//===-- RISCVFrameLowering.cpp - RISCV Frame Information ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the RISCV implementation of TargetFrameLowering class. // //===----------------------------------------------------------------------===// #include "RISCVFrameLowering.h" #include "RISCVMachineFunctionInfo.h" #include "RISCVSubtarget.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/MC/MCDwarf.h" #include using namespace llvm; // For now we use x18, a.k.a s2, as pointer to shadow call stack. // User should explicitly set -ffixed-x18 and not use x18 in their asm. static void emitSCSPrologue(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL) { if (!MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) return; const auto &STI = MF.getSubtarget(); Register RAReg = STI.getRegisterInfo()->getRARegister(); // Do not save RA to the SCS if it's not saved to the regular stack, // i.e. RA is not at risk of being overwritten. std::vector &CSI = MF.getFrameInfo().getCalleeSavedInfo(); if (std::none_of(CSI.begin(), CSI.end(), [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; })) return; Register SCSPReg = RISCVABI::getSCSPReg(); auto &Ctx = MF.getFunction().getContext(); if (!STI.isRegisterReservedByUser(SCSPReg)) { Ctx.diagnose(DiagnosticInfoUnsupported{ MF.getFunction(), "x18 not reserved by user for Shadow Call Stack."}); return; } const auto *RVFI = MF.getInfo(); if (RVFI->useSaveRestoreLibCalls(MF)) { Ctx.diagnose(DiagnosticInfoUnsupported{ MF.getFunction(), "Shadow Call Stack cannot be combined with Save/Restore LibCalls."}); return; } const RISCVInstrInfo *TII = STI.getInstrInfo(); bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit); int64_t SlotSize = STI.getXLen() / 8; // Store return address to shadow call stack // s[w|d] ra, 0(s2) // addi s2, s2, [4|8] BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW)) .addReg(RAReg) .addReg(SCSPReg) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI)) .addReg(SCSPReg, RegState::Define) .addReg(SCSPReg) .addImm(SlotSize) .setMIFlag(MachineInstr::FrameSetup); } static void emitSCSEpilogue(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL) { if (!MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) return; const auto &STI = MF.getSubtarget(); Register RAReg = STI.getRegisterInfo()->getRARegister(); // See emitSCSPrologue() above. std::vector &CSI = MF.getFrameInfo().getCalleeSavedInfo(); if (std::none_of(CSI.begin(), CSI.end(), [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; })) return; Register SCSPReg = RISCVABI::getSCSPReg(); auto &Ctx = MF.getFunction().getContext(); if (!STI.isRegisterReservedByUser(SCSPReg)) { Ctx.diagnose(DiagnosticInfoUnsupported{ MF.getFunction(), "x18 not reserved by user for Shadow Call Stack."}); return; } const auto *RVFI = MF.getInfo(); if (RVFI->useSaveRestoreLibCalls(MF)) { Ctx.diagnose(DiagnosticInfoUnsupported{ MF.getFunction(), "Shadow Call Stack cannot be combined with Save/Restore LibCalls."}); return; } const RISCVInstrInfo *TII = STI.getInstrInfo(); bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit); int64_t SlotSize = STI.getXLen() / 8; // Load return address from shadow call stack // l[w|d] ra, -[4|8](s2) // addi s2, s2, -[4|8] BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::LD : RISCV::LW)) .addReg(RAReg, RegState::Define) .addReg(SCSPReg) .addImm(-SlotSize) .setMIFlag(MachineInstr::FrameDestroy); BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI)) .addReg(SCSPReg, RegState::Define) .addReg(SCSPReg) .addImm(-SlotSize) .setMIFlag(MachineInstr::FrameDestroy); } // Get the ID of the libcall used for spilling and restoring callee saved // registers. The ID is representative of the number of registers saved or // restored by the libcall, except it is zero-indexed - ID 0 corresponds to a // single register. static int getLibCallID(const MachineFunction &MF, const std::vector &CSI) { const auto *RVFI = MF.getInfo(); if (CSI.empty() || !RVFI->useSaveRestoreLibCalls(MF)) return -1; Register MaxReg = RISCV::NoRegister; for (auto &CS : CSI) // RISCVRegisterInfo::hasReservedSpillSlot assigns negative frame indexes to // registers which can be saved by libcall. if (CS.getFrameIdx() < 0) MaxReg = std::max(MaxReg.id(), CS.getReg().id()); if (MaxReg == RISCV::NoRegister) return -1; switch (MaxReg) { default: llvm_unreachable("Something has gone wrong!"); case /*s11*/ RISCV::X27: return 12; case /*s10*/ RISCV::X26: return 11; case /*s9*/ RISCV::X25: return 10; case /*s8*/ RISCV::X24: return 9; case /*s7*/ RISCV::X23: return 8; case /*s6*/ RISCV::X22: return 7; case /*s5*/ RISCV::X21: return 6; case /*s4*/ RISCV::X20: return 5; case /*s3*/ RISCV::X19: return 4; case /*s2*/ RISCV::X18: return 3; case /*s1*/ RISCV::X9: return 2; case /*s0*/ RISCV::X8: return 1; case /*ra*/ RISCV::X1: return 0; } } // Get the name of the libcall used for spilling callee saved registers. // If this function will not use save/restore libcalls, then return a nullptr. static const char * getSpillLibCallName(const MachineFunction &MF, const std::vector &CSI) { static const char *const SpillLibCalls[] = { "__riscv_save_0", "__riscv_save_1", "__riscv_save_2", "__riscv_save_3", "__riscv_save_4", "__riscv_save_5", "__riscv_save_6", "__riscv_save_7", "__riscv_save_8", "__riscv_save_9", "__riscv_save_10", "__riscv_save_11", "__riscv_save_12" }; int LibCallID = getLibCallID(MF, CSI); if (LibCallID == -1) return nullptr; return SpillLibCalls[LibCallID]; } // Get the name of the libcall used for restoring callee saved registers. // If this function will not use save/restore libcalls, then return a nullptr. static const char * getRestoreLibCallName(const MachineFunction &MF, const std::vector &CSI) { static const char *const RestoreLibCalls[] = { "__riscv_restore_0", "__riscv_restore_1", "__riscv_restore_2", "__riscv_restore_3", "__riscv_restore_4", "__riscv_restore_5", "__riscv_restore_6", "__riscv_restore_7", "__riscv_restore_8", "__riscv_restore_9", "__riscv_restore_10", "__riscv_restore_11", "__riscv_restore_12" }; int LibCallID = getLibCallID(MF, CSI); if (LibCallID == -1) return nullptr; return RestoreLibCalls[LibCallID]; } // Return true if the specified function should have a dedicated frame // pointer register. This is true if frame pointer elimination is // disabled, if it needs dynamic stack realignment, if the function has // variable sized allocas, or if the frame address is taken. bool RISCVFrameLowering::hasFP(const MachineFunction &MF) const { const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); return MF.getTarget().Options.DisableFramePointerElim(MF) || RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken(); } bool RISCVFrameLowering::hasBP(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetRegisterInfo *TRI = STI.getRegisterInfo(); // If we do not reserve stack space for outgoing arguments in prologue, // we will adjust the stack pointer before call instruction. After the // adjustment, we can not use SP to access the stack objects for the // arguments. Instead, use BP to access these stack objects. return (MFI.hasVarSizedObjects() || (!hasReservedCallFrame(MF) && (!MFI.isMaxCallFrameSizeComputed() || MFI.getMaxCallFrameSize() != 0))) && TRI->hasStackRealignment(MF); } // Determines the size of the frame and maximum call frame size. void RISCVFrameLowering::determineFrameLayout(MachineFunction &MF) const { MachineFrameInfo &MFI = MF.getFrameInfo(); auto *RVFI = MF.getInfo(); // Get the number of bytes to allocate from the FrameInfo. uint64_t FrameSize = MFI.getStackSize(); // Get the alignment. Align StackAlign = getStackAlign(); // Make sure the frame is aligned. FrameSize = alignTo(FrameSize, StackAlign); // Update frame info. MFI.setStackSize(FrameSize); // When using SP or BP to access stack objects, we may require extra padding // to ensure the bottom of the RVV stack is correctly aligned within the main // stack. We calculate this as the amount required to align the scalar local // variable section up to the RVV alignment. const TargetRegisterInfo *TRI = STI.getRegisterInfo(); if (RVFI->getRVVStackSize() && (!hasFP(MF) || TRI->hasStackRealignment(MF))) { int ScalarLocalVarSize = FrameSize - RVFI->getCalleeSavedStackSize() - RVFI->getVarArgsSaveSize(); if (auto RVVPadding = offsetToAlignment(ScalarLocalVarSize, RVFI->getRVVStackAlign())) RVFI->setRVVPadding(RVVPadding); } } // Returns the stack size including RVV padding (when required), rounded back // up to the required stack alignment. uint64_t RISCVFrameLowering::getStackSizeWithRVVPadding( const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); auto *RVFI = MF.getInfo(); return alignTo(MFI.getStackSize() + RVFI->getRVVPadding(), getStackAlign()); } void RISCVFrameLowering::adjustReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, Register DestReg, Register SrcReg, int64_t Val, MachineInstr::MIFlag Flag) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const RISCVInstrInfo *TII = STI.getInstrInfo(); if (DestReg == SrcReg && Val == 0) return; if (isInt<12>(Val)) { BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), DestReg) .addReg(SrcReg) .addImm(Val) .setMIFlag(Flag); return; } // Try to split the offset across two ADDIs. We need to keep the stack pointer // aligned after each ADDI. We need to determine the maximum value we can put // in each ADDI. In the negative direction, we can use -2048 which is always // sufficiently aligned. In the positive direction, we need to find the // largest 12-bit immediate that is aligned. Exclude -4096 since it can be // created with LUI. assert(getStackAlign().value() < 2048 && "Stack alignment too large"); int64_t MaxPosAdjStep = 2048 - getStackAlign().value(); if (Val > -4096 && Val <= (2 * MaxPosAdjStep)) { int64_t FirstAdj = Val < 0 ? -2048 : MaxPosAdjStep; Val -= FirstAdj; BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), DestReg) .addReg(SrcReg) .addImm(FirstAdj) .setMIFlag(Flag); BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), DestReg) .addReg(DestReg, RegState::Kill) .addImm(Val) .setMIFlag(Flag); return; } unsigned Opc = RISCV::ADD; if (Val < 0) { Val = -Val; Opc = RISCV::SUB; } Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); TII->movImm(MBB, MBBI, DL, ScratchReg, Val, Flag); BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg) .addReg(SrcReg) .addReg(ScratchReg, RegState::Kill) .setMIFlag(Flag); } // Returns the register used to hold the frame pointer. static Register getFPReg(const RISCVSubtarget &STI) { return RISCV::X8; } // Returns the register used to hold the stack pointer. static Register getSPReg(const RISCVSubtarget &STI) { return RISCV::X2; } static SmallVector getNonLibcallCSI(const MachineFunction &MF, const std::vector &CSI) { const MachineFrameInfo &MFI = MF.getFrameInfo(); SmallVector NonLibcallCSI; for (auto &CS : CSI) { int FI = CS.getFrameIdx(); if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::Default) NonLibcallCSI.push_back(CS); } return NonLibcallCSI; } void RISCVFrameLowering::adjustStackForRVV(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, int64_t Amount, MachineInstr::MIFlag Flag) const { assert(Amount != 0 && "Did not need to adjust stack pointer for RVV."); const RISCVInstrInfo *TII = STI.getInstrInfo(); Register SPReg = getSPReg(STI); unsigned Opc = RISCV::ADD; if (Amount < 0) { Amount = -Amount; Opc = RISCV::SUB; } // 1. Multiply the number of v-slots to the length of registers Register FactorRegister = TII->getVLENFactoredAmount(MF, MBB, MBBI, DL, Amount, Flag); // 2. SP = SP - RVV stack size BuildMI(MBB, MBBI, DL, TII->get(Opc), SPReg) .addReg(SPReg) .addReg(FactorRegister, RegState::Kill) .setMIFlag(Flag); } void RISCVFrameLowering::emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineFrameInfo &MFI = MF.getFrameInfo(); auto *RVFI = MF.getInfo(); const RISCVRegisterInfo *RI = STI.getRegisterInfo(); const RISCVInstrInfo *TII = STI.getInstrInfo(); MachineBasicBlock::iterator MBBI = MBB.begin(); Register FPReg = getFPReg(STI); Register SPReg = getSPReg(STI); Register BPReg = RISCVABI::getBPReg(); // Debug location must be unknown since the first debug location is used // to determine the end of the prologue. DebugLoc DL; // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction().getCallingConv() == CallingConv::GHC) return; // Emit prologue for shadow call stack. emitSCSPrologue(MF, MBB, MBBI, DL); // Since spillCalleeSavedRegisters may have inserted a libcall, skip past // any instructions marked as FrameSetup while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) ++MBBI; // Determine the correct frame layout determineFrameLayout(MF); // If libcalls are used to spill and restore callee-saved registers, the frame // has two sections; the opaque section managed by the libcalls, and the // section managed by MachineFrameInfo which can also hold callee saved // registers in fixed stack slots, both of which have negative frame indices. // This gets even more complicated when incoming arguments are passed via the // stack, as these too have negative frame indices. An example is detailed // below: // // | incoming arg | <- FI[-3] // | libcallspill | // | calleespill | <- FI[-2] // | calleespill | <- FI[-1] // | this_frame | <- FI[0] // // For negative frame indices, the offset from the frame pointer will differ // depending on which of these groups the frame index applies to. // The following calculates the correct offset knowing the number of callee // saved registers spilt by the two methods. if (int LibCallRegs = getLibCallID(MF, MFI.getCalleeSavedInfo()) + 1) { // Calculate the size of the frame managed by the libcall. The libcalls are // implemented such that the stack will always be 16 byte aligned. unsigned LibCallFrameSize = alignTo((STI.getXLen() / 8) * LibCallRegs, 16); RVFI->setLibCallStackSize(LibCallFrameSize); } // FIXME (note copied from Lanai): This appears to be overallocating. Needs // investigation. Get the number of bytes to allocate from the FrameInfo. uint64_t StackSize = getStackSizeWithRVVPadding(MF); uint64_t RealStackSize = StackSize + RVFI->getLibCallStackSize(); uint64_t RVVStackSize = RVFI->getRVVStackSize(); // Early exit if there is no need to allocate on the stack if (RealStackSize == 0 && !MFI.adjustsStack() && RVVStackSize == 0) return; // If the stack pointer has been marked as reserved, then produce an error if // the frame requires stack allocation if (STI.isRegisterReservedByUser(SPReg)) MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ MF.getFunction(), "Stack pointer required, but has been reserved."}); uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF); // Split the SP adjustment to reduce the offsets of callee saved spill. if (FirstSPAdjustAmount) { StackSize = FirstSPAdjustAmount; RealStackSize = FirstSPAdjustAmount; } // Allocate space on the stack if necessary. adjustReg(MBB, MBBI, DL, SPReg, SPReg, -StackSize, MachineInstr::FrameSetup); // Emit ".cfi_def_cfa_offset RealStackSize" unsigned CFIIndex = MF.addFrameInst( MCCFIInstruction::cfiDefCfaOffset(nullptr, RealStackSize)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlag(MachineInstr::FrameSetup); const auto &CSI = MFI.getCalleeSavedInfo(); // The frame pointer is callee-saved, and code has been generated for us to // save it to the stack. We need to skip over the storing of callee-saved // registers as the frame pointer must be modified after it has been saved // to the stack, not before. // FIXME: assumes exactly one instruction is used to save each callee-saved // register. std::advance(MBBI, getNonLibcallCSI(MF, CSI).size()); // Iterate over list of callee-saved registers and emit .cfi_offset // directives. for (const auto &Entry : CSI) { int FrameIdx = Entry.getFrameIdx(); int64_t Offset; // Offsets for objects with fixed locations (IE: those saved by libcall) are // simply calculated from the frame index. if (FrameIdx < 0) Offset = FrameIdx * (int64_t) STI.getXLen() / 8; else Offset = MFI.getObjectOffset(Entry.getFrameIdx()) - RVFI->getLibCallStackSize(); Register Reg = Entry.getReg(); unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( nullptr, RI->getDwarfRegNum(Reg, true), Offset)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlag(MachineInstr::FrameSetup); } // Generate new FP. if (hasFP(MF)) { if (STI.isRegisterReservedByUser(FPReg)) MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ MF.getFunction(), "Frame pointer required, but has been reserved."}); adjustReg(MBB, MBBI, DL, FPReg, SPReg, RealStackSize - RVFI->getVarArgsSaveSize(), MachineInstr::FrameSetup); // Emit ".cfi_def_cfa $fp, RVFI->getVarArgsSaveSize()" unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( nullptr, RI->getDwarfRegNum(FPReg, true), RVFI->getVarArgsSaveSize())); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlag(MachineInstr::FrameSetup); } // Emit the second SP adjustment after saving callee saved registers. if (FirstSPAdjustAmount) { uint64_t SecondSPAdjustAmount = getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount; assert(SecondSPAdjustAmount > 0 && "SecondSPAdjustAmount should be greater than zero"); adjustReg(MBB, MBBI, DL, SPReg, SPReg, -SecondSPAdjustAmount, MachineInstr::FrameSetup); // If we are using a frame-pointer, and thus emitted ".cfi_def_cfa fp, 0", // don't emit an sp-based .cfi_def_cfa_offset if (!hasFP(MF)) { // Emit ".cfi_def_cfa_offset StackSize" unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset( nullptr, getStackSizeWithRVVPadding(MF))); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlag(MachineInstr::FrameSetup); } } if (RVVStackSize) adjustStackForRVV(MF, MBB, MBBI, DL, -RVVStackSize, MachineInstr::FrameSetup); if (hasFP(MF)) { // Realign Stack const RISCVRegisterInfo *RI = STI.getRegisterInfo(); if (RI->hasStackRealignment(MF)) { Align MaxAlignment = MFI.getMaxAlign(); const RISCVInstrInfo *TII = STI.getInstrInfo(); if (isInt<12>(-(int)MaxAlignment.value())) { BuildMI(MBB, MBBI, DL, TII->get(RISCV::ANDI), SPReg) .addReg(SPReg) .addImm(-(int)MaxAlignment.value()) .setMIFlag(MachineInstr::FrameSetup); } else { unsigned ShiftAmount = Log2(MaxAlignment); Register VR = MF.getRegInfo().createVirtualRegister(&RISCV::GPRRegClass); BuildMI(MBB, MBBI, DL, TII->get(RISCV::SRLI), VR) .addReg(SPReg) .addImm(ShiftAmount) .setMIFlag(MachineInstr::FrameSetup); BuildMI(MBB, MBBI, DL, TII->get(RISCV::SLLI), SPReg) .addReg(VR) .addImm(ShiftAmount) .setMIFlag(MachineInstr::FrameSetup); } // FP will be used to restore the frame in the epilogue, so we need // another base register BP to record SP after re-alignment. SP will // track the current stack after allocating variable sized objects. if (hasBP(MF)) { // move BP, SP BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), BPReg) .addReg(SPReg) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); } } } } void RISCVFrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { const RISCVRegisterInfo *RI = STI.getRegisterInfo(); MachineFrameInfo &MFI = MF.getFrameInfo(); auto *RVFI = MF.getInfo(); Register FPReg = getFPReg(STI); Register SPReg = getSPReg(STI); // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction().getCallingConv() == CallingConv::GHC) return; // Get the insert location for the epilogue. If there were no terminators in // the block, get the last instruction. MachineBasicBlock::iterator MBBI = MBB.end(); DebugLoc DL; if (!MBB.empty()) { MBBI = MBB.getLastNonDebugInstr(); if (MBBI != MBB.end()) DL = MBBI->getDebugLoc(); MBBI = MBB.getFirstTerminator(); // If callee-saved registers are saved via libcall, place stack adjustment // before this call. while (MBBI != MBB.begin() && std::prev(MBBI)->getFlag(MachineInstr::FrameDestroy)) --MBBI; } const auto &CSI = getNonLibcallCSI(MF, MFI.getCalleeSavedInfo()); // Skip to before the restores of callee-saved registers // FIXME: assumes exactly one instruction is used to restore each // callee-saved register. auto LastFrameDestroy = MBBI; if (!CSI.empty()) LastFrameDestroy = std::prev(MBBI, CSI.size()); uint64_t StackSize = getStackSizeWithRVVPadding(MF); uint64_t RealStackSize = StackSize + RVFI->getLibCallStackSize(); uint64_t FPOffset = RealStackSize - RVFI->getVarArgsSaveSize(); uint64_t RVVStackSize = RVFI->getRVVStackSize(); // Restore the stack pointer using the value of the frame pointer. Only // necessary if the stack pointer was modified, meaning the stack size is // unknown. // // In order to make sure the stack point is right through the EH region, // we also need to restore stack pointer from the frame pointer if we // don't preserve stack space within prologue/epilogue for outgoing variables, // normally it's just checking the variable sized object is present or not // is enough, but we also don't preserve that at prologue/epilogue when // have vector objects in stack. if (RI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || !hasReservedCallFrame(MF)) { assert(hasFP(MF) && "frame pointer should not have been eliminated"); adjustReg(MBB, LastFrameDestroy, DL, SPReg, FPReg, -FPOffset, MachineInstr::FrameDestroy); } else { if (RVVStackSize) adjustStackForRVV(MF, MBB, LastFrameDestroy, DL, RVVStackSize, MachineInstr::FrameDestroy); } uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF); if (FirstSPAdjustAmount) { uint64_t SecondSPAdjustAmount = getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount; assert(SecondSPAdjustAmount > 0 && "SecondSPAdjustAmount should be greater than zero"); adjustReg(MBB, LastFrameDestroy, DL, SPReg, SPReg, SecondSPAdjustAmount, MachineInstr::FrameDestroy); } if (FirstSPAdjustAmount) StackSize = FirstSPAdjustAmount; // Deallocate stack adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackSize, MachineInstr::FrameDestroy); // Emit epilogue for shadow call stack. emitSCSEpilogue(MF, MBB, MBBI, DL); } StackOffset RISCVFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); const auto *RVFI = MF.getInfo(); // Callee-saved registers should be referenced relative to the stack // pointer (positive offset), otherwise use the frame pointer (negative // offset). const auto &CSI = getNonLibcallCSI(MF, MFI.getCalleeSavedInfo()); int MinCSFI = 0; int MaxCSFI = -1; StackOffset Offset; auto StackID = MFI.getStackID(FI); assert((StackID == TargetStackID::Default || StackID == TargetStackID::ScalableVector) && "Unexpected stack ID for the frame object."); if (StackID == TargetStackID::Default) { Offset = StackOffset::getFixed(MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + MFI.getOffsetAdjustment()); } else if (StackID == TargetStackID::ScalableVector) { Offset = StackOffset::getScalable(MFI.getObjectOffset(FI)); } uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF); if (CSI.size()) { MinCSFI = CSI[0].getFrameIdx(); MaxCSFI = CSI[CSI.size() - 1].getFrameIdx(); } if (FI >= MinCSFI && FI <= MaxCSFI) { FrameReg = RISCV::X2; if (FirstSPAdjustAmount) Offset += StackOffset::getFixed(FirstSPAdjustAmount); else Offset += StackOffset::getFixed(getStackSizeWithRVVPadding(MF)); return Offset; } if (RI->hasStackRealignment(MF) && !MFI.isFixedObjectIndex(FI)) { // If the stack was realigned, the frame pointer is set in order to allow // SP to be restored, so we need another base register to record the stack // after realignment. // |--------------------------| -- <-- FP // | callee-allocated save | | <----| // | area for register varargs| | | // |--------------------------| | | // | callee-saved registers | | | // |--------------------------| -- | // | realignment (the size of | | | // | this area is not counted | | | // | in MFI.getStackSize()) | | | // |--------------------------| -- |-- MFI.getStackSize() // | RVV alignment padding | | | // | (not counted in | | | // | MFI.getStackSize() but | | | // | counted in | | | // | RVFI.getRVVStackSize()) | | | // |--------------------------| -- | // | RVV objects | | | // | (not counted in | | | // | MFI.getStackSize()) | | | // |--------------------------| -- | // | padding before RVV | | | // | (not counted in | | | // | MFI.getStackSize() or in | | | // | RVFI.getRVVStackSize()) | | | // |--------------------------| -- | // | scalar local variables | | <----' // |--------------------------| -- <-- BP (if var sized objects present) // | VarSize objects | | // |--------------------------| -- <-- SP if (hasBP(MF)) { FrameReg = RISCVABI::getBPReg(); } else { // VarSize objects must be empty in this case! assert(!MFI.hasVarSizedObjects()); FrameReg = RISCV::X2; } } else { FrameReg = RI->getFrameRegister(MF); } if (FrameReg == getFPReg(STI)) { Offset += StackOffset::getFixed(RVFI->getVarArgsSaveSize()); if (FI >= 0) Offset -= StackOffset::getFixed(RVFI->getLibCallStackSize()); // When using FP to access scalable vector objects, we need to minus // the frame size. // // |--------------------------| -- <-- FP // | callee-allocated save | | // | area for register varargs| | // |--------------------------| | // | callee-saved registers | | // |--------------------------| | MFI.getStackSize() // | scalar local variables | | // |--------------------------| -- (Offset of RVV objects is from here.) // | RVV objects | // |--------------------------| // | VarSize objects | // |--------------------------| <-- SP if (MFI.getStackID(FI) == TargetStackID::ScalableVector) { assert(!RI->hasStackRealignment(MF) && "Can't index across variable sized realign"); // We don't expect any extra RVV alignment padding, as the stack size // and RVV object sections should be correct aligned in their own // right. assert(MFI.getStackSize() == getStackSizeWithRVVPadding(MF) && "Inconsistent stack layout"); Offset -= StackOffset::getFixed(MFI.getStackSize()); } return Offset; } // This case handles indexing off both SP and BP. // If indexing off SP, there must not be any var sized objects assert(FrameReg == RISCVABI::getBPReg() || !MFI.hasVarSizedObjects()); // When using SP to access frame objects, we need to add RVV stack size. // // |--------------------------| -- <-- FP // | callee-allocated save | | <----| // | area for register varargs| | | // |--------------------------| | | // | callee-saved registers | | | // |--------------------------| -- | // | RVV alignment padding | | | // | (not counted in | | | // | MFI.getStackSize() but | | | // | counted in | | | // | RVFI.getRVVStackSize()) | | | // |--------------------------| -- | // | RVV objects | | |-- MFI.getStackSize() // | (not counted in | | | // | MFI.getStackSize()) | | | // |--------------------------| -- | // | padding before RVV | | | // | (not counted in | | | // | MFI.getStackSize()) | | | // |--------------------------| -- | // | scalar local variables | | <----' // |--------------------------| -- <-- BP (if var sized objects present) // | VarSize objects | | // |--------------------------| -- <-- SP // // The total amount of padding surrounding RVV objects is described by // RVV->getRVVPadding() and it can be zero. It allows us to align the RVV // objects to the required alignment. if (MFI.getStackID(FI) == TargetStackID::Default) { if (MFI.isFixedObjectIndex(FI)) { assert(!RI->hasStackRealignment(MF) && "Can't index across variable sized realign"); Offset += StackOffset::get(getStackSizeWithRVVPadding(MF) + RVFI->getLibCallStackSize(), RVFI->getRVVStackSize()); } else { Offset += StackOffset::getFixed(MFI.getStackSize()); } } else if (MFI.getStackID(FI) == TargetStackID::ScalableVector) { // Ensure the base of the RVV stack is correctly aligned: add on the // alignment padding. int ScalarLocalVarSize = MFI.getStackSize() - RVFI->getCalleeSavedStackSize() - RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding(); Offset += StackOffset::get(ScalarLocalVarSize, RVFI->getRVVStackSize()); } return Offset; } void RISCVFrameLowering::determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const { TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); // Unconditionally spill RA and FP only if the function uses a frame // pointer. if (hasFP(MF)) { SavedRegs.set(RISCV::X1); SavedRegs.set(RISCV::X8); } // Mark BP as used if function has dedicated base pointer. if (hasBP(MF)) SavedRegs.set(RISCVABI::getBPReg()); // If interrupt is enabled and there are calls in the handler, // unconditionally save all Caller-saved registers and // all FP registers, regardless whether they are used. MachineFrameInfo &MFI = MF.getFrameInfo(); if (MF.getFunction().hasFnAttribute("interrupt") && MFI.hasCalls()) { static const MCPhysReg CSRegs[] = { RISCV::X1, /* ra */ RISCV::X5, RISCV::X6, RISCV::X7, /* t0-t2 */ RISCV::X10, RISCV::X11, /* a0-a1, a2-a7 */ RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X28, RISCV::X29, RISCV::X30, RISCV::X31, 0 /* t3-t6 */ }; for (unsigned i = 0; CSRegs[i]; ++i) SavedRegs.set(CSRegs[i]); if (MF.getSubtarget().hasStdExtF()) { // If interrupt is enabled, this list contains all FP registers. const MCPhysReg * Regs = MF.getRegInfo().getCalleeSavedRegs(); for (unsigned i = 0; Regs[i]; ++i) if (RISCV::FPR16RegClass.contains(Regs[i]) || RISCV::FPR32RegClass.contains(Regs[i]) || RISCV::FPR64RegClass.contains(Regs[i])) SavedRegs.set(Regs[i]); } } } std::pair RISCVFrameLowering::assignRVVStackObjectOffsets(MachineFunction &MF) const { MachineFrameInfo &MFI = MF.getFrameInfo(); // Create a buffer of RVV objects to allocate. SmallVector ObjectsToAllocate; for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { unsigned StackID = MFI.getStackID(I); if (StackID != TargetStackID::ScalableVector) continue; if (MFI.isDeadObjectIndex(I)) continue; ObjectsToAllocate.push_back(I); } // The minimum alignment is 16 bytes. Align RVVStackAlign(16); const auto &ST = MF.getSubtarget(); if (!ST.hasVInstructions()) { assert(ObjectsToAllocate.empty() && "Can't allocate scalable-vector objects without V instructions"); return std::make_pair(0, RVVStackAlign); } // Allocate all RVV locals and spills int64_t Offset = 0; for (int FI : ObjectsToAllocate) { // ObjectSize in bytes. int64_t ObjectSize = MFI.getObjectSize(FI); auto ObjectAlign = std::max(Align(8), MFI.getObjectAlign(FI)); // If the data type is the fractional vector type, reserve one vector // register for it. if (ObjectSize < 8) ObjectSize = 8; Offset = alignTo(Offset + ObjectSize, ObjectAlign); MFI.setObjectOffset(FI, -Offset); // Update the maximum alignment of the RVV stack section RVVStackAlign = std::max(RVVStackAlign, ObjectAlign); } // Ensure the alignment of the RVV stack. Since we want the most-aligned // object right at the bottom (i.e., any padding at the top of the frame), // readjust all RVV objects down by the alignment padding. uint64_t StackSize = Offset; if (auto AlignmentPadding = offsetToAlignment(StackSize, RVVStackAlign)) { StackSize += AlignmentPadding; for (int FI : ObjectsToAllocate) MFI.setObjectOffset(FI, MFI.getObjectOffset(FI) - AlignmentPadding); } return std::make_pair(StackSize, RVVStackAlign); } static unsigned getScavSlotsNumForRVV(MachineFunction &MF) { // For RVV spill, scalable stack offsets computing requires up to two scratch // registers static constexpr unsigned ScavSlotsNumRVVSpillScalableObject = 2; // For RVV spill, non-scalable stack offsets computing requires up to one // scratch register. static constexpr unsigned ScavSlotsNumRVVSpillNonScalableObject = 1; // ADDI instruction's destination register can be used for computing // offsets. So Scalable stack offsets require up to one scratch register. static constexpr unsigned ScavSlotsADDIScalableObject = 1; static constexpr unsigned MaxScavSlotsNumKnown = std::max({ScavSlotsADDIScalableObject, ScavSlotsNumRVVSpillScalableObject, ScavSlotsNumRVVSpillNonScalableObject}); unsigned MaxScavSlotsNum = 0; if (!MF.getSubtarget().hasVInstructions()) return false; for (const MachineBasicBlock &MBB : MF) for (const MachineInstr &MI : MBB) { bool IsRVVSpill = RISCV::isRVVSpill(MI); for (auto &MO : MI.operands()) { if (!MO.isFI()) continue; bool IsScalableVectorID = MF.getFrameInfo().getStackID(MO.getIndex()) == TargetStackID::ScalableVector; if (IsRVVSpill) { MaxScavSlotsNum = std::max( MaxScavSlotsNum, IsScalableVectorID ? ScavSlotsNumRVVSpillScalableObject : ScavSlotsNumRVVSpillNonScalableObject); } else if (MI.getOpcode() == RISCV::ADDI && IsScalableVectorID) { MaxScavSlotsNum = std::max(MaxScavSlotsNum, ScavSlotsADDIScalableObject); } } if (MaxScavSlotsNum == MaxScavSlotsNumKnown) return MaxScavSlotsNumKnown; } return MaxScavSlotsNum; } void RISCVFrameLowering::processFunctionBeforeFrameFinalized( MachineFunction &MF, RegScavenger *RS) const { const RISCVRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetRegisterClass *RC = &RISCV::GPRRegClass; auto *RVFI = MF.getInfo(); int64_t RVVStackSize; Align RVVStackAlign; std::tie(RVVStackSize, RVVStackAlign) = assignRVVStackObjectOffsets(MF); RVFI->setRVVStackSize(RVVStackSize); RVFI->setRVVStackAlign(RVVStackAlign); // Ensure the entire stack is aligned to at least the RVV requirement: some // scalable-vector object alignments are not considered by the // target-independent code. MFI.ensureMaxAlignment(RVVStackAlign); // estimateStackSize has been observed to under-estimate the final stack // size, so give ourselves wiggle-room by checking for stack size // representable an 11-bit signed field rather than 12-bits. // FIXME: It may be possible to craft a function with a small stack that // still needs an emergency spill slot for branch relaxation. This case // would currently be missed. // RVV loads & stores have no capacity to hold the immediate address offsets // so we must always reserve an emergency spill slot if the MachineFunction // contains any RVV spills. unsigned ScavSlotsNum = 0; if (!isInt<11>(MFI.estimateStackSize(MF))) ScavSlotsNum = 1; ScavSlotsNum = std::max(ScavSlotsNum, getScavSlotsNumForRVV(MF)); for (unsigned i = 0; i < ScavSlotsNum; i++) { RS->addScavengingFrameIndex(MFI.CreateStackObject( RegInfo->getSpillSize(*RC), RegInfo->getSpillAlign(*RC), false)); } if (MFI.getCalleeSavedInfo().empty() || RVFI->useSaveRestoreLibCalls(MF)) { RVFI->setCalleeSavedStackSize(0); return; } unsigned Size = 0; for (const auto &Info : MFI.getCalleeSavedInfo()) { int FrameIdx = Info.getFrameIdx(); if (MFI.getStackID(FrameIdx) != TargetStackID::Default) continue; Size += MFI.getObjectSize(FrameIdx); } RVFI->setCalleeSavedStackSize(Size); } static bool hasRVVFrameObject(const MachineFunction &MF) { // Originally, the function will scan all the stack objects to check whether // if there is any scalable vector object on the stack or not. However, it // causes errors in the register allocator. In issue 53016, it returns false // before RA because there is no RVV stack objects. After RA, it returns true // because there are spilling slots for RVV values during RA. It will not // reserve BP during register allocation and generate BP access in the PEI // pass due to the inconsistent behavior of the function. // // The function is changed to use hasVInstructions() as the return value. It // is not precise, but it can make the register allocation correct. // // FIXME: Find a better way to make the decision or revisit the solution in // D103622. // // Refer to https://github.com/llvm/llvm-project/issues/53016. return MF.getSubtarget().hasVInstructions(); } // Not preserve stack space within prologue for outgoing variables when the // function contains variable size objects or there are vector objects accessed // by the frame pointer. // Let eliminateCallFramePseudoInstr preserve stack space for it. bool RISCVFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { return !MF.getFrameInfo().hasVarSizedObjects() && !(hasFP(MF) && hasRVVFrameObject(MF)); } // Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions. MachineBasicBlock::iterator RISCVFrameLowering::eliminateCallFramePseudoInstr( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { Register SPReg = RISCV::X2; DebugLoc DL = MI->getDebugLoc(); if (!hasReservedCallFrame(MF)) { // If space has not been reserved for a call frame, ADJCALLSTACKDOWN and // ADJCALLSTACKUP must be converted to instructions manipulating the stack // pointer. This is necessary when there is a variable length stack // allocation (e.g. alloca), which means it's not possible to allocate // space for outgoing arguments from within the function prologue. int64_t Amount = MI->getOperand(0).getImm(); if (Amount != 0) { // Ensure the stack remains aligned after adjustment. Amount = alignSPAdjust(Amount); if (MI->getOpcode() == RISCV::ADJCALLSTACKDOWN) Amount = -Amount; adjustReg(MBB, MI, DL, SPReg, SPReg, Amount, MachineInstr::NoFlags); } } return MBB.erase(MI); } // We would like to split the SP adjustment to reduce prologue/epilogue // as following instructions. In this way, the offset of the callee saved // register could fit in a single store. // add sp,sp,-2032 // sw ra,2028(sp) // sw s0,2024(sp) // sw s1,2020(sp) // sw s3,2012(sp) // sw s4,2008(sp) // add sp,sp,-64 uint64_t RISCVFrameLowering::getFirstSPAdjustAmount(const MachineFunction &MF) const { const auto *RVFI = MF.getInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); const std::vector &CSI = MFI.getCalleeSavedInfo(); uint64_t StackSize = getStackSizeWithRVVPadding(MF); // Disable SplitSPAdjust if save-restore libcall is used. The callee-saved // registers will be pushed by the save-restore libcalls, so we don't have to // split the SP adjustment in this case. if (RVFI->getLibCallStackSize()) return 0; // Return the FirstSPAdjustAmount if the StackSize can not fit in a signed // 12-bit and there exists a callee-saved register needing to be pushed. if (!isInt<12>(StackSize) && (CSI.size() > 0)) { // FirstSPAdjustAmount is chosen as (2048 - StackAlign) because 2048 will // cause sp = sp + 2048 in the epilogue to be split into multiple // instructions. Offsets smaller than 2048 can fit in a single load/store // instruction, and we have to stick with the stack alignment. 2048 has // 16-byte alignment. The stack alignment for RV32 and RV64 is 16 and for // RV32E it is 4. So (2048 - StackAlign) will satisfy the stack alignment. return 2048 - getStackAlign().value(); } return 0; } bool RISCVFrameLowering::spillCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, ArrayRef CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return true; MachineFunction *MF = MBB.getParent(); const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo(); DebugLoc DL; if (MI != MBB.end() && !MI->isDebugInstr()) DL = MI->getDebugLoc(); const char *SpillLibCall = getSpillLibCallName(*MF, CSI); if (SpillLibCall) { // Add spill libcall via non-callee-saved register t0. BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoCALLReg), RISCV::X5) .addExternalSymbol(SpillLibCall, RISCVII::MO_CALL) .setMIFlag(MachineInstr::FrameSetup); // Add registers spilled in libcall as liveins. for (auto &CS : CSI) MBB.addLiveIn(CS.getReg()); } // Manually spill values not spilled by libcall. const auto &NonLibcallCSI = getNonLibcallCSI(*MF, CSI); for (auto &CS : NonLibcallCSI) { // Insert the spill to the stack frame. Register Reg = CS.getReg(); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.storeRegToStackSlot(MBB, MI, Reg, !MBB.isLiveIn(Reg), CS.getFrameIdx(), RC, TRI); } return true; } bool RISCVFrameLowering::restoreCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, MutableArrayRef CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return true; MachineFunction *MF = MBB.getParent(); const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo(); DebugLoc DL; if (MI != MBB.end() && !MI->isDebugInstr()) DL = MI->getDebugLoc(); // Manually restore values not restored by libcall. // Keep the same order as in the prologue. There is no need to reverse the // order in the epilogue. In addition, the return address will be restored // first in the epilogue. It increases the opportunity to avoid the // load-to-use data hazard between loading RA and return by RA. // loadRegFromStackSlot can insert multiple instructions. const auto &NonLibcallCSI = getNonLibcallCSI(*MF, CSI); for (auto &CS : NonLibcallCSI) { Register Reg = CS.getReg(); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.loadRegFromStackSlot(MBB, MI, Reg, CS.getFrameIdx(), RC, TRI); assert(MI != MBB.begin() && "loadRegFromStackSlot didn't insert any code!"); } const char *RestoreLibCall = getRestoreLibCallName(*MF, CSI); if (RestoreLibCall) { // Add restore libcall via tail call. MachineBasicBlock::iterator NewMI = BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoTAIL)) .addExternalSymbol(RestoreLibCall, RISCVII::MO_CALL) .setMIFlag(MachineInstr::FrameDestroy); // Remove trailing returns, since the terminator is now a tail call to the // restore function. if (MI != MBB.end() && MI->getOpcode() == RISCV::PseudoRET) { NewMI->copyImplicitOps(*MF, *MI); MI->eraseFromParent(); } } return true; } bool RISCVFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { // Keep the conventional code flow when not optimizing. if (MF.getFunction().hasOptNone()) return false; return true; } bool RISCVFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { MachineBasicBlock *TmpMBB = const_cast(&MBB); const MachineFunction *MF = MBB.getParent(); const auto *RVFI = MF->getInfo(); if (!RVFI->useSaveRestoreLibCalls(*MF)) return true; // Inserting a call to a __riscv_save libcall requires the use of the register // t0 (X5) to hold the return address. Therefore if this register is already // used we can't insert the call. RegScavenger RS; RS.enterBasicBlock(*TmpMBB); return !RS.isRegUsed(RISCV::X5); } bool RISCVFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { const MachineFunction *MF = MBB.getParent(); MachineBasicBlock *TmpMBB = const_cast(&MBB); const auto *RVFI = MF->getInfo(); if (!RVFI->useSaveRestoreLibCalls(*MF)) return true; // Using the __riscv_restore libcalls to restore CSRs requires a tail call. // This means if we still need to continue executing code within this function // the restore cannot take place in this basic block. if (MBB.succ_size() > 1) return false; MachineBasicBlock *SuccMBB = MBB.succ_empty() ? TmpMBB->getFallThrough() : *MBB.succ_begin(); // Doing a tail call should be safe if there are no successors, because either // we have a returning block or the end of the block is unreachable, so the // restore will be eliminated regardless. if (!SuccMBB) return true; // The successor can only contain a return, since we would effectively be // replacing the successor with our own tail return at the end of our block. return SuccMBB->isReturnBlock() && SuccMBB->size() == 1; } bool RISCVFrameLowering::isSupportedStackID(TargetStackID::Value ID) const { switch (ID) { case TargetStackID::Default: case TargetStackID::ScalableVector: return true; case TargetStackID::NoAlloc: case TargetStackID::SGPRSpill: case TargetStackID::WasmLocal: return false; } llvm_unreachable("Invalid TargetStackID::Value"); } TargetStackID::Value RISCVFrameLowering::getStackIDForScalableVectors() const { return TargetStackID::ScalableVector; }