopt if the pattern doesn't match or a CombineResult that /// can be used to apply the pattern. static std::optional canFoldToVW_W(SDNode *Root, const NodeExtensionHelper &LHS, const NodeExtensionHelper &RHS, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (!RHS.areVLAndMaskCompatible(Root, DAG, Subtarget)) return std::nullopt; // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar // sext/zext? // Control this behavior behind an option (AllowSplatInVW_W) for testing // purposes. if (RHS.SupportsZExt && (!RHS.isSplat() || AllowSplatInVW_W)) return CombineResult( NodeExtensionHelper::getWOpcode(Root->getOpcode(), /*IsSExt=*/false), Root, LHS, /*SExtLHS=*/std::nullopt, RHS, /*SExtRHS=*/false); if (RHS.SupportsSExt && (!RHS.isSplat() || AllowSplatInVW_W)) return CombineResult( NodeExtensionHelper::getWOpcode(Root->getOpcode(), /*IsSExt=*/true), Root, LHS, /*SExtLHS=*/std::nullopt, RHS, /*SExtRHS=*/true); return std::nullopt; } /// Check if \p Root follows a pattern Root(sext(LHS), sext(RHS)) /// /// \returns std::nullopt if the pattern doesn't match or a CombineResult that /// can be used to apply the pattern. static std::optional canFoldToVWWithSEXT(SDNode *Root, const NodeExtensionHelper &LHS, const NodeExtensionHelper &RHS, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/true, /*AllowZExt=*/false, DAG, Subtarget); } /// Check if \p Root follows a pattern Root(zext(LHS), zext(RHS)) /// /// \returns std::nullopt if the pattern doesn't match or a CombineResult that /// can be used to apply the pattern. static std::optional canFoldToVWWithZEXT(SDNode *Root, const NodeExtensionHelper &LHS, const NodeExtensionHelper &RHS, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/false, /*AllowZExt=*/true, DAG, Subtarget); } /// Check if \p Root follows a pattern Root(sext(LHS), zext(RHS)) /// /// \returns std::nullopt if the pattern doesn't match or a CombineResult that /// can be used to apply the pattern. static std::optional canFoldToVW_SU(SDNode *Root, const NodeExtensionHelper &LHS, const NodeExtensionHelper &RHS, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (!LHS.SupportsSExt || !RHS.SupportsZExt) return std::nullopt; if (!LHS.areVLAndMaskCompatible(Root, DAG, Subtarget) || !RHS.areVLAndMaskCompatible(Root, DAG, Subtarget)) return std::nullopt; return CombineResult(NodeExtensionHelper::getSUOpcode(Root->getOpcode()), Root, LHS, /*SExtLHS=*/true, RHS, /*SExtRHS=*/false); } SmallVector NodeExtensionHelper::getSupportedFoldings(const SDNode *Root) { SmallVector Strategies; switch (Root->getOpcode()) { case ISD::ADD: case ISD::SUB: case RISCVISD::ADD_VL: case RISCVISD::SUB_VL: // add|sub -> vwadd(u)|vwsub(u) Strategies.push_back(canFoldToVWWithSameExtension); // add|sub -> vwadd(u)_w|vwsub(u)_w Strategies.push_back(canFoldToVW_W); break; case ISD::MUL: case RISCVISD::MUL_VL: // mul -> vwmul(u) Strategies.push_back(canFoldToVWWithSameExtension); // mul -> vwmulsu Strategies.push_back(canFoldToVW_SU); break; case RISCVISD::VWADD_W_VL: case RISCVISD::VWSUB_W_VL: // vwadd_w|vwsub_w -> vwadd|vwsub Strategies.push_back(canFoldToVWWithSEXT); break; case RISCVISD::VWADDU_W_VL: case RISCVISD::VWSUBU_W_VL: // vwaddu_w|vwsubu_w -> vwaddu|vwsubu Strategies.push_back(canFoldToVWWithZEXT); break; default: llvm_unreachable("Unexpected opcode"); } return Strategies; } } // End anonymous namespace. /// Combine a binary operation to its equivalent VW or VW_W form. /// The supported combines are: /// add_vl -> vwadd(u) | vwadd(u)_w /// sub_vl -> vwsub(u) | vwsub(u)_w /// mul_vl -> vwmul(u) | vwmul_su /// vwadd_w(u) -> vwadd(u) /// vwub_w(u) -> vwadd(u) static SDValue combineBinOp_VLToVWBinOp_VL(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const RISCVSubtarget &Subtarget) { SelectionDAG &DAG = DCI.DAG; if (!NodeExtensionHelper::isSupportedRoot(N, DAG)) return SDValue(); SmallVector Worklist; SmallSet Inserted; Worklist.push_back(N); Inserted.insert(N); SmallVector CombinesToApply; while (!Worklist.empty()) { SDNode *Root = Worklist.pop_back_val(); if (!NodeExtensionHelper::isSupportedRoot(Root, DAG)) return SDValue(); NodeExtensionHelper LHS(N, 0, DAG, Subtarget); NodeExtensionHelper RHS(N, 1, DAG, Subtarget); auto AppendUsersIfNeeded = [&Worklist, &Inserted](const NodeExtensionHelper &Op) { if (Op.needToPromoteOtherUsers()) { for (SDNode *TheUse : Op.OrigOperand->uses()) { if (Inserted.insert(TheUse).second) Worklist.push_back(TheUse); } } }; // Control the compile time by limiting the number of node we look at in // total. if (Inserted.size() > ExtensionMaxWebSize) return SDValue(); SmallVector FoldingStrategies = NodeExtensionHelper::getSupportedFoldings(N); assert(!FoldingStrategies.empty() && "Nothing to be folded"); bool Matched = false; for (int Attempt = 0; (Attempt != 1 + NodeExtensionHelper::isCommutative(N)) && !Matched; ++Attempt) { for (NodeExtensionHelper::CombineToTry FoldingStrategy : FoldingStrategies) { std::optional Res = FoldingStrategy(N, LHS, RHS, DAG, Subtarget); if (Res) { Matched = true; CombinesToApply.push_back(*Res); // All the inputs that are extended need to be folded, otherwise // we would be leaving the old input (since it is may still be used), // and the new one. if (Res->SExtLHS.has_value()) AppendUsersIfNeeded(LHS); if (Res->SExtRHS.has_value()) AppendUsersIfNeeded(RHS); break; } } std::swap(LHS, RHS); } // Right now we do an all or nothing approach. if (!Matched) return SDValue(); } // Store the value for the replacement of the input node separately. SDValue InputRootReplacement; // We do the RAUW after we materialize all the combines, because some replaced // nodes may be feeding some of the yet-to-be-replaced nodes. Put differently, // some of these nodes may appear in the NodeExtensionHelpers of some of the // yet-to-be-visited CombinesToApply roots. SmallVector> ValuesToReplace; ValuesToReplace.reserve(CombinesToApply.size()); for (CombineResult Res : CombinesToApply) { SDValue NewValue = Res.materialize(DAG, Subtarget); if (!InputRootReplacement) { assert(Res.Root == N && "First element is expected to be the current node"); InputRootReplacement = NewValue; } else { ValuesToReplace.emplace_back(SDValue(Res.Root, 0), NewValue); } } for (std::pair OldNewValues : ValuesToReplace) { DAG.ReplaceAllUsesOfValueWith(OldNewValues.first, OldNewValues.second); DCI.AddToWorklist(OldNewValues.second.getNode()); } return InputRootReplacement; } // Helper function for performMemPairCombine. // Try to combine the memory loads/stores LSNode1 and LSNode2 // into a single memory pair operation. static SDValue tryMemPairCombine(SelectionDAG &DAG, LSBaseSDNode *LSNode1, LSBaseSDNode *LSNode2, SDValue BasePtr, uint64_t Imm) { SmallPtrSet Visited; SmallVector Worklist = {LSNode1, LSNode2}; if (SDNode::hasPredecessorHelper(LSNode1, Visited, Worklist) || SDNode::hasPredecessorHelper(LSNode2, Visited, Worklist)) return SDValue(); MachineFunction &MF = DAG.getMachineFunction(); const RISCVSubtarget &Subtarget = MF.getSubtarget(); // The new operation has twice the width. MVT XLenVT = Subtarget.getXLenVT(); EVT MemVT = LSNode1->getMemoryVT(); EVT NewMemVT = (MemVT == MVT::i32) ? MVT::i64 : MVT::i128; MachineMemOperand *MMO = LSNode1->getMemOperand(); MachineMemOperand *NewMMO = MF.getMachineMemOperand( MMO, MMO->getPointerInfo(), MemVT == MVT::i32 ? 8 : 16); if (LSNode1->getOpcode() == ISD::LOAD) { auto Ext = cast(LSNode1)->getExtensionType(); unsigned Opcode; if (MemVT == MVT::i32) Opcode = (Ext == ISD::ZEXTLOAD) ? RISCVISD::TH_LWUD : RISCVISD::TH_LWD; else Opcode = RISCVISD::TH_LDD; SDValue Res = DAG.getMemIntrinsicNode( Opcode, SDLoc(LSNode1), DAG.getVTList({XLenVT, XLenVT, MVT::Other}), {LSNode1->getChain(), BasePtr, DAG.getConstant(Imm, SDLoc(LSNode1), XLenVT)}, NewMemVT, NewMMO); SDValue Node1 = DAG.getMergeValues({Res.getValue(0), Res.getValue(2)}, SDLoc(LSNode1)); SDValue Node2 = DAG.getMergeValues({Res.getValue(1), Res.getValue(2)}, SDLoc(LSNode2)); DAG.ReplaceAllUsesWith(LSNode2, Node2.getNode()); return Node1; } else { unsigned Opcode = (MemVT == MVT::i32) ? RISCVISD::TH_SWD : RISCVISD::TH_SDD; SDValue Res = DAG.getMemIntrinsicNode( Opcode, SDLoc(LSNode1), DAG.getVTList(MVT::Other), {LSNode1->getChain(), LSNode1->getOperand(1), LSNode2->getOperand(1), BasePtr, DAG.getConstant(Imm, SDLoc(LSNode1), XLenVT)}, NewMemVT, NewMMO); DAG.ReplaceAllUsesWith(LSNode2, Res.getNode()); return Res; } } // Try to combine two adjacent loads/stores to a single pair instruction from // the XTHeadMemPair vendor extension. static SDValue performMemPairCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; MachineFunction &MF = DAG.getMachineFunction(); const RISCVSubtarget &Subtarget = MF.getSubtarget(); // Target does not support load/store pair. if (!Subtarget.hasVendorXTHeadMemPair()) return SDValue(); LSBaseSDNode *LSNode1 = cast(N); EVT MemVT = LSNode1->getMemoryVT(); unsigned OpNum = LSNode1->getOpcode() == ISD::LOAD ? 1 : 2; // No volatile, indexed or atomic loads/stores. if (!LSNode1->isSimple() || LSNode1->isIndexed()) return SDValue(); // Function to get a base + constant representation from a memory value. auto ExtractBaseAndOffset = [](SDValue Ptr) -> std::pair { if (Ptr->getOpcode() == ISD::ADD) if (auto *C1 = dyn_cast(Ptr->getOperand(1))) return {Ptr->getOperand(0), C1->getZExtValue()}; return {Ptr, 0}; }; auto [Base1, Offset1] = ExtractBaseAndOffset(LSNode1->getOperand(OpNum)); SDValue Chain = N->getOperand(0); for (SDNode::use_iterator UI = Chain->use_begin(), UE = Chain->use_end(); UI != UE; ++UI) { SDUse &Use = UI.getUse(); if (Use.getUser() != N && Use.getResNo() == 0 && Use.getUser()->getOpcode() == N->getOpcode()) { LSBaseSDNode *LSNode2 = cast(Use.getUser()); // No volatile, indexed or atomic loads/stores. if (!LSNode2->isSimple() || LSNode2->isIndexed()) continue; // Check if LSNode1 and LSNode2 have the same type and extension. if (LSNode1->getOpcode() == ISD::LOAD) if (cast(LSNode2)->getExtensionType() != cast(LSNode1)->getExtensionType()) continue; if (LSNode1->getMemoryVT() != LSNode2->getMemoryVT()) continue; auto [Base2, Offset2] = ExtractBaseAndOffset(LSNode2->getOperand(OpNum)); // Check if the base pointer is the same for both instruction. if (Base1 != Base2) continue; // Check if the offsets match the XTHeadMemPair encoding contraints. bool Valid = false; if (MemVT == MVT::i32) { // Check for adjacent i32 values and a 2-bit index. if ((Offset1 + 4 == Offset2) && isShiftedUInt<2, 3>(Offset1)) Valid = true; } else if (MemVT == MVT::i64) { // Check for adjacent i64 values and a 2-bit index. if ((Offset1 + 8 == Offset2) && isShiftedUInt<2, 4>(Offset1)) Valid = true; } if (!Valid) continue; // Try to combine. if (SDValue Res = tryMemPairCombine(DAG, LSNode1, LSNode2, Base1, Offset1)) return Res; } } return SDValue(); } // Fold // (fp_to_int (froundeven X)) -> fcvt X, rne // (fp_to_int (ftrunc X)) -> fcvt X, rtz // (fp_to_int (ffloor X)) -> fcvt X, rdn // (fp_to_int (fceil X)) -> fcvt X, rup // (fp_to_int (fround X)) -> fcvt X, rmm // (fp_to_int (frint X)) -> fcvt X static SDValue performFP_TO_INTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const RISCVSubtarget &Subtarget) { SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); MVT XLenVT = Subtarget.getXLenVT(); SDValue Src = N->getOperand(0); // Don't do this for strict-fp Src. if (Src->isStrictFPOpcode() || Src->isTargetStrictFPOpcode()) return SDValue(); // Ensure the FP type is legal. if (!TLI.isTypeLegal(Src.getValueType())) return SDValue(); // Don't do this for f16 with Zfhmin and not Zfh. if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) return SDValue(); RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode()); // If the result is invalid, we didn't find a foldable instruction. if (FRM == RISCVFPRndMode::Invalid) return SDValue(); SDLoc DL(N); bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; EVT VT = N->getValueType(0); if (VT.isVector() && TLI.isTypeLegal(VT)) { MVT SrcVT = Src.getSimpleValueType(); MVT SrcContainerVT = SrcVT; MVT ContainerVT = VT.getSimpleVT(); SDValue XVal = Src.getOperand(0); // For widening and narrowing conversions we just combine it into a // VFCVT_..._VL node, as there are no specific VFWCVT/VFNCVT VL nodes. They // end up getting lowered to their appropriate pseudo instructions based on // their operand types if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits() * 2 || VT.getScalarSizeInBits() * 2 < SrcVT.getScalarSizeInBits()) return SDValue(); // Make fixed-length vectors scalable first if (SrcVT.isFixedLengthVector()) { SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget); XVal = convertToScalableVector(SrcContainerVT, XVal, DAG, Subtarget); ContainerVT = getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget); } auto [Mask, VL] = getDefaultVLOps(SrcVT, SrcContainerVT, DL, DAG, Subtarget); SDValue FpToInt; if (FRM == RISCVFPRndMode::RTZ) { // Use the dedicated trunc static rounding mode if we're truncating so we // don't need to generate calls to fsrmi/fsrm unsigned Opc = IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL; FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL); } else if (FRM == RISCVFPRndMode::DYN) { unsigned Opc = IsSigned ? RISCVISD::VFCVT_X_F_VL : RISCVISD::VFCVT_XU_F_VL; FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL); } else { unsigned Opc = IsSigned ? RISCVISD::VFCVT_RM_X_F_VL : RISCVISD::VFCVT_RM_XU_F_VL; FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, DAG.getTargetConstant(FRM, DL, XLenVT), VL); } // If converted from fixed-length to scalable, convert back if (VT.isFixedLengthVector()) FpToInt = convertFromScalableVector(VT, FpToInt, DAG, Subtarget); return FpToInt; } // Only handle XLen or i32 types. Other types narrower than XLen will // eventually be legalized to XLenVT. if (VT != MVT::i32 && VT != XLenVT) return SDValue(); unsigned Opc; if (VT == XLenVT) Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; else Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), DAG.getTargetConstant(FRM, DL, XLenVT)); return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); } // Fold // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) // (fp_to_int_sat (frint X)) -> (select X == nan, 0, (fcvt X, dyn)) static SDValue performFP_TO_INT_SATCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const RISCVSubtarget &Subtarget) { SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); MVT XLenVT = Subtarget.getXLenVT(); // Only handle XLen types. Other types narrower than XLen will eventually be // legalized to XLenVT. EVT DstVT = N->getValueType(0); if (DstVT != XLenVT) return SDValue(); SDValue Src = N->getOperand(0); // Don't do this for strict-fp Src. if (Src->isStrictFPOpcode() || Src->isTargetStrictFPOpcode()) return SDValue(); // Ensure the FP type is also legal. if (!TLI.isTypeLegal(Src.getValueType())) return SDValue(); // Don't do this for f16 with Zfhmin and not Zfh. if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) return SDValue(); EVT SatVT = cast(N->getOperand(1))->getVT(); RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode()); if (FRM == RISCVFPRndMode::Invalid) return SDValue(); bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; unsigned Opc; if (SatVT == DstVT) Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; else if (DstVT == MVT::i64 && SatVT == MVT::i32) Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; else return SDValue(); // FIXME: Support other SatVTs by clamping before or after the conversion. Src = Src.getOperand(0); SDLoc DL(N); SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, DAG.getTargetConstant(FRM, DL, XLenVT)); // fcvt.wu.* sign extends bit 31 on RV64. FP_TO_UINT_SAT expects to zero // extend. if (Opc == RISCVISD::FCVT_WU_RV64) FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32); // RISC-V FP-to-int conversions saturate to the destination register size, but // don't produce 0 for nan. SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); } // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is // smaller than XLenVT. static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); SDValue Src = N->getOperand(0); if (Src.getOpcode() != ISD::BSWAP) return SDValue(); EVT VT = N->getValueType(0); if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || !llvm::has_single_bit(VT.getSizeInBits())) return SDValue(); SDLoc DL(N); return DAG.getNode(RISCVISD::BREV8, DL, VT, Src.getOperand(0)); } // Convert from one FMA opcode to another based on whether we are negating the // multiply result and/or the accumulator. // NOTE: Only supports RVV operations with VL. static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) { // Negating the multiply result changes ADD<->SUB and toggles 'N'. if (NegMul) { // clang-format off switch (Opcode) { default: llvm_unreachable("Unexpected opcode"); case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; case RISCVISD::STRICT_VFMADD_VL: Opcode = RISCVISD::STRICT_VFNMSUB_VL; break; case RISCVISD::STRICT_VFNMSUB_VL: Opcode = RISCVISD::STRICT_VFMADD_VL; break; case RISCVISD::STRICT_VFNMADD_VL: Opcode = RISCVISD::STRICT_VFMSUB_VL; break; case RISCVISD::STRICT_VFMSUB_VL: Opcode = RISCVISD::STRICT_VFNMADD_VL; break; } // clang-format on } // Negating the accumulator changes ADD<->SUB. if (NegAcc) { // clang-format off switch (Opcode) { default: llvm_unreachable("Unexpected opcode"); case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; case RISCVISD::STRICT_VFMADD_VL: Opcode = RISCVISD::STRICT_VFMSUB_VL; break; case RISCVISD::STRICT_VFMSUB_VL: Opcode = RISCVISD::STRICT_VFMADD_VL; break; case RISCVISD::STRICT_VFNMADD_VL: Opcode = RISCVISD::STRICT_VFNMSUB_VL; break; case RISCVISD::STRICT_VFNMSUB_VL: Opcode = RISCVISD::STRICT_VFNMADD_VL; break; } // clang-format on } return Opcode; } static SDValue combineVFMADD_VLWithVFNEG_VL(SDNode *N, SelectionDAG &DAG) { // Fold FNEG_VL into FMA opcodes. // The first operand of strict-fp is chain. unsigned Offset = N->isTargetStrictFPOpcode(); SDValue A = N->getOperand(0 + Offset); SDValue B = N->getOperand(1 + Offset); SDValue C = N->getOperand(2 + Offset); SDValue Mask = N->getOperand(3 + Offset); SDValue VL = N->getOperand(4 + Offset); auto invertIfNegative = [&Mask, &VL](SDValue &V) { if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask && V.getOperand(2) == VL) { // Return the negated input. V = V.getOperand(0); return true; } return false; }; bool NegA = invertIfNegative(A); bool NegB = invertIfNegative(B); bool NegC = invertIfNegative(C); // If no operands are negated, we're done. if (!NegA && !NegB && !NegC) return SDValue(); unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC); if (N->isTargetStrictFPOpcode()) return DAG.getNode(NewOpcode, SDLoc(N), N->getVTList(), {N->getOperand(0), A, B, C, Mask, VL}); return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask, VL); } static SDValue performVFMADD_VLCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (SDValue V = combineVFMADD_VLWithVFNEG_VL(N, DAG)) return V; if (N->getValueType(0).isScalableVector() && N->getValueType(0).getVectorElementType() == MVT::f32 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) { return SDValue(); } // FIXME: Ignore strict opcodes for now. if (N->isTargetStrictFPOpcode()) return SDValue(); // Try to form widening FMA. SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); SDValue Mask = N->getOperand(3); SDValue VL = N->getOperand(4); if (Op0.getOpcode() != RISCVISD::FP_EXTEND_VL || Op1.getOpcode() != RISCVISD::FP_EXTEND_VL) return SDValue(); // TODO: Refactor to handle more complex cases similar to // combineBinOp_VLToVWBinOp_VL. if ((!Op0.hasOneUse() || !Op1.hasOneUse()) && (Op0 != Op1 || !Op0->hasNUsesOfValue(2, 0))) return SDValue(); // Check the mask and VL are the same. if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL || Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) return SDValue(); unsigned NewOpc; switch (N->getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case RISCVISD::VFMADD_VL: NewOpc = RISCVISD::VFWMADD_VL; break; case RISCVISD::VFNMSUB_VL: NewOpc = RISCVISD::VFWNMSUB_VL; break; case RISCVISD::VFNMADD_VL: NewOpc = RISCVISD::VFWNMADD_VL; break; case RISCVISD::VFMSUB_VL: NewOpc = RISCVISD::VFWMSUB_VL; break; } Op0 = Op0.getOperand(0); Op1 = Op1.getOperand(0); return DAG.getNode(NewOpc, SDLoc(N), N->getValueType(0), Op0, Op1, N->getOperand(2), Mask, VL); } static SDValue performVFMUL_VLCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (N->getValueType(0).isScalableVector() && N->getValueType(0).getVectorElementType() == MVT::f32 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) { return SDValue(); } // FIXME: Ignore strict opcodes for now. assert(!N->isTargetStrictFPOpcode() && "Unexpected opcode"); // Try to form widening multiply. SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); SDValue Merge = N->getOperand(2); SDValue Mask = N->getOperand(3); SDValue VL = N->getOperand(4); if (Op0.getOpcode() != RISCVISD::FP_EXTEND_VL || Op1.getOpcode() != RISCVISD::FP_EXTEND_VL) return SDValue(); // TODO: Refactor to handle more complex cases similar to // combineBinOp_VLToVWBinOp_VL. if ((!Op0.hasOneUse() || !Op1.hasOneUse()) && (Op0 != Op1 || !Op0->hasNUsesOfValue(2, 0))) return SDValue(); // Check the mask and VL are the same. if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL || Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) return SDValue(); Op0 = Op0.getOperand(0); Op1 = Op1.getOperand(0); return DAG.getNode(RISCVISD::VFWMUL_VL, SDLoc(N), N->getValueType(0), Op0, Op1, Merge, Mask, VL); } static SDValue performFADDSUB_VLCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (N->getValueType(0).isScalableVector() && N->getValueType(0).getVectorElementType() == MVT::f32 && (Subtarget.hasVInstructionsF16Minimal() && !Subtarget.hasVInstructionsF16())) { return SDValue(); } SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); SDValue Merge = N->getOperand(2); SDValue Mask = N->getOperand(3); SDValue VL = N->getOperand(4); bool IsAdd = N->getOpcode() == RISCVISD::FADD_VL; // Look for foldable FP_EXTENDS. bool Op0IsExtend = Op0.getOpcode() == RISCVISD::FP_EXTEND_VL && (Op0.hasOneUse() || (Op0 == Op1 && Op0->hasNUsesOfValue(2, 0))); bool Op1IsExtend = (Op0 == Op1 && Op0IsExtend) || (Op1.getOpcode() == RISCVISD::FP_EXTEND_VL && Op1.hasOneUse()); // Check the mask and VL. if (Op0IsExtend && (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)) Op0IsExtend = false; if (Op1IsExtend && (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)) Op1IsExtend = false; // Canonicalize. if (!Op1IsExtend) { // Sub requires at least operand 1 to be an extend. if (!IsAdd) return SDValue(); // Add is commutable, if the other operand is foldable, swap them. if (!Op0IsExtend) return SDValue(); std::swap(Op0, Op1); std::swap(Op0IsExtend, Op1IsExtend); } // Op1 is a foldable extend. Op0 might be foldable. Op1 = Op1.getOperand(0); if (Op0IsExtend) Op0 = Op0.getOperand(0); unsigned Opc; if (IsAdd) Opc = Op0IsExtend ? RISCVISD::VFWADD_VL : RISCVISD::VFWADD_W_VL; else Opc = Op0IsExtend ? RISCVISD::VFWSUB_VL : RISCVISD::VFWSUB_W_VL; return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Op0, Op1, Merge, Mask, VL); } static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(N->getOpcode() == ISD::SRA && "Unexpected opcode"); if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit()) return SDValue(); if (!isa(N->getOperand(1))) return SDValue(); uint64_t ShAmt = N->getConstantOperandVal(1); if (ShAmt > 32) return SDValue(); SDValue N0 = N->getOperand(0); // Combine (sra (sext_inreg (shl X, C1), i32), C2) -> // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of // SLLIW+SRAIW. SLLI+SRAI have compressed forms. if (ShAmt < 32 && N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() && cast(N0.getOperand(1))->getVT() == MVT::i32 && N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() && isa(N0.getOperand(0).getOperand(1))) { uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1); if (LShAmt < 32) { SDLoc ShlDL(N0.getOperand(0)); SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64, N0.getOperand(0).getOperand(0), DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64)); SDLoc DL(N); return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl, DAG.getConstant(ShAmt + 32, DL, MVT::i64)); } } // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C) // FIXME: Should this be a generic combine? There's a similar combine on X86. // // Also try these folds where an add or sub is in the middle. // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C) // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C) SDValue Shl; ConstantSDNode *AddC = nullptr; // We might have an ADD or SUB between the SRA and SHL. bool IsAdd = N0.getOpcode() == ISD::ADD; if ((IsAdd || N0.getOpcode() == ISD::SUB)) { // Other operand needs to be a constant we can modify. AddC = dyn_cast(N0.getOperand(IsAdd ? 1 : 0)); if (!AddC) return SDValue(); // AddC needs to have at least 32 trailing zeros. if (AddC->getAPIntValue().countr_zero() < 32) return SDValue(); // All users should be a shift by constant less than or equal to 32. This // ensures we'll do this optimization for each of them to produce an // add/sub+sext_inreg they can all share. for (SDNode *U : N0->uses()) { if (U->getOpcode() != ISD::SRA || !isa(U->getOperand(1)) || U->getConstantOperandVal(1) > 32) return SDValue(); } Shl = N0.getOperand(IsAdd ? 0 : 1); } else { // Not an ADD or SUB. Shl = N0; } // Look for a shift left by 32. if (Shl.getOpcode() != ISD::SHL || !isa(Shl.getOperand(1)) || Shl.getConstantOperandVal(1) != 32) return SDValue(); // We if we didn't look through an add/sub, then the shl should have one use. // If we did look through an add/sub, the sext_inreg we create is free so // we're only creating 2 new instructions. It's enough to only remove the // original sra+add/sub. if (!AddC && !Shl.hasOneUse()) return SDValue(); SDLoc DL(N); SDValue In = Shl.getOperand(0); // If we looked through an ADD or SUB, we need to rebuild it with the shifted // constant. if (AddC) { SDValue ShiftedAddC = DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64); if (IsAdd) In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC); else In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In); } SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In, DAG.getValueType(MVT::i32)); if (ShAmt == 32) return SExt; return DAG.getNode( ISD::SHL, DL, MVT::i64, SExt, DAG.getConstant(32 - ShAmt, DL, MVT::i64)); } // Invert (and/or (set cc X, Y), (xor Z, 1)) to (or/and (set !cc X, Y)), Z) if // the result is used as the conditon of a br_cc or select_cc we can invert, // inverting the setcc is free, and Z is 0/1. Caller will invert the // br_cc/select_cc. static SDValue tryDemorganOfBooleanCondition(SDValue Cond, SelectionDAG &DAG) { bool IsAnd = Cond.getOpcode() == ISD::AND; if (!IsAnd && Cond.getOpcode() != ISD::OR) return SDValue(); if (!Cond.hasOneUse()) return SDValue(); SDValue Setcc = Cond.getOperand(0); SDValue Xor = Cond.getOperand(1); // Canonicalize setcc to LHS. if (Setcc.getOpcode() != ISD::SETCC) std::swap(Setcc, Xor); // LHS should be a setcc and RHS should be an xor. if (Setcc.getOpcode() != ISD::SETCC || !Setcc.hasOneUse() || Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) return SDValue(); // If the condition is an And, SimplifyDemandedBits may have changed // (xor Z, 1) to (not Z). SDValue Xor1 = Xor.getOperand(1); if (!isOneConstant(Xor1) && !(IsAnd && isAllOnesConstant(Xor1))) return SDValue(); EVT VT = Cond.getValueType(); SDValue Xor0 = Xor.getOperand(0); // The LHS of the xor needs to be 0/1. APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1); if (!DAG.MaskedValueIsZero(Xor0, Mask)) return SDValue(); // We can only invert integer setccs. EVT SetCCOpVT = Setcc.getOperand(0).getValueType(); if (!SetCCOpVT.isScalarInteger()) return SDValue(); ISD::CondCode CCVal = cast(Setcc.getOperand(2))->get(); if (ISD::isIntEqualitySetCC(CCVal)) { CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT); Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(0), Setcc.getOperand(1), CCVal); } else if (CCVal == ISD::SETLT && isNullConstant(Setcc.getOperand(0))) { // Invert (setlt 0, X) by converting to (setlt X, 1). Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(1), DAG.getConstant(1, SDLoc(Setcc), VT), CCVal); } else if (CCVal == ISD::SETLT && isOneConstant(Setcc.getOperand(1))) { // (setlt X, 1) by converting to (setlt 0, X). Setcc = DAG.getSetCC(SDLoc(Setcc), VT, DAG.getConstant(0, SDLoc(Setcc), VT), Setcc.getOperand(0), CCVal); } else return SDValue(); unsigned Opc = IsAnd ? ISD::OR : ISD::AND; return DAG.getNode(Opc, SDLoc(Cond), VT, Setcc, Xor.getOperand(0)); } // Perform common combines for BR_CC and SELECT_CC condtions. static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { ISD::CondCode CCVal = cast(CC)->get(); // As far as arithmetic right shift always saves the sign, // shift can be omitted. // Fold setlt (sra X, N), 0 -> setlt X, 0 and // setge (sra X, N), 0 -> setge X, 0 if (isNullConstant(RHS) && (CCVal == ISD::SETGE || CCVal == ISD::SETLT) && LHS.getOpcode() == ISD::SRA) { LHS = LHS.getOperand(0); return true; } if (!ISD::isIntEqualitySetCC(CCVal)) return false; // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt) // Sometimes the setcc is introduced after br_cc/select_cc has been formed. if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { // If we're looking for eq 0 instead of ne 0, we need to invert the // condition. bool Invert = CCVal == ISD::SETEQ; CCVal = cast(LHS.getOperand(2))->get(); if (Invert) CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); RHS = LHS.getOperand(1); LHS = LHS.getOperand(0); translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); CC = DAG.getCondCode(CCVal); return true; } // Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne) if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) { RHS = LHS.getOperand(1); LHS = LHS.getOperand(0); return true; } // Fold ((srl (and X, 1< ((shl X, XLen-1-C), 0, ge/lt) if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() && LHS.getOperand(1).getOpcode() == ISD::Constant) { SDValue LHS0 = LHS.getOperand(0); if (LHS0.getOpcode() == ISD::AND && LHS0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t Mask = LHS0.getConstantOperandVal(1); uint64_t ShAmt = LHS.getConstantOperandVal(1); if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) { CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; CC = DAG.getCondCode(CCVal); ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt; LHS = LHS0.getOperand(0); if (ShAmt != 0) LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0), DAG.getConstant(ShAmt, DL, LHS.getValueType())); return true; } } } // (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1. // This can occur when legalizing some floating point comparisons. APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); CC = DAG.getCondCode(CCVal); RHS = DAG.getConstant(0, DL, LHS.getValueType()); return true; } if (isNullConstant(RHS)) { if (SDValue NewCond = tryDemorganOfBooleanCondition(LHS, DAG)) { CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); CC = DAG.getCondCode(CCVal); LHS = NewCond; return true; } } return false; } // Fold // (select C, (add Y, X), Y) -> (add Y, (select C, X, 0)). // (select C, (sub Y, X), Y) -> (sub Y, (select C, X, 0)). // (select C, (or Y, X), Y) -> (or Y, (select C, X, 0)). // (select C, (xor Y, X), Y) -> (xor Y, (select C, X, 0)). static SDValue tryFoldSelectIntoOp(SDNode *N, SelectionDAG &DAG, SDValue TrueVal, SDValue FalseVal, bool Swapped) { bool Commutative = true; unsigned Opc = TrueVal.getOpcode(); switch (Opc) { default: return SDValue(); case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::SUB: Commutative = false; break; case ISD::ADD: case ISD::OR: case ISD::XOR: break; } if (!TrueVal.hasOneUse() || isa(FalseVal)) return SDValue(); unsigned OpToFold; if (FalseVal == TrueVal.getOperand(0)) OpToFold = 0; else if (Commutative && FalseVal == TrueVal.getOperand(1)) OpToFold = 1; else return SDValue(); EVT VT = N->getValueType(0); SDLoc DL(N); SDValue OtherOp = TrueVal.getOperand(1 - OpToFold); EVT OtherOpVT = OtherOp.getValueType(); SDValue IdentityOperand = DAG.getNeutralElement(Opc, DL, OtherOpVT, N->getFlags()); if (!Commutative) IdentityOperand = DAG.getConstant(0, DL, OtherOpVT); assert(IdentityOperand && "No identity operand!"); if (Swapped) std::swap(OtherOp, IdentityOperand); SDValue NewSel = DAG.getSelect(DL, OtherOpVT, N->getOperand(0), OtherOp, IdentityOperand); return DAG.getNode(TrueVal.getOpcode(), DL, VT, FalseVal, NewSel); } // This tries to get rid of `select` and `icmp` that are being used to handle // `Targets` that do not support `cttz(0)`/`ctlz(0)`. static SDValue foldSelectOfCTTZOrCTLZ(SDNode *N, SelectionDAG &DAG) { SDValue Cond = N->getOperand(0); // This represents either CTTZ or CTLZ instruction. SDValue CountZeroes; SDValue ValOnZero; if (Cond.getOpcode() != ISD::SETCC) return SDValue(); if (!isNullConstant(Cond->getOperand(1))) return SDValue(); ISD::CondCode CCVal = cast(Cond->getOperand(2))->get(); if (CCVal == ISD::CondCode::SETEQ) { CountZeroes = N->getOperand(2); ValOnZero = N->getOperand(1); } else if (CCVal == ISD::CondCode::SETNE) { CountZeroes = N->getOperand(1); ValOnZero = N->getOperand(2); } else { return SDValue(); } if (CountZeroes.getOpcode() == ISD::TRUNCATE || CountZeroes.getOpcode() == ISD::ZERO_EXTEND) CountZeroes = CountZeroes.getOperand(0); if (CountZeroes.getOpcode() != ISD::CTTZ && CountZeroes.getOpcode() != ISD::CTTZ_ZERO_UNDEF && CountZeroes.getOpcode() != ISD::CTLZ && CountZeroes.getOpcode() != ISD::CTLZ_ZERO_UNDEF) return SDValue(); if (!isNullConstant(ValOnZero)) return SDValue(); SDValue CountZeroesArgument = CountZeroes->getOperand(0); if (Cond->getOperand(0) != CountZeroesArgument) return SDValue(); if (CountZeroes.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { CountZeroes = DAG.getNode(ISD::CTTZ, SDLoc(CountZeroes), CountZeroes.getValueType(), CountZeroesArgument); } else if (CountZeroes.getOpcode() == ISD::CTLZ_ZERO_UNDEF) { CountZeroes = DAG.getNode(ISD::CTLZ, SDLoc(CountZeroes), CountZeroes.getValueType(), CountZeroesArgument); } unsigned BitWidth = CountZeroes.getValueSizeInBits(); SDValue BitWidthMinusOne = DAG.getConstant(BitWidth - 1, SDLoc(N), CountZeroes.getValueType()); auto AndNode = DAG.getNode(ISD::AND, SDLoc(N), CountZeroes.getValueType(), CountZeroes, BitWidthMinusOne); return DAG.getZExtOrTrunc(AndNode, SDLoc(N), N->getValueType(0)); } static SDValue useInversedSetcc(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { SDValue Cond = N->getOperand(0); SDValue True = N->getOperand(1); SDValue False = N->getOperand(2); SDLoc DL(N); EVT VT = N->getValueType(0); EVT CondVT = Cond.getValueType(); if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) return SDValue(); // Replace (setcc eq (and x, C)) with (setcc ne (and x, C))) to generate // BEXTI, where C is power of 2. if (Subtarget.hasStdExtZbs() && VT.isScalarInteger() && (Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps())) { SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); ISD::CondCode CC = cast(Cond.getOperand(2))->get(); if (CC == ISD::SETEQ && LHS.getOpcode() == ISD::AND && isa(LHS.getOperand(1)) && isNullConstant(RHS)) { const APInt &MaskVal = LHS.getConstantOperandAPInt(1); if (MaskVal.isPowerOf2() && !MaskVal.isSignedIntN(12)) return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CondVT, LHS, RHS, ISD::SETNE), False, True); } } return SDValue(); } static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (SDValue Folded = foldSelectOfCTTZOrCTLZ(N, DAG)) return Folded; if (SDValue V = useInversedSetcc(N, DAG, Subtarget)) return V; if (Subtarget.hasConditionalMoveFusion()) return SDValue(); SDValue TrueVal = N->getOperand(1); SDValue FalseVal = N->getOperand(2); if (SDValue V = tryFoldSelectIntoOp(N, DAG, TrueVal, FalseVal, /*Swapped*/false)) return V; return tryFoldSelectIntoOp(N, DAG, FalseVal, TrueVal, /*Swapped*/true); } /// If we have a build_vector where each lane is binop X, C, where C /// is a constant (but not necessarily the same constant on all lanes), /// form binop (build_vector x1, x2, ...), (build_vector c1, c2, c3, ..). /// We assume that materializing a constant build vector will be no more /// expensive that performing O(n) binops. static SDValue performBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const RISCVTargetLowering &TLI) { SDLoc DL(N); EVT VT = N->getValueType(0); assert(!VT.isScalableVector() && "unexpected build vector"); if (VT.getVectorNumElements() == 1) return SDValue(); const unsigned Opcode = N->op_begin()->getNode()->getOpcode(); if (!TLI.isBinOp(Opcode)) return SDValue(); if (!TLI.isOperationLegalOrCustom(Opcode, VT) || !TLI.isTypeLegal(VT)) return SDValue(); SmallVector LHSOps; SmallVector RHSOps; for (SDValue Op : N->ops()) { if (Op.isUndef()) { // We can't form a divide or remainder from undef. if (!DAG.isSafeToSpeculativelyExecute(Opcode)) return SDValue(); LHSOps.push_back(Op); RHSOps.push_back(Op); continue; } // TODO: We can handle operations which have an neutral rhs value // (e.g. x + 0, a * 1 or a << 0), but we then have to keep track // of profit in a more explicit manner. if (Op.getOpcode() != Opcode || !Op.hasOneUse()) return SDValue(); LHSOps.push_back(Op.getOperand(0)); if (!isa(Op.getOperand(1)) && !isa(Op.getOperand(1))) return SDValue(); // FIXME: Return failure if the RHS type doesn't match the LHS. Shifts may // have different LHS and RHS types. if (Op.getOperand(0).getValueType() != Op.getOperand(1).getValueType()) return SDValue(); RHSOps.push_back(Op.getOperand(1)); } return DAG.getNode(Opcode, DL, VT, DAG.getBuildVector(VT, DL, LHSOps), DAG.getBuildVector(VT, DL, RHSOps)); } static SDValue performINSERT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const RISCVTargetLowering &TLI) { SDValue InVec = N->getOperand(0); SDValue InVal = N->getOperand(1); SDValue EltNo = N->getOperand(2); SDLoc DL(N); EVT VT = InVec.getValueType(); if (VT.isScalableVector()) return SDValue(); if (!InVec.hasOneUse()) return SDValue(); // Given insert_vector_elt (binop a, VecC), (same_binop b, C2), Elt // move the insert_vector_elts into the arms of the binop. Note that // the new RHS must be a constant. const unsigned InVecOpcode = InVec->getOpcode(); if (InVecOpcode == InVal->getOpcode() && TLI.isBinOp(InVecOpcode) && InVal.hasOneUse()) { SDValue InVecLHS = InVec->getOperand(0); SDValue InVecRHS = InVec->getOperand(1); SDValue InValLHS = InVal->getOperand(0); SDValue InValRHS = InVal->getOperand(1); if (!ISD::isBuildVectorOfConstantSDNodes(InVecRHS.getNode())) return SDValue(); if (!isa(InValRHS) && !isa(InValRHS)) return SDValue(); // FIXME: Return failure if the RHS type doesn't match the LHS. Shifts may // have different LHS and RHS types. if (InVec.getOperand(0).getValueType() != InVec.getOperand(1).getValueType()) return SDValue(); SDValue LHS = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, InVecLHS, InValLHS, EltNo); SDValue RHS = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, InVecRHS, InValRHS, EltNo); return DAG.getNode(InVecOpcode, DL, VT, LHS, RHS); } // Given insert_vector_elt (concat_vectors ...), InVal, Elt // move the insert_vector_elt to the source operand of the concat_vector. if (InVec.getOpcode() != ISD::CONCAT_VECTORS) return SDValue(); auto *IndexC = dyn_cast(EltNo); if (!IndexC) return SDValue(); unsigned Elt = IndexC->getZExtValue(); EVT ConcatVT = InVec.getOperand(0).getValueType(); if (ConcatVT.getVectorElementType() != InVal.getValueType()) return SDValue(); unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, DL, EltNo.getValueType()); unsigned ConcatOpIdx = Elt / ConcatNumElts; SDValue ConcatOp = InVec.getOperand(ConcatOpIdx); ConcatOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ConcatVT, ConcatOp, InVal, NewIdx); SmallVector ConcatOps; ConcatOps.append(InVec->op_begin(), InVec->op_end()); ConcatOps[ConcatOpIdx] = ConcatOp; return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); } // If we're concatenating a series of vector loads like // concat_vectors (load v4i8, p+0), (load v4i8, p+n), (load v4i8, p+n*2) ... // Then we can turn this into a strided load by widening the vector elements // vlse32 p, stride=n static SDValue performCONCAT_VECTORSCombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const RISCVTargetLowering &TLI) { SDLoc DL(N); EVT VT = N->getValueType(0); // Only perform this combine on legal MVTs. if (!TLI.isTypeLegal(VT)) return SDValue(); // TODO: Potentially extend this to scalable vectors if (VT.isScalableVector()) return SDValue(); auto *BaseLd = dyn_cast(N->getOperand(0)); if (!BaseLd || !BaseLd->isSimple() || !ISD::isNormalLoad(BaseLd) || !SDValue(BaseLd, 0).hasOneUse()) return SDValue(); EVT BaseLdVT = BaseLd->getValueType(0); // Go through the loads and check that they're strided SmallVector Lds; Lds.push_back(BaseLd); Align Align = BaseLd->getAlign(); for (SDValue Op : N->ops().drop_front()) { auto *Ld = dyn_cast(Op); if (!Ld || !Ld->isSimple() || !Op.hasOneUse() || Ld->getChain() != BaseLd->getChain() || !ISD::isNormalLoad(Ld) || Ld->getValueType(0) != BaseLdVT) return SDValue(); Lds.push_back(Ld); // The common alignment is the most restrictive (smallest) of all the loads Align = std::min(Align, Ld->getAlign()); } using PtrDiff = std::pair, bool>; auto GetPtrDiff = [&DAG](LoadSDNode *Ld1, LoadSDNode *Ld2) -> std::optional { // If the load ptrs can be decomposed into a common (Base + Index) with a // common constant stride, then return the constant stride. BaseIndexOffset BIO1 = BaseIndexOffset::match(Ld1, DAG); BaseIndexOffset BIO2 = BaseIndexOffset::match(Ld2, DAG); if (BIO1.equalBaseIndex(BIO2, DAG)) return {{BIO2.getOffset() - BIO1.getOffset(), false}}; // Otherwise try to match (add LastPtr, Stride) or (add NextPtr, Stride) SDValue P1 = Ld1->getBasePtr(); SDValue P2 = Ld2->getBasePtr(); if (P2.getOpcode() == ISD::ADD && P2.getOperand(0) == P1) return {{P2.getOperand(1), false}}; if (P1.getOpcode() == ISD::ADD && P1.getOperand(0) == P2) return {{P1.getOperand(1), true}}; return std::nullopt; }; // Get the distance between the first and second loads auto BaseDiff = GetPtrDiff(Lds[0], Lds[1]); if (!BaseDiff) return SDValue(); // Check all the loads are the same distance apart for (auto *It = Lds.begin() + 1; It != Lds.end() - 1; It++) if (GetPtrDiff(*It, *std::next(It)) != BaseDiff) return SDValue(); // TODO: At this point, we've successfully matched a generalized gather // load. Maybe we should emit that, and then move the specialized // matchers above and below into a DAG combine? // Get the widened scalar type, e.g. v4i8 -> i64 unsigned WideScalarBitWidth = BaseLdVT.getScalarSizeInBits() * BaseLdVT.getVectorNumElements(); MVT WideScalarVT = MVT::getIntegerVT(WideScalarBitWidth); // Get the vector type for the strided load, e.g. 4 x v4i8 -> v4i64 MVT WideVecVT = MVT::getVectorVT(WideScalarVT, N->getNumOperands()); if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); // Check that the operation is legal if (!TLI.isLegalStridedLoadStore(WideVecVT, Align)) return SDValue(); auto [StrideVariant, MustNegateStride] = *BaseDiff; SDValue Stride = std::holds_alternative(StrideVariant) ? std::get(StrideVariant) : DAG.getConstant(std::get(StrideVariant), DL, Lds[0]->getOffset().getValueType()); if (MustNegateStride) Stride = DAG.getNegative(Stride, DL, Stride.getValueType()); SDVTList VTs = DAG.getVTList({WideVecVT, MVT::Other}); SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_masked_strided_load, DL, Subtarget.getXLenVT()); SDValue AllOneMask = DAG.getSplat(WideVecVT.changeVectorElementType(MVT::i1), DL, DAG.getConstant(1, DL, MVT::i1)); SDValue Ops[] = {BaseLd->getChain(), IntID, DAG.getUNDEF(WideVecVT), BaseLd->getBasePtr(), Stride, AllOneMask}; uint64_t MemSize; if (auto *ConstStride = dyn_cast(Stride); ConstStride && ConstStride->getSExtValue() >= 0) // total size = (elsize * n) + (stride - elsize) * (n-1) // = elsize + stride * (n-1) MemSize = WideScalarVT.getSizeInBits() + ConstStride->getSExtValue() * (N->getNumOperands() - 1); else // If Stride isn't constant, then we can't know how much it will load MemSize = MemoryLocation::UnknownSize; MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( BaseLd->getPointerInfo(), BaseLd->getMemOperand()->getFlags(), MemSize, Align); SDValue StridedLoad = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, WideVecVT, MMO); for (SDValue Ld : N->ops()) DAG.makeEquivalentMemoryOrdering(cast(Ld), StridedLoad); return DAG.getBitcast(VT.getSimpleVT(), StridedLoad); } static SDValue combineToVWMACC(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { assert(N->getOpcode() == RISCVISD::ADD_VL || N->getOpcode() == ISD::ADD); if (N->getValueType(0).isFixedLengthVector()) return SDValue(); SDValue Addend = N->getOperand(0); SDValue MulOp = N->getOperand(1); if (N->getOpcode() == RISCVISD::ADD_VL) { SDValue AddMergeOp = N->getOperand(2); if (!AddMergeOp.isUndef()) return SDValue(); } auto IsVWMulOpc = [](unsigned Opc) { switch (Opc) { case RISCVISD::VWMUL_VL: case RISCVISD::VWMULU_VL: case RISCVISD::VWMULSU_VL: return true; default: return false; } }; if (!IsVWMulOpc(MulOp.getOpcode())) std::swap(Addend, MulOp); if (!IsVWMulOpc(MulOp.getOpcode())) return SDValue(); SDValue MulMergeOp = MulOp.getOperand(2); if (!MulMergeOp.isUndef()) return SDValue(); auto [AddMask, AddVL] = [](SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { if (N->getOpcode() == ISD::ADD) { SDLoc DL(N); return getDefaultScalableVLOps(N->getSimpleValueType(0), DL, DAG, Subtarget); } return std::make_pair(N->getOperand(3), N->getOperand(4)); }(N, DAG, Subtarget); SDValue MulMask = MulOp.getOperand(3); SDValue MulVL = MulOp.getOperand(4); if (AddMask != MulMask || AddVL != MulVL) return SDValue(); unsigned Opc = RISCVISD::VWMACC_VL + MulOp.getOpcode() - RISCVISD::VWMUL_VL; static_assert(RISCVISD::VWMACC_VL + 1 == RISCVISD::VWMACCU_VL, "Unexpected opcode after VWMACC_VL"); static_assert(RISCVISD::VWMACC_VL + 2 == RISCVISD::VWMACCSU_VL, "Unexpected opcode after VWMACC_VL!"); static_assert(RISCVISD::VWMUL_VL + 1 == RISCVISD::VWMULU_VL, "Unexpected opcode after VWMUL_VL!"); static_assert(RISCVISD::VWMUL_VL + 2 == RISCVISD::VWMULSU_VL, "Unexpected opcode after VWMUL_VL!"); SDLoc DL(N); EVT VT = N->getValueType(0); SDValue Ops[] = {MulOp.getOperand(0), MulOp.getOperand(1), Addend, AddMask, AddVL}; return DAG.getNode(Opc, DL, VT, Ops); } static bool legalizeScatterGatherIndexType(SDLoc DL, SDValue &Index, ISD::MemIndexType &IndexType, RISCVTargetLowering::DAGCombinerInfo &DCI) { if (!DCI.isBeforeLegalize()) return false; SelectionDAG &DAG = DCI.DAG; const MVT XLenVT = DAG.getMachineFunction().getSubtarget().getXLenVT(); const EVT IndexVT = Index.getValueType(); // RISC-V indexed loads only support the "unsigned unscaled" addressing // mode, so anything else must be manually legalized. if (!isIndexTypeSigned(IndexType)) return false; if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { // Any index legalization should first promote to XLenVT, so we don't lose // bits when scaling. This may create an illegal index type so we let // LLVM's legalization take care of the splitting. // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. Index = DAG.getNode(ISD::SIGN_EXTEND, DL, IndexVT.changeVectorElementType(XLenVT), Index); } IndexType = ISD::UNSIGNED_SCALED; return true; } /// Match the index vector of a scatter or gather node as the shuffle mask /// which performs the rearrangement if possible. Will only match if /// all lanes are touched, and thus replacing the scatter or gather with /// a unit strided access and shuffle is legal. static bool matchIndexAsShuffle(EVT VT, SDValue Index, SDValue Mask, SmallVector &ShuffleMask) { if (!ISD::isConstantSplatVectorAllOnes(Mask.getNode())) return false; if (!ISD::isBuildVectorOfConstantSDNodes(Index.getNode())) return false; const unsigned ElementSize = VT.getScalarStoreSize(); const unsigned NumElems = VT.getVectorNumElements(); // Create the shuffle mask and check all bits active assert(ShuffleMask.empty()); BitVector ActiveLanes(NumElems); for (unsigned i = 0; i < Index->getNumOperands(); i++) { // TODO: We've found an active bit of UB, and could be // more aggressive here if desired. if (Index->getOperand(i)->isUndef()) return false; uint64_t C = Index->getConstantOperandVal(i); if (C % ElementSize != 0) return false; C = C / ElementSize; if (C >= NumElems) return false; ShuffleMask.push_back(C); ActiveLanes.set(C); } return ActiveLanes.all(); } /// Match the index of a gather or scatter operation as an operation /// with twice the element width and half the number of elements. This is /// generally profitable (if legal) because these operations are linear /// in VL, so even if we cause some extract VTYPE/VL toggles, we still /// come out ahead. static bool matchIndexAsWiderOp(EVT VT, SDValue Index, SDValue Mask, Align BaseAlign, const RISCVSubtarget &ST) { if (!ISD::isConstantSplatVectorAllOnes(Mask.getNode())) return false; if (!ISD::isBuildVectorOfConstantSDNodes(Index.getNode())) return false; // Attempt a doubling. If we can use a element type 4x or 8x in // size, this will happen via multiply iterations of the transform. const unsigned NumElems = VT.getVectorNumElements(); if (NumElems % 2 != 0) return false; const unsigned ElementSize = VT.getScalarStoreSize(); const unsigned WiderElementSize = ElementSize * 2; if (WiderElementSize > ST.getELen()/8) return false; if (!ST.hasFastUnalignedAccess() && BaseAlign < WiderElementSize) return false; for (unsigned i = 0; i < Index->getNumOperands(); i++) { // TODO: We've found an active bit of UB, and could be // more aggressive here if desired. if (Index->getOperand(i)->isUndef()) return false; // TODO: This offset check is too strict if we support fully // misaligned memory operations. uint64_t C = Index->getConstantOperandVal(i); if (i % 2 == 0) { if (C % WiderElementSize != 0) return false; continue; } uint64_t Last = Index->getConstantOperandVal(i-1); if (C != Last + ElementSize) return false; } return true; } SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; const MVT XLenVT = Subtarget.getXLenVT(); SDLoc DL(N); // Helper to call SimplifyDemandedBits on an operand of N where only some low // bits are demanded. N will be added to the Worklist if it was not deleted. // Caller should return SDValue(N, 0) if this returns true. auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { SDValue Op = N->getOperand(OpNo); APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); if (!SimplifyDemandedBits(Op, Mask, DCI)) return false; if (N->getOpcode() != ISD::DELETED_NODE) DCI.AddToWorklist(N); return true; }; switch (N->getOpcode()) { default: break; case RISCVISD::SplitF64: { SDValue Op0 = N->getOperand(0); // If the input to SplitF64 is just BuildPairF64 then the operation is // redundant. Instead, use BuildPairF64's operands directly. if (Op0->getOpcode() == RISCVISD::BuildPairF64) return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); if (Op0->isUndef()) { SDValue Lo = DAG.getUNDEF(MVT::i32); SDValue Hi = DAG.getUNDEF(MVT::i32); return DCI.CombineTo(N, Lo, Hi); } // It's cheaper to materialise two 32-bit integers than to load a double // from the constant pool and transfer it to integer registers through the // stack. if (ConstantFPSDNode *C = dyn_cast(Op0)) { APInt V = C->getValueAPF().bitcastToAPInt(); SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); return DCI.CombineTo(N, Lo, Hi); } // This is a target-specific version of a DAGCombine performed in // DAGCombiner::visitBITCAST. It performs the equivalent of: // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || !Op0.getNode()->hasOneUse()) break; SDValue NewSplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), Op0.getOperand(0)); SDValue Lo = NewSplitF64.getValue(0); SDValue Hi = NewSplitF64.getValue(1); APInt SignBit = APInt::getSignMask(32); if (Op0.getOpcode() == ISD::FNEG) { SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, DAG.getConstant(SignBit, DL, MVT::i32)); return DCI.CombineTo(N, Lo, NewHi); } assert(Op0.getOpcode() == ISD::FABS); SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, DAG.getConstant(~SignBit, DL, MVT::i32)); return DCI.CombineTo(N, Lo, NewHi); } case RISCVISD::SLLW: case RISCVISD::SRAW: case RISCVISD::SRLW: case RISCVISD::RORW: case RISCVISD::ROLW: { // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. if (SimplifyDemandedLowBitsHelper(0, 32) || SimplifyDemandedLowBitsHelper(1, 5)) return SDValue(N, 0); break; } case RISCVISD::CLZW: case RISCVISD::CTZW: { // Only the lower 32 bits of the first operand are read if (SimplifyDemandedLowBitsHelper(0, 32)) return SDValue(N, 0); break; } case RISCVISD::FMV_W_X_RV64: { // If the input to FMV_W_X_RV64 is just FMV_X_ANYEXTW_RV64 the the // conversion is unnecessary and can be replaced with the // FMV_X_ANYEXTW_RV64 operand. SDValue Op0 = N->getOperand(0); if (Op0.getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64) return Op0.getOperand(0); break; } case RISCVISD::FMV_X_ANYEXTH: case RISCVISD::FMV_X_ANYEXTW_RV64: { SDLoc DL(N); SDValue Op0 = N->getOperand(0); MVT VT = N->getSimpleValueType(0); // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && Op0->getOpcode() == RISCVISD::FMV_H_X)) { assert(Op0.getOperand(0).getValueType() == VT && "Unexpected value type!"); return Op0.getOperand(0); } // This is a target-specific version of a DAGCombine performed in // DAGCombiner::visitBITCAST. It performs the equivalent of: // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || !Op0.getNode()->hasOneUse()) break; SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits()); if (Op0.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::XOR, DL, VT, NewFMV, DAG.getConstant(SignBit, DL, VT)); assert(Op0.getOpcode() == ISD::FABS); return DAG.getNode(ISD::AND, DL, VT, NewFMV, DAG.getConstant(~SignBit, DL, VT)); } case ISD::ADD: { if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) return V; if (SDValue V = combineToVWMACC(N, DAG, Subtarget)) return V; return performADDCombine(N, DAG, Subtarget); } case ISD::SUB: { if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) return V; return performSUBCombine(N, DAG, Subtarget); } case ISD::AND: return performANDCombine(N, DCI, Subtarget); case ISD::OR: return performORCombine(N, DCI, Subtarget); case ISD::XOR: return performXORCombine(N, DAG, Subtarget); case ISD::MUL: if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) return V; return performMULCombine(N, DAG); case ISD::FADD: case ISD::UMAX: case ISD::UMIN: case ISD::SMAX: case ISD::SMIN: case ISD::FMAXNUM: case ISD::FMINNUM: { if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) return V; if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget)) return V; return SDValue(); } case ISD::SETCC: return performSETCCCombine(N, DAG, Subtarget); case ISD::SIGN_EXTEND_INREG: return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); case ISD::ZERO_EXTEND: // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during // type legalization. This is safe because fp_to_uint produces poison if // it overflows. if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { SDValue Src = N->getOperand(0); if (Src.getOpcode() == ISD::FP_TO_UINT && isTypeLegal(Src.getOperand(0).getValueType())) return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, Src.getOperand(0)); if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && isTypeLegal(Src.getOperand(1).getValueType())) { SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, Src.getOperand(0), Src.getOperand(1)); DCI.CombineTo(N, Res); DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); DCI.recursivelyDeleteUnusedNodes(Src.getNode()); return SDValue(N, 0); // Return N so it doesn't get rechecked. } } return SDValue(); case RISCVISD::TRUNCATE_VECTOR_VL: { // trunc (sra sext (X), zext (Y)) -> sra (X, smin (Y, scalarsize(Y) - 1)) // This would be benefit for the cases where X and Y are both the same value // type of low precision vectors. Since the truncate would be lowered into // n-levels TRUNCATE_VECTOR_VL to satisfy RVV's SEW*2->SEW truncate // restriction, such pattern would be expanded into a series of "vsetvli" // and "vnsrl" instructions later to reach this point. auto IsTruncNode = [](SDValue V) { if (V.getOpcode() != RISCVISD::TRUNCATE_VECTOR_VL) return false; SDValue VL = V.getOperand(2); auto *C = dyn_cast(VL); // Assume all TRUNCATE_VECTOR_VL nodes use VLMAX for VMSET_VL operand bool IsVLMAXForVMSET = (C && C->isAllOnes()) || (isa(VL) && cast(VL)->getReg() == RISCV::X0); return V.getOperand(1).getOpcode() == RISCVISD::VMSET_VL && IsVLMAXForVMSET; }; SDValue Op = N->getOperand(0); // We need to first find the inner level of TRUNCATE_VECTOR_VL node // to distinguish such pattern. while (IsTruncNode(Op)) { if (!Op.hasOneUse()) return SDValue(); Op = Op.getOperand(0); } if (Op.getOpcode() == ISD::SRA && Op.hasOneUse()) { SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && N1.getOpcode() == ISD::ZERO_EXTEND && N1.hasOneUse()) { SDValue N00 = N0.getOperand(0); SDValue N10 = N1.getOperand(0); if (N00.getValueType().isVector() && N00.getValueType() == N10.getValueType() && N->getValueType(0) == N10.getValueType()) { unsigned MaxShAmt = N10.getValueType().getScalarSizeInBits() - 1; SDValue SMin = DAG.getNode( ISD::SMIN, SDLoc(N1), N->getValueType(0), N10, DAG.getConstant(MaxShAmt, SDLoc(N1), N->getValueType(0))); return DAG.getNode(ISD::SRA, SDLoc(N), N->getValueType(0), N00, SMin); } } } break; } case ISD::TRUNCATE: return performTRUNCATECombine(N, DAG, Subtarget); case ISD::SELECT: return performSELECTCombine(N, DAG, Subtarget); case RISCVISD::CZERO_EQZ: case RISCVISD::CZERO_NEZ: // czero_eq X, (xor Y, 1) -> czero_ne X, Y if Y is 0 or 1. // czero_ne X, (xor Y, 1) -> czero_eq X, Y if Y is 0 or 1. if (N->getOperand(1).getOpcode() == ISD::XOR && isOneConstant(N->getOperand(1).getOperand(1))) { SDValue Cond = N->getOperand(1).getOperand(0); APInt Mask = APInt::getBitsSetFrom(Cond.getValueSizeInBits(), 1); if (DAG.MaskedValueIsZero(Cond, Mask)) { unsigned NewOpc = N->getOpcode() == RISCVISD::CZERO_EQZ ? RISCVISD::CZERO_NEZ : RISCVISD::CZERO_EQZ; return DAG.getNode(NewOpc, SDLoc(N), N->getValueType(0), N->getOperand(0), Cond); } } return SDValue(); case RISCVISD::SELECT_CC: { // Transform SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDValue CC = N->getOperand(2); ISD::CondCode CCVal = cast(CC)->get(); SDValue TrueV = N->getOperand(3); SDValue FalseV = N->getOperand(4); SDLoc DL(N); EVT VT = N->getValueType(0); // If the True and False values are the same, we don't need a select_cc. if (TrueV == FalseV) return TrueV; // (select (x < 0), y, z) -> x >> (XLEN - 1) & (y - z) + z // (select (x >= 0), y, z) -> x >> (XLEN - 1) & (z - y) + y if (!Subtarget.hasShortForwardBranchOpt() && isa(TrueV) && isa(FalseV) && isNullConstant(RHS) && (CCVal == ISD::CondCode::SETLT || CCVal == ISD::CondCode::SETGE)) { if (CCVal == ISD::CondCode::SETGE) std::swap(TrueV, FalseV); int64_t TrueSImm = cast(TrueV)->getSExtValue(); int64_t FalseSImm = cast(FalseV)->getSExtValue(); // Only handle simm12, if it is not in this range, it can be considered as // register. if (isInt<12>(TrueSImm) && isInt<12>(FalseSImm) && isInt<12>(TrueSImm - FalseSImm)) { SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, LHS, DAG.getConstant(Subtarget.getXLen() - 1, DL, VT)); SDValue AND = DAG.getNode(ISD::AND, DL, VT, SRA, DAG.getConstant(TrueSImm - FalseSImm, DL, VT)); return DAG.getNode(ISD::ADD, DL, VT, AND, FalseV); } if (CCVal == ISD::CondCode::SETGE) std::swap(TrueV, FalseV); } if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), {LHS, RHS, CC, TrueV, FalseV}); if (!Subtarget.hasConditionalMoveFusion()) { // (select c, -1, y) -> -c | y if (isAllOnesConstant(TrueV)) { SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal); SDValue Neg = DAG.getNegative(C, DL, VT); return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV); } // (select c, y, -1) -> -!c | y if (isAllOnesConstant(FalseV)) { SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT)); SDValue Neg = DAG.getNegative(C, DL, VT); return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV); } // (select c, 0, y) -> -!c & y if (isNullConstant(TrueV)) { SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT)); SDValue Neg = DAG.getNegative(C, DL, VT); return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV); } // (select c, y, 0) -> -c & y if (isNullConstant(FalseV)) { SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal); SDValue Neg = DAG.getNegative(C, DL, VT); return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV); } // (riscvisd::select_cc x, 0, ne, x, 1) -> (add x, (setcc x, 0, eq)) // (riscvisd::select_cc x, 0, eq, 1, x) -> (add x, (setcc x, 0, eq)) if (((isOneConstant(FalseV) && LHS == TrueV && CCVal == ISD::CondCode::SETNE) || (isOneConstant(TrueV) && LHS == FalseV && CCVal == ISD::CondCode::SETEQ)) && isNullConstant(RHS)) { // freeze it to be safe. LHS = DAG.getFreeze(LHS); SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, ISD::CondCode::SETEQ); return DAG.getNode(ISD::ADD, DL, VT, LHS, C); } } // If both true/false are an xor with 1, pull through the select. // This can occur after op legalization if both operands are setccs that // require an xor to invert. // FIXME: Generalize to other binary ops with identical operand? if (TrueV.getOpcode() == ISD::XOR && FalseV.getOpcode() == ISD::XOR && TrueV.getOperand(1) == FalseV.getOperand(1) && isOneConstant(TrueV.getOperand(1)) && TrueV.hasOneUse() && FalseV.hasOneUse()) { SDValue NewSel = DAG.getNode(RISCVISD::SELECT_CC, DL, VT, LHS, RHS, CC, TrueV.getOperand(0), FalseV.getOperand(0)); return DAG.getNode(ISD::XOR, DL, VT, NewSel, TrueV.getOperand(1)); } return SDValue(); } case RISCVISD::BR_CC: { SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); SDValue CC = N->getOperand(3); SDLoc DL(N); if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), N->getOperand(0), LHS, RHS, CC, N->getOperand(4)); return SDValue(); } case ISD::BITREVERSE: return performBITREVERSECombine(N, DAG, Subtarget); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return performFP_TO_INTCombine(N, DCI, Subtarget); case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: return performFP_TO_INT_SATCombine(N, DCI, Subtarget); case ISD::FCOPYSIGN: { EVT VT = N->getValueType(0); if (!VT.isVector()) break; // There is a form of VFSGNJ which injects the negated sign of its second // operand. Try and bubble any FNEG up after the extend/round to produce // this optimized pattern. Avoid modifying cases where FP_ROUND and // TRUNC=1. SDValue In2 = N->getOperand(1); // Avoid cases where the extend/round has multiple uses, as duplicating // those is typically more expensive than removing a fneg. if (!In2.hasOneUse()) break; if (In2.getOpcode() != ISD::FP_EXTEND && (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) break; In2 = In2.getOperand(0); if (In2.getOpcode() != ISD::FNEG) break; SDLoc DL(N); SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); } case ISD::MGATHER: { const auto *MGN = dyn_cast(N); const EVT VT = N->getValueType(0); SDValue Index = MGN->getIndex(); SDValue ScaleOp = MGN->getScale(); ISD::MemIndexType IndexType = MGN->getIndexType(); assert(!MGN->isIndexScaled() && "Scaled gather/scatter should not be formed"); SDLoc DL(N); if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI)) return DAG.getMaskedGather( N->getVTList(), MGN->getMemoryVT(), DL, {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), MGN->getBasePtr(), Index, ScaleOp}, MGN->getMemOperand(), IndexType, MGN->getExtensionType()); if (narrowIndex(Index, IndexType, DAG)) return DAG.getMaskedGather( N->getVTList(), MGN->getMemoryVT(), DL, {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), MGN->getBasePtr(), Index, ScaleOp}, MGN->getMemOperand(), IndexType, MGN->getExtensionType()); if (Index.getOpcode() == ISD::BUILD_VECTOR && MGN->getExtensionType() == ISD::NON_EXTLOAD && isTypeLegal(VT)) { // The sequence will be XLenVT, not the type of Index. Tell // isSimpleVIDSequence this so we avoid overflow. if (std::optional SimpleVID = isSimpleVIDSequence(Index, Subtarget.getXLen()); SimpleVID && SimpleVID->StepDenominator == 1) { const int64_t StepNumerator = SimpleVID->StepNumerator; const int64_t Addend = SimpleVID->Addend; // Note: We don't need to check alignment here since (by assumption // from the existance of the gather), our offsets must be sufficiently // aligned. const EVT PtrVT = getPointerTy(DAG.getDataLayout()); assert(MGN->getBasePtr()->getValueType(0) == PtrVT); assert(IndexType == ISD::UNSIGNED_SCALED); SDValue BasePtr = DAG.getNode(ISD::ADD, DL, PtrVT, MGN->getBasePtr(), DAG.getConstant(Addend, DL, PtrVT)); SDVTList VTs = DAG.getVTList({VT, MVT::Other}); SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_masked_strided_load, DL, XLenVT); SDValue Ops[] = {MGN->getChain(), IntID, MGN->getPassThru(), BasePtr, DAG.getConstant(StepNumerator, DL, XLenVT), MGN->getMask()}; return DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, VT, MGN->getMemOperand()); } } SmallVector ShuffleMask; if (MGN->getExtensionType() == ISD::NON_EXTLOAD && matchIndexAsShuffle(VT, Index, MGN->getMask(), ShuffleMask)) { SDValue Load = DAG.getMaskedLoad(VT, DL, MGN->getChain(), MGN->getBasePtr(), DAG.getUNDEF(XLenVT), MGN->getMask(), DAG.getUNDEF(VT), MGN->getMemoryVT(), MGN->getMemOperand(), ISD::UNINDEXED, ISD::NON_EXTLOAD); SDValue Shuffle = DAG.getVectorShuffle(VT, DL, Load, DAG.getUNDEF(VT), ShuffleMask); return DAG.getMergeValues({Shuffle, Load.getValue(1)}, DL); } if (MGN->getExtensionType() == ISD::NON_EXTLOAD && matchIndexAsWiderOp(VT, Index, MGN->getMask(), MGN->getMemOperand()->getBaseAlign(), Subtarget)) { SmallVector NewIndices; for (unsigned i = 0; i < Index->getNumOperands(); i += 2) NewIndices.push_back(Index.getOperand(i)); EVT IndexVT = Index.getValueType() .getHalfNumVectorElementsVT(*DAG.getContext()); Index = DAG.getBuildVector(IndexVT, DL, NewIndices); unsigned ElementSize = VT.getScalarStoreSize(); EVT WideScalarVT = MVT::getIntegerVT(ElementSize * 8 * 2); auto EltCnt = VT.getVectorElementCount(); assert(EltCnt.isKnownEven() && "Splitting vector, but not in half!"); EVT WideVT = EVT::getVectorVT(*DAG.getContext(), WideScalarVT, EltCnt.divideCoefficientBy(2)); SDValue Passthru = DAG.getBitcast(WideVT, MGN->getPassThru()); EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, EltCnt.divideCoefficientBy(2)); SDValue Mask = DAG.getSplat(MaskVT, DL, DAG.getConstant(1, DL, MVT::i1)); SDValue Gather = DAG.getMaskedGather(DAG.getVTList(WideVT, MVT::Other), WideVT, DL, {MGN->getChain(), Passthru, Mask, MGN->getBasePtr(), Index, ScaleOp}, MGN->getMemOperand(), IndexType, ISD::NON_EXTLOAD); SDValue Result = DAG.getBitcast(VT, Gather.getValue(0)); return DAG.getMergeValues({Result, Gather.getValue(1)}, DL); } break; } case ISD::MSCATTER:{ const auto *MSN = dyn_cast(N); SDValue Index = MSN->getIndex(); SDValue ScaleOp = MSN->getScale(); ISD::MemIndexType IndexType = MSN->getIndexType(); assert(!MSN->isIndexScaled() && "Scaled gather/scatter should not be formed"); SDLoc DL(N); if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI)) return DAG.getMaskedScatter( N->getVTList(), MSN->getMemoryVT(), DL, {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), Index, ScaleOp}, MSN->getMemOperand(), IndexType, MSN->isTruncatingStore()); if (narrowIndex(Index, IndexType, DAG)) return DAG.getMaskedScatter( N->getVTList(), MSN->getMemoryVT(), DL, {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), Index, ScaleOp}, MSN->getMemOperand(), IndexType, MSN->isTruncatingStore()); EVT VT = MSN->getValue()->getValueType(0); SmallVector ShuffleMask; if (!MSN->isTruncatingStore() && matchIndexAsShuffle(VT, Index, MSN->getMask(), ShuffleMask)) { SDValue Shuffle = DAG.getVectorShuffle(VT, DL, MSN->getValue(), DAG.getUNDEF(VT), ShuffleMask); return DAG.getMaskedStore(MSN->getChain(), DL, Shuffle, MSN->getBasePtr(), DAG.getUNDEF(XLenVT), MSN->getMask(), MSN->getMemoryVT(), MSN->getMemOperand(), ISD::UNINDEXED, false); } break; } case ISD::VP_GATHER: { const auto *VPGN = dyn_cast(N); SDValue Index = VPGN->getIndex(); SDValue ScaleOp = VPGN->getScale(); ISD::MemIndexType IndexType = VPGN->getIndexType(); assert(!VPGN->isIndexScaled() && "Scaled gather/scatter should not be formed"); SDLoc DL(N); if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI)) return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, {VPGN->getChain(), VPGN->getBasePtr(), Index, ScaleOp, VPGN->getMask(), VPGN->getVectorLength()}, VPGN->getMemOperand(), IndexType); if (narrowIndex(Index, IndexType, DAG)) return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, {VPGN->getChain(), VPGN->getBasePtr(), Index, ScaleOp, VPGN->getMask(), VPGN->getVectorLength()}, VPGN->getMemOperand(), IndexType); break; } case ISD::VP_SCATTER: { const auto *VPSN = dyn_cast(N); SDValue Index = VPSN->getIndex(); SDValue ScaleOp = VPSN->getScale(); ISD::MemIndexType IndexType = VPSN->getIndexType(); assert(!VPSN->isIndexScaled() && "Scaled gather/scatter should not be formed"); SDLoc DL(N); if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI)) return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, {VPSN->getChain(), VPSN->getValue(), VPSN->getBasePtr(), Index, ScaleOp, VPSN->getMask(), VPSN->getVectorLength()}, VPSN->getMemOperand(), IndexType); if (narrowIndex(Index, IndexType, DAG)) return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, {VPSN->getChain(), VPSN->getValue(), VPSN->getBasePtr(), Index, ScaleOp, VPSN->getMask(), VPSN->getVectorLength()}, VPSN->getMemOperand(), IndexType); break; } case RISCVISD::SRA_VL: case RISCVISD::SRL_VL: case RISCVISD::SHL_VL: { SDValue ShAmt = N->getOperand(1); if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { // We don't need the upper 32 bits of a 64-bit element for a shift amount. SDLoc DL(N); SDValue VL = N->getOperand(4); EVT VT = N->getValueType(0); ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), ShAmt.getOperand(1), VL); return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, N->getOperand(2), N->getOperand(3), N->getOperand(4)); } break; } case ISD::SRA: if (SDValue V = performSRACombine(N, DAG, Subtarget)) return V; [[fallthrough]]; case ISD::SRL: case ISD::SHL: { SDValue ShAmt = N->getOperand(1); if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { // We don't need the upper 32 bits of a 64-bit element for a shift amount. SDLoc DL(N); EVT VT = N->getValueType(0); ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), ShAmt.getOperand(1), DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); } break; } case RISCVISD::ADD_VL: if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget)) return V; return combineToVWMACC(N, DAG, Subtarget); case RISCVISD::SUB_VL: case RISCVISD::VWADD_W_VL: case RISCVISD::VWADDU_W_VL: case RISCVISD::VWSUB_W_VL: case RISCVISD::VWSUBU_W_VL: case RISCVISD::MUL_VL: return combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget); case RISCVISD::VFMADD_VL: case RISCVISD::VFNMADD_VL: case RISCVISD::VFMSUB_VL: case RISCVISD::VFNMSUB_VL: case RISCVISD::STRICT_VFMADD_VL: case RISCVISD::STRICT_VFNMADD_VL: case RISCVISD::STRICT_VFMSUB_VL: case RISCVISD::STRICT_VFNMSUB_VL: return performVFMADD_VLCombine(N, DAG, Subtarget); case RISCVISD::FMUL_VL: return performVFMUL_VLCombine(N, DAG, Subtarget); case RISCVISD::FADD_VL: case RISCVISD::FSUB_VL: return performFADDSUB_VLCombine(N, DAG, Subtarget); case ISD::LOAD: case ISD::STORE: { if (DCI.isAfterLegalizeDAG()) if (SDValue V = performMemPairCombine(N, DCI)) return V; if (N->getOpcode() != ISD::STORE) break; auto *Store = cast(N); SDValue Chain = Store->getChain(); EVT MemVT = Store->getMemoryVT(); SDValue Val = Store->getValue(); SDLoc DL(N); bool IsScalarizable = MemVT.isFixedLengthVector() && ISD::isNormalStore(Store) && Store->isSimple() && MemVT.getVectorElementType().bitsLE(Subtarget.getXLenVT()) && isPowerOf2_64(MemVT.getSizeInBits()) && MemVT.getSizeInBits() <= Subtarget.getXLen(); // If sufficiently aligned we can scalarize stores of constant vectors of // any power-of-two size up to XLen bits, provided that they aren't too // expensive to materialize. // vsetivli zero, 2, e8, m1, ta, ma // vmv.v.i v8, 4 // vse64.v v8, (a0) // -> // li a1, 1028 // sh a1, 0(a0) if (DCI.isBeforeLegalize() && IsScalarizable && ISD::isBuildVectorOfConstantSDNodes(Val.getNode())) { // Get the constant vector bits APInt NewC(Val.getValueSizeInBits(), 0); uint64_t EltSize = Val.getScalarValueSizeInBits(); for (unsigned i = 0; i < Val.getNumOperands(); i++) { if (Val.getOperand(i).isUndef()) continue; NewC.insertBits(Val.getConstantOperandAPInt(i).trunc(EltSize), i * EltSize); } MVT NewVT = MVT::getIntegerVT(MemVT.getSizeInBits()); if (RISCVMatInt::getIntMatCost(NewC, Subtarget.getXLen(), Subtarget, true) <= 2 && allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), NewVT, *Store->getMemOperand())) { SDValue NewV = DAG.getConstant(NewC, DL, NewVT); return DAG.getStore(Chain, DL, NewV, Store->getBasePtr(), Store->getPointerInfo(), Store->getOriginalAlign(), Store->getMemOperand()->getFlags()); } } // Similarly, if sufficiently aligned we can scalarize vector copies, e.g. // vsetivli zero, 2, e16, m1, ta, ma // vle16.v v8, (a0) // vse16.v v8, (a1) if (auto *L = dyn_cast(Val); L && DCI.isBeforeLegalize() && IsScalarizable && L->isSimple() && L->hasNUsesOfValue(1, 0) && L->hasNUsesOfValue(1, 1) && Store->getChain() == SDValue(L, 1) && ISD::isNormalLoad(L) && L->getMemoryVT() == MemVT) { MVT NewVT = MVT::getIntegerVT(MemVT.getSizeInBits()); if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), NewVT, *Store->getMemOperand()) && allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), NewVT, *L->getMemOperand())) { SDValue NewL = DAG.getLoad(NewVT, DL, L->getChain(), L->getBasePtr(), L->getPointerInfo(), L->getOriginalAlign(), L->getMemOperand()->getFlags()); return DAG.getStore(Chain, DL, NewL, Store->getBasePtr(), Store->getPointerInfo(), Store->getOriginalAlign(), Store->getMemOperand()->getFlags()); } } // Combine store of vmv.x.s/vfmv.f.s to vse with VL of 1. // vfmv.f.s is represented as extract element from 0. Match it late to avoid // any illegal types. if (Val.getOpcode() == RISCVISD::VMV_X_S || (DCI.isAfterLegalizeDAG() && Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT && isNullConstant(Val.getOperand(1)))) { SDValue Src = Val.getOperand(0); MVT VecVT = Src.getSimpleValueType(); // VecVT should be scalable and memory VT should match the element type. if (!Store->isIndexed() && VecVT.isScalableVector() && MemVT == VecVT.getVectorElementType()) { SDLoc DL(N); MVT MaskVT = getMaskTypeFor(VecVT); return DAG.getStoreVP( Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), DAG.getConstant(1, DL, MaskVT), DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, Store->getMemOperand(), Store->getAddressingMode(), Store->isTruncatingStore(), /*IsCompress*/ false); } } break; } case ISD::SPLAT_VECTOR: { EVT VT = N->getValueType(0); // Only perform this combine on legal MVT types. if (!isTypeLegal(VT)) break; if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, DAG, Subtarget)) return Gather; break; } case ISD::BUILD_VECTOR: if (SDValue V = performBUILD_VECTORCombine(N, DAG, Subtarget, *this)) return V; break; case ISD::CONCAT_VECTORS: if (SDValue V = performCONCAT_VECTORSCombine(N, DAG, Subtarget, *this)) return V; break; case ISD::INSERT_VECTOR_ELT: if (SDValue V = performINSERT_VECTOR_ELTCombine(N, DAG, Subtarget, *this)) return V; break; case RISCVISD::VFMV_V_F_VL: { const MVT VT = N->getSimpleValueType(0); SDValue Passthru = N->getOperand(0); SDValue Scalar = N->getOperand(1); SDValue VL = N->getOperand(2); // If VL is 1, we can use vfmv.s.f. if (isOneConstant(VL)) return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); break; } case RISCVISD::VMV_V_X_VL: { const MVT VT = N->getSimpleValueType(0); SDValue Passthru = N->getOperand(0); SDValue Scalar = N->getOperand(1); SDValue VL = N->getOperand(2); // Tail agnostic VMV.V.X only demands the vector element bitwidth from the // scalar input. unsigned ScalarSize = Scalar.getValueSizeInBits(); unsigned EltWidth = VT.getScalarSizeInBits(); if (ScalarSize > EltWidth && Passthru.isUndef()) if (SimplifyDemandedLowBitsHelper(1, EltWidth)) return SDValue(N, 0); // If VL is 1 and the scalar value won't benefit from immediate, we can // use vmv.s.x. ConstantSDNode *Const = dyn_cast(Scalar); if (isOneConstant(VL) && (!Const || Const->isZero() || !Const->getAPIntValue().sextOrTrunc(EltWidth).isSignedIntN(5))) return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); break; } case RISCVISD::VFMV_S_F_VL: { SDValue Src = N->getOperand(1); // Try to remove vector->scalar->vector if the scalar->vector is inserting // into an undef vector. // TODO: Could use a vslide or vmv.v.v for non-undef. if (N->getOperand(0).isUndef() && Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT && isNullConstant(Src.getOperand(1)) && Src.getOperand(0).getValueType().isScalableVector()) { EVT VT = N->getValueType(0); EVT SrcVT = Src.getOperand(0).getValueType(); assert(SrcVT.getVectorElementType() == VT.getVectorElementType()); // Widths match, just return the original vector. if (SrcVT == VT) return Src.getOperand(0); // TODO: Use insert_subvector/extract_subvector to change widen/narrow? } [[fallthrough]]; } case RISCVISD::VMV_S_X_VL: { const MVT VT = N->getSimpleValueType(0); SDValue Passthru = N->getOperand(0); SDValue Scalar = N->getOperand(1); SDValue VL = N->getOperand(2); // Use M1 or smaller to avoid over constraining register allocation const MVT M1VT = getLMUL1VT(VT); if (M1VT.bitsLT(VT)) { SDValue M1Passthru = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, Passthru, DAG.getVectorIdxConstant(0, DL)); SDValue Result = DAG.getNode(N->getOpcode(), DL, M1VT, M1Passthru, Scalar, VL); Result = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Passthru, Result, DAG.getConstant(0, DL, XLenVT)); return Result; } // We use a vmv.v.i if possible. We limit this to LMUL1. LMUL2 or // higher would involve overly constraining the register allocator for // no purpose. if (ConstantSDNode *Const = dyn_cast(Scalar); Const && !Const->isZero() && isInt<5>(Const->getSExtValue()) && VT.bitsLE(getLMUL1VT(VT)) && Passthru.isUndef()) return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); break; } case RISCVISD::VMV_X_S: { SDValue Vec = N->getOperand(0); MVT VecVT = N->getOperand(0).getSimpleValueType(); const MVT M1VT = getLMUL1VT(VecVT); if (M1VT.bitsLT(VecVT)) { Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, Vec, DAG.getVectorIdxConstant(0, DL)); return DAG.getNode(RISCVISD::VMV_X_S, DL, N->getSimpleValueType(0), Vec); } break; } case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_WO_CHAIN: { unsigned IntOpNo = N->getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1; unsigned IntNo = N->getConstantOperandVal(IntOpNo); switch (IntNo) { // By default we do not combine any intrinsic. default: return SDValue(); case Intrinsic::riscv_masked_strided_load: { MVT VT = N->getSimpleValueType(0); auto *Load = cast(N); SDValue PassThru = N->getOperand(2); SDValue Base = N->getOperand(3); SDValue Stride = N->getOperand(4); SDValue Mask = N->getOperand(5); // If the stride is equal to the element size in bytes, we can use // a masked.load. const unsigned ElementSize = VT.getScalarStoreSize(); if (auto *StrideC = dyn_cast(Stride); StrideC && StrideC->getZExtValue() == ElementSize) return DAG.getMaskedLoad(VT, DL, Load->getChain(), Base, DAG.getUNDEF(XLenVT), Mask, PassThru, Load->getMemoryVT(), Load->getMemOperand(), ISD::UNINDEXED, ISD::NON_EXTLOAD); return SDValue(); } case Intrinsic::riscv_masked_strided_store: { auto *Store = cast(N); SDValue Value = N->getOperand(2); SDValue Base = N->getOperand(3); SDValue Stride = N->getOperand(4); SDValue Mask = N->getOperand(5); // If the stride is equal to the element size in bytes, we can use // a masked.store. const unsigned ElementSize = Value.getValueType().getScalarStoreSize(); if (auto *StrideC = dyn_cast(Stride); StrideC && StrideC->getZExtValue() == ElementSize) return DAG.getMaskedStore(Store->getChain(), DL, Value, Base, DAG.getUNDEF(XLenVT), Mask, Store->getMemoryVT(), Store->getMemOperand(), ISD::UNINDEXED, false); return SDValue(); } case Intrinsic::riscv_vcpop: case Intrinsic::riscv_vcpop_mask: case Intrinsic::riscv_vfirst: case Intrinsic::riscv_vfirst_mask: { SDValue VL = N->getOperand(2); if (IntNo == Intrinsic::riscv_vcpop_mask || IntNo == Intrinsic::riscv_vfirst_mask) VL = N->getOperand(3); if (!isNullConstant(VL)) return SDValue(); // If VL is 0, vcpop -> li 0, vfirst -> li -1. SDLoc DL(N); EVT VT = N->getValueType(0); if (IntNo == Intrinsic::riscv_vfirst || IntNo == Intrinsic::riscv_vfirst_mask) return DAG.getConstant(-1, DL, VT); return DAG.getConstant(0, DL, VT); } } } case ISD::BITCAST: { assert(Subtarget.useRVVForFixedLengthVectors()); SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); EVT SrcVT = N0.getValueType(); // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer // type, widen both sides to avoid a trip through memory. if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) && VT.isScalarInteger()) { unsigned NumConcats = 8 / SrcVT.getVectorNumElements(); SmallVector Ops(NumConcats, DAG.getUNDEF(SrcVT)); Ops[0] = N0; SDLoc DL(N); N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops); N0 = DAG.getBitcast(MVT::i8, N0); return DAG.getNode(ISD::TRUNCATE, DL, VT, N0); } return SDValue(); } } return SDValue(); } bool RISCVTargetLowering::shouldTransformSignedTruncationCheck( EVT XVT, unsigned KeptBits) const { // For vectors, we don't have a preference.. if (XVT.isVector()) return false; if (XVT != MVT::i32 && XVT != MVT::i64) return false; // We can use sext.w for RV64 or an srai 31 on RV32. if (KeptBits == 32 || KeptBits == 64) return true; // With Zbb we can use sext.h/sext.b. return Subtarget.hasStdExtZbb() && ((KeptBits == 8 && XVT == MVT::i64 && !Subtarget.is64Bit()) || KeptBits == 16); } bool RISCVTargetLowering::isDesirableToCommuteWithShift( const SDNode *N, CombineLevel Level) const { assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && "Expected shift op"); // The following folds are only desirable if `(OP _, c1 << c2)` can be // materialised in fewer instructions than `(OP _, c1)`: // // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) SDValue N0 = N->getOperand(0); EVT Ty = N0.getValueType(); if (Ty.isScalarInteger() && (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { auto *C1 = dyn_cast(N0->getOperand(1)); auto *C2 = dyn_cast(N->getOperand(1)); if (C1 && C2) { const APInt &C1Int = C1->getAPIntValue(); APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); // We can materialise `c1 << c2` into an add immediate, so it's "free", // and the combine should happen, to potentially allow further combines // later. if (ShiftedC1Int.getSignificantBits() <= 64 && isLegalAddImmediate(ShiftedC1Int.getSExtValue())) return true; // We can materialise `c1` in an add immediate, so it's "free", and the // combine should be prevented. if (C1Int.getSignificantBits() <= 64 && isLegalAddImmediate(C1Int.getSExtValue())) return false; // Neither constant will fit into an immediate, so find materialisation // costs. int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), Subtarget, /*CompressionCost*/ true); int ShiftedC1Cost = RISCVMatInt::getIntMatCost( ShiftedC1Int, Ty.getSizeInBits(), Subtarget, /*CompressionCost*/ true); // Materialising `c1` is cheaper than materialising `c1 << c2`, so the // combine should be prevented. if (C1Cost < ShiftedC1Cost) return false; } } return true; } bool RISCVTargetLowering::targetShrinkDemandedConstant( SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const { // Delay this optimization as late as possible. if (!TLO.LegalOps) return false; EVT VT = Op.getValueType(); if (VT.isVector()) return false; unsigned Opcode = Op.getOpcode(); if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR) return false; ConstantSDNode *C = dyn_cast(Op.getOperand(1)); if (!C) return false; const APInt &Mask = C->getAPIntValue(); // Clear all non-demanded bits initially. APInt ShrunkMask = Mask & DemandedBits; // Try to make a smaller immediate by setting undemanded bits. APInt ExpandedMask = Mask | ~DemandedBits; auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); }; auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool { if (NewMask == Mask) return true; SDLoc DL(Op); SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType()); SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), Op.getOperand(0), NewC); return TLO.CombineTo(Op, NewOp); }; // If the shrunk mask fits in sign extended 12 bits, let the target // independent code apply it. if (ShrunkMask.isSignedIntN(12)) return false; // And has a few special cases for zext. if (Opcode == ISD::AND) { // Preserve (and X, 0xffff), if zext.h exists use zext.h, // otherwise use SLLI + SRLI. APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); if (IsLegalMask(NewMask)) return UseMask(NewMask); // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. if (VT == MVT::i64) { APInt NewMask = APInt(64, 0xffffffff); if (IsLegalMask(NewMask)) return UseMask(NewMask); } } // For the remaining optimizations, we need to be able to make a negative // number through a combination of mask and undemanded bits. if (!ExpandedMask.isNegative()) return false; // What is the fewest number of bits we need to represent the negative number. unsigned MinSignedBits = ExpandedMask.getSignificantBits(); // Try to make a 12 bit negative immediate. If that fails try to make a 32 // bit negative immediate unless the shrunk immediate already fits in 32 bits. // If we can't create a simm12, we shouldn't change opaque constants. APInt NewMask = ShrunkMask; if (MinSignedBits <= 12) NewMask.setBitsFrom(11); else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) NewMask.setBitsFrom(31); else return false; // Check that our new mask is a subset of the demanded mask. assert(IsLegalMask(NewMask)); return UseMask(NewMask); } static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { static const uint64_t GREVMasks[] = { 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; for (unsigned Stage = 0; Stage != 6; ++Stage) { unsigned Shift = 1 << Stage; if (ShAmt & Shift) { uint64_t Mask = GREVMasks[Stage]; uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); if (IsGORC) Res |= x; x = Res; } } return x; } void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { unsigned BitWidth = Known.getBitWidth(); unsigned Opc = Op.getOpcode(); assert((Opc >= ISD::BUILTIN_OP_END || Opc == ISD::INTRINSIC_WO_CHAIN || Opc == ISD::INTRINSIC_W_CHAIN || Opc == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); Known.resetAll(); switch (Opc) { default: break; case RISCVISD::SELECT_CC: { Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); // If we don't know any bits, early out. if (Known.isUnknown()) break; KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); // Only known if known in both the LHS and RHS. Known = Known.intersectWith(Known2); break; } case RISCVISD::CZERO_EQZ: case RISCVISD::CZERO_NEZ: Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); // Result is either all zero or operand 0. We can propagate zeros, but not // ones. Known.One.clearAllBits(); break; case RISCVISD::REMUW: { KnownBits Known2; Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); // We only care about the lower 32 bits. Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); // Restore the original width by sign extending. Known = Known.sext(BitWidth); break; } case RISCVISD::DIVUW: { KnownBits Known2; Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); // We only care about the lower 32 bits. Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); // Restore the original width by sign extending. Known = Known.sext(BitWidth); break; } case RISCVISD::SLLW: { KnownBits Known2; Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); Known = KnownBits::shl(Known.trunc(32), Known2.trunc(5).zext(32)); // Restore the original width by sign extending. Known = Known.sext(BitWidth); break; } case RISCVISD::CTZW: { KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); unsigned LowBits = llvm::bit_width(PossibleTZ); Known.Zero.setBitsFrom(LowBits); break; } case RISCVISD::CLZW: { KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); unsigned LowBits = llvm::bit_width(PossibleLZ); Known.Zero.setBitsFrom(LowBits); break; } case RISCVISD::BREV8: case RISCVISD::ORC_B: { // FIXME: This is based on the non-ratified Zbp GREV and GORC where a // control value of 7 is equivalent to brev8 and orc.b. Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); bool IsGORC = Op.getOpcode() == RISCVISD::ORC_B; // To compute zeros, we need to invert the value and invert it back after. Known.Zero = ~computeGREVOrGORC(~Known.Zero.getZExtValue(), 7, IsGORC); Known.One = computeGREVOrGORC(Known.One.getZExtValue(), 7, IsGORC); break; } case RISCVISD::READ_VLENB: { // We can use the minimum and maximum VLEN values to bound VLENB. We // know VLEN must be a power of two. const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8; const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8; assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?"); Known.Zero.setLowBits(Log2_32(MinVLenB)); Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1); if (MaxVLenB == MinVLenB) Known.One.setBit(Log2_32(MinVLenB)); break; } case RISCVISD::FCLASS: { // fclass will only set one of the low 10 bits. Known.Zero.setBitsFrom(10); break; } case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_WO_CHAIN: { unsigned IntNo = Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); switch (IntNo) { default: // We can't do anything for most intrinsics. break; case Intrinsic::riscv_vsetvli: case Intrinsic::riscv_vsetvlimax: { bool HasAVL = IntNo == Intrinsic::riscv_vsetvli; unsigned VSEW = Op.getConstantOperandVal(HasAVL + 1); RISCVII::VLMUL VLMUL = static_cast(Op.getConstantOperandVal(HasAVL + 2)); unsigned SEW = RISCVVType::decodeVSEW(VSEW); auto [LMul, Fractional] = RISCVVType::decodeVLMUL(VLMUL); uint64_t MaxVL = Subtarget.getRealMaxVLen() / SEW; MaxVL = (Fractional) ? MaxVL / LMul : MaxVL * LMul; // Result of vsetvli must be not larger than AVL. if (HasAVL && isa(Op.getOperand(1))) MaxVL = std::min(MaxVL, Op.getConstantOperandVal(1)); unsigned KnownZeroFirstBit = Log2_32(MaxVL) + 1; if (BitWidth > KnownZeroFirstBit) Known.Zero.setBitsFrom(KnownZeroFirstBit); break; } } break; } } } unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { switch (Op.getOpcode()) { default: break; case RISCVISD::SELECT_CC: { unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); if (Tmp == 1) return 1; // Early out. unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); return std::min(Tmp, Tmp2); } case RISCVISD::CZERO_EQZ: case RISCVISD::CZERO_NEZ: // Output is either all zero or operand 0. We can propagate sign bit count // from operand 0. return DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); case RISCVISD::ABSW: { // We expand this at isel to negw+max. The result will have 33 sign bits // if the input has at least 33 sign bits. unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); if (Tmp < 33) return 1; return 33; } case RISCVISD::SLLW: case RISCVISD::SRAW: case RISCVISD::SRLW: case RISCVISD::DIVW: case RISCVISD::DIVUW: case RISCVISD::REMUW: case RISCVISD::ROLW: case RISCVISD::RORW: case RISCVISD::FCVT_W_RV64: case RISCVISD::FCVT_WU_RV64: case RISCVISD::STRICT_FCVT_W_RV64: case RISCVISD::STRICT_FCVT_WU_RV64: // TODO: As the result is sign-extended, this is conservatively correct. A // more precise answer could be calculated for SRAW depending on known // bits in the shift amount. return 33; case RISCVISD::VMV_X_S: { // The number of sign bits of the scalar result is computed by obtaining the // element type of the input vector operand, subtracting its width from the // XLEN, and then adding one (sign bit within the element type). If the // element type is wider than XLen, the least-significant XLEN bits are // taken. unsigned XLen = Subtarget.getXLen(); unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); if (EltBits <= XLen) return XLen - EltBits + 1; break; } case ISD::INTRINSIC_W_CHAIN: { unsigned IntNo = Op.getConstantOperandVal(1); switch (IntNo) { default: break; case Intrinsic::riscv_masked_atomicrmw_xchg_i64: case Intrinsic::riscv_masked_atomicrmw_add_i64: case Intrinsic::riscv_masked_atomicrmw_sub_i64: case Intrinsic::riscv_masked_atomicrmw_nand_i64: case Intrinsic::riscv_masked_atomicrmw_max_i64: case Intrinsic::riscv_masked_atomicrmw_min_i64: case Intrinsic::riscv_masked_atomicrmw_umax_i64: case Intrinsic::riscv_masked_atomicrmw_umin_i64: case Intrinsic::riscv_masked_cmpxchg_i64: // riscv_masked_{atomicrmw_*,cmpxchg} intrinsics represent an emulated // narrow atomic operation. These are implemented using atomic // operations at the minimum supported atomicrmw/cmpxchg width whose // result is then sign extended to XLEN. With +A, the minimum width is // 32 for both 64 and 32. assert(Subtarget.getXLen() == 64); assert(getMinCmpXchgSizeInBits() == 32); assert(Subtarget.hasStdExtA()); return 33; } break; } } return 1; } const Constant * RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const { assert(Ld && "Unexpected null LoadSDNode"); if (!ISD::isNormalLoad(Ld)) return nullptr; SDValue Ptr = Ld->getBasePtr(); // Only constant pools with no offset are supported. auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * { auto *CNode = dyn_cast(Ptr); if (!CNode || CNode->isMachineConstantPoolEntry() || CNode->getOffset() != 0) return nullptr; return CNode; }; // Simple case, LLA. if (Ptr.getOpcode() == RISCVISD::LLA) { auto *CNode = GetSupportedConstantPool(Ptr); if (!CNode || CNode->getTargetFlags() != 0) return nullptr; return CNode->getConstVal(); } // Look for a HI and ADD_LO pair. if (Ptr.getOpcode() != RISCVISD::ADD_LO || Ptr.getOperand(0).getOpcode() != RISCVISD::HI) return nullptr; auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1)); auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0)); if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO || !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI) return nullptr; if (CNodeLo->getConstVal() != CNodeHi->getConstVal()) return nullptr; return CNodeLo->getConstVal(); } static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, MachineBasicBlock *BB) { assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. // Should the count have wrapped while it was being read, we need to try // again. // ... // read: // rdcycleh x3 # load high word of cycle // rdcycle x2 # load low word of cycle // rdcycleh x4 # load high word of cycle // bne x3, x4, read # check if high word reads match, otherwise try again // ... MachineFunction &MF = *BB->getParent(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = ++BB->getIterator(); MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); MF.insert(It, LoopMBB); MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); MF.insert(It, DoneMBB); // Transfer the remainder of BB and its successor edges to DoneMBB. DoneMBB->splice(DoneMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); DoneMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(LoopMBB); MachineRegisterInfo &RegInfo = MF.getRegInfo(); Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); Register LoReg = MI.getOperand(0).getReg(); Register HiReg = MI.getOperand(1).getReg(); DebugLoc DL = MI.getDebugLoc(); const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) .addReg(RISCV::X0); BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) .addReg(RISCV::X0); BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) .addReg(RISCV::X0); BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) .addReg(HiReg) .addReg(ReadAgainReg) .addMBB(LoopMBB); LoopMBB->addSuccessor(LoopMBB); LoopMBB->addSuccessor(DoneMBB); MI.eraseFromParent(); return DoneMBB; } static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const RISCVSubtarget &Subtarget) { assert((MI.getOpcode() == RISCV::SplitF64Pseudo || MI.getOpcode() == RISCV::SplitF64Pseudo_INX) && "Unexpected instruction"); MachineFunction &MF = *BB->getParent(); DebugLoc DL = MI.getDebugLoc(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); Register LoReg = MI.getOperand(0).getReg(); Register HiReg = MI.getOperand(1).getReg(); Register SrcReg = MI.getOperand(2).getReg(); const TargetRegisterClass *SrcRC = MI.getOpcode() == RISCV::SplitF64Pseudo_INX ? &RISCV::GPRPairRegClass : &RISCV::FPR64RegClass; int FI = MF.getInfo()->getMoveF64FrameIndex(MF); TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, RI, Register()); MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); MachineMemOperand *MMOLo = MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); MachineMemOperand *MMOHi = MF.getMachineMemOperand( MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) .addFrameIndex(FI) .addImm(0) .addMemOperand(MMOLo); BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) .addFrameIndex(FI) .addImm(4) .addMemOperand(MMOHi); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const RISCVSubtarget &Subtarget) { assert((MI.getOpcode() == RISCV::BuildPairF64Pseudo || MI.getOpcode() == RISCV::BuildPairF64Pseudo_INX) && "Unexpected instruction"); MachineFunction &MF = *BB->getParent(); DebugLoc DL = MI.getDebugLoc(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); Register DstReg = MI.getOperand(0).getReg(); Register LoReg = MI.getOperand(1).getReg(); Register HiReg = MI.getOperand(2).getReg(); const TargetRegisterClass *DstRC = MI.getOpcode() == RISCV::BuildPairF64Pseudo_INX ? &RISCV::GPRPairRegClass : &RISCV::FPR64RegClass; int FI = MF.getInfo()->getMoveF64FrameIndex(MF); MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); MachineMemOperand *MMOLo = MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); MachineMemOperand *MMOHi = MF.getMachineMemOperand( MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) .addFrameIndex(FI) .addImm(0) .addMemOperand(MMOLo); BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) .addFrameIndex(FI) .addImm(4) .addMemOperand(MMOHi); TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI, Register()); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } static bool isSelectPseudo(MachineInstr &MI) { switch (MI.getOpcode()) { default: return false; case RISCV::Select_GPR_Using_CC_GPR: case RISCV::Select_FPR16_Using_CC_GPR: case RISCV::Select_FPR16INX_Using_CC_GPR: case RISCV::Select_FPR32_Using_CC_GPR: case RISCV::Select_FPR32INX_Using_CC_GPR: case RISCV::Select_FPR64_Using_CC_GPR: case RISCV::Select_FPR64INX_Using_CC_GPR: case RISCV::Select_FPR64IN32X_Using_CC_GPR: return true; } } static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, unsigned RelOpcode, unsigned EqOpcode, const RISCVSubtarget &Subtarget) { DebugLoc DL = MI.getDebugLoc(); Register DstReg = MI.getOperand(0).getReg(); Register Src1Reg = MI.getOperand(1).getReg(); Register Src2Reg = MI.getOperand(2).getReg(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); // Save the current FFLAGS. BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) .addReg(Src1Reg) .addReg(Src2Reg); if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); // Restore the FFLAGS. BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) .addReg(SavedFFlags, RegState::Kill); // Issue a dummy FEQ opcode to raise exception for signaling NaNs. auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); // Erase the pseudoinstruction. MI.eraseFromParent(); return BB; } static MachineBasicBlock * EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second, MachineBasicBlock *ThisMBB, const RISCVSubtarget &Subtarget) { // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5) // Without this, custom-inserter would have generated: // // A // | \ // | B // | / // C // | \ // | D // | / // E // // A: X = ...; Y = ... // B: empty // C: Z = PHI [X, A], [Y, B] // D: empty // E: PHI [X, C], [Z, D] // // If we lower both Select_FPRX_ in a single step, we can instead generate: // // A // | \ // | C // | /| // |/ | // | | // | D // | / // E // // A: X = ...; Y = ... // D: empty // E: PHI [X, A], [X, C], [Y, D] const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); const DebugLoc &DL = First.getDebugLoc(); const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); MachineFunction *F = ThisMBB->getParent(); MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator It = ++ThisMBB->getIterator(); F->insert(It, FirstMBB); F->insert(It, SecondMBB); F->insert(It, SinkMBB); // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. SinkMBB->splice(SinkMBB->begin(), ThisMBB, std::next(MachineBasicBlock::iterator(First)), ThisMBB->end()); SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); // Fallthrough block for ThisMBB. ThisMBB->addSuccessor(FirstMBB); // Fallthrough block for FirstMBB. FirstMBB->addSuccessor(SecondMBB); ThisMBB->addSuccessor(SinkMBB); FirstMBB->addSuccessor(SinkMBB); // This is fallthrough. SecondMBB->addSuccessor(SinkMBB); auto FirstCC = static_cast(First.getOperand(3).getImm()); Register FLHS = First.getOperand(1).getReg(); Register FRHS = First.getOperand(2).getReg(); // Insert appropriate branch. BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC)) .addReg(FLHS) .addReg(FRHS) .addMBB(SinkMBB); Register SLHS = Second.getOperand(1).getReg(); Register SRHS = Second.getOperand(2).getReg(); Register Op1Reg4 = First.getOperand(4).getReg(); Register Op1Reg5 = First.getOperand(5).getReg(); auto SecondCC = static_cast(Second.getOperand(3).getImm()); // Insert appropriate branch. BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC)) .addReg(SLHS) .addReg(SRHS) .addMBB(SinkMBB); Register DestReg = Second.getOperand(0).getReg(); Register Op2Reg4 = Second.getOperand(4).getReg(); BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg) .addReg(Op2Reg4) .addMBB(ThisMBB) .addReg(Op1Reg4) .addMBB(FirstMBB) .addReg(Op1Reg5) .addMBB(SecondMBB); // Now remove the Select_FPRX_s. First.eraseFromParent(); Second.eraseFromParent(); return SinkMBB; } static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, MachineBasicBlock *BB, const RISCVSubtarget &Subtarget) { // To "insert" Select_* instructions, we actually have to insert the triangle // control-flow pattern. The incoming instructions know the destination vreg // to set, the condition code register to branch on, the true/false values to // select between, and the condcode to use to select the appropriate branch. // // We produce the following control flow: // HeadMBB // | \ // | IfFalseMBB // | / // TailMBB // // When we find a sequence of selects we attempt to optimize their emission // by sharing the control flow. Currently we only handle cases where we have // multiple selects with the exact same condition (same LHS, RHS and CC). // The selects may be interleaved with other instructions if the other // instructions meet some requirements we deem safe: // - They are not pseudo instructions. // - They are debug instructions. Otherwise, // - They do not have side-effects, do not access memory and their inputs do // not depend on the results of the select pseudo-instructions. // The TrueV/FalseV operands of the selects cannot depend on the result of // previous selects in the sequence. // These conditions could be further relaxed. See the X86 target for a // related approach and more information. // // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)) // is checked here and handled by a separate function - // EmitLoweredCascadedSelect. Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); auto CC = static_cast(MI.getOperand(3).getImm()); SmallVector SelectDebugValues; SmallSet SelectDests; SelectDests.insert(MI.getOperand(0).getReg()); MachineInstr *LastSelectPseudo = &MI; auto Next = next_nodbg(MI.getIterator(), BB->instr_end()); if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() && Next->getOpcode() == MI.getOpcode() && Next->getOperand(5).getReg() == MI.getOperand(0).getReg() && Next->getOperand(5).isKill()) { return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget); } for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); SequenceMBBI != E; ++SequenceMBBI) { if (SequenceMBBI->isDebugInstr()) continue; if (isSelectPseudo(*SequenceMBBI)) { if (SequenceMBBI->getOperand(1).getReg() != LHS || SequenceMBBI->getOperand(2).getReg() != RHS || SequenceMBBI->getOperand(3).getImm() != CC || SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || SelectDests.count(SequenceMBBI->getOperand(5).getReg())) break; LastSelectPseudo = &*SequenceMBBI; SequenceMBBI->collectDebugValues(SelectDebugValues); SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); continue; } if (SequenceMBBI->hasUnmodeledSideEffects() || SequenceMBBI->mayLoadOrStore() || SequenceMBBI->usesCustomInsertionHook()) break; if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); })) break; } const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); DebugLoc DL = MI.getDebugLoc(); MachineFunction::iterator I = ++BB->getIterator(); MachineBasicBlock *HeadMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(I, IfFalseMBB); F->insert(I, TailMBB); // Transfer debug instructions associated with the selects to TailMBB. for (MachineInstr *DebugInstr : SelectDebugValues) { TailMBB->push_back(DebugInstr->removeFromParent()); } // Move all instructions after the sequence to TailMBB. TailMBB->splice(TailMBB->end(), HeadMBB, std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); // Update machine-CFG edges by transferring all successors of the current // block to the new block which will contain the Phi nodes for the selects. TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); // Set the successors for HeadMBB. HeadMBB->addSuccessor(IfFalseMBB); HeadMBB->addSuccessor(TailMBB); // Insert appropriate branch. BuildMI(HeadMBB, DL, TII.getBrCond(CC)) .addReg(LHS) .addReg(RHS) .addMBB(TailMBB); // IfFalseMBB just falls through to TailMBB. IfFalseMBB->addSuccessor(TailMBB); // Create PHIs for all of the select pseudo-instructions. auto SelectMBBI = MI.getIterator(); auto SelectEnd = std::next(LastSelectPseudo->getIterator()); auto InsertionPoint = TailMBB->begin(); while (SelectMBBI != SelectEnd) { auto Next = std::next(SelectMBBI); if (isSelectPseudo(*SelectMBBI)) { // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) .addReg(SelectMBBI->getOperand(4).getReg()) .addMBB(HeadMBB) .addReg(SelectMBBI->getOperand(5).getReg()) .addMBB(IfFalseMBB); SelectMBBI->eraseFromParent(); } SelectMBBI = Next; } F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); return TailMBB; } static MachineBasicBlock *emitVFROUND_NOEXCEPT_MASK(MachineInstr &MI, MachineBasicBlock *BB, unsigned CVTXOpc, unsigned CVTFOpc) { DebugLoc DL = MI.getDebugLoc(); const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); Register SavedFFLAGS = MRI.createVirtualRegister(&RISCV::GPRRegClass); // Save the old value of FFLAGS. BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFLAGS); assert(MI.getNumOperands() == 7); // Emit a VFCVT_X_F const TargetRegisterInfo *TRI = BB->getParent()->getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = MI.getRegClassConstraint(0, &TII, TRI); Register Tmp = MRI.createVirtualRegister(RC); BuildMI(*BB, MI, DL, TII.get(CVTXOpc), Tmp) .add(MI.getOperand(1)) .add(MI.getOperand(2)) .add(MI.getOperand(3)) .add(MachineOperand::CreateImm(7)) // frm = DYN .add(MI.getOperand(4)) .add(MI.getOperand(5)) .add(MI.getOperand(6)) .add(MachineOperand::CreateReg(RISCV::FRM, /*IsDef*/ false, /*IsImp*/ true)); // Emit a VFCVT_F_X BuildMI(*BB, MI, DL, TII.get(CVTFOpc)) .add(MI.getOperand(0)) .add(MI.getOperand(1)) .addReg(Tmp) .add(MI.getOperand(3)) .add(MachineOperand::CreateImm(7)) // frm = DYN .add(MI.getOperand(4)) .add(MI.getOperand(5)) .add(MI.getOperand(6)) .add(MachineOperand::CreateReg(RISCV::FRM, /*IsDef*/ false, /*IsImp*/ true)); // Restore FFLAGS. BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) .addReg(SavedFFLAGS, RegState::Kill); // Erase the pseudoinstruction. MI.eraseFromParent(); return BB; } static MachineBasicBlock *emitFROUND(MachineInstr &MI, MachineBasicBlock *MBB, const RISCVSubtarget &Subtarget) { unsigned CmpOpc, F2IOpc, I2FOpc, FSGNJOpc, FSGNJXOpc; const TargetRegisterClass *RC; switch (MI.getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case RISCV::PseudoFROUND_H: CmpOpc = RISCV::FLT_H; F2IOpc = RISCV::FCVT_W_H; I2FOpc = RISCV::FCVT_H_W; FSGNJOpc = RISCV::FSGNJ_H; FSGNJXOpc = RISCV::FSGNJX_H; RC = &RISCV::FPR16RegClass; break; case RISCV::PseudoFROUND_H_INX: CmpOpc = RISCV::FLT_H_INX; F2IOpc = RISCV::FCVT_W_H_INX; I2FOpc = RISCV::FCVT_H_W_INX; FSGNJOpc = RISCV::FSGNJ_H_INX; FSGNJXOpc = RISCV::FSGNJX_H_INX; RC = &RISCV::GPRF16RegClass; break; case RISCV::PseudoFROUND_S: CmpOpc = RISCV::FLT_S; F2IOpc = RISCV::FCVT_W_S; I2FOpc = RISCV::FCVT_S_W; FSGNJOpc = RISCV::FSGNJ_S; FSGNJXOpc = RISCV::FSGNJX_S; RC = &RISCV::FPR32RegClass; break; case RISCV::PseudoFROUND_S_INX: CmpOpc = RISCV::FLT_S_INX; F2IOpc = RISCV::FCVT_W_S_INX; I2FOpc = RISCV::FCVT_S_W_INX; FSGNJOpc = RISCV::FSGNJ_S_INX; FSGNJXOpc = RISCV::FSGNJX_S_INX; RC = &RISCV::GPRF32RegClass; break; case RISCV::PseudoFROUND_D: assert(Subtarget.is64Bit() && "Expected 64-bit GPR."); CmpOpc = RISCV::FLT_D; F2IOpc = RISCV::FCVT_L_D; I2FOpc = RISCV::FCVT_D_L; FSGNJOpc = RISCV::FSGNJ_D; FSGNJXOpc = RISCV::FSGNJX_D; RC = &RISCV::FPR64RegClass; break; case RISCV::PseudoFROUND_D_INX: assert(Subtarget.is64Bit() && "Expected 64-bit GPR."); CmpOpc = RISCV::FLT_D_INX; F2IOpc = RISCV::FCVT_L_D_INX; I2FOpc = RISCV::FCVT_D_L_INX; FSGNJOpc = RISCV::FSGNJ_D_INX; FSGNJXOpc = RISCV::FSGNJX_D_INX; RC = &RISCV::GPRRegClass; break; } const BasicBlock *BB = MBB->getBasicBlock(); DebugLoc DL = MI.getDebugLoc(); MachineFunction::iterator I = ++MBB->getIterator(); MachineFunction *F = MBB->getParent(); MachineBasicBlock *CvtMBB = F->CreateMachineBasicBlock(BB); MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(BB); F->insert(I, CvtMBB); F->insert(I, DoneMBB); // Move all instructions after the sequence to DoneMBB. DoneMBB->splice(DoneMBB->end(), MBB, MachineBasicBlock::iterator(MI), MBB->end()); // Update machine-CFG edges by transferring all successors of the current // block to the new block which will contain the Phi nodes for the selects. DoneMBB->transferSuccessorsAndUpdatePHIs(MBB); // Set the successors for MBB. MBB->addSuccessor(CvtMBB); MBB->addSuccessor(DoneMBB); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); Register MaxReg = MI.getOperand(2).getReg(); int64_t FRM = MI.getOperand(3).getImm(); const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); Register FabsReg = MRI.createVirtualRegister(RC); BuildMI(MBB, DL, TII.get(FSGNJXOpc), FabsReg).addReg(SrcReg).addReg(SrcReg); // Compare the FP value to the max value. Register CmpReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); auto MIB = BuildMI(MBB, DL, TII.get(CmpOpc), CmpReg).addReg(FabsReg).addReg(MaxReg); if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); // Insert branch. BuildMI(MBB, DL, TII.get(RISCV::BEQ)) .addReg(CmpReg) .addReg(RISCV::X0) .addMBB(DoneMBB); CvtMBB->addSuccessor(DoneMBB); // Convert to integer. Register F2IReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); MIB = BuildMI(CvtMBB, DL, TII.get(F2IOpc), F2IReg).addReg(SrcReg).addImm(FRM); if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); // Convert back to FP. Register I2FReg = MRI.createVirtualRegister(RC); MIB = BuildMI(CvtMBB, DL, TII.get(I2FOpc), I2FReg).addReg(F2IReg).addImm(FRM); if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); // Restore the sign bit. Register CvtReg = MRI.createVirtualRegister(RC); BuildMI(CvtMBB, DL, TII.get(FSGNJOpc), CvtReg).addReg(I2FReg).addReg(SrcReg); // Merge the results. BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(RISCV::PHI), DstReg) .addReg(SrcReg) .addMBB(MBB) .addReg(CvtReg) .addMBB(CvtMBB); MI.eraseFromParent(); return DoneMBB; } MachineBasicBlock * RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const { switch (MI.getOpcode()) { default: llvm_unreachable("Unexpected instr type to insert"); case RISCV::ReadCycleWide: assert(!Subtarget.is64Bit() && "ReadCycleWrite is only to be used on riscv32"); return emitReadCycleWidePseudo(MI, BB); case RISCV::Select_GPR_Using_CC_GPR: case RISCV::Select_FPR16_Using_CC_GPR: case RISCV::Select_FPR16INX_Using_CC_GPR: case RISCV::Select_FPR32_Using_CC_GPR: case RISCV::Select_FPR32INX_Using_CC_GPR: case RISCV::Select_FPR64_Using_CC_GPR: case RISCV::Select_FPR64INX_Using_CC_GPR: case RISCV::Select_FPR64IN32X_Using_CC_GPR: return emitSelectPseudo(MI, BB, Subtarget); case RISCV::BuildPairF64Pseudo: case RISCV::BuildPairF64Pseudo_INX: return emitBuildPairF64Pseudo(MI, BB, Subtarget); case RISCV::SplitF64Pseudo: case RISCV::SplitF64Pseudo_INX: return emitSplitF64Pseudo(MI, BB, Subtarget); case RISCV::PseudoQuietFLE_H: return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); case RISCV::PseudoQuietFLE_H_INX: return emitQuietFCMP(MI, BB, RISCV::FLE_H_INX, RISCV::FEQ_H_INX, Subtarget); case RISCV::PseudoQuietFLT_H: return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); case RISCV::PseudoQuietFLT_H_INX: return emitQuietFCMP(MI, BB, RISCV::FLT_H_INX, RISCV::FEQ_H_INX, Subtarget); case RISCV::PseudoQuietFLE_S: return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); case RISCV::PseudoQuietFLE_S_INX: return emitQuietFCMP(MI, BB, RISCV::FLE_S_INX, RISCV::FEQ_S_INX, Subtarget); case RISCV::PseudoQuietFLT_S: return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); case RISCV::PseudoQuietFLT_S_INX: return emitQuietFCMP(MI, BB, RISCV::FLT_S_INX, RISCV::FEQ_S_INX, Subtarget); case RISCV::PseudoQuietFLE_D: return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); case RISCV::PseudoQuietFLE_D_INX: return emitQuietFCMP(MI, BB, RISCV::FLE_D_INX, RISCV::FEQ_D_INX, Subtarget); case RISCV::PseudoQuietFLE_D_IN32X: return emitQuietFCMP(MI, BB, RISCV::FLE_D_IN32X, RISCV::FEQ_D_IN32X, Subtarget); case RISCV::PseudoQuietFLT_D: return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); case RISCV::PseudoQuietFLT_D_INX: return emitQuietFCMP(MI, BB, RISCV::FLT_D_INX, RISCV::FEQ_D_INX, Subtarget); case RISCV::PseudoQuietFLT_D_IN32X: return emitQuietFCMP(MI, BB, RISCV::FLT_D_IN32X, RISCV::FEQ_D_IN32X, Subtarget); case RISCV::PseudoVFROUND_NOEXCEPT_V_M1_MASK: return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK, RISCV::PseudoVFCVT_F_X_V_M1_MASK); case RISCV::PseudoVFROUND_NOEXCEPT_V_M2_MASK: return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK, RISCV::PseudoVFCVT_F_X_V_M2_MASK); case RISCV::PseudoVFROUND_NOEXCEPT_V_M4_MASK: return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK, RISCV::PseudoVFCVT_F_X_V_M4_MASK); case RISCV::PseudoVFROUND_NOEXCEPT_V_M8_MASK: return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK, RISCV::PseudoVFCVT_F_X_V_M8_MASK); case RISCV::PseudoVFROUND_NOEXCEPT_V_MF2_MASK: return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK, RISCV::PseudoVFCVT_F_X_V_MF2_MASK); case RISCV::PseudoVFROUND_NOEXCEPT_V_MF4_MASK: return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK, RISCV::PseudoVFCVT_F_X_V_MF4_MASK); case RISCV::PseudoFROUND_H: case RISCV::PseudoFROUND_H_INX: case RISCV::PseudoFROUND_S: case RISCV::PseudoFROUND_S_INX: case RISCV::PseudoFROUND_D: case RISCV::PseudoFROUND_D_INX: case RISCV::PseudoFROUND_D_IN32X: return emitFROUND(MI, BB, Subtarget); case TargetOpcode::STATEPOINT: case TargetOpcode::STACKMAP: case TargetOpcode::PATCHPOINT: if (!Subtarget.is64Bit()) report_fatal_error("STACKMAP, PATCHPOINT and STATEPOINT are only " "supported on 64-bit targets"); return emitPatchPoint(MI, BB); } } void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { // Add FRM dependency to any instructions with dynamic rounding mode. int Idx = RISCV::getNamedOperandIdx(MI.getOpcode(), RISCV::OpName::frm); if (Idx < 0) { // Vector pseudos have FRM index indicated by TSFlags. Idx = RISCVII::getFRMOpNum(MI.getDesc()); if (Idx < 0) return; } if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) return; // If the instruction already reads FRM, don't add another read. if (MI.readsRegister(RISCV::FRM)) return; MI.addOperand( MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); } // Calling Convention Implementation. // The expectations for frontend ABI lowering vary from target to target. // Ideally, an LLVM frontend would be able to avoid worrying about many ABI // details, but this is a longer term goal. For now, we simply try to keep the // role of the frontend as simple and well-defined as possible. The rules can // be summarised as: // * Never split up large scalar arguments. We handle them here. // * If a hardfloat calling convention is being used, and the struct may be // passed in a pair of registers (fp+fp, int+fp), and both registers are // available, then pass as two separate arguments. If either the GPRs or FPRs // are exhausted, then pass according to the rule below. // * If a struct could never be passed in registers or directly in a stack // slot (as it is larger than 2*XLEN and the floating point rules don't // apply), then pass it using a pointer with the byval attribute. // * If a struct is less than 2*XLEN, then coerce to either a two-element // word-sized array or a 2*XLEN scalar (depending on alignment). // * The frontend can determine whether a struct is returned by reference or // not based on its size and fields. If it will be returned by reference, the // frontend must modify the prototype so a pointer with the sret annotation is // passed as the first argument. This is not necessary for large scalar // returns. // * Struct return values and varargs should be coerced to structs containing // register-size fields in the same situations they would be for fixed // arguments. static const MCPhysReg ArgFPR16s[] = { RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H }; static const MCPhysReg ArgFPR32s[] = { RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F }; static const MCPhysReg ArgFPR64s[] = { RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D }; // This is an interim calling convention and it may be changed in the future. static const MCPhysReg ArgVRs[] = { RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, RISCV::V20M2, RISCV::V22M2}; static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, RISCV::V20M4}; static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; ArrayRef RISCV::getArgGPRs(const RISCVABI::ABI ABI) { // The GPRs used for passing arguments in the ILP32* and LP64* ABIs, except // the ILP32E ABI. static const MCPhysReg ArgIGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17}; // The GPRs used for passing arguments in the ILP32E/ILP64E ABI. static const MCPhysReg ArgEGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15}; if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E) return ArrayRef(ArgEGPRs); return ArrayRef(ArgIGPRs); } static ArrayRef getFastCCArgGPRs(const RISCVABI::ABI ABI) { // The GPRs used for passing arguments in the FastCC, X5 and X6 might be used // for save-restore libcall, so we don't use them. static const MCPhysReg FastCCIGPRs[] = { RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, RISCV::X29, RISCV::X30, RISCV::X31}; // The GPRs used for passing arguments in the FastCC when using ILP32E/ILP64E. static const MCPhysReg FastCCEGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15, RISCV::X7}; if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E) return ArrayRef(FastCCEGPRs); return ArrayRef(FastCCIGPRs); } // Pass a 2*XLEN argument that has been split into two XLEN values through // registers or the stack as necessary. static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, MVT ValVT2, MVT LocVT2, ISD::ArgFlagsTy ArgFlags2, bool EABI) { unsigned XLenInBytes = XLen / 8; const RISCVSubtarget &STI = State.getMachineFunction().getSubtarget(); ArrayRef ArgGPRs = RISCV::getArgGPRs(STI.getTargetABI()); if (Register Reg = State.AllocateReg(ArgGPRs)) { // At least one half can be passed via register. State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, VA1.getLocVT(), CCValAssign::Full)); } else { // Both halves must be passed on the stack, with proper alignment. // TODO: To be compatible with GCC's behaviors, we force them to have 4-byte // alignment. This behavior may be changed when RV32E/ILP32E is ratified. Align StackAlign(XLenInBytes); if (!EABI || XLen != 32) StackAlign = std::max(StackAlign, ArgFlags1.getNonZeroOrigAlign()); State.addLoc( CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), State.AllocateStack(XLenInBytes, StackAlign), VA1.getLocVT(), CCValAssign::Full)); State.addLoc(CCValAssign::getMem( ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), LocVT2, CCValAssign::Full)); return false; } if (Register Reg = State.AllocateReg(ArgGPRs)) { // The second half can also be passed via register. State.addLoc( CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); } else { // The second half is passed via the stack, without additional alignment. State.addLoc(CCValAssign::getMem( ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), LocVT2, CCValAssign::Full)); } return false; } static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, std::optional FirstMaskArgument, CCState &State, const RISCVTargetLowering &TLI) { const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); if (RC == &RISCV::VRRegClass) { // Assign the first mask argument to V0. // This is an interim calling convention and it may be changed in the // future. if (FirstMaskArgument && ValNo == *FirstMaskArgument) return State.AllocateReg(RISCV::V0); return State.AllocateReg(ArgVRs); } if (RC == &RISCV::VRM2RegClass) return State.AllocateReg(ArgVRM2s); if (RC == &RISCV::VRM4RegClass) return State.AllocateReg(ArgVRM4s); if (RC == &RISCV::VRM8RegClass) return State.AllocateReg(ArgVRM8s); llvm_unreachable("Unhandled register class for ValueType"); } // Implements the RISC-V calling convention. Returns true upon failure. bool RISCV::CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, std::optional FirstMaskArgument) { unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); assert(XLen == 32 || XLen == 64); MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; // Static chain parameter must not be passed in normal argument registers, // so we assign t2 for it as done in GCC's __builtin_call_with_static_chain if (ArgFlags.isNest()) { if (unsigned Reg = State.AllocateReg(RISCV::X7)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } // Any return value split in to more than two values can't be returned // directly. Vectors are returned via the available vector registers. if (!LocVT.isVector() && IsRet && ValNo > 1) return true; // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a // variadic argument, or if no F16/F32 argument registers are available. bool UseGPRForF16_F32 = true; // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a // variadic argument, or if no F64 argument registers are available. bool UseGPRForF64 = true; switch (ABI) { default: llvm_unreachable("Unexpected ABI"); case RISCVABI::ABI_ILP32: case RISCVABI::ABI_ILP32E: case RISCVABI::ABI_LP64: case RISCVABI::ABI_LP64E: break; case RISCVABI::ABI_ILP32F: case RISCVABI::ABI_LP64F: UseGPRForF16_F32 = !IsFixed; break; case RISCVABI::ABI_ILP32D: case RISCVABI::ABI_LP64D: UseGPRForF16_F32 = !IsFixed; UseGPRForF64 = !IsFixed; break; } // FPR16, FPR32, and FPR64 alias each other. if (State.getFirstUnallocated(ArgFPR32s) == std::size(ArgFPR32s)) { UseGPRForF16_F32 = true; UseGPRForF64 = true; } // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and // similar local variables rather than directly checking against the target // ABI. if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::bf16 || ValVT == MVT::f32)) { LocVT = XLenVT; LocInfo = CCValAssign::BCvt; } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { LocVT = MVT::i64; LocInfo = CCValAssign::BCvt; } ArrayRef ArgGPRs = RISCV::getArgGPRs(ABI); // If this is a variadic argument, the RISC-V calling convention requires // that it is assigned an 'even' or 'aligned' register if it has 8-byte // alignment (RV32) or 16-byte alignment (RV64). An aligned register should // be used regardless of whether the original argument was split during // legalisation or not. The argument will not be passed by registers if the // original type is larger than 2*XLEN, so the register alignment rule does // not apply. // TODO: To be compatible with GCC's behaviors, we don't align registers // currently if we are using ILP32E calling convention. This behavior may be // changed when RV32E/ILP32E is ratified. unsigned TwoXLenInBytes = (2 * XLen) / 8; if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes && ABI != RISCVABI::ABI_ILP32E) { unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); // Skip 'odd' register if necessary. if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1) State.AllocateReg(ArgGPRs); } SmallVectorImpl &PendingLocs = State.getPendingLocs(); SmallVectorImpl &PendingArgFlags = State.getPendingArgFlags(); assert(PendingLocs.size() == PendingArgFlags.size() && "PendingLocs and PendingArgFlags out of sync"); // Handle passing f64 on RV32D with a soft float ABI or when floating point // registers are exhausted. if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { assert(PendingLocs.empty() && "Can't lower f64 if it is split"); // Depending on available argument GPRS, f64 may be passed in a pair of // GPRs, split between a GPR and the stack, or passed completely on the // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these // cases. Register Reg = State.AllocateReg(ArgGPRs); if (!Reg) { unsigned StackOffset = State.AllocateStack(8, Align(8)); State.addLoc( CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); return false; } LocVT = MVT::i32; State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); Register HiReg = State.AllocateReg(ArgGPRs); if (HiReg) { State.addLoc( CCValAssign::getCustomReg(ValNo, ValVT, HiReg, LocVT, LocInfo)); } else { unsigned StackOffset = State.AllocateStack(4, Align(4)); State.addLoc( CCValAssign::getCustomMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); } return false; } // Fixed-length vectors are located in the corresponding scalable-vector // container types. if (ValVT.isFixedLengthVector()) LocVT = TLI.getContainerForFixedLengthVector(LocVT); // Split arguments might be passed indirectly, so keep track of the pending // values. Split vectors are passed via a mix of registers and indirectly, so // treat them as we would any other argument. if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { LocVT = XLenVT; LocInfo = CCValAssign::Indirect; PendingLocs.push_back( CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); PendingArgFlags.push_back(ArgFlags); if (!ArgFlags.isSplitEnd()) { return false; } } // If the split argument only had two elements, it should be passed directly // in registers or on the stack. if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); // Apply the normal calling convention rules to the first half of the // split argument. CCValAssign VA = PendingLocs[0]; ISD::ArgFlagsTy AF = PendingArgFlags[0]; PendingLocs.clear(); PendingArgFlags.clear(); return CC_RISCVAssign2XLen( XLen, State, VA, AF, ValNo, ValVT, LocVT, ArgFlags, ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E); } // Allocate to a register if possible, or else a stack slot. Register Reg; unsigned StoreSizeBytes = XLen / 8; Align StackAlign = Align(XLen / 8); if ((ValVT == MVT::f16 || ValVT == MVT::bf16) && !UseGPRForF16_F32) Reg = State.AllocateReg(ArgFPR16s); else if (ValVT == MVT::f32 && !UseGPRForF16_F32) Reg = State.AllocateReg(ArgFPR32s); else if (ValVT == MVT::f64 && !UseGPRForF64) Reg = State.AllocateReg(ArgFPR64s); else if (ValVT.isVector()) { Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); if (!Reg) { // For return values, the vector must be passed fully via registers or // via the stack. // FIXME: The proposed vector ABI only mandates v8-v15 for return values, // but we're using all of them. if (IsRet) return true; // Try using a GPR to pass the address if ((Reg = State.AllocateReg(ArgGPRs))) { LocVT = XLenVT; LocInfo = CCValAssign::Indirect; } else if (ValVT.isScalableVector()) { LocVT = XLenVT; LocInfo = CCValAssign::Indirect; } else { // Pass fixed-length vectors on the stack. LocVT = ValVT; StoreSizeBytes = ValVT.getStoreSize(); // Align vectors to their element sizes, being careful for vXi1 // vectors. StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); } } } else { Reg = State.AllocateReg(ArgGPRs); } unsigned StackOffset = Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); // If we reach this point and PendingLocs is non-empty, we must be at the // end of a split argument that must be passed indirectly. if (!PendingLocs.empty()) { assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); for (auto &It : PendingLocs) { if (Reg) It.convertToReg(Reg); else It.convertToMem(StackOffset); State.addLoc(It); } PendingLocs.clear(); PendingArgFlags.clear(); return false; } assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && "Expected an XLenVT or vector types at this stage"); if (Reg) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } // When a scalar floating-point value is passed on the stack, no // bit-conversion is needed. if (ValVT.isFloatingPoint() && LocInfo != CCValAssign::Indirect) { assert(!ValVT.isVector()); LocVT = ValVT; LocInfo = CCValAssign::Full; } State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); return false; } template static std::optional preAssignMask(const ArgTy &Args) { for (const auto &ArgIdx : enumerate(Args)) { MVT ArgVT = ArgIdx.value().VT; if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) return ArgIdx.index(); } return std::nullopt; } void RISCVTargetLowering::analyzeInputArgs( MachineFunction &MF, CCState &CCInfo, const SmallVectorImpl &Ins, bool IsRet, RISCVCCAssignFn Fn) const { unsigned NumArgs = Ins.size(); FunctionType *FType = MF.getFunction().getFunctionType(); std::optional FirstMaskArgument; if (Subtarget.hasVInstructions()) FirstMaskArgument = preAssignMask(Ins); for (unsigned i = 0; i != NumArgs; ++i) { MVT ArgVT = Ins[i].VT; ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; Type *ArgTy = nullptr; if (IsRet) ArgTy = FType->getReturnType(); else if (Ins[i].isOrigArg()) ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); RISCVABI::ABI ABI = MF.getSubtarget().getTargetABI(); if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, FirstMaskArgument)) { LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " << ArgVT << '\n'); llvm_unreachable(nullptr); } } } void RISCVTargetLowering::analyzeOutputArgs( MachineFunction &MF, CCState &CCInfo, const SmallVectorImpl &Outs, bool IsRet, CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { unsigned NumArgs = Outs.size(); std::optional FirstMaskArgument; if (Subtarget.hasVInstructions()) FirstMaskArgument = preAssignMask(Outs); for (unsigned i = 0; i != NumArgs; i++) { MVT ArgVT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; RISCVABI::ABI ABI = MF.getSubtarget().getTargetABI(); if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, FirstMaskArgument)) { LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " << ArgVT << "\n"); llvm_unreachable(nullptr); } } } // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect // values. static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL, const RISCVSubtarget &Subtarget) { switch (VA.getLocInfo()) { default: llvm_unreachable("Unexpected CCValAssign::LocInfo"); case CCValAssign::Full: if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); break; case CCValAssign::BCvt: if (VA.getLocVT().isInteger() && (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) { Val = DAG.getNode(RISCVISD::FMV_H_X, DL, VA.getValVT(), Val); } else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) { if (RV64LegalI32) { Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Val); Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); } else { Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); } } else { Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); } break; } return Val; } // The caller is responsible for loading the full value if the argument is // passed with CCValAssign::Indirect. static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL, const ISD::InputArg &In, const RISCVTargetLowering &TLI) { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); EVT LocVT = VA.getLocVT(); SDValue Val; const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); Register VReg = RegInfo.createVirtualRegister(RC); RegInfo.addLiveIn(VA.getLocReg(), VReg); Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); // If input is sign extended from 32 bits, note it for the SExtWRemoval pass. if (In.isOrigArg()) { Argument *OrigArg = MF.getFunction().getArg(In.getOrigArgIndex()); if (OrigArg->getType()->isIntegerTy()) { unsigned BitWidth = OrigArg->getType()->getIntegerBitWidth(); // An input zero extended from i31 can also be considered sign extended. if ((BitWidth <= 32 && In.Flags.isSExt()) || (BitWidth < 32 && In.Flags.isZExt())) { RISCVMachineFunctionInfo *RVFI = MF.getInfo(); RVFI->addSExt32Register(VReg); } } } if (VA.getLocInfo() == CCValAssign::Indirect) return Val; return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); } static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL, const RISCVSubtarget &Subtarget) { EVT LocVT = VA.getLocVT(); switch (VA.getLocInfo()) { default: llvm_unreachable("Unexpected CCValAssign::LocInfo"); case CCValAssign::Full: if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); break; case CCValAssign::BCvt: if (LocVT.isInteger() && (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) { Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, LocVT, Val); } else if (LocVT == MVT::i64 && VA.getValVT() == MVT::f32) { if (RV64LegalI32) { Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val); } else { Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); } } else { Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); } break; } return Val; } // The caller is responsible for loading the full value if the argument is // passed with CCValAssign::Indirect. static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); EVT LocVT = VA.getLocVT(); EVT ValVT = VA.getValVT(); EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); if (ValVT.isScalableVector()) { // When the value is a scalable vector, we save the pointer which points to // the scalable vector value in the stack. The ValVT will be the pointer // type, instead of the scalable vector type. ValVT = LocVT; } int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), /*IsImmutable=*/true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); SDValue Val; ISD::LoadExtType ExtType; switch (VA.getLocInfo()) { default: llvm_unreachable("Unexpected CCValAssign::LocInfo"); case CCValAssign::Full: case CCValAssign::Indirect: case CCValAssign::BCvt: ExtType = ISD::NON_EXTLOAD; break; } Val = DAG.getExtLoad( ExtType, DL, LocVT, Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); return Val; } static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const CCValAssign &HiVA, const SDLoc &DL) { assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && "Unexpected VA"); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); assert(VA.isRegLoc() && "Expected register VA assignment"); Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); RegInfo.addLiveIn(VA.getLocReg(), LoVReg); SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); SDValue Hi; if (HiVA.isMemLoc()) { // Second half of f64 is passed on the stack. int FI = MFI.CreateFixedObject(4, HiVA.getLocMemOffset(), /*IsImmutable=*/true); SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, MachinePointerInfo::getFixedStack(MF, FI)); } else { // Second half of f64 is passed in another GPR. Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); RegInfo.addLiveIn(HiVA.getLocReg(), HiVReg); Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); } return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); } // FastCC has less than 1% performance improvement for some particular // benchmark. But theoretically, it may has benenfit for some cases. bool RISCV::CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, std::optional FirstMaskArgument) { if (LocVT == MVT::i32 || LocVT == MVT::i64) { if (unsigned Reg = State.AllocateReg(getFastCCArgGPRs(ABI))) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } const RISCVSubtarget &Subtarget = TLI.getSubtarget(); if (LocVT == MVT::f16 && (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZfhmin())) { static const MCPhysReg FPR16List[] = { RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; if (unsigned Reg = State.AllocateReg(FPR16List)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } if (LocVT == MVT::f32 && Subtarget.hasStdExtF()) { static const MCPhysReg FPR32List[] = { RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; if (unsigned Reg = State.AllocateReg(FPR32List)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } if (LocVT == MVT::f64 && Subtarget.hasStdExtD()) { static const MCPhysReg FPR64List[] = { RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; if (unsigned Reg = State.AllocateReg(FPR64List)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } // Check if there is an available GPR before hitting the stack. if ((LocVT == MVT::f16 && (Subtarget.hasStdExtZhinx() || Subtarget.hasStdExtZhinxmin())) || (LocVT == MVT::f32 && Subtarget.hasStdExtZfinx()) || (LocVT == MVT::f64 && Subtarget.is64Bit() && Subtarget.hasStdExtZdinx())) { if (unsigned Reg = State.AllocateReg(getFastCCArgGPRs(ABI))) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } if (LocVT == MVT::f16) { unsigned Offset2 = State.AllocateStack(2, Align(2)); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset2, LocVT, LocInfo)); return false; } if (LocVT == MVT::i32 || LocVT == MVT::f32) { unsigned Offset4 = State.AllocateStack(4, Align(4)); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); return false; } if (LocVT == MVT::i64 || LocVT == MVT::f64) { unsigned Offset5 = State.AllocateStack(8, Align(8)); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); return false; } if (LocVT.isVector()) { if (unsigned Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { // Fixed-length vectors are located in the corresponding scalable-vector // container types. if (ValVT.isFixedLengthVector()) LocVT = TLI.getContainerForFixedLengthVector(LocVT); State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); } else { // Try and pass the address via a "fast" GPR. if (unsigned GPRReg = State.AllocateReg(getFastCCArgGPRs(ABI))) { LocInfo = CCValAssign::Indirect; LocVT = TLI.getSubtarget().getXLenVT(); State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); } else if (ValVT.isFixedLengthVector()) { auto StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); unsigned StackOffset = State.AllocateStack(ValVT.getStoreSize(), StackAlign); State.addLoc( CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); } else { // Can't pass scalable vectors on the stack. return true; } } return false; } return true; // CC didn't match. } bool RISCV::CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (ArgFlags.isNest()) { report_fatal_error( "Attribute 'nest' is not supported in GHC calling convention"); } static const MCPhysReg GPRList[] = { RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; if (LocVT == MVT::i32 || LocVT == MVT::i64) { // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 if (unsigned Reg = State.AllocateReg(GPRList)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } const RISCVSubtarget &Subtarget = State.getMachineFunction().getSubtarget(); if (LocVT == MVT::f32 && Subtarget.hasStdExtF()) { // Pass in STG registers: F1, ..., F6 // fs0 ... fs5 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, RISCV::F18_F, RISCV::F19_F, RISCV::F20_F, RISCV::F21_F}; if (unsigned Reg = State.AllocateReg(FPR32List)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } if (LocVT == MVT::f64 && Subtarget.hasStdExtD()) { // Pass in STG registers: D1, ..., D6 // fs6 ... fs11 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, RISCV::F24_D, RISCV::F25_D, RISCV::F26_D, RISCV::F27_D}; if (unsigned Reg = State.AllocateReg(FPR64List)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } if ((LocVT == MVT::f32 && Subtarget.hasStdExtZfinx()) || (LocVT == MVT::f64 && Subtarget.hasStdExtZdinx() && Subtarget.is64Bit())) { if (unsigned Reg = State.AllocateReg(GPRList)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } report_fatal_error("No registers left in GHC calling convention"); return true; } // Transform physical registers into virtual registers. SDValue RISCVTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); switch (CallConv) { default: report_fatal_error("Unsupported calling convention"); case CallingConv::C: case CallingConv::Fast: case CallingConv::SPIR_KERNEL: case CallingConv::GRAAL: break; case CallingConv::GHC: if (Subtarget.isRVE()) report_fatal_error("GHC calling convention is not supported on RVE!"); if (!Subtarget.hasStdExtFOrZfinx() || !Subtarget.hasStdExtDOrZdinx()) report_fatal_error("GHC calling convention requires the (Zfinx/F) and " "(Zdinx/D) instruction set extensions"); } const Function &Func = MF.getFunction(); if (Func.hasFnAttribute("interrupt")) { if (!Func.arg_empty()) report_fatal_error( "Functions with the interrupt attribute cannot have arguments!"); StringRef Kind = MF.getFunction().getFnAttribute("interrupt").getValueAsString(); if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) report_fatal_error( "Function interrupt attribute argument not supported!"); } EVT PtrVT = getPointerTy(DAG.getDataLayout()); MVT XLenVT = Subtarget.getXLenVT(); unsigned XLenInBytes = Subtarget.getXLen() / 8; // Used with vargs to acumulate store chains. std::vector OutChains; // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); if (CallConv == CallingConv::GHC) CCInfo.AnalyzeFormalArguments(Ins, RISCV::CC_RISCV_GHC); else analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, CallConv == CallingConv::Fast ? RISCV::CC_RISCV_FastCC : RISCV::CC_RISCV); for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) { CCValAssign &VA = ArgLocs[i]; SDValue ArgValue; // Passing f64 on RV32D with a soft float ABI must be handled as a special // case. if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { assert(VA.needsCustom()); ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, ArgLocs[++i], DL); } else if (VA.isRegLoc()) ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, Ins[InsIdx], *this); else ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); if (VA.getLocInfo() == CCValAssign::Indirect) { // If the original argument was split and passed by reference (e.g. i128 // on RV32), we need to load all parts of it here (using the same // address). Vectors may be partly split to registers and partly to the // stack, in which case the base address is partly offset and subsequent // stores are relative to that. InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, MachinePointerInfo())); unsigned ArgIndex = Ins[InsIdx].OrigArgIndex; unsigned ArgPartOffset = Ins[InsIdx].PartOffset; assert(VA.getValVT().isVector() || ArgPartOffset == 0); while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) { CCValAssign &PartVA = ArgLocs[i + 1]; unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset; SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); if (PartVA.getValVT().isScalableVector()) Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, MachinePointerInfo())); ++i; ++InsIdx; } continue; } InVals.push_back(ArgValue); } if (any_of(ArgLocs, [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); })) MF.getInfo()->setIsVectorCall(); if (IsVarArg) { ArrayRef ArgRegs = RISCV::getArgGPRs(Subtarget.getTargetABI()); unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); const TargetRegisterClass *RC = &RISCV::GPRRegClass; MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); RISCVMachineFunctionInfo *RVFI = MF.getInfo(); // Size of the vararg save area. For now, the varargs save area is either // zero or large enough to hold a0-a7. int VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); int FI; // If all registers are allocated, then all varargs must be passed on the // stack and we don't need to save any argregs. if (VarArgsSaveSize == 0) { int VaArgOffset = CCInfo.getStackSize(); FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); } else { int VaArgOffset = -VarArgsSaveSize; FI = MFI.CreateFixedObject(VarArgsSaveSize, VaArgOffset, true); // If saving an odd number of registers then create an extra stack slot to // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures // offsets to even-numbered registered remain 2*XLEN-aligned. if (Idx % 2) { MFI.CreateFixedObject( XLenInBytes, VaArgOffset - static_cast(XLenInBytes), true); VarArgsSaveSize += XLenInBytes; } SDValue FIN = DAG.getFrameIndex(FI, PtrVT); // Copy the integer registers that may have been used for passing varargs // to the vararg save area. for (unsigned I = Idx; I < ArgRegs.size(); ++I) { const Register Reg = RegInfo.createVirtualRegister(RC); RegInfo.addLiveIn(ArgRegs[I], Reg); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); SDValue Store = DAG.getStore( Chain, DL, ArgValue, FIN, MachinePointerInfo::getFixedStack(MF, FI, (I - Idx) * XLenInBytes)); OutChains.push_back(Store); FIN = DAG.getMemBasePlusOffset(FIN, TypeSize::getFixed(XLenInBytes), DL); } } // Record the frame index of the first variable argument // which is a value necessary to VASTART. RVFI->setVarArgsFrameIndex(FI); RVFI->setVarArgsSaveSize(VarArgsSaveSize); } // All stores are grouped in one node to allow the matching between // the size of Ins and InVals. This only happens for vararg functions. if (!OutChains.empty()) { OutChains.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); } return Chain; } /// isEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. bool RISCVTargetLowering::isEligibleForTailCallOptimization( CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, const SmallVector &ArgLocs) const { auto CalleeCC = CLI.CallConv; auto &Outs = CLI.Outs; auto &Caller = MF.getFunction(); auto CallerCC = Caller.getCallingConv(); // Exception-handling functions need a special set of instructions to // indicate a return to the hardware. Tail-calling another function would // probably break this. // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This // should be expanded as new function attributes are introduced. if (Caller.hasFnAttribute("interrupt")) return false; // Do not tail call opt if the stack is used to pass parameters. if (CCInfo.getStackSize() != 0) return false; // Do not tail call opt if any parameters need to be passed indirectly. // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are // passed indirectly. So the address of the value will be passed in a // register, or if not available, then the address is put on the stack. In // order to pass indirectly, space on the stack often needs to be allocated // in order to store the value. In this case the CCInfo.getNextStackOffset() // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs // are passed CCValAssign::Indirect. for (auto &VA : ArgLocs) if (VA.getLocInfo() == CCValAssign::Indirect) return false; // Do not tail call opt if either caller or callee uses struct return // semantics. auto IsCallerStructRet = Caller.hasStructRetAttr(); auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); if (IsCallerStructRet || IsCalleeStructRet) return false; // The callee has to preserve all registers the caller needs to preserve. const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); if (CalleeCC != CallerCC) { const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) return false; } // Byval parameters hand the function a pointer directly into the stack area // we want to reuse during a tail call. Working around this *is* possible // but less efficient and uglier in LowerCall. for (auto &Arg : Outs) if (Arg.Flags.isByVal()) return false; return true; } static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { return DAG.getDataLayout().getPrefTypeAlign( VT.getTypeForEVT(*DAG.getContext())); } // Lower a call to a callseq_start + CALL + callseq_end chain, and add input // and output parameter nodes. SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &DL = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; EVT PtrVT = getPointerTy(DAG.getDataLayout()); MVT XLenVT = Subtarget.getXLenVT(); MachineFunction &MF = DAG.getMachineFunction(); // Analyze the operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); if (CallConv == CallingConv::GHC) { if (Subtarget.isRVE()) report_fatal_error("GHC calling convention is not supported on RVE!"); ArgCCInfo.AnalyzeCallOperands(Outs, RISCV::CC_RISCV_GHC); } else analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, CallConv == CallingConv::Fast ? RISCV::CC_RISCV_FastCC : RISCV::CC_RISCV); // Check if it's really possible to do a tail call. if (IsTailCall) IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); if (IsTailCall) ++NumTailCalls; else if (CLI.CB && CLI.CB->isMustTailCall()) report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = ArgCCInfo.getStackSize(); // Create local copies for byval args SmallVector ByValArgs; for (unsigned i = 0, e = Outs.size(); i != e; ++i) { ISD::ArgFlagsTy Flags = Outs[i].Flags; if (!Flags.isByVal()) continue; SDValue Arg = OutVals[i]; unsigned Size = Flags.getByValSize(); Align Alignment = Flags.getNonZeroByValAlign(); int FI = MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, /*IsVolatile=*/false, /*AlwaysInline=*/false, IsTailCall, MachinePointerInfo(), MachinePointerInfo()); ByValArgs.push_back(FIPtr); } if (!IsTailCall) Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); // Copy argument values to their designated locations. SmallVector, 8> RegsToPass; SmallVector MemOpChains; SDValue StackPtr; for (unsigned i = 0, j = 0, e = ArgLocs.size(), OutIdx = 0; i != e; ++i, ++OutIdx) { CCValAssign &VA = ArgLocs[i]; SDValue ArgValue = OutVals[OutIdx]; ISD::ArgFlagsTy Flags = Outs[OutIdx].Flags; // Handle passing f64 on RV32D with a soft float ABI as a special case. if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { assert(VA.isRegLoc() && "Expected register VA assignment"); assert(VA.needsCustom()); SDValue SplitF64 = DAG.getNode( RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); SDValue Lo = SplitF64.getValue(0); SDValue Hi = SplitF64.getValue(1); Register RegLo = VA.getLocReg(); RegsToPass.push_back(std::make_pair(RegLo, Lo)); // Get the CCValAssign for the Hi part. CCValAssign &HiVA = ArgLocs[++i]; if (HiVA.isMemLoc()) { // Second half of f64 is passed on the stack. if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, DAG.getIntPtrConstant(HiVA.getLocMemOffset(), DL)); // Emit the store. MemOpChains.push_back( DAG.getStore(Chain, DL, Hi, Address, MachinePointerInfo())); } else { // Second half of f64 is passed in another GPR. Register RegHigh = HiVA.getLocReg(); RegsToPass.push_back(std::make_pair(RegHigh, Hi)); } continue; } // Promote the value if needed. // For now, only handle fully promoted and indirect arguments. if (VA.getLocInfo() == CCValAssign::Indirect) { // Store the argument in a stack slot and pass its address. Align StackAlign = std::max(getPrefTypeAlign(Outs[OutIdx].ArgVT, DAG), getPrefTypeAlign(ArgValue.getValueType(), DAG)); TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); // If the original argument was split (e.g. i128), we need // to store the required parts of it here (and pass just one address). // Vectors may be partly split to registers and partly to the stack, in // which case the base address is partly offset and subsequent stores are // relative to that. unsigned ArgIndex = Outs[OutIdx].OrigArgIndex; unsigned ArgPartOffset = Outs[OutIdx].PartOffset; assert(VA.getValVT().isVector() || ArgPartOffset == 0); // Calculate the total size to store. We don't have access to what we're // actually storing other than performing the loop and collecting the // info. SmallVector> Parts; while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) { SDValue PartValue = OutVals[OutIdx + 1]; unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset; SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); EVT PartVT = PartValue.getValueType(); if (PartVT.isScalableVector()) Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); StoredSize += PartVT.getStoreSize(); StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); Parts.push_back(std::make_pair(PartValue, Offset)); ++i; ++OutIdx; } SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); int FI = cast(SpillSlot)->getIndex(); MemOpChains.push_back( DAG.getStore(Chain, DL, ArgValue, SpillSlot, MachinePointerInfo::getFixedStack(MF, FI))); for (const auto &Part : Parts) { SDValue PartValue = Part.first; SDValue PartOffset = Part.second; SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); MemOpChains.push_back( DAG.getStore(Chain, DL, PartValue, Address, MachinePointerInfo::getFixedStack(MF, FI))); } ArgValue = SpillSlot; } else { ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); } // Use local copy if it is a byval arg. if (Flags.isByVal()) ArgValue = ByValArgs[j++]; if (VA.isRegLoc()) { // Queue up the argument copies and emit them at the end. RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); } else { assert(VA.isMemLoc() && "Argument not register or memory"); assert(!IsTailCall && "Tail call not allowed if stack is used " "for passing parameters"); // Work out the address of the stack slot. if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); // Emit the store. MemOpChains.push_back( DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); } } // Join the stores, which are independent of one another. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); SDValue Glue; // Build a sequence of copy-to-reg nodes, chained and glued together. for (auto &Reg : RegsToPass) { Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); Glue = Chain.getValue(1); } // Validate that none of the argument registers have been marked as // reserved, if so report an error. Do the same for the return address if this // is not a tailcall. validateCCReservedRegs(RegsToPass, MF); if (!IsTailCall && MF.getSubtarget().isRegisterReservedByUser(RISCV::X1)) MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ MF.getFunction(), "Return address register required, but has been reserved."}); // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't // split it and then direct call can be matched by PseudoCALL. if (GlobalAddressSDNode *S = dyn_cast(Callee)) { const GlobalValue *GV = S->getGlobal(); Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, RISCVII::MO_CALL); } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, RISCVII::MO_CALL); } // The first call operand is the chain and the second is the target address. SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (auto &Reg : RegsToPass) Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); if (!IsTailCall) { // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); } // Glue the call to the argument copies, if any. if (Glue.getNode()) Ops.push_back(Glue); assert((!CLI.CFIType || CLI.CB->isIndirectCall()) && "Unexpected CFI type for a direct call"); // Emit the call. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); if (IsTailCall) { MF.getFrameInfo().setHasTailCall(); SDValue Ret = DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); if (CLI.CFIType) Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue()); DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge); return Ret; } Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); if (CLI.CFIType) Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue()); DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); Glue = Chain.getValue(1); // Mark the end of the call, which is glued to the call itself. Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); Glue = Chain.getValue(1); // Assign locations to each value returned by this call. SmallVector RVLocs; CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, RISCV::CC_RISCV); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { auto &VA = RVLocs[i]; // Copy the value out SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); // Glue the RetValue to the end of the call sequence Chain = RetValue.getValue(1); Glue = RetValue.getValue(2); if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { assert(VA.needsCustom()); SDValue RetValue2 = DAG.getCopyFromReg(Chain, DL, RVLocs[++i].getLocReg(), MVT::i32, Glue); Chain = RetValue2.getValue(1); Glue = RetValue2.getValue(2); RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, RetValue2); } RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); InVals.push_back(RetValue); } return Chain; } bool RISCVTargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); std::optional FirstMaskArgument; if (Subtarget.hasVInstructions()) FirstMaskArgument = preAssignMask(Outs); for (unsigned i = 0, e = Outs.size(); i != e; ++i) { MVT VT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; RISCVABI::ABI ABI = MF.getSubtarget().getTargetABI(); if (RISCV::CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, *this, FirstMaskArgument)) return false; } return true; } SDValue RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); const RISCVSubtarget &STI = MF.getSubtarget(); // Stores the assignment of the return value to a location. SmallVector RVLocs; // Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, nullptr, RISCV::CC_RISCV); if (CallConv == CallingConv::GHC && !RVLocs.empty()) report_fatal_error("GHC functions return void only"); SDValue Glue; SmallVector RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0, e = RVLocs.size(), OutIdx = 0; i < e; ++i, ++OutIdx) { SDValue Val = OutVals[OutIdx]; CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { // Handle returning f64 on RV32D with a soft float ABI. assert(VA.isRegLoc() && "Expected return via registers"); assert(VA.needsCustom()); SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), Val); SDValue Lo = SplitF64.getValue(0); SDValue Hi = SplitF64.getValue(1); Register RegLo = VA.getLocReg(); Register RegHi = RVLocs[++i].getLocReg(); if (STI.isRegisterReservedByUser(RegLo) || STI.isRegisterReservedByUser(RegHi)) MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ MF.getFunction(), "Return value register required, but has been reserved."}); Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); } else { // Handle a 'normal' return. Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); if (STI.isRegisterReservedByUser(VA.getLocReg())) MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ MF.getFunction(), "Return value register required, but has been reserved."}); // Guarantee that all emitted copies are stuck together. Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } } RetOps[0] = Chain; // Update chain. // Add the glue node if we have it. if (Glue.getNode()) { RetOps.push_back(Glue); } if (any_of(RVLocs, [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); })) MF.getInfo()->setIsVectorCall(); unsigned RetOpc = RISCVISD::RET_GLUE; // Interrupt service routines use different return instructions. const Function &Func = DAG.getMachineFunction().getFunction(); if (Func.hasFnAttribute("interrupt")) { if (!Func.getReturnType()->isVoidTy()) report_fatal_error( "Functions with the interrupt attribute must have void return type!"); MachineFunction &MF = DAG.getMachineFunction(); StringRef Kind = MF.getFunction().getFnAttribute("interrupt").getValueAsString(); if (Kind == "supervisor") RetOpc = RISCVISD::SRET_GLUE; else RetOpc = RISCVISD::MRET_GLUE; } return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); } void RISCVTargetLowering::validateCCReservedRegs( const SmallVectorImpl> &Regs, MachineFunction &MF) const { const Function &F = MF.getFunction(); const RISCVSubtarget &STI = MF.getSubtarget(); if (llvm::any_of(Regs, [&STI](auto Reg) { return STI.isRegisterReservedByUser(Reg.first); })) F.getContext().diagnose(DiagnosticInfoUnsupported{ F, "Argument register required, but has been reserved."}); } // Check if the result of the node is only used as a return value, as // otherwise we can't perform a tail-call. bool RISCVTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::BITCAST) { return isUsedByReturnOnly(Copy, Chain); } // TODO: Handle additional opcodes in order to support tail-calling libcalls // with soft float ABIs. if (Copy->getOpcode() != ISD::CopyToReg) { return false; } // If the ISD::CopyToReg has a glue operand, we conservatively assume it // isn't safe to perform a tail call. if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue) return false; // The copy must be used by a RISCVISD::RET_GLUE, and nothing else. bool HasRet = false; for (SDNode *Node : Copy->uses()) { if (Node->getOpcode() != RISCVISD::RET_GLUE) return false; HasRet = true; } if (!HasRet) return false; Chain = Copy->getOperand(0); return true; } bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { return CI->isTailCall(); } const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { #define NODE_NAME_CASE(NODE) \ case RISCVISD::NODE: \ return "RISCVISD::" #NODE; // clang-format off switch ((RISCVISD::NodeType)Opcode) { case RISCVISD::FIRST_NUMBER: break; NODE_NAME_CASE(RET_GLUE) NODE_NAME_CASE(SRET_GLUE) NODE_NAME_CASE(MRET_GLUE) NODE_NAME_CASE(CALL) NODE_NAME_CASE(SELECT_CC) NODE_NAME_CASE(BR_CC) NODE_NAME_CASE(BuildPairF64) NODE_NAME_CASE(SplitF64) NODE_NAME_CASE(TAIL) NODE_NAME_CASE(ADD_LO) NODE_NAME_CASE(HI) NODE_NAME_CASE(LLA) NODE_NAME_CASE(ADD_TPREL) NODE_NAME_CASE(MULHSU) NODE_NAME_CASE(SLLW) NODE_NAME_CASE(SRAW) NODE_NAME_CASE(SRLW) NODE_NAME_CASE(DIVW) NODE_NAME_CASE(DIVUW) NODE_NAME_CASE(REMUW) NODE_NAME_CASE(ROLW) NODE_NAME_CASE(RORW) NODE_NAME_CASE(CLZW) NODE_NAME_CASE(CTZW) NODE_NAME_CASE(ABSW) NODE_NAME_CASE(FMV_H_X) NODE_NAME_CASE(FMV_X_ANYEXTH) NODE_NAME_CASE(FMV_X_SIGNEXTH) NODE_NAME_CASE(FMV_W_X_RV64) NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) NODE_NAME_CASE(FCVT_X) NODE_NAME_CASE(FCVT_XU) NODE_NAME_CASE(FCVT_W_RV64) NODE_NAME_CASE(FCVT_WU_RV64) NODE_NAME_CASE(STRICT_FCVT_W_RV64) NODE_NAME_CASE(STRICT_FCVT_WU_RV64) NODE_NAME_CASE(FP_ROUND_BF16) NODE_NAME_CASE(FP_EXTEND_BF16) NODE_NAME_CASE(FROUND) NODE_NAME_CASE(FCLASS) NODE_NAME_CASE(FMAX) NODE_NAME_CASE(FMIN) NODE_NAME_CASE(READ_CYCLE_WIDE) NODE_NAME_CASE(BREV8) NODE_NAME_CASE(ORC_B) NODE_NAME_CASE(ZIP) NODE_NAME_CASE(UNZIP) NODE_NAME_CASE(CLMUL) NODE_NAME_CASE(CLMULH) NODE_NAME_CASE(CLMULR) NODE_NAME_CASE(SHA256SIG0) NODE_NAME_CASE(SHA256SIG1) NODE_NAME_CASE(SHA256SUM0) NODE_NAME_CASE(SHA256SUM1) NODE_NAME_CASE(SM4KS) NODE_NAME_CASE(SM4ED) NODE_NAME_CASE(SM3P0) NODE_NAME_CASE(SM3P1) NODE_NAME_CASE(TH_LWD) NODE_NAME_CASE(TH_LWUD) NODE_NAME_CASE(TH_LDD) NODE_NAME_CASE(TH_SWD) NODE_NAME_CASE(TH_SDD) NODE_NAME_CASE(VMV_V_V_VL) NODE_NAME_CASE(VMV_V_X_VL) NODE_NAME_CASE(VFMV_V_F_VL) NODE_NAME_CASE(VMV_X_S) NODE_NAME_CASE(VMV_S_X_VL) NODE_NAME_CASE(VFMV_S_F_VL) NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) NODE_NAME_CASE(READ_VLENB) NODE_NAME_CASE(TRUNCATE_VECTOR_VL) NODE_NAME_CASE(VSLIDEUP_VL) NODE_NAME_CASE(VSLIDE1UP_VL) NODE_NAME_CASE(VSLIDEDOWN_VL) NODE_NAME_CASE(VSLIDE1DOWN_VL) NODE_NAME_CASE(VFSLIDE1UP_VL) NODE_NAME_CASE(VFSLIDE1DOWN_VL) NODE_NAME_CASE(VID_VL) NODE_NAME_CASE(VFNCVT_ROD_VL) NODE_NAME_CASE(VECREDUCE_ADD_VL) NODE_NAME_CASE(VECREDUCE_UMAX_VL) NODE_NAME_CASE(VECREDUCE_SMAX_VL) NODE_NAME_CASE(VECREDUCE_UMIN_VL) NODE_NAME_CASE(VECREDUCE_SMIN_VL) NODE_NAME_CASE(VECREDUCE_AND_VL) NODE_NAME_CASE(VECREDUCE_OR_VL) NODE_NAME_CASE(VECREDUCE_XOR_VL) NODE_NAME_CASE(VECREDUCE_FADD_VL) NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) NODE_NAME_CASE(VECREDUCE_FMIN_VL) NODE_NAME_CASE(VECREDUCE_FMAX_VL) NODE_NAME_CASE(ADD_VL) NODE_NAME_CASE(AND_VL) NODE_NAME_CASE(MUL_VL) NODE_NAME_CASE(OR_VL) NODE_NAME_CASE(SDIV_VL) NODE_NAME_CASE(SHL_VL) NODE_NAME_CASE(SREM_VL) NODE_NAME_CASE(SRA_VL) NODE_NAME_CASE(SRL_VL) NODE_NAME_CASE(ROTL_VL) NODE_NAME_CASE(ROTR_VL) NODE_NAME_CASE(SUB_VL) NODE_NAME_CASE(UDIV_VL) NODE_NAME_CASE(UREM_VL) NODE_NAME_CASE(XOR_VL) NODE_NAME_CASE(AVGFLOORU_VL) NODE_NAME_CASE(AVGCEILU_VL) NODE_NAME_CASE(SADDSAT_VL) NODE_NAME_CASE(UADDSAT_VL) NODE_NAME_CASE(SSUBSAT_VL) NODE_NAME_CASE(USUBSAT_VL) NODE_NAME_CASE(FADD_VL) NODE_NAME_CASE(FSUB_VL) NODE_NAME_CASE(FMUL_VL) NODE_NAME_CASE(FDIV_VL) NODE_NAME_CASE(FNEG_VL) NODE_NAME_CASE(FABS_VL) NODE_NAME_CASE(FSQRT_VL) NODE_NAME_CASE(FCLASS_VL) NODE_NAME_CASE(VFMADD_VL) NODE_NAME_CASE(VFNMADD_VL) NODE_NAME_CASE(VFMSUB_VL) NODE_NAME_CASE(VFNMSUB_VL) NODE_NAME_CASE(VFWMADD_VL) NODE_NAME_CASE(VFWNMADD_VL) NODE_NAME_CASE(VFWMSUB_VL) NODE_NAME_CASE(VFWNMSUB_VL) NODE_NAME_CASE(FCOPYSIGN_VL) NODE_NAME_CASE(SMIN_VL) NODE_NAME_CASE(SMAX_VL) NODE_NAME_CASE(UMIN_VL) NODE_NAME_CASE(UMAX_VL) NODE_NAME_CASE(BITREVERSE_VL) NODE_NAME_CASE(BSWAP_VL) NODE_NAME_CASE(CTLZ_VL) NODE_NAME_CASE(CTTZ_VL) NODE_NAME_CASE(CTPOP_VL) NODE_NAME_CASE(VFMIN_VL) NODE_NAME_CASE(VFMAX_VL) NODE_NAME_CASE(MULHS_VL) NODE_NAME_CASE(MULHU_VL) NODE_NAME_CASE(VFCVT_RTZ_X_F_VL) NODE_NAME_CASE(VFCVT_RTZ_XU_F_VL) NODE_NAME_CASE(VFCVT_RM_X_F_VL) NODE_NAME_CASE(VFCVT_RM_XU_F_VL) NODE_NAME_CASE(VFCVT_X_F_VL) NODE_NAME_CASE(VFCVT_XU_F_VL) NODE_NAME_CASE(VFROUND_NOEXCEPT_VL) NODE_NAME_CASE(SINT_TO_FP_VL) NODE_NAME_CASE(UINT_TO_FP_VL) NODE_NAME_CASE(VFCVT_RM_F_XU_VL) NODE_NAME_CASE(VFCVT_RM_F_X_VL) NODE_NAME_CASE(FP_EXTEND_VL) NODE_NAME_CASE(FP_ROUND_VL) NODE_NAME_CASE(STRICT_FADD_VL) NODE_NAME_CASE(STRICT_FSUB_VL) NODE_NAME_CASE(STRICT_FMUL_VL) NODE_NAME_CASE(STRICT_FDIV_VL) NODE_NAME_CASE(STRICT_FSQRT_VL) NODE_NAME_CASE(STRICT_VFMADD_VL) NODE_NAME_CASE(STRICT_VFNMADD_VL) NODE_NAME_CASE(STRICT_VFMSUB_VL) NODE_NAME_CASE(STRICT_VFNMSUB_VL) NODE_NAME_CASE(STRICT_FP_ROUND_VL) NODE_NAME_CASE(STRICT_FP_EXTEND_VL) NODE_NAME_CASE(STRICT_VFNCVT_ROD_VL) NODE_NAME_CASE(STRICT_SINT_TO_FP_VL) NODE_NAME_CASE(STRICT_UINT_TO_FP_VL) NODE_NAME_CASE(STRICT_VFCVT_RM_X_F_VL) NODE_NAME_CASE(STRICT_VFCVT_RTZ_X_F_VL) NODE_NAME_CASE(STRICT_VFCVT_RTZ_XU_F_VL) NODE_NAME_CASE(STRICT_FSETCC_VL) NODE_NAME_CASE(STRICT_FSETCCS_VL) NODE_NAME_CASE(STRICT_VFROUND_NOEXCEPT_VL) NODE_NAME_CASE(VWMUL_VL) NODE_NAME_CASE(VWMULU_VL) NODE_NAME_CASE(VWMULSU_VL) NODE_NAME_CASE(VWADD_VL) NODE_NAME_CASE(VWADDU_VL) NODE_NAME_CASE(VWSUB_VL) NODE_NAME_CASE(VWSUBU_VL) NODE_NAME_CASE(VWADD_W_VL) NODE_NAME_CASE(VWADDU_W_VL) NODE_NAME_CASE(VWSUB_W_VL) NODE_NAME_CASE(VWSUBU_W_VL) NODE_NAME_CASE(VWSLL_VL) NODE_NAME_CASE(VFWMUL_VL) NODE_NAME_CASE(VFWADD_VL) NODE_NAME_CASE(VFWSUB_VL) NODE_NAME_CASE(VFWADD_W_VL) NODE_NAME_CASE(VFWSUB_W_VL) NODE_NAME_CASE(VWMACC_VL) NODE_NAME_CASE(VWMACCU_VL) NODE_NAME_CASE(VWMACCSU_VL) NODE_NAME_CASE(VNSRL_VL) NODE_NAME_CASE(SETCC_VL) NODE_NAME_CASE(VMERGE_VL) NODE_NAME_CASE(VMAND_VL) NODE_NAME_CASE(VMOR_VL) NODE_NAME_CASE(VMXOR_VL) NODE_NAME_CASE(VMCLR_VL) NODE_NAME_CASE(VMSET_VL) NODE_NAME_CASE(VRGATHER_VX_VL) NODE_NAME_CASE(VRGATHER_VV_VL) NODE_NAME_CASE(VRGATHEREI16_VV_VL) NODE_NAME_CASE(VSEXT_VL) NODE_NAME_CASE(VZEXT_VL) NODE_NAME_CASE(VCPOP_VL) NODE_NAME_CASE(VFIRST_VL) NODE_NAME_CASE(READ_CSR) NODE_NAME_CASE(WRITE_CSR) NODE_NAME_CASE(SWAP_CSR) NODE_NAME_CASE(CZERO_EQZ) NODE_NAME_CASE(CZERO_NEZ) } // clang-format on return nullptr; #undef NODE_NAME_CASE } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. RISCVTargetLowering::ConstraintType RISCVTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'f': return C_RegisterClass; case 'I': case 'J': case 'K': return C_Immediate; case 'A': return C_Memory; case 'S': // A symbolic address return C_Other; } } else { if (Constraint == "vr" || Constraint == "vm") return C_RegisterClass; } return TargetLowering::getConstraintType(Constraint); } std::pair RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { // First, see if this is a constraint that directly corresponds to a RISC-V // register class. if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': // TODO: Support fixed vectors up to XLen for P extension? if (VT.isVector()) break; if (VT == MVT::f16 && Subtarget.hasStdExtZhinxmin()) return std::make_pair(0U, &RISCV::GPRF16RegClass); if (VT == MVT::f32 && Subtarget.hasStdExtZfinx()) return std::make_pair(0U, &RISCV::GPRF32RegClass); if (VT == MVT::f64 && Subtarget.hasStdExtZdinx() && !Subtarget.is64Bit()) return std::make_pair(0U, &RISCV::GPRPairRegClass); return std::make_pair(0U, &RISCV::GPRNoX0RegClass); case 'f': if (Subtarget.hasStdExtZfhmin() && VT == MVT::f16) return std::make_pair(0U, &RISCV::FPR16RegClass); if (Subtarget.hasStdExtF() && VT == MVT::f32) return std::make_pair(0U, &RISCV::FPR32RegClass); if (Subtarget.hasStdExtD() && VT == MVT::f64) return std::make_pair(0U, &RISCV::FPR64RegClass); break; default: break; } } else if (Constraint == "vr") { for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) return std::make_pair(0U, RC); } } else if (Constraint == "vm") { if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) return std::make_pair(0U, &RISCV::VMV0RegClass); } // Clang will correctly decode the usage of register name aliases into their // official names. However, other frontends like `rustc` do not. This allows // users of these frontends to use the ABI names for registers in LLVM-style // register constraints. unsigned XRegFromAlias = StringSwitch(Constraint.lower()) .Case("{zero}", RISCV::X0) .Case("{ra}", RISCV::X1) .Case("{sp}", RISCV::X2) .Case("{gp}", RISCV::X3) .Case("{tp}", RISCV::X4) .Case("{t0}", RISCV::X5) .Case("{t1}", RISCV::X6) .Case("{t2}", RISCV::X7) .Cases("{s0}", "{fp}", RISCV::X8) .Case("{s1}", RISCV::X9) .Case("{a0}", RISCV::X10) .Case("{a1}", RISCV::X11) .Case("{a2}", RISCV::X12) .Case("{a3}", RISCV::X13) .Case("{a4}", RISCV::X14) .Case("{a5}", RISCV::X15) .Case("{a6}", RISCV::X16) .Case("{a7}", RISCV::X17) .Case("{s2}", RISCV::X18) .Case("{s3}", RISCV::X19) .Case("{s4}", RISCV::X20) .Case("{s5}", RISCV::X21) .Case("{s6}", RISCV::X22) .Case("{s7}", RISCV::X23) .Case("{s8}", RISCV::X24) .Case("{s9}", RISCV::X25) .Case("{s10}", RISCV::X26) .Case("{s11}", RISCV::X27) .Case("{t3}", RISCV::X28) .Case("{t4}", RISCV::X29) .Case("{t5}", RISCV::X30) .Case("{t6}", RISCV::X31) .Default(RISCV::NoRegister); if (XRegFromAlias != RISCV::NoRegister) return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the // TableGen record rather than the AsmName to choose registers for InlineAsm // constraints, plus we want to match those names to the widest floating point // register type available, manually select floating point registers here. // // The second case is the ABI name of the register, so that frontends can also // use the ABI names in register constraint lists. if (Subtarget.hasStdExtF()) { unsigned FReg = StringSwitch(Constraint.lower()) .Cases("{f0}", "{ft0}", RISCV::F0_F) .Cases("{f1}", "{ft1}", RISCV::F1_F) .Cases("{f2}", "{ft2}", RISCV::F2_F) .Cases("{f3}", "{ft3}", RISCV::F3_F) .Cases("{f4}", "{ft4}", RISCV::F4_F) .Cases("{f5}", "{ft5}", RISCV::F5_F) .Cases("{f6}", "{ft6}", RISCV::F6_F) .Cases("{f7}", "{ft7}", RISCV::F7_F) .Cases("{f8}", "{fs0}", RISCV::F8_F) .Cases("{f9}", "{fs1}", RISCV::F9_F) .Cases("{f10}", "{fa0}", RISCV::F10_F) .Cases("{f11}", "{fa1}", RISCV::F11_F) .Cases("{f12}", "{fa2}", RISCV::F12_F) .Cases("{f13}", "{fa3}", RISCV::F13_F) .Cases("{f14}", "{fa4}", RISCV::F14_F) .Cases("{f15}", "{fa5}", RISCV::F15_F) .Cases("{f16}", "{fa6}", RISCV::F16_F) .Cases("{f17}", "{fa7}", RISCV::F17_F) .Cases("{f18}", "{fs2}", RISCV::F18_F) .Cases("{f19}", "{fs3}", RISCV::F19_F) .Cases("{f20}", "{fs4}", RISCV::F20_F) .Cases("{f21}", "{fs5}", RISCV::F21_F) .Cases("{f22}", "{fs6}", RISCV::F22_F) .Cases("{f23}", "{fs7}", RISCV::F23_F) .Cases("{f24}", "{fs8}", RISCV::F24_F) .Cases("{f25}", "{fs9}", RISCV::F25_F) .Cases("{f26}", "{fs10}", RISCV::F26_F) .Cases("{f27}", "{fs11}", RISCV::F27_F) .Cases("{f28}", "{ft8}", RISCV::F28_F) .Cases("{f29}", "{ft9}", RISCV::F29_F) .Cases("{f30}", "{ft10}", RISCV::F30_F) .Cases("{f31}", "{ft11}", RISCV::F31_F) .Default(RISCV::NoRegister); if (FReg != RISCV::NoRegister) { assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { unsigned RegNo = FReg - RISCV::F0_F; unsigned DReg = RISCV::F0_D + RegNo; return std::make_pair(DReg, &RISCV::FPR64RegClass); } if (VT == MVT::f32 || VT == MVT::Other) return std::make_pair(FReg, &RISCV::FPR32RegClass); if (Subtarget.hasStdExtZfhmin() && VT == MVT::f16) { unsigned RegNo = FReg - RISCV::F0_F; unsigned HReg = RISCV::F0_H + RegNo; return std::make_pair(HReg, &RISCV::FPR16RegClass); } } } if (Subtarget.hasVInstructions()) { Register VReg = StringSwitch(Constraint.lower()) .Case("{v0}", RISCV::V0) .Case("{v1}", RISCV::V1) .Case("{v2}", RISCV::V2) .Case("{v3}", RISCV::V3) .Case("{v4}", RISCV::V4) .Case("{v5}", RISCV::V5) .Case("{v6}", RISCV::V6) .Case("{v7}", RISCV::V7) .Case("{v8}", RISCV::V8) .Case("{v9}", RISCV::V9) .Case("{v10}", RISCV::V10) .Case("{v11}", RISCV::V11) .Case("{v12}", RISCV::V12) .Case("{v13}", RISCV::V13) .Case("{v14}", RISCV::V14) .Case("{v15}", RISCV::V15) .Case("{v16}", RISCV::V16) .Case("{v17}", RISCV::V17) .Case("{v18}", RISCV::V18) .Case("{v19}", RISCV::V19) .Case("{v20}", RISCV::V20) .Case("{v21}", RISCV::V21) .Case("{v22}", RISCV::V22) .Case("{v23}", RISCV::V23) .Case("{v24}", RISCV::V24) .Case("{v25}", RISCV::V25) .Case("{v26}", RISCV::V26) .Case("{v27}", RISCV::V27) .Case("{v28}", RISCV::V28) .Case("{v29}", RISCV::V29) .Case("{v30}", RISCV::V30) .Case("{v31}", RISCV::V31) .Default(RISCV::NoRegister); if (VReg != RISCV::NoRegister) { if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) return std::make_pair(VReg, &RISCV::VMRegClass); if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) return std::make_pair(VReg, &RISCV::VRRegClass); for (const auto *RC : {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); return std::make_pair(VReg, RC); } } } } std::pair Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); // If we picked one of the Zfinx register classes, remap it to the GPR class. // FIXME: When Zfinx is supported in CodeGen this will need to take the // Subtarget into account. if (Res.second == &RISCV::GPRF16RegClass || Res.second == &RISCV::GPRF32RegClass || Res.second == &RISCV::GPRPairRegClass) return std::make_pair(Res.first, &RISCV::GPRRegClass); return Res; } InlineAsm::ConstraintCode RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { // Currently only support length 1 constraints. if (ConstraintCode.size() == 1) { switch (ConstraintCode[0]) { case 'A': return InlineAsm::ConstraintCode::A; default: break; } } return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } void RISCVTargetLowering::LowerAsmOperandForConstraint( SDValue Op, StringRef Constraint, std::vector &Ops, SelectionDAG &DAG) const { // Currently only support length 1 constraints. if (Constraint.size() == 1) { switch (Constraint[0]) { case 'I': // Validate & create a 12-bit signed immediate operand. if (auto *C = dyn_cast(Op)) { uint64_t CVal = C->getSExtValue(); if (isInt<12>(CVal)) Ops.push_back( DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); } return; case 'J': // Validate & create an integer zero operand. if (isNullConstant(Op)) Ops.push_back( DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); return; case 'K': // Validate & create a 5-bit unsigned immediate operand. if (auto *C = dyn_cast(Op)) { uint64_t CVal = C->getZExtValue(); if (isUInt<5>(CVal)) Ops.push_back( DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); } return; case 'S': if (const auto *GA = dyn_cast(Op)) { Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), GA->getValueType(0))); } else if (const auto *BA = dyn_cast(Op)) { Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0))); } return; default: break; } } TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const { if (Subtarget.hasStdExtZtso()) { if (isa(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) return Builder.CreateFence(Ord); return nullptr; } if (isa(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) return Builder.CreateFence(Ord); if (isa(Inst) && isReleaseOrStronger(Ord)) return Builder.CreateFence(AtomicOrdering::Release); return nullptr; } Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const { if (Subtarget.hasStdExtZtso()) { if (isa(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) return Builder.CreateFence(Ord); return nullptr; } if (isa(Inst) && isAcquireOrStronger(Ord)) return Builder.CreateFence(AtomicOrdering::Acquire); if (Subtarget.enableSeqCstTrailingFence() && isa(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); return nullptr; } TargetLowering::AtomicExpansionKind RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating // point operations can't be used in an lr/sc sequence without breaking the // forward-progress guarantee. if (AI->isFloatingPointOperation() || AI->getOperation() == AtomicRMWInst::UIncWrap || AI->getOperation() == AtomicRMWInst::UDecWrap) return AtomicExpansionKind::CmpXChg; // Don't expand forced atomics, we want to have __sync libcalls instead. if (Subtarget.hasForcedAtomics()) return AtomicExpansionKind::None; unsigned Size = AI->getType()->getPrimitiveSizeInBits(); if (Size == 8 || Size == 16) return AtomicExpansionKind::MaskedIntrinsic; return AtomicExpansionKind::None; } static Intrinsic::ID getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { if (XLen == 32) { switch (BinOp) { default: llvm_unreachable("Unexpected AtomicRMW BinOp"); case AtomicRMWInst::Xchg: return Intrinsic::riscv_masked_atomicrmw_xchg_i32; case AtomicRMWInst::Add: return Intrinsic::riscv_masked_atomicrmw_add_i32; case AtomicRMWInst::Sub: return Intrinsic::riscv_masked_atomicrmw_sub_i32; case AtomicRMWInst::Nand: return Intrinsic::riscv_masked_atomicrmw_nand_i32; case AtomicRMWInst::Max: return Intrinsic::riscv_masked_atomicrmw_max_i32; case AtomicRMWInst::Min: return Intrinsic::riscv_masked_atomicrmw_min_i32; case AtomicRMWInst::UMax: return Intrinsic::riscv_masked_atomicrmw_umax_i32; case AtomicRMWInst::UMin: return Intrinsic::riscv_masked_atomicrmw_umin_i32; } } if (XLen == 64) { switch (BinOp) { default: llvm_unreachable("Unexpected AtomicRMW BinOp"); case AtomicRMWInst::Xchg: return Intrinsic::riscv_masked_atomicrmw_xchg_i64; case AtomicRMWInst::Add: return Intrinsic::riscv_masked_atomicrmw_add_i64; case AtomicRMWInst::Sub: return Intrinsic::riscv_masked_atomicrmw_sub_i64; case AtomicRMWInst::Nand: return Intrinsic::riscv_masked_atomicrmw_nand_i64; case AtomicRMWInst::Max: return Intrinsic::riscv_masked_atomicrmw_max_i64; case AtomicRMWInst::Min: return Intrinsic::riscv_masked_atomicrmw_min_i64; case AtomicRMWInst::UMax: return Intrinsic::riscv_masked_atomicrmw_umax_i64; case AtomicRMWInst::UMin: return Intrinsic::riscv_masked_atomicrmw_umin_i64; } } llvm_unreachable("Unexpected XLen\n"); } Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { // In the case of an atomicrmw xchg with a constant 0/-1 operand, replace // the atomic instruction with an AtomicRMWInst::And/Or with appropriate // mask, as this produces better code than the LR/SC loop emitted by // int_riscv_masked_atomicrmw_xchg. if (AI->getOperation() == AtomicRMWInst::Xchg && isa(AI->getValOperand())) { ConstantInt *CVal = cast(AI->getValOperand()); if (CVal->isZero()) return Builder.CreateAtomicRMW(AtomicRMWInst::And, AlignedAddr, Builder.CreateNot(Mask, "Inv_Mask"), AI->getAlign(), Ord); if (CVal->isMinusOne()) return Builder.CreateAtomicRMW(AtomicRMWInst::Or, AlignedAddr, Mask, AI->getAlign(), Ord); } unsigned XLen = Subtarget.getXLen(); Value *Ordering = Builder.getIntN(XLen, static_cast(AI->getOrdering())); Type *Tys[] = {AlignedAddr->getType()}; Function *LrwOpScwLoop = Intrinsic::getDeclaration( AI->getModule(), getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); if (XLen == 64) { Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); } Value *Result; // Must pass the shift amount needed to sign extend the loaded value prior // to performing a signed comparison for min/max. ShiftAmt is the number of // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which // is the number of bits to left+right shift the value in order to // sign-extend. if (AI->getOperation() == AtomicRMWInst::Min || AI->getOperation() == AtomicRMWInst::Max) { const DataLayout &DL = AI->getModule()->getDataLayout(); unsigned ValWidth = DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); Value *SextShamt = Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); Result = Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, SextShamt, Ordering}); } else { Result = Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); } if (XLen == 64) Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); return Result; } TargetLowering::AtomicExpansionKind RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( AtomicCmpXchgInst *CI) const { // Don't expand forced atomics, we want to have __sync libcalls instead. if (Subtarget.hasForcedAtomics()) return AtomicExpansionKind::None; unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); if (Size == 8 || Size == 16) return AtomicExpansionKind::MaskedIntrinsic; return AtomicExpansionKind::None; } Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { unsigned XLen = Subtarget.getXLen(); Value *Ordering = Builder.getIntN(XLen, static_cast(Ord)); Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; if (XLen == 64) { CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; } Type *Tys[] = {AlignedAddr->getType()}; Function *MaskedCmpXchg = Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); Value *Result = Builder.CreateCall( MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); if (XLen == 64) Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); return Result; } bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const { // We have indexed loads for all legal index types. Indices are always // zero extended return Extend.getOpcode() == ISD::ZERO_EXTEND && isTypeLegal(Extend.getValueType()) && isTypeLegal(Extend.getOperand(0).getValueType()); } bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const { if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) return false; switch (FPVT.getSimpleVT().SimpleTy) { case MVT::f16: return Subtarget.hasStdExtZfhmin(); case MVT::f32: return Subtarget.hasStdExtF(); case MVT::f64: return Subtarget.hasStdExtD(); default: return false; } } unsigned RISCVTargetLowering::getJumpTableEncoding() const { // If we are using the small code model, we can reduce size of jump table // entry to 4 bytes. if (Subtarget.is64Bit() && !isPositionIndependent() && getTargetMachine().getCodeModel() == CodeModel::Small) { return MachineJumpTableInfo::EK_Custom32; } return TargetLowering::getJumpTableEncoding(); } const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid, MCContext &Ctx) const { assert(Subtarget.is64Bit() && !isPositionIndependent() && getTargetMachine().getCodeModel() == CodeModel::Small); return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); } bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const { // We define vscale to be VLEN/RVVBitsPerBlock. VLEN is always a power // of two >= 64, and RVVBitsPerBlock is 64. Thus, vscale must be // a power of two as well. // FIXME: This doesn't work for zve32, but that's already broken // elsewhere for the same reason. assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported"); static_assert(RISCV::RVVBitsPerBlock == 64, "RVVBitsPerBlock changed, audit needed"); return true; } bool RISCVTargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { // Target does not support indexed loads. if (!Subtarget.hasVendorXTHeadMemIdx()) return false; if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) return false; Base = Op->getOperand(0); if (ConstantSDNode *RHS = dyn_cast(Op->getOperand(1))) { int64_t RHSC = RHS->getSExtValue(); if (Op->getOpcode() == ISD::SUB) RHSC = -(uint64_t)RHSC; // The constants that can be encoded in the THeadMemIdx instructions // are of the form (sign_extend(imm5) << imm2). bool isLegalIndexedOffset = false; for (unsigned i = 0; i < 4; i++) if (isInt<5>(RHSC >> i) && ((RHSC % (1LL << i)) == 0)) { isLegalIndexedOffset = true; break; } if (!isLegalIndexedOffset) return false; Offset = Op->getOperand(1); return true; } return false; } bool RISCVTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, DAG)) return false; AM = ISD::PRE_INC; return true; } bool RISCVTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; if (!getIndexedAddressParts(Op, Base, Offset, AM, DAG)) return false; // Post-indexing updates the base, so it's not a valid transform // if that's not the same as the load's pointer. if (Ptr != Base) return false; AM = ISD::POST_INC; return true; } bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const { EVT SVT = VT.getScalarType(); if (!SVT.isSimple()) return false; switch (SVT.getSimpleVT().SimpleTy) { case MVT::f16: return VT.isVector() ? Subtarget.hasVInstructionsF16() : Subtarget.hasStdExtZfhOrZhinx(); case MVT::f32: return Subtarget.hasStdExtFOrZfinx(); case MVT::f64: return Subtarget.hasStdExtDOrZdinx(); default: break; } return false; } ISD::NodeType RISCVTargetLowering::getExtendForAtomicCmpSwapArg() const { // Zacas will use amocas.w which does not require extension. return Subtarget.hasStdExtZacas() ? ISD::ANY_EXTEND : ISD::SIGN_EXTEND; } Register RISCVTargetLowering::getExceptionPointerRegister( const Constant *PersonalityFn) const { return RISCV::X10; } Register RISCVTargetLowering::getExceptionSelectorRegister( const Constant *PersonalityFn) const { return RISCV::X11; } bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { // Return false to suppress the unnecessary extensions if the LibCall // arguments or return value is a float narrower than XLEN on a soft FP ABI. if (Subtarget.isSoftFPABI() && (Type.isFloatingPoint() && !Type.isVector() && Type.getSizeInBits() < Subtarget.getXLen())) return false; return true; } bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { if (Subtarget.is64Bit() && Type == MVT::i32) return true; return IsSigned; } bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const { // Check integral scalar types. const bool HasExtMOrZmmul = Subtarget.hasStdExtM() || Subtarget.hasStdExtZmmul(); if (!VT.isScalarInteger()) return false; // Omit the optimization if the sub target has the M extension and the data // size exceeds XLen. if (HasExtMOrZmmul && VT.getSizeInBits() > Subtarget.getXLen()) return false; if (auto *ConstNode = dyn_cast(C.getNode())) { // Break the MUL to a SLLI and an ADD/SUB. const APInt &Imm = ConstNode->getAPIntValue(); if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) return true; // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || (Imm - 8).isPowerOf2())) return true; // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs // a pair of LUI/ADDI. if (!Imm.isSignedIntN(12) && Imm.countr_zero() < 12 && ConstNode->hasOneUse()) { APInt ImmS = Imm.ashr(Imm.countr_zero()); if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || (1 - ImmS).isPowerOf2()) return true; } } return false; } bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, SDValue ConstNode) const { // Let the DAGCombiner decide for vectors. EVT VT = AddNode.getValueType(); if (VT.isVector()) return true; // Let the DAGCombiner decide for larger types. if (VT.getScalarSizeInBits() > Subtarget.getXLen()) return true; // It is worse if c1 is simm12 while c1*c2 is not. ConstantSDNode *C1Node = cast(AddNode.getOperand(1)); ConstantSDNode *C2Node = cast(ConstNode); const APInt &C1 = C1Node->getAPIntValue(); const APInt &C2 = C2Node->getAPIntValue(); if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) return false; // Default to true and let the DAGCombiner decide. return true; } bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { if (!VT.isVector()) { if (Fast) *Fast = Subtarget.hasFastUnalignedAccess(); return Subtarget.hasFastUnalignedAccess(); } // All vector implementations must support element alignment EVT ElemVT = VT.getVectorElementType(); if (Alignment >= ElemVT.getStoreSize()) { if (Fast) *Fast = 1; return true; } // Note: We lower an unmasked unaligned vector access to an equally sized // e8 element type access. Given this, we effectively support all unmasked // misaligned accesses. TODO: Work through the codegen implications of // allowing such accesses to be formed, and considered fast. if (Fast) *Fast = Subtarget.hasFastUnalignedAccess(); return Subtarget.hasFastUnalignedAccess(); } EVT RISCVTargetLowering::getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const { if (!Subtarget.hasVInstructions()) return MVT::Other; if (FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) return MVT::Other; // We use LMUL1 memory operations here for a non-obvious reason. Our caller // has an expansion threshold, and we want the number of hardware memory // operations to correspond roughly to that threshold. LMUL>1 operations // are typically expanded linearly internally, and thus correspond to more // than one actual memory operation. Note that store merging and load // combining will typically form larger LMUL operations from the LMUL1 // operations emitted here, and that's okay because combining isn't // introducing new memory operations; it's just merging existing ones. const unsigned MinVLenInBytes = Subtarget.getRealMinVLen()/8; if (Op.size() < MinVLenInBytes) // TODO: Figure out short memops. For the moment, do the default thing // which ends up using scalar sequences. return MVT::Other; // Prefer i8 for non-zero memset as it allows us to avoid materializing // a large scalar constant and instead use vmv.v.x/i to do the // broadcast. For everything else, prefer ELenVT to minimize VL and thus // maximize the chance we can encode the size in the vsetvli. MVT ELenVT = MVT::getIntegerVT(Subtarget.getELen()); MVT PreferredVT = (Op.isMemset() && !Op.isZeroMemset()) ? MVT::i8 : ELenVT; // Do we have sufficient alignment for our preferred VT? If not, revert // to largest size allowed by our alignment criteria. if (PreferredVT != MVT::i8 && !Subtarget.hasFastUnalignedAccess()) { Align RequiredAlign(PreferredVT.getStoreSize()); if (Op.isFixedDstAlign()) RequiredAlign = std::min(RequiredAlign, Op.getDstAlign()); if (Op.isMemcpy()) RequiredAlign = std::min(RequiredAlign, Op.getSrcAlign()); PreferredVT = MVT::getIntegerVT(RequiredAlign.value() * 8); } return MVT::getVectorVT(PreferredVT, MinVLenInBytes/PreferredVT.getStoreSize()); } bool RISCVTargetLowering::splitValueIntoRegisterParts( SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional CC) const { bool IsABIRegCopy = CC.has_value(); EVT ValueVT = Val.getValueType(); if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) { // Cast the [b]f16 to i16, extend to i32, pad with ones to make a float // nan, and cast to f32. Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, DAG.getConstant(0xFFFF0000, DL, MVT::i32)); Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); Parts[0] = Val; return true; } if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { LLVMContext &Context = *DAG.getContext(); EVT ValueEltVT = ValueVT.getVectorElementType(); EVT PartEltVT = PartVT.getVectorElementType(); unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue(); unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue(); if (PartVTBitSize % ValueVTBitSize == 0) { assert(PartVTBitSize >= ValueVTBitSize); // If the element types are different, bitcast to the same element type of // PartVT first. // Give an example here, we want copy a value to // . // We need to convert to by insert // subvector, then we can bitcast to . if (ValueEltVT != PartEltVT) { if (PartVTBitSize > ValueVTBitSize) { unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); assert(Count != 0 && "The number of element should not be zero."); EVT SameEltTypeVT = EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, DAG.getUNDEF(SameEltTypeVT), Val, DAG.getVectorIdxConstant(0, DL)); } Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } else { Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), Val, DAG.getVectorIdxConstant(0, DL)); } Parts[0] = Val; return true; } } return false; } SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional CC) const { bool IsABIRegCopy = CC.has_value(); if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) { SDValue Val = Parts[0]; // Cast the f32 to i32, truncate to i16, and cast back to [b]f16. Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); return Val; } if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { LLVMContext &Context = *DAG.getContext(); SDValue Val = Parts[0]; EVT ValueEltVT = ValueVT.getVectorElementType(); EVT PartEltVT = PartVT.getVectorElementType(); unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue(); unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue(); if (PartVTBitSize % ValueVTBitSize == 0) { assert(PartVTBitSize >= ValueVTBitSize); EVT SameEltTypeVT = ValueVT; // If the element types are different, convert it to the same element type // of PartVT. // Give an example here, we want copy a value from // . // We need to convert to first, // then we can extract . if (ValueEltVT != PartEltVT) { unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); assert(Count != 0 && "The number of element should not be zero."); SameEltTypeVT = EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); } Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, DAG.getVectorIdxConstant(0, DL)); return Val; } } return SDValue(); } bool RISCVTargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { // When aggressively optimizing for code size, we prefer to use a div // instruction, as it is usually smaller than the alternative sequence. // TODO: Add vector division? bool OptSize = Attr.hasFnAttr(Attribute::MinSize); return OptSize && !VT.isVector(); } bool RISCVTargetLowering::preferScalarizeSplat(SDNode *N) const { // Scalarize zero_ext and sign_ext might stop match to widening instruction in // some situation. unsigned Opc = N->getOpcode(); if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND) return false; return true; } static Value *useTpOffset(IRBuilderBase &IRB, unsigned Offset) { Module *M = IRB.GetInsertBlock()->getParent()->getParent(); Function *ThreadPointerFunc = Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); return IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc), Offset); } Value *RISCVTargetLowering::getIRStackGuard(IRBuilderBase &IRB) const { // Fuchsia provides a fixed TLS slot for the stack cookie. // defines ZX_TLS_STACK_GUARD_OFFSET with this value. if (Subtarget.isTargetFuchsia()) return useTpOffset(IRB, -0x10); return TargetLowering::getIRStackGuard(IRB); } bool RISCVTargetLowering::isLegalInterleavedAccessType( VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace, const DataLayout &DL) const { EVT VT = getValueType(DL, VTy); // Don't lower vlseg/vsseg for vector types that can't be split. if (!isTypeLegal(VT)) return false; if (!isLegalElementTypeForRVV(VT.getScalarType()) || !allowsMemoryAccessForAlignment(VTy->getContext(), DL, VT, AddrSpace, Alignment)) return false; MVT ContainerVT = VT.getSimpleVT(); if (auto *FVTy = dyn_cast(VTy)) { if (!Subtarget.useRVVForFixedLengthVectors()) return false; // Sometimes the interleaved access pass picks up splats as interleaves of // one element. Don't lower these. if (FVTy->getNumElements() < 2) return false; ContainerVT = getContainerForFixedLengthVector(VT.getSimpleVT()); } // Need to make sure that EMUL * NFIELDS ≤ 8 auto [LMUL, Fractional] = RISCVVType::decodeVLMUL(getLMUL(ContainerVT)); if (Fractional) return true; return Factor * LMUL <= 8; } bool RISCVTargetLowering::isLegalStridedLoadStore(EVT DataType, Align Alignment) const { if (!Subtarget.hasVInstructions()) return false; // Only support fixed vectors if we know the minimum vector size. if (DataType.isFixedLengthVector() && !Subtarget.useRVVForFixedLengthVectors()) return false; EVT ScalarType = DataType.getScalarType(); if (!isLegalElementTypeForRVV(ScalarType)) return false; if (!Subtarget.hasFastUnalignedAccess() && Alignment < ScalarType.getStoreSize()) return false; return true; } static const Intrinsic::ID FixedVlsegIntrIds[] = { Intrinsic::riscv_seg2_load, Intrinsic::riscv_seg3_load, Intrinsic::riscv_seg4_load, Intrinsic::riscv_seg5_load, Intrinsic::riscv_seg6_load, Intrinsic::riscv_seg7_load, Intrinsic::riscv_seg8_load}; /// Lower an interleaved load into a vlsegN intrinsic. /// /// E.g. Lower an interleaved load (Factor = 2): /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements /// /// Into: /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.riscv.seg2.load.v4i32.p0.i64( /// %ptr, i64 4) /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 bool RISCVTargetLowering::lowerInterleavedLoad( LoadInst *LI, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor) const { IRBuilder<> Builder(LI); auto *VTy = cast(Shuffles[0]->getType()); if (!isLegalInterleavedAccessType(VTy, Factor, LI->getAlign(), LI->getPointerAddressSpace(), LI->getModule()->getDataLayout())) return false; auto *XLenTy = Type::getIntNTy(LI->getContext(), Subtarget.getXLen()); Function *VlsegNFunc = Intrinsic::getDeclaration(LI->getModule(), FixedVlsegIntrIds[Factor - 2], {VTy, LI->getPointerOperandType(), XLenTy}); Value *VL = ConstantInt::get(XLenTy, VTy->getNumElements()); CallInst *VlsegN = Builder.CreateCall(VlsegNFunc, {LI->getPointerOperand(), VL}); for (unsigned i = 0; i < Shuffles.size(); i++) { Value *SubVec = Builder.CreateExtractValue(VlsegN, Indices[i]); Shuffles[i]->replaceAllUsesWith(SubVec); } return true; } static const Intrinsic::ID FixedVssegIntrIds[] = { Intrinsic::riscv_seg2_store, Intrinsic::riscv_seg3_store, Intrinsic::riscv_seg4_store, Intrinsic::riscv_seg5_store, Intrinsic::riscv_seg6_store, Intrinsic::riscv_seg7_store, Intrinsic::riscv_seg8_store}; /// Lower an interleaved store into a vssegN intrinsic. /// /// E.g. Lower an interleaved store (Factor = 3): /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> /// store <12 x i32> %i.vec, <12 x i32>* %ptr /// /// Into: /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> /// call void llvm.riscv.seg3.store.v4i32.p0.i64(%sub.v0, %sub.v1, %sub.v2, /// %ptr, i32 4) /// /// Note that the new shufflevectors will be removed and we'll only generate one /// vsseg3 instruction in CodeGen. bool RISCVTargetLowering::lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { IRBuilder<> Builder(SI); auto *ShuffleVTy = cast(SVI->getType()); // Given SVI : , then VTy : auto *VTy = FixedVectorType::get(ShuffleVTy->getElementType(), ShuffleVTy->getNumElements() / Factor); if (!isLegalInterleavedAccessType(VTy, Factor, SI->getAlign(), SI->getPointerAddressSpace(), SI->getModule()->getDataLayout())) return false; auto *XLenTy = Type::getIntNTy(SI->getContext(), Subtarget.getXLen()); Function *VssegNFunc = Intrinsic::getDeclaration(SI->getModule(), FixedVssegIntrIds[Factor - 2], {VTy, SI->getPointerOperandType(), XLenTy}); auto Mask = SVI->getShuffleMask(); SmallVector Ops; for (unsigned i = 0; i < Factor; i++) { Value *Shuffle = Builder.CreateShuffleVector( SVI->getOperand(0), SVI->getOperand(1), createSequentialMask(Mask[i], VTy->getNumElements(), 0)); Ops.push_back(Shuffle); } // This VL should be OK (should be executable in one vsseg instruction, // potentially under larger LMULs) because we checked that the fixed vector // type fits in isLegalInterleavedAccessType Value *VL = ConstantInt::get(XLenTy, VTy->getNumElements()); Ops.append({SI->getPointerOperand(), VL}); Builder.CreateCall(VssegNFunc, Ops); return true; } bool RISCVTargetLowering::lowerDeinterleaveIntrinsicToLoad(IntrinsicInst *DI, LoadInst *LI) const { assert(LI->isSimple()); IRBuilder<> Builder(LI); // Only deinterleave2 supported at present. if (DI->getIntrinsicID() != Intrinsic::experimental_vector_deinterleave2) return false; unsigned Factor = 2; VectorType *VTy = cast(DI->getOperand(0)->getType()); VectorType *ResVTy = cast(DI->getType()->getContainedType(0)); if (!isLegalInterleavedAccessType(ResVTy, Factor, LI->getAlign(), LI->getPointerAddressSpace(), LI->getModule()->getDataLayout())) return false; Function *VlsegNFunc; Value *VL; Type *XLenTy = Type::getIntNTy(LI->getContext(), Subtarget.getXLen()); SmallVector Ops; if (auto *FVTy = dyn_cast(VTy)) { VlsegNFunc = Intrinsic::getDeclaration( LI->getModule(), FixedVlsegIntrIds[Factor - 2], {ResVTy, LI->getPointerOperandType(), XLenTy}); VL = ConstantInt::get(XLenTy, FVTy->getNumElements()); } else { static const Intrinsic::ID IntrIds[] = { Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, Intrinsic::riscv_vlseg8}; VlsegNFunc = Intrinsic::getDeclaration(LI->getModule(), IntrIds[Factor - 2], {ResVTy, XLenTy}); VL = Constant::getAllOnesValue(XLenTy); Ops.append(Factor, PoisonValue::get(ResVTy)); } Ops.append({LI->getPointerOperand(), VL}); Value *Vlseg = Builder.CreateCall(VlsegNFunc, Ops); DI->replaceAllUsesWith(Vlseg); return true; } bool RISCVTargetLowering::lowerInterleaveIntrinsicToStore(IntrinsicInst *II, StoreInst *SI) const { assert(SI->isSimple()); IRBuilder<> Builder(SI); // Only interleave2 supported at present. if (II->getIntrinsicID() != Intrinsic::experimental_vector_interleave2) return false; unsigned Factor = 2; VectorType *VTy = cast(II->getType()); VectorType *InVTy = cast(II->getOperand(0)->getType()); if (!isLegalInterleavedAccessType(InVTy, Factor, SI->getAlign(), SI->getPointerAddressSpace(), SI->getModule()->getDataLayout())) return false; Function *VssegNFunc; Value *VL; Type *XLenTy = Type::getIntNTy(SI->getContext(), Subtarget.getXLen()); if (auto *FVTy = dyn_cast(VTy)) { VssegNFunc = Intrinsic::getDeclaration( SI->getModule(), FixedVssegIntrIds[Factor - 2], {InVTy, SI->getPointerOperandType(), XLenTy}); VL = ConstantInt::get(XLenTy, FVTy->getNumElements()); } else { static const Intrinsic::ID IntrIds[] = { Intrinsic::riscv_vsseg2, Intrinsic::riscv_vsseg3, Intrinsic::riscv_vsseg4, Intrinsic::riscv_vsseg5, Intrinsic::riscv_vsseg6, Intrinsic::riscv_vsseg7, Intrinsic::riscv_vsseg8}; VssegNFunc = Intrinsic::getDeclaration(SI->getModule(), IntrIds[Factor - 2], {InVTy, XLenTy}); VL = Constant::getAllOnesValue(XLenTy); } Builder.CreateCall(VssegNFunc, {II->getOperand(0), II->getOperand(1), SI->getPointerOperand(), VL}); return true; } MachineInstr * RISCVTargetLowering::EmitKCFICheck(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator &MBBI, const TargetInstrInfo *TII) const { assert(MBBI->isCall() && MBBI->getCFIType() && "Invalid call instruction for a KCFI check"); assert(is_contained({RISCV::PseudoCALLIndirect, RISCV::PseudoTAILIndirect}, MBBI->getOpcode())); MachineOperand &Target = MBBI->getOperand(0); Target.setIsRenamable(false); return BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(RISCV::KCFI_CHECK)) .addReg(Target.getReg()) .addImm(MBBI->getCFIType()) .getInstr(); } #define GET_REGISTER_MATCHER #include "RISCVGenAsmMatcher.inc" Register RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const { Register Reg = MatchRegisterAltName(RegName); if (Reg == RISCV::NoRegister) Reg = MatchRegisterName(RegName); if (Reg == RISCV::NoRegister) report_fatal_error( Twine("Invalid register name \"" + StringRef(RegName) + "\".")); BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) report_fatal_error(Twine("Trying to obtain non-reserved register \"" + StringRef(RegName) + "\".")); return Reg; } MachineMemOperand::Flags RISCVTargetLowering::getTargetMMOFlags(const Instruction &I) const { const MDNode *NontemporalInfo = I.getMetadata(LLVMContext::MD_nontemporal); if (NontemporalInfo == nullptr) return MachineMemOperand::MONone; // 1 for default value work as __RISCV_NTLH_ALL // 2 -> __RISCV_NTLH_INNERMOST_PRIVATE // 3 -> __RISCV_NTLH_ALL_PRIVATE // 4 -> __RISCV_NTLH_INNERMOST_SHARED // 5 -> __RISCV_NTLH_ALL int NontemporalLevel = 5; const MDNode *RISCVNontemporalInfo = I.getMetadata("riscv-nontemporal-domain"); if (RISCVNontemporalInfo != nullptr) NontemporalLevel = cast( cast(RISCVNontemporalInfo->getOperand(0)) ->getValue()) ->getZExtValue(); assert((1 <= NontemporalLevel && NontemporalLevel <= 5) && "RISC-V target doesn't support this non-temporal domain."); NontemporalLevel -= 2; MachineMemOperand::Flags Flags = MachineMemOperand::MONone; if (NontemporalLevel & 0b1) Flags |= MONontemporalBit0; if (NontemporalLevel & 0b10) Flags |= MONontemporalBit1; return Flags; } MachineMemOperand::Flags RISCVTargetLowering::getTargetMMOFlags(const MemSDNode &Node) const { MachineMemOperand::Flags NodeFlags = Node.getMemOperand()->getFlags(); MachineMemOperand::Flags TargetFlags = MachineMemOperand::MONone; TargetFlags |= (NodeFlags & MONontemporalBit0); TargetFlags |= (NodeFlags & MONontemporalBit1); return TargetFlags; } bool RISCVTargetLowering::areTwoSDNodeTargetMMOFlagsMergeable( const MemSDNode &NodeX, const MemSDNode &NodeY) const { return getTargetMMOFlags(NodeX) == getTargetMMOFlags(NodeY); } bool RISCVTargetLowering::isCtpopFast(EVT VT) const { if (VT.isScalableVector()) return isTypeLegal(VT) && Subtarget.hasStdExtZvbb(); if (VT.isFixedLengthVector() && Subtarget.hasStdExtZvbb()) return true; return Subtarget.hasStdExtZbb() && (VT == MVT::i32 || VT == MVT::i64 || VT.isFixedLengthVector()); } unsigned RISCVTargetLowering::getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const { return isCtpopFast(VT) ? 0 : 1; } bool RISCVTargetLowering::fallBackToDAGISel(const Instruction &Inst) const { // GISel support is in progress or complete for G_ADD, G_SUB, G_AND, G_OR, and // G_XOR. unsigned Op = Inst.getOpcode(); if (Op == Instruction::Add || Op == Instruction::Sub || Op == Instruction::And || Op == Instruction::Or || Op == Instruction::Xor) return false; if (Inst.getType()->isScalableTy()) return true; for (unsigned i = 0; i < Inst.getNumOperands(); ++i) if (Inst.getOperand(i)->getType()->isScalableTy() && !isa(&Inst)) return true; if (const AllocaInst *AI = dyn_cast(&Inst)) { if (AI->getAllocatedType()->isScalableTy()) return true; } return false; } SDValue RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const { AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); if (isIntDivCheap(N->getValueType(0), Attr)) return SDValue(N, 0); // Lower SDIV as SDIV // Only perform this transform if short forward branch opt is supported. if (!Subtarget.hasShortForwardBranchOpt()) return SDValue(); EVT VT = N->getValueType(0); if (!(VT == MVT::i32 || (VT == MVT::i64 && Subtarget.is64Bit()))) return SDValue(); // Ensure 2**k-1 < 2048 so that we can just emit a single addi/addiw. if (Divisor.sgt(2048) || Divisor.slt(-2048)) return SDValue(); return TargetLowering::buildSDIVPow2WithCMov(N, Divisor, DAG, Created); } bool RISCVTargetLowering::shouldFoldSelectWithSingleBitTest( EVT VT, const APInt &AndMask) const { if (Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps()) return !Subtarget.hasStdExtZbs() && AndMask.ugt(1024); return TargetLowering::shouldFoldSelectWithSingleBitTest(VT, AndMask); } unsigned RISCVTargetLowering::getMinimumJumpTableEntries() const { return Subtarget.getMinimumJumpTableEntries(); } namespace llvm::RISCVVIntrinsicsTable { #define GET_RISCVVIntrinsicsTable_IMPL #include "RISCVGenSearchableTables.inc" } // namespace llvm::RISCVVIntrinsicsTable